Analytic approach to determine optimal conditions for maximizing altitude of sounding rocket: Flight in standard atmosphere

Sang-Hyeon Lee a,*,1, Ralph C. Aldredge b,2

a Dept. of Mechanical Eng., University of Ulsan, Ulsan, 680-749, Republic of Korea
b Dept. of Mechanical and Aerospace Eng., University of California, Davis, CA, 95616, USA

A R T I C L E I N F O
Article history:
Received 21 November 2014
Received in revised form 5 August 2015
Accepted 16 August 2015
Available online 18 August 2015

A B S T R A C T
The analytic approach to determine the optimal conditions for maximizing altitude of a sounding rocket is extended to the case in which the rocket flies in a standard atmosphere where the air density as well as the gravitational acceleration changes with altitude. The one-dimensional rocket momentum equation including thrust, gravitational force, and aerodynamic drag is solved. Flight in the standard atmosphere is analyzed by dividing the whole flight time into small intervals where the drag parameter and gravitational acceleration can be treated as constant in each interval. The analytic approach gives piecewise exact solutions of the rocket velocity and altitude that agree well with the numerical ones. A characteristic equation exists and provides accurate predictions of the optimal conditions for maximizing altitude at burn-out state or apogee.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Scientific studies with a sounding rocket are simple, fast, and inexpensive compared to those with a satellite. The costs for a sounding rocket mission are much lower than those required for an orbiter mission, since sounding rocket missions do not need expensive boosters, extended telemetry or tracking coverage. Mission costs are also low because of the acceptance of a higher degree of risk in the mission compared to orbital missions [1]. Many countries are running sounding rocket programs and trying to develop technologies related to sounding rockets to exploit these advantages [2–13]. Most scientific measurements, observations, or experiments for sounding rocket missions are carried out near apogee. The low speed near apogee provides favorable chances to explore or observe space in a short time period. Furthermore, there are some important regions of space that are too low to be sampled by satellites; thus, sounding rockets provide platforms to carry out in-situ measurements in these regions [10]. Some microgravity environments [14,15] are carried after burn-out state and some scramjet experiments [16,17] are conducted during free-fall that provides a good hypersonic condition at low cost.

We consider the motion of a sounding rocket launched in the vertical direction for simplicity. Then the motion of a sounding rocket can be described with a one-dimensional momentum equation that includes thrust, gravitational force, and aerodynamic drag force. The rocket mass varies with time, and the aerodynamic drag is proportional to the square of the rocket velocity, which makes the governing equation nonlinear. Thus, we cannot obtain analytic solution in a general form. Hence, in most cases, numerical approaches are used to obtain solutions because of easy implementation with less assumption. An approximate solution can be obtained with neglecting drag force but it contains serious errors especially near ground. There are also approximate solutions with the Taylor series expansion, the perturbation method or the least square method [18], but they are complex and do not give information about the optimal conditions. Analytic solutions, on the contrary to numerical ones, are exact without numerical errors, give insights to understand the behavior of the system, show critical parameters, and lead to ways to determine the optimal conditions. Therefore it is necessary to obtain analytic solutions if possible.

An analytic exact solution of the rocket equation including aerodynamic drag exists only in a typical situation where all the forces are well balanced [19]. As a beginning study, we consider the typical case where an analytic solution exists. We are aware that the
Nomenclature

\[D \quad \text{drag} \]
\[F \quad \text{thrust} \]
\[G \quad \text{ratio between inertia and drag} \]
\[g \quad \text{gravitational acceleration} \]
\[h \quad \text{altitude} \]
\[K \quad \text{drag parameter} \]
\[m \quad \text{rocket mass} \]
\[\dot{m} \quad \text{rate of rocket mass change or mass flow rate of propellant jet} \]
\[q \quad \text{velocity parameter for rocket velocity} \]
\[t \quad \text{time} \]
\[u \quad \text{velocity of propellant jet} \]
\[v \quad \text{rocket vertical velocity} \]
\[p \quad \text{static pressure} \]
\[T \quad \text{temperature} \]
\[\rho \quad \text{density} \]
\[\Omega \quad \text{rocket mass ratio between total mass and dry mass} \]
\[\omega \quad \text{rocket mass ratio between adjacent intervals} \]

Subscripts

\[a \quad \text{ambient air} \]
\[b \quad \text{burn-out state} \]
\[e \quad \text{jet condition at rocket nozzle exit} \]
\[o \quad \text{ground state} \]
\[\text{opt} \quad \text{optimal condition for maximizing altitude} \]
\[s \quad \text{stationary state (apogee)} \]

2. One-dimensional rocket equation

2.1. Equation in boost phase

The motion of a sounding rocket in boost phase climbing in the vertical direction can be described with the following one-dimensional rocket equation [24,25].

\[
\frac{dv}{dt} = F - D - mg. \tag{2.1}
\]

The mass of a rocket decreases with the mass flow of propellant.

\[
m = m_o + \int_0^t \dot{m} dt, \tag{2.2a}
\]

\[
\dot{m} = \frac{dm}{dt}. \tag{2.2b}
\]

The mass flow rate \(\dot{m} \) is equal to the rate of rocket mass and has a negative sign by definition.

The thrust \(F \) is composed of two parts:

\[
F = \dot{m} u_e + A_e (p_e - p_a). \tag{2.3}
\]

For an adiabatic nozzle flow, the total enthalpy is constant, and then we can assume that the jet velocity \(u_e \) is constant. The jet velocity has the negative sign since its direction is opposite to the rocket velocity; thus, the thrust term \(\dot{m} u_e \) has the positive sign. If the nozzle flow has a perfect expansion, the second term of the thrust vanishes. Hereafter, we ignore the second term of the thrust for simplicity.

The aerodynamic drag force \(D \) that proportional to the square of rocket velocity can be represented as follows:

\[
D = K v^2. \tag{2.4a}
\]

\[
K = \frac{S}{2} C_d \rho_o. \tag{2.4b}
\]

The terms \(S \) and \(C_d \) are the cross-sectional area of a rocket and the aerodynamic drag coefficient, respectively. The air density of a standard atmosphere is not a constant but changes with altitude, which means that the drag parameter \(K \) also changes with altitude. The aerodynamic drag coefficient is usually increases sharply near the Mach number of unity and decreases gradually with the Mach number after then [18,26,27]. Some preliminary numerical experiments showed that this model caused serious numerical oscillations especially when the velocity parameter is near to speed of sound, which seems due to the abrupt change of the drag coefficient around the Mach number of unity. We adopt a modified
model to guarantee smooth changes of the drag coefficient at all Mach numbers. The details will be presented in Section 5.2.

The change of the gravitational force due to the altitude change should be considered for high altitude sounding rockets. In the present study, the following relation is used.

\[g = g_o \frac{R_E^2}{(R_E + h)^2} \]

(2.4c)

The terms \(g_o \) and \(R_E \) stand for the gravitational acceleration and average radius of the earth at sea level that are 9.8067 \((m/s^2) \) and 6.371 \(\times 10^6 \) \((m) \), respectively.

The governing equation then becomes

\[\frac{dv}{dt} = m u_e - K v^2 - mg. \]

(2.5)

The mass is variable with time, and the square of the solution appears in the drag force, which makes the governing equation nonlinear. Thus, we could not obtain analytic solutions in a general form. However, there is a typical case where an analytic solution exists. We introduce a velocity parameter as follows:

\[q = \sqrt{\frac{m u_e - mg}{K}}. \]

(2.6a)

The governing equation can then be reduced as

\[\frac{dv}{dt} = K (q^2 - v^2). \]

(2.6b)

Separating variables leads to

\[\frac{dv}{q^2 - v^2} = \frac{K}{m} \frac{dt}{dm}. \]

(2.6c)

This governing equation can be represented according to the mass instead of the time as follows:

\[\frac{dv}{q^2 - v^2} = \frac{K}{m} \frac{dm}{m}. \]

(2.7)

We can obtain an analytic integration of the left hand side of the above equation only when the velocity parameter is constant. If the velocity parameter is constant, the mass flow rate is not a constant since the velocity parameter is constant. For a saturated gaseous nozzle flow the mass flow rate changes proportionally to the throat area or the chamber pressure. It is technically difficult to change the nozzle shape. Thus it is better to control the mass flow rate by the pressure of the rocket combustor. On the other hand, if the mass flow rate is constant, the velocity parameter becomes a function of mass and thus the left hand side of the above equation cannot be analytically integrated. Then, in this case, we should try to obtain an approximate solution.

Even though the left hand side can be analytically integrated, on the contrary to the previous study [23], the right hand side cannot be analytically integrated over the whole flight time since the drag parameter changes with the altitude or the Mach number and thus could not expressed as an explicit function of the time or the mass. Hence we could not obtain analytic solutions valid throughout the whole flight time. Then we have to find out another way to avoid such serious difficulties. This will be discussed in the next section.

3. Analytic solutions

3.1. Solutions of the governing equation

3.1.1. Solutions in boost phase

The mass flow rate for a constant velocity parameter is variable with the mass and the drag parameter as follows:

\[m = \frac{mg + K q^2}{u_e}. \]

(3.1.1)

Inserting this relation into the governing equation yields

\[\frac{dv}{q^2 - v^2} = \frac{K u_e}{mg + K q^2} \frac{dm}{m}. \]

(3.1.2)

In the standard atmosphere, the air density and thus the drag parameter change with altitude even though the aerodynamic drag coefficient is constant. If the drag parameter is a function of altitude and so is the gravitational acceleration, then we cannot have a valid solution over the whole flight time. We then have to change the strategy to approach the problem. A divide-and-conquer strategy could be an alternative to avoid such difficulties. If we divide the whole flight time into intervals small enough to assume that the drag parameter and the gravitational acceleration be constant, then we can apply the analytic approaches to the rocket motion in each interval and obtain piecewise analytic solutions. The piecewise governing equation in the interval between \((n - 1)\) and \(n\) states becomes

\[\frac{dv}{q^2 - v^2} = \tilde{K}_n \frac{dm}{m} ; \]

(3.1.3a)

\[\tilde{m} = \frac{m_{n-1} q^2 + \tilde{K}_n q^2}{u_e \tilde{m}} ; \]

(3.1.3b)

\[\tilde{K}_n = \frac{K_{n-1} + K_n}{2} ; \]

(3.1.3c)

Integrating the right hand side of equation (3.1.3a) in the interval between \((n - 1)\) and \(n\) states can be expressed as follows:

\[\int_{m_{n-1}}^{m_n} \frac{\tilde{K}_n u_e}{m_{n-1} q^2} \frac{dm}{m} = \frac{u_e}{q^2} \ln \left(\frac{m_n}{m_{n-1}} \right) \sum_{i=1}^{n} \ln \left(\frac{m_{i+1} q^2 + \tilde{K}_i q^2}{m_i q^2 + \tilde{K}_i q^2} \right). \]

(3.1.4a)

Hence, integrating equation (3.1.3a) from ground state to \(n\) state leads to

\[\frac{1}{2q} \ln \left(\frac{q + v_n}{q - v_n} \right) = \frac{u_e}{q^2} \sum_{i=1}^{n} \ln \left(\frac{m_i q^2 + \tilde{K}_i q^2}{m_{i-1} q^2 + \tilde{K}_i q^2} \right). \]

(3.1.4b)
Rearranging this equation yields

\[v_n = q_n - \frac{1}{x_n + 1}, \quad (3.1.5a) \]

\[x_n = \left(\prod_{i=1}^{n} \frac{m_i}{m_{i-1}} \left(\frac{\bar{g}_n + \tilde{K}_i q^2}{\bar{g}_i + q^2} \right) \right)^{\sigma}, \quad (3.1.5b) \]

\[G_{i,j} = \frac{m_i \tilde{g}_j}{K_j}, \quad \sigma = \frac{2u_e}{q}. \quad (3.1.5c) \]

The velocity parameter \(q \) is the limit of the velocity since the velocity approaches \(q \) as the variable \(x \) grows. The drag parameter and gravitational acceleration at the interval between \((n-1) \) and \((n) \) states are not obtained until the velocity is determined. Thus it is necessary to calculate with iterations. The term \(x \) at the ground state and at the burn-out state become

\[x_0 = \left(\frac{m_b \bar{g}_{0,0} + q^2}{m_b} \right)^{\sigma} = 1, \quad (3.1.6a) \]

\[x_b = \left(\prod_{i=1}^{b} \frac{m_i}{m_{i-1}} \left(\frac{G_{i-1,i} + q^2}{G_{i,i} + q^2} \right) \right)^{\sigma}. \quad (3.1.6b) \]

The time derivative of mass flow rate between \((n-1) \) state and \((n) \) state becomes

\[\frac{dm}{dt} = \frac{\bar{g}_n}{u_e} m^*, \quad \text{or} \quad (3.1.7a) \]

\[\frac{dm}{dt} = \frac{\tilde{g}_n}{u_e} \frac{dt}{dr}. \quad (3.1.7b) \]

Integrating this equation between \((n-1) \) state and \((n) \) state with inserting the mass flow rate expressed in equation (3.1.3b) yields

\[\ln \left(\frac{m_{n-1} \bar{g}_n + \tilde{K}_n q^2}{m_n \bar{g}_n + \tilde{K}_n q^2} \right) = \frac{\tilde{g}_n}{u_e} (t_n - t_{n-1}). \quad (3.1.8a) \]

The mass can be expressed explicitly as follows:

\[m_n = \left(m_{n-1} + \frac{\tilde{K}_n q^2}{\bar{g}_n} \right) \exp \left[\frac{\tilde{g}_n}{u_e} (t_n - t_{n-1}) \right] - \frac{\tilde{K}_n q^2}{\bar{g}_n}. \quad (3.1.8b) \]

The rocket mass ratio and-piecewise mass ratio between masses at \((n-1) \) and \((n) \) states are defined as

\[\Omega = \frac{m_0}{m_b} > 1, \quad (3.1.9a) \]

\[\omega_n = \frac{m_{n-1}}{m_n} > 1. \quad (3.1.9b) \]

Also, the time can be represented as a function of mass as follows:

\[t_n - t_{n-1} = \frac{u_e}{\bar{g}_n} \ln \left(\frac{G_{n,n} + q^2}{G_{n-1,n} + q^2} \right). \quad (3.1.10) \]

The burn-out time can be determined with the summation of time intervals from ground state to burn-out state.

The altitude at burn-out state can be obtained by integrating the rocket velocity with respect to the time as follows:

\[h_b = \int_0^{t_n} v \, dt = \sum_{i=1}^{m_i} \int_0^{t_n} q \, \frac{x - 1}{x + 1} \, dm \]

\[= \sum_{i=1}^{m_i} \frac{m_{i-1}}{m_i} \frac{x - 1}{x + 1} \frac{u_e}{m_{i-1}} \, dm. \quad (3.1.11) \]
\[\frac{1}{2} \frac{x_b - 1}{x_b} dq = \int_0^{h_0} \frac{dK}{dq} m \, dh. \quad (3.2.4) \]

Taking the logarithm of the term \(x_b \) expressed in equation (3.1.6b) yields

\[\ln(x_b) = \frac{2u_e}{q} \ln \left(\prod_{i=1} \frac{1}{\omega_i} \frac{G_{i-1,1} + q^2}{G_{i,1} + q^2} \right). \quad (3.2.5) \]

The parameter \(G \) changes with the velocity parameter due to the change of the altitude. But at the maximum altitude the derivative of the altitude becomes zero and thus we can ignore the derivative of the parameter \(G \). Then differentiating this equation with respect to the velocity parameter yields

\[\frac{1}{x_b} \frac{\partial x_b}{\partial q} = -\frac{1}{q} \left[\ln(x_b) - 4u_e \sum_{i=1}^{b} \frac{G_{i,1}(1 - \omega_i)}{(G_{i-1,1} + q^2)(G_{i,1} + q^2)} \right]. \quad (3.2.6) \]

Also, according to the same reason, we can ignore the derivative of the drag parameter on the right hand side of equation (3.2.4). Then applying the divide-and-conquer strategy leads to

\[-\sum_{i=1}^{b} \frac{\bar{K}_i}{h_{i-1}} \int_{h_{i-1}}^{h_i} \frac{1}{m^2} \frac{dm}{dq} \, dh. \quad (3.2.7a) \]

The mass at a given altitude would change with the velocity parameter and thus the derivative of the mass with respect to the velocity parameter could not vanish. As suggested in the previous study [23], the derivative of the mass with respect to the velocity parameter between \((n - 1)\) and \((n)\) states can be expressed as follows:

\[\frac{dm}{dq} = \frac{2q(m - \beta m_b)}{G_{n-1,n} + q^2}. \quad (3.2.7b) \]

If \(\beta \) is \(\Omega \), then the critical mass \(\beta m_b \) becomes \(m_0 \). The coefficient \(\beta \) would change with the rocket mass or rocket mass ratio.

Hence, the following characteristic equations should be satisfied to maximize altitude at burn-out state.

\[\ln(x_b) - 4u_e \sum_{i=1}^{b} \frac{G_{i,1}(1 - \omega_i)}{(G_{i-1,1} + q^2)(G_{i,1} + q^2)} = S_b, \quad (3.2.8a) \]

\[S_b = \frac{x_b + 1}{x_b - 1} \sum_{i=1}^{b} \bar{K}_i \int_{h_{i-1}}^{h_i} \frac{4q^2}{G_{i-1,1} + q^2} \frac{m - \beta m_b}{m^2} \, dh. \quad (3.2.8b) \]

This equation is the fourth-order one but is impossible to be constructed in a polynomial form. Hence, to avoid this serious situation, it is inevitable to build alternative equation in a reduced order as follows:

\[q^3 \ln(x_b) - S_b - 4u_e \sum_{i=1}^{b} \frac{G_{i,1}(1 - \omega_i)}{(G_{i-1,1} + q^2) + 1}(\frac{G_{i,1}}{q^2} + 1) = 0, \quad (3.2.9a) \]

\[q \ln(x_b) - S_b - 4u_e \sum_{i=1}^{b} \frac{G_{i,1}(1 - \omega_i)}{(G_{i-1,1} + q)(G_{i,1} + q)} = 0. \quad (3.2.9b) \]

The solution of the characteristic equation cannot be obtained analytically since the undetermined solution exists implicitly in the second term. Thus, we try to obtain the solution with the following iterative equation.

\[q_{k+1} = \frac{4u_e}{\ln(x_{b,k}) - S_{b,k} + \sum_{i=1}^{b} \frac{G_{i,1}(1 - \omega_i)}{(G_{i-1,1} + q)(G_{i,1} + q)}}, \quad (3.2.10a) \]

\[q_{k+1} = \frac{4u_e}{\ln(x_{b,k}) - S_{b,k} + \sum_{i=1}^{b} \frac{G_{i,1}(1 - \omega_i)}{G_{i-1,1} + q_k}(\frac{G_{i,1}}{q^2} + 1)}. \quad (3.2.10b) \]

Preliminary numerical experiments show that as same as the previous study [23], the first order approximation (3.2.10b) converges faster than the third order approximation (3.2.10a) and gives exactly same results. These equations are stable and, thus, converge within several iterations. The converged solution can be obtained within about 20 iterations that are slightly higher than that for the cases with constant drag parameter.

The term \(S_b \) in the above equation decreases and so does the estimated velocity parameter \(q_{k+1} \) as the coefficient \(\beta \) increases. Therefore, we can determine the coefficient \(\beta \) with the following iterative relation.

\[\beta_{k+1} = \beta_k \left[1 - \frac{q}{h_b} \left(\frac{dh_b}{dq} \right) \right]. \quad (3.2.11a) \]

On the contrary to the cases with a constant drag parameter considered in the previous study [23], the derivative of altitude with respect to the velocity parameter could not be explicitly determined since the drag parameter changes with the altitude that is not determined yet. A reasonable and simple alternative is numerical derivative represented as follows:

\[\frac{\partial h_b}{\partial q} \approx \frac{h_b(q + \Delta q) - h_b(q - \Delta q)}{2\Delta q}. \quad (3.2.11b) \]

The larger value of \(C_\beta \) in equation (3.2.11a) results in the faster convergence but the stronger instabilities. In the present study, the constant of \(1/4 \) is used. On the other hand, the smaller \(\Delta q \) results in the more exact differentiation but the stronger instabilities. Preliminary numerical experiments showed that the difference of the velocity parameter \(\Delta q \) between 0.1% and 1.0% of the velocity parameter guaranteed stable convergences. In the present study, the difference of 0.5% is adopted.

3.3. Optimal conditions at apogee

The rocket in coast phase ascends until the apogee or apogee where the rocket velocity is zero. Hence, the optimal condition for maximizing altitude at apogee would differ from that at burn-out state. In coast phase, the thrust is terminated and the mass is constant. Thus, the governing equation becomes

\[\frac{dv}{dv} = \frac{1}{m_b} \frac{dh}{v} \quad (3.3.1) \]

Separating variables yields

\[\frac{Kvdv}{Kv^2 + m_bg} = \frac{K}{m_b} dh. \quad (3.3.1b) \]

The left hand side of the above equation cannot be analytically integrated since the drag parameter is not constant. We can avoid such difficulty with the strategy of divide-and-conquer as applied to the burn-out situation. If we divide the whole flight time into intervals small enough to treat the drag parameter and gravitational acceleration as constants in each interval. Then the integral of the left hand side of the above equation in the interval between \((n - 1)\) state and \((n)\) state becomes

\[\int_{v_{n-1}}^{v_n} \frac{Kvdv}{m_b \bar{g}_n + \bar{K}_n v^2} = \frac{1}{2} \ln \left(\frac{m_b \bar{g}_n + \bar{K}_n v_{n-1}^2}{m_b \bar{g}_n + \bar{K}_n v_n^2} \right). \quad (3.3.2) \]
The above term makes it difficult to analyze the behavior of the governing equation since we cannot determine the derivative of the intermittent velocities with respect to the velocity parameter. On the other hand, we can substitute the rocket velocity with another variable as follows:

\[w = \sqrt{\omega} v, \]

\[dw = \sqrt{\omega} dv + \frac{v}{2\sqrt{\omega}} d\omega = \sqrt{\omega} v \left(\frac{dv}{v} + \frac{d\omega}{2\omega} \right). \]

Both the velocity and the drag parameter have positive signs and negative rates and thus we can assume that the differentials have the following relationship:

\[\frac{d\omega}{\omega} = \frac{dv}{v}. \]

If the drag parameter changes in a similar mode, we assume that the ratio \(\psi = \) constant throughout the flight time in coast phase. The ratio \(\psi \) can be determined with comparing the drag parameters at burn-out state and at the state where the velocity is half of burn-out velocity as follows:

\[\psi = \frac{\ln[K(v_b)/K(v_b/2)]}{\ln(2)}. \]

Hence the governing equation integrated from ground state to apogee approximately becomes

\[\int_0^{v_b} \frac{v^2 dv}{q^2 - v^2} = \frac{2}{2 + \psi} \int_0^{v_b} \frac{wdw}{w^2 + m_b g} \]

\[= \int_0^{h_b} \frac{K}{m_b} dh + \int_{h_b}^{h_p} \frac{K}{m_b} dh. \]

(3.3.4)

The second term of the above equation is reduced as

\[- \frac{1}{2 + \psi} \ln \left(\frac{m_b g_b}{G_{b,b} + V_b^2} \right) \beta_b = \frac{1}{2 + \psi} \ln \left(\frac{G_{b,b} + V_b^2}{G_{b,b}} \right). \]

(3.3.5a)

The parameter \(G \) changes with the velocity parameter due to the altitude change. But at the maximum altitude the derivative of the altitude becomes zero and thus we can ignore the derivative of the parameter \(G \). Differentiating the above term with respect to the velocity parameter yields

\[\frac{2}{2 + \psi} \frac{v_b}{G_{b,b} + V_b^2} \frac{d}{dq} \left(\frac{x_b - 1}{x_b + 1} \right) \]

\[= \frac{2}{2 + \psi} \frac{x_b - 1}{x_b + 1} \frac{q}{G_{b,b} + V_b^2} \left(\frac{x_b - 1}{x_b + 1} \right) \sum_{i=1}^{b} \frac{d \omega_i}{\omega_i} \]

(3.3.6)

On the other hand, differentiating the right hand side in equation (3.3.4) with respect to the velocity parameter leads to

\[\int_0^{h_b} \frac{dK}{m_b} dh + \int_{h_b}^{h_p} \frac{dK}{m_b} dh + \frac{K_b dh_b}{m_b dq} \]

\[= \frac{K_b dh_b}{m_b dq}. \]

(3.3.7)

The Leibniz rule \([29] \) is applied. The second and the last terms cancel out. The derivative of altitude at ground state is zero, and, for the maximum altitude, the derivative of altitude at apogee should be zero. The rocket mass after burn-out state is constant and thus its derivative is zero and, as mentioned in the above section, at the maximum altitude we can ignore the derivative of the drag parameter. Thus the second term vanishes but, as mentioned in the above section, the first term remains. Hence, the characteristic equation to indicate the optimal condition for maximizing altitude at apogee becomes

\[\frac{1}{x_b} \frac{dx_b}{dq} + \frac{4}{2 + \psi} \frac{q}{G_{b,b} + V_b^2} \left(\frac{x_b - 1}{x_b + 1} \right) + \frac{2q x_b - 1}{G_{b,b} + V_b^2} \frac{dx_b}{dq} \]

\[= \frac{1}{x_b} \frac{h_i}{m_b} \int_{h_{b,i}}^{h_i} \frac{1}{m^2} dq dh. \]

(3.3.8a)

Rearranging this equation yields

\[\frac{1}{x_b} \frac{dx_b}{dq} + \frac{4q}{2 + \psi} \frac{x_b - 1}{x_b + 1} \]

\[= 2 \left(G_{b,b} + V_b^2 \right) \frac{x_b - 1}{2 + \psi} \left(\frac{x_b + 1}{x_b + 2} \right)^2. \]

(3.3.9a)

Inserting equation (3.2.6) and equation (3.2.7) into the above equation leads to

\[\ln(x_b) - 4u_e \sum_{i=1}^{b} \frac{G_{i,i} (1 - \omega_i)}{(G_{i-1,i} + q^2)(G_{i,i} + q^2)} = S_s. \]

(3.3.9b)

This equation is the fourth-order one but is impossible to be constructed in a polynomial form. Rearranging this equation yields a reduced order equation as follows:

\[q^2 \left[\ln(x_b) - S_s \right] - 4u_e \sum_{i=1}^{b} \frac{G_{i,i} (1 - \omega_i)}{(G_{i-1,i} + q^2)(G_{i,i} + q^2)} = 0, \quad \text{or} \]

\[q \left[\ln(x_b) - S_s \right] = 4u_e \sum_{i=1}^{b} \frac{G_{i,i} (1 - \omega_i)}{(G_{i-1,i} + q^2)(G_{i,i} + q^2)} = 0. \]

(3.3.10a)

(3.3.10b)

The solution of the characteristic equation cannot be obtained analytically since the undetermined solution exists implicitly in the second term. Thus, we try to obtain the solution with the following iterative equation.

\[q_{k+1} = \frac{4u_e}{\ln(x_b, k) - S_s} \sum_{i=1}^{b} \frac{G_{i,i} (1 - \omega_i)}{(G_{i-1,i} + q^2)(G_{i,i} + q^2)}, \quad \text{or} \]

\[q_{k+1} = \frac{4u_e}{\ln(x_b, k) - S_s} \sum_{i=1}^{b} \frac{G_{i,i} (1 - \omega_i)}{q^2 + G_{i-1,i} q^2 + G_{i,i} q^2}. \]

(3.3.11a)

(3.3.11b)

Preliminary numerical experiments show that the first order approximation (3.3.11b) converges faster than the third order one
and gives exactly same results, which is as same as the previous study [23]. However, in the case with a small mass ratio less than 1.5, the third order approximation shows more stable convergence. The converged solution can be obtained in 30 iterations that are almost same as that for the burn-out situation.

The term S_n in the above equation decreases and so does the estimated velocity parameter q_{k+1} as the coefficient β increases. Therefore, we can determine the coefficient β with iteration as follows:

$$\beta_{k+1} = \beta_k \left[1 - C_\beta \left(\frac{q}{h_{s_k}} \frac{dh_k}{dq} \right)_k \right].$$

The larger C_β in equation (3.3.12a) results in the faster convergence but the stronger instability. In the present study, the constant of 1/4 is used. On the other hand, the smaller Δq results in the more exact differentiation but the stronger instabilities.

Preliminary numerical experiments showed that the difference of the velocity parameter Δq between 0.1% and 1.0% of the velocity parameter guaranteed stable convergences. In the present study, the same difference of 0.5% is adopted as the burn-out situation.

4. Numerical solutions

If the mass and velocity of the rocket are known at $(n - 1)$, then the velocity at (n) can be obtained. The discretized governing equation becomes

$$m_{n-1/2} \frac{v_n - v_{n-1}}{\Delta t} = \bar{m}_{n-1/2} u_n - \bar{K}_n v_{n-1/2}^2 - m_{n-1/2} \bar{g}_n.$$ \hspace{3.5cm} (4.1a)

$$\Delta t = t_n - t_{n-1} = \frac{u_n}{\bar{g}_n} \ln \left(\frac{m_{n} \bar{g}_{n} + \bar{K}_n q_n^2}{m_{n-1} \bar{g}_{n-1} + \bar{K}_{n-1} q_{n-1}^2} \right).$$ \hspace{3.5cm} (4.1b)

The index $n - 1/2$ denotes the average of a variable between $(n - 1)$ and (n) states.

$$m_{n-1/2} = \frac{m_{n} + m_{n-1}}{2},$$ \hspace{3.5cm} (4.2a)

$$v_{n-1/2} = \frac{v_n + v_{n-1}}{2},$$ \hspace{3.5cm} (4.2b)

$$m_{n-1/2} = \frac{m_{n} + m_{n-1}}{2} + \frac{2 \bar{K}_n q_n^2}{2 u_n}.$$ \hspace{3.5cm} (4.2b)

The governing equation is then rewritten as follows:

$$m_{n-1/2} \frac{v_n - v_{n-1}}{\Delta t} = \bar{m}_{n-1/2} u_n - \frac{\bar{K}_n}{4} (v_{n-1}^2 + 2 v_n v_{n-1} + v_{n-1}^2) - m_{n-1/2} \bar{g}_n.$$ \hspace{3.5cm} (4.3a)

This discretized equation becomes a quadratic one as follows:

$$v_n^2 + 2 \left(v_{n-1} + 2 m_{n-1/2} / \bar{K}_n \Delta t \right) v_n + v_{n-1}^2$$

$$- \frac{4}{\bar{K}_n} \left(m_{n-1/2} v_{n-1} \Delta t + m_{n-1/2} u_n - m_{n-1/2} \bar{g}_n \right) = 0.$$ \hspace{3.5cm} (4.3b)

This solution at (n) state is

$$v_n = - B + \sqrt{B^2 - C},$$ \hspace{3.5cm} (4.4a)

$$B = v_{n-1} + 2 m_{n-1/2} / \bar{K}_n \Delta t,$$

$$C = v_{n-1}^2 - 4 / \bar{K}_n \left(m_{n-1/2} v_{n-1} \Delta t + m_{n-1/2} u_n - m_{n-1/2} \bar{g}_n \right).$$ \hspace{3.5cm} (4.4b)

In coast phase, the thrust term is extracted from the equations, and the mass is fixed as that at the burn-out state.

5. Calculation conditions

5.1. Atmosphere

The solution of the rocket equation depends strongly on the drag coefficient that varies with the ambient air density. Therefore, for the flight of a rocket in a real atmosphere, the density change according to altitude raises a critical issue for the rocket dynamics. In the present study, the density is determined according to the standard atmosphere [30] where the effects of wind, location or time are excluded. The standard atmosphere is composed of the troposphere, stratosphere, mesosphere, and thermosphere. The typical thermodynamic properties for the standard atmosphere are listed in Table 5.1.

There are no universal formulas to express the thermodynamic properties up to the very high altitude. So the piecewise continuous expression is adopted in the present study. For the standard atmosphere, the temperature in each layer is expressed as a linear function of the altitude. The temperature at an altitude between $(a - 1)$ layer and (a) layer can be obtained as follows:

$$T = \frac{T_a - T_{a-1}}{h_a - h_{a-1}} (h - h_{a-1}) + T_{a-1}. $$ \hspace{3.5cm} (5.1)

The pressure in each interval is expressed as an exponential function of the altitude. Then the pressure at an altitude between $(a - 1)$ layer and (a) layer can be obtained as follows:

$$p = p_{a-1} \exp \left[\xi_a (h - h_{a-1}) \right],$$ \hspace{3.5cm} (5.2a)

$$\xi_a = \frac{1}{h_a - h_{a-1}} \ln \left(\frac{p_a}{p_{a-1}} \right).$$ \hspace{3.5cm} (5.2b)

We can then determine the density as a function of altitude with the thermodynamic state function for the ideal gas of air.
showed number Mach 6, comparisons. is altitude. Fig. 1 compares the same rocket mass between the Standard Atmosphere. The mean ratio, \(\Omega \), is considered fixed for all cases. The total mass and the propellant mass are determined according to the mass ratio, \(\Omega \). The mass ratio is varied from 2 to 6, which means the rocket total mass is changed from 1500 kg to 4500 kg. The conditions considered are listed in Table 5.2.

The cross-section diameter of the rocket is 0.6 m. The aerodynamic drag coefficient, \(C_d \), is not a constant but a function of the Mach number. The basic model to simulate the effect of the Mach number is the one used by Ganji [18]. However, the basic model showed some unstable behaviors near the Mach number of one.

Hence, in the present study, the following model modified for the smooth transitions near the Mach number one is adopted.

\[
C_d = C_{d0}\left[1 + R_d f_d(M)\right], \tag{5.3a}
\]

\[
f_d(M) = \begin{cases}
A_0 M^6, & M \leq 1 \\
1 - A_1(1 - M_{1}^2)^{4}, & 1 < M \leq M_2 \\
A_2(M + 1 - M_2)^{-1}, & M_2 < M
\end{cases} \tag{5.3b}
\]

\[
A_1 = \frac{1}{M_1 - 1}, \quad A_2 = 1 - A_1(1 - M_1)^4. \tag{5.3c}
\]

In the present study, the aerodynamic drag coefficient at ground state \(C_{d0} \) and the jump ratio of the drag coefficient \(R_d \) are set as 0.8 and 1.1, respectively. The critical Mach numbers \(M_1 \) and \(M_2 \) in the above equation are set as 1.2 and 1.325, respectively. The coefficient \(A_0 \) is fixed as 0.75. Fig. 2 shows the Mach number effectiveness \(f_d \) on the aerodynamic drag coefficient.

5.3. Numerical approaches

If the number of piecewise intervals increases, the numerical solution or the piecewise analytic solution becomes more exact. Preliminary numerical experiment shows that in case the number of intervals for boost phase, \(N_b \), is as great as 150, the numerical integration with the trapezoid rule yields almost the same result as that with the Simpson rule [28]. The number of piecewise intervals for boost phase and coast phase are fixed as 400 and 200, respectively. The mass change during each interval is assumed to be constant.

\[
m_n - m_{n-1} = \frac{m_b - m_o}{N_b} = \text{const}. \tag{5.4}
\]

For a numerical iteration in an interval, the iteration process is continued until the relative solution change is less than \(10^{-7} \) of the solution.

6. Results

6.1. Solution profiles

Fig. 3 compares the velocity profiles between analytic and numerical solutions. The vertical dashed line indicates the burn-out time. The rocket velocities increase rapidly at early stage and after then keep constant until burn-out state. In coast phase, the velocities decrease due to the gravity force and aerodynamic drag. Fig. 3a shows the variations of velocity profile according to the rocket mass ratio with a fixed rocket mass of 750 kg. Regardless of the rocket mass ratio, each analytic solution is identical to the
changes through a convex curve, since the rocket is decelerated by gravity force. The increase of rocket mass ratio results in a increase of the maximum altitude.

Fig. 5 shows the profiles of mass flow rate according to time. The increase of mass ratio results in the proportional increase of the mass flow rate. For a given mass ratio, there are three distinct regions. In the first region, the mass flow decreases gradually as the mass decreases. In the second region, the mass flow steeply increases and decreases because of the sharp increase and decrease of the drag coefficient where rocket passes the sonic barrier. In the third region, the mass flow decreases gradually with the decreases of the drag parameter and the rocket mass. The change of the mass flow rate is due to the constraint that the mass flow should be adjusted to keep the velocity parameter constant.

6.2. Optimal conditions at burn-out state

To determine the characteristic changes of the altitude at burn-out state according to the velocity parameter, the following normalized parameters are introduced.

\[\phi_b = \frac{q - q_{opt,b}}{q_{opt,b}} \]
\[\eta_b = \frac{h_b}{h_{b}(q_{opt,b})} \]

Fig. 6 shows the variations of the normalized altitude at burn-out state according to the normalized velocity parameter. The vertical dashed line indicates the optimal velocity parameter calculated by characteristic equation. The reduced order approximations of the characteristic equation (3.2.10) give the exact predictions of the optimal velocity parameter regardless of the rocket masses or the mass ratios. The values of the velocity parameter in the figure stand for the optimal ones at burn-out state where \(\phi_b \) are zero. On the contrary to the previous study [23], the change of the normalized altitude on the right side is more sensitive to the velocity parameter than the other side, which is due to the drag reduction with altitude.

Fig. 6a represents the effects of the mass ratio on the variations of the normalized altitude. The case with the mass ratio of 2 seems much more sensitive to the velocity parameter than the other cases, which is due to that the rocket velocity is near to the speed of sound where the drag coefficient changes sensitively. Fig. 6b represents the effects of the rocket mass on the normalized rocket altitude. The normalized curves with different rocket masses nearly coincide even though the difference of the rocket
Fig. 6. Variation of altitude at burn-out state: (a) case with dry mass of 750 kg and (b) case with mass ration of 4.

Fig. 7. Variation of optimal velocity parameters at burn-out state.

mass is remarkably large, which suggests that the variation of the normalized altitude is almost irrelevant to the rocket mass.

Fig. 8 shows variations of the optimal velocity parameters with the rocket mass or the mass ratio at burn-out state. For a given rocket mass ratio, the optimal velocity parameter grows with the rocket mass but the growth rate slightly decreases as the rocket mass increases. For a given mass, there are two distinctive regions where the increasing rates of the optimal velocity parameter are very different. Regardless of the mass, the critical velocity parameter separating the regions is near to the speed of sound where the drag coefficient increases sensitively.

Fig. 8 shows variations of the maximum altitude at burn-out state with the rocket mass or the mass ratio. For a given rocket mass ratio, the maximum altitude increases with the rocket mass but the rate slightly decreases as the rocket mass increases. For a given rocket mass, the altitude grows increasingly at lower mass ratio and after then grows with the mass ratio in a linear mode.

6.3. Optimal conditions at apogee

To determine the characteristic changes of altitude at apogee according to the velocity parameter, the following normalized parameters are introduced.

\[\phi_3 = \frac{q - q_{opt,s}}{q_{opt,s}} \]
\[\eta_3 = \frac{h_3}{h_{3(opt,s)}} \]

Fig. 9 shows variations of the normalized altitude at apogee according to the normalized velocity parameter. The vertical dashed line indicates the optimal velocity parameter calculated by characteristic equation. The reduced order approximations of the characteristic equation (3.3.11) give the exact predictions of the optimal velocity parameter regardless of the rocket masses or mass ratios. The values of the velocity parameter in the figures stand for the optimal ones at apogee where \(\phi_3 \) are zero.

Fig. 9 represents the effects of the mass ratio on the altitude. The case with the mass ratio of 2 is much more sensitive on the left hand side but much less sensitive on the right hand side to the velocity parameter than the other cases. This is due to that the optimal velocity parameter is a little higher than the critical Mach number where the drag coefficient has the maximum value. Fig. 9b represents the effects of the rocket mass on the altitude. The normalized curves with different rocket masses nearly coincide even though the change of the rocket mass is remarkably large, which suggests that the variation of the normalized altitude is almost irrelevant to the rocket mass.

Fig. 10 shows the variations of the optimal velocity parameters with the rocket mass or the mass ratio at apogee. For a given rocket mass ratio, the optimal velocity parameter grows with rocket mass. While, on the contrary to the situation at burn-out state, for a given rocket mass, the optimal velocity parameter decreases steeply with the mass ratio until the minimum value and, after then, bounce back and grows gradually with the rocket mass ratio. For a given mass, there is distinctive region where the optimal velocity parameter is the minimum and maintained almost constant. The minimum velocity parameter is near to the speed of sound where the drag coefficient increases sensitively.

Fig. 11 shows variations of the maximum altitude at apogee with the rocket mass or the mass ratio. For a given rocket mass...
mass ratio, the maximum altitude increases with the rocket mass but the rate slightly decreases as the rocket mass increases. For a given rocket mass, the altitude grows increasingly at lower mass ratio and after then grows with the mass ratio in a linear mode.

7. Conclusions

The one-dimensional rocket momentum equation including thrust, gravitational force, and aerodynamic drag is examined to determine analytically the optimal condition for maximizing altitude of a sounding rocket at burn-out state or at apogee. The rocket flights in a standard atmosphere where the air density as well as the gravitational acceleration change with altitude are considered. Also the change of the aerodynamic drag coefficient with the Mach number is considered. The piecewise analytic solutions are obtained with a divide-and-conquer strategy with which the whole flight time is divided into small intervals where the drag parameter and the gravitational acceleration can be treated as constants in each interval.

The piecewise analytic rocket velocity for a given velocity parameter can be obtained that matches the numerical one. For a given launching condition, there exists the optimal velocity parameter for maximizing altitude at burn-out state or at apogee. An analytic characteristic equation constructed from the analytic solution of the governing equation provides accurate predictions of the optimal conditions for maximizing altitude at burn-out state or apogee, which is confirmed by the numerical experiments.

In burn-out situation, the increase of the rocket mass at a given mass ratio results in the increases of the optimal velocity parameter but the increasing rate decreases as the rocket mass increases. The optimal velocity parameter at a given rocket mass grows with the rocket mass ratio in a linear mode. In apogee situation, the velocity parameter for maximizing altitude at apogee exists and is higher than that at the burn-out situation. Like the situation at burn-out state, the optimal velocity parameter grows with rocket mass, but there is the mass ratio where the optimal velocity parameter is the minimum at a given rocket mass, which is not shown in burn-out situation.

The present approach is restricted to the case where an analytic solution exists and thus does not provide the general solution of the classical Goddard problem. Because of the assumption that the mass flow of propellant should be adjusted to keep the velocity parameter constant, the application of the present results to a real problem would be limited. For instance, most of sounding rockets use the constant mass flow of propellant. But, unfortunately, the analytic solution of the problem does not exist. However, we could provide an approximate analytic solution of the problem with a proper modification of the present analytic approach. In the future study, we will search for alternative methods to get over the difficulties in dealing with the problem of constant mass flow. Adopting a new constant parameter that replaces the velocity parameter to guarantee analytic integration of the left hand side of equation (2.7), or exploiting piecewise analytic integrations with piecewise constant velocity parameters could be an alternative.

Conflict of interest statement

There is no conflict of interest.
Acknowledgements

This study was supported by the Special Research Fund for Mechanical Engineering in University of Ulsan.

References