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BACKGROUND 

 The Level-Set App can be used to compute and display solutions of the advection-propagation 

(AP) equation below, which describes the evolution of the scalar distribution
     
G x,t( )  and the 

motion of its isoscalar surfaces, which are advected at the local flow velocity 
    
U x,t( )  while 

propagating relative to the flow at the speed  SN
 in the direction of its normal 

    
n x,t( )≡ ∇G / ∇G .  

 
    
∂G
∂t

+ U−S
N

n( ) ⋅∇G = 0   (1) 

Markstein & Squire [1] were the first to use this equation to describe the advection and propagation 

of flame surfaces, with a particular isoscalar of  G  defining the spatial location of a flame surface 

propagating normal to itself into the reactants while being advected by the flow. A form of Eq. (1) 

describing general interface motion was introduced earlier [2]. The AP equation has been employed 

in many analytical studies of flame-front stability (e.g., [1, 3-5]) and used by others [6-8] to 

investigate interface propagation in turbulent flow. Osher & Sethian [9] developed the first stable 

numerical methods for the solution of the equation for front propagation in quiescent flow. Eq. (1) 

is currently more generally known as the level-set equation, governing the evolution of a level-set 

function  G  the isoscalars (level sets) of which represent surfaces moving with the velocity   dx dt  

locally. The AP equation is a special case in which    dx dt ≡ U−S
N

n , with  SN
 representing the 

local normal propagation speed of a particular level set (e.g., the “zero level set”, corresponding to 

   G = 0 ) and  U  representing the velocity of its advection by the flow locally. 

 In general,  SN
 depends on local properties of the advection field  U  (e.g., the strain rate) and the 

scalar distribution  G  (e.g., the surface curvature) [1, 3, 5, 7, 9-24]. However, the Level-Set app 

assumes Huygens propagation, for which  SN
 is assumed constant and equal to the laminar-flame 

speed  SL  with which an adiabatic planar flame would propagate through the given reactant mixture. 

 The Level-Set app can be used to solve the AP equation for the evolution in time of flame-

surface area resulting from the corrugation of the flame by a prescribed transient multi-scale 

periodic excitation flow through which the flame propagates. This is of interest because the 

fractional increase in the burning speed of the flame above the planar-flame speed  SL  is a result of 

https://itunes.apple.com/us/app/level-set-flame-motion-simulation/id1198028074?mt=8
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and equal to the fractional increase in the flame-surface area above the planar-flame area caused by 

the excitation flow [5]. 

FLOW-FIELD DESCRIPTION 

 As in earlier studies [6, 25, 26], the excitation flow prescribed in the AP equation is assumed to 

have the mean speed  SL  along the mean direction ( x ) of quasi-planar flame propagation and to 

satisfy Taylor’s hypothesis: 

 
     
U x,t( )≡ SLêx

+ u(x −SLt,y,z)   (2)  

Introducing the decomposition specified in Eq. (2) into Eq. (1) and transforming to the 

nondimensional coordinates    (x,t )  of a reference frame moving at the mean flow-field velocity  SL  

gives 

 
    

∂G
∂t

+ u(x) ⋅∇G = ∇G , x ≡ x ,y ,z( )  (3) 

where the overbars denote nondimensionalization according to    x ≡ (x −SLt) L ,   y ≡ y L , 

  z ≡ z L ,   ∇≡ L∇ ,   t ≡ t SL L ,    u ≡ u SL  and   G ≡G L ; where  L  is the width of the 

computational domain, assumed to be the same along each of the coordinates in the transverse plane 

perpendicular to the direction of mean flame propagation. Eq. (3) is solved computationally in the 

Level-Set app, subject to the following initial and boundary conditions. 

 

 

     

G(x,t = 0) = x
G(|x− x f | > γ,t ) = γ sign(G)

G(x ,y = 1,z ,t ) = G(x ,y = 0,z ,t )
G(x ,y ,z = 1,t ) = G(x ,y ,z = 0,t )

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

  (4) 

These conditions define an initially planar flame in the transverse plane   (y ,z )  as the zero level set 

   (G = 0) . Negative values of  G  correspond to regions of reactant flow upstream of the propagating 

flame, while positive values correspond to regions containing combustion products. Periodic 

conditions are satisfied by  G  on the domain boundaries along the   (y ,z )  axes, while  G  is 

prescribed a maximum (minimum), constant value of  γ     (−γ)  in product (reactant) regions 

sufficiently far away from the flame location 
   
(x f ) , in order to facilitate the reinitialization of  G  

during the computational simulation to achieve    |∇G |= 1  near the flame surface for improved 

accuracy. 

 Both monochromatic and multi-scale solenoidal excitation flows may be considered in the 

Level-Set app, with    u = u
N

SL  as defined below representing an excitation having  N  disparate 

scales. The monochromatic excitation (  u1 ) is the same as that considered by Aldredge [25]. 
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uN =
u
v
w

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

≡
2 2 ′u

N

cos(2k
n
x )sin(k

n
y )sin(k

n
z )

−sin(2k
n
x )cos(k

n
y )sin(k

n
z )

−sin(2k
n
x )sin(k

n
y )cos(k

n
z )

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

n=1

N

∑ ; ′u ≡ 1
3

u
N
⋅u

N
 (5) 

 

Here, kn ≡ 2
nπ  and   ′u  is the intensity of excitation-flow fluctuations, with the  operator 

denoting spatial averaging over the entire computational domain. Fig. 1 shows the distribution of 

the component  u  at    x = 1 64  and  v  at    x = 3 64  over the   (y ,z )  plane for the case of 

   
′û ≡ ′u SL = 1 . Only one scale of spatial variation is apparent when N = 1 , as expected and 

illustrated in subplots (a) & (d). However, increasing numbers of disparate spatial scales become 

apparent with an increase in the number N  of fluctuation modes (at constant intensity), as can be 

seen by comparison of each of the rows of subplots. For example, comparisons of (a) with (b) and 

(d) with (e) show the effect of an increase from 1 fluctuation mode (N = 1 ) to 2 modes (N = 2 ); 

while comparisons of (b) with (c) and (e) with (f) show the effect of an increase from 2 fluctuation 

modes (N = 2 ) to 3 modes (N = 3 ). 

SIMULATION PARAMETERS 

 Selections for the flow strength, number of modes, grid size and rendering method may be made 

before starting a new simulation run. These parameters are defined as follows. 

 Strength 
Ratio of the intensity of excitation-flow fluctuations to the local, normal surface-propagation 
speed (e.g., the laminar-flame speed) 

 Modes 
Number of disparate scales of the multiscale excitation flow 

 Grid Size 
 Number of nodes in the uniformly spaced 3D grid: 

Coarse—32x32x32 
Fine—64x64x64 

 Rendering Method 
 The method of surface rendering: 

MC—Marching Cubes [27] 
MC33—Marching Cubes 33 [28] 
MC33-C—Marching Cubes 33, Modified [29] 
MT—Marching Tetrahedra [30] 
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