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Abstract

This paper describes a systematic approach for in-
crementally improving the security of election pro-
cesses by using a model of the process to develop
attack plans and then incorporating each plan into
the process model to determine if it can complete
successfully. More specifically, our approach first ap-
plies fault tree analysis to a detailed election process
model to find process vulnerabilities that an adver-
sary might be able to exploit, thus identifying po-
tential attacks. Based on such a vulnerability, we
then model an attack plan and formally evaluate the
process’s robustness against such a plan. If appropri-
ate, we also propose modifications to the process and
then reapply the approach to ensure that the attack
will not succeed. Although the approach is described
in the context of the election domain, it would also
seem to be effective in analyzing process vulnerability
in other domains.

1 Introduction

An election is a complex process composed of many
steps, some executed by computers, and others by
election officials, voters, and other people. Improv-
ing election security has been an important research
area. Past work has focused largely on the security
and accuracy of the computers used in election pro-
cesses (e.g., [1,3,10,28,31,37]) or on the cryptographic
protocols (e.g., [7,15]). Our focus is slightly different:
we examine the overall process itself, attempting to
improve its security. The complexity of the election
process, coupled with the need for formal, rigorous
analysis, makes examining such a process and deter-
mining how to modify it to improve its security a
daunting task.
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Our earlier work on evaluating election processes
focused on identifying potential points of failure [33].
This paper extends that work by modeling potential
attacks, then integrating each attack with a model
of the election process that is to be attacked and
determining the changes to the process model that
will suffice to thwart that attack. Specifically, we ap-
ply fault tree analysis (FTA) to a precisely-specified,
detailed election process model to automatically lo-
cate vulnerabilities that an adversary might exploit.
Working with election officials we then develop mod-
els of specific plans that might be used to exploit
these vulnerabilities. We then use model checking
to formally evaluate the election process’s robustness
against each such plan. Experts can propose modi-
fication to the process, if it is deemed insufficiently
robust. After these modifications are reflected in the
process model, the process model can then be ana-
lyzed again to confirm that it indeed is more robust.
This improved process model can then be further im-
proved by considering additional attacks, and repeat-
ing the improvement procedure just described.

Thus, the contribution of this paper is a systematic
and semi-automated approach that uses rigorously
defined process models and rigorous analyses to sup-
port continuously improving the security of election
processes. This approach, while requiring significant
human participation and insight, also exploits auto-
mated computer analyses (FTA and model checking)
to effect much faster and more thorough analyses
than could be achieved solely through human effort.
By looking for vulnerabilities before the occurrence
of attacks that seek to exploit them, our work com-
plements existing work that focuses on detecting at-
tacks such as intrusions that occur during or after
the fact [6, 25, 32]. Penetration testing also tries to
identify vulnerabilities beforehand, but typically does
so by informal, non-rigorous means (e.g., [19, 36]).
Other work either does not consider processes (such
as work on analyzing computer network vulnerabili-
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ties [13, 30]) or does not explicitly or formally define
them [24]. The formal analysis of rigorously-defined
processes allows us to proactively identify and re-
move vulnerabilities before attacks that attempt to
exploit them actually occur. It also enables us to an-
alyze modifications to determine their effectiveness in
thwarting the attacks without actually implementing
the modifications, thereby saving time and money,
and enabling determination of possible adverse im-
pacts of the changes. Election officials can directly
use the results of this work to make elections more
secure and safer to change as new technologies, laws,
and regulations need to be enforced.

The remainder of the paper is organized as fol-
lows. Section 2 presents an overview of the approach.
Section 3 introduces the process modeling language
Little-JIL. Section 4 reviews FTA and presents as ex-
amples two attack scenarios developed to exploit the
vulnerability of a specific election process allowing
an unqualified voter to get a regular ballot. Section 5
describes how we model the attack using Little-JIL
and then compose the resulting attack model with
the original process model before using model check-
ing to analyze their composition. Section 6 describes
related work and Section 7 describes limitations of
this approach along with some of our plans to ad-
dress these limitations, before Section 8 summarizes
the benefits.

2 Approach overview

Figure 1 shows an overview of our incremental process
security improvement approach. It consists of two
phases: identifying potential attacks on a process and
then, for each selected credible attack, analyzing the
process’s robustness in the presence of that specific
attack.

In the first phase, we use a process modeling lan-
guage with rigorous semantics to model a real-world
process so that we can reason about it. We hypothe-
size that an adversary might attack the process, cre-
ating an undesired state, called a hazard. Using a
specification of the hazard, we apply FTA to the pro-
cess model to find out how that hazard might occur.
FTA produces a set of minimal cut sets, each of which
contains a set of events that causes the hazard. An
earlier paper [33] described in detail the application
of FTA to election process models to determine the
possibility of the occurrence of hazards. Here, we
build upon these understandings to propose attack
plans—models of specific ways in which an attack
might cause the specified hazard to occur, and an
“attack-always-fails” property that defines precisely
what it means for the modeled attack to never suc-
ceed.

In the second phase, we compose the model of the
attack with the model of the process being attacked
to produce a composed process model. This composed
model represents the execution of both the election
process and the attack, represented as concurrently
executing sub-processes. We perform model check-
ing on the composed model to check if the “attack-
always-fails” property is satisfied by the composed
model, thus determining whether the modeled attack
can succeed. If the property does not hold, it is pos-
sible for the attack to succeed, and the model checker
will produce a trace of how this could happen. Elec-
tion security experts can then suggest modifications
to the election process that should succeed in thwart-
ing the attack. We can then reapply our analyses to
evaluate the effectiveness of the suggested modifica-
tions as countermeasures. Once an improvement has
been shown to be effective, we can continue our pro-
cess improvement by examining another minimal cut
set produced by FTA, or proposing, and reasoning
about, additional hazards and attacks.

As the analysis of the process relies on the pro-
cess model, that model must reflect reality as closely
as possible. The process model in this paper de-
scribes the election process in Yolo County, California
(http://www.yoloelections.org/). It was developed
by interviewing Freddie Oakley, the Yolo County
Clerk-Recorder (head election official) and her chief
deputy, Tom Stanionis, both of whom developed the
election policies and procedures and supervise their
implementation. In addition to interviewing experts
to validate the model, we also used model checking
as a tool for uncovering process modeling defects. A
property is a requirement that the process must ad-
here to. If model checking determines that a prop-
erty is violated, we then work with domain experts to
review the process model to determine whether the
process itself does not conform to the property, or
whether the property is stated incorrectly, or whether
the process model has a defect. In the latter case,
the process model must be corrected with the assis-
tance of the domain experts. We iteratively improved
the model until the domain experts felt that it was
an accurate description, as described in Simidchieva
et al. [33], and is the model upon which this current
work is based.

It should be noted that the process model is a liv-
ing document—if at some point in the future the
process changes or some details need to be added,
it is necessary that the process model be modified
and re-evaluated with the existing hazard and prop-
erty specifications. Thus, this process improvement
loop may need to continue indefinitely as election pro-
cesses evolve to respond to new laws and technology
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Figure 1: The systematic process-model-based approach. Fully automated steps are in double-edged boxes.

or as new hazards or attacks are envisioned.

3 Process modeling with Little-JIL

Our approach relies on models of real-world processes
that are represented in a modeling language with ex-
pressive and well-defined semantics so that the re-
sulting models can closely capture the processes and
can be analyzed rigorously. It also relies upon the
use of a notation that makes process models readily
understandable by election officials. This section pro-
vides an introduction to Little-JIL, a visual process
modeling language with such formally defined seman-
tics [39].

Little-JIL represents a process as a hierarchy of
steps carried out by agents that may be humans,
hardware devices, or software systems. A Little-JIL
model consists of activity diagrams showing the hi-
erarchical decomposition of steps, a specification of
the artifacts manipulated by the steps, and a specifi-
cation of the agents and resources needed to perform
the steps.

A Little-JIL step is a specification of a unit of work
assigned to an agent in the process. A step may be
decomposed into sub-steps (children). A leaf step has
no sub-steps and its behavior depends entirely on its
assigned agent. A non-leaf step’s behavior consists of
the behaviors of its sub-steps and their order of ex-
ecution. For example, the model reflecting the elec-
tion process used by Yolo County, California consists

of the root step “conduct election”, which is decom-
posed into sub-steps representing activities such as
the preparations made before election day, the con-
duct of the election at a single precinct, the counting
of ballots, and the post-election canvass. These sub-
steps in turn are decomposed into steps that spec-
ify lower levels of detail. Figure 2 shows the part
of the elaboration of “authenticate, issue ballot, and
record vote”—one of the steps in the Yolo County
election process. This step has two sub-steps, “au-
thenticate and issue ballot” and “record voter pref-
erence”, which are executed sequentially (denoted by
the arrow on the step bar).

Each step may contain a specification of pre-
requisites that must be satisfied before an agent can
begin the work (e.g., voterQualified==true is the
pre-requisite of the step “issue regular ballot”), and
post-requisites to check that the work was completed
correctly (not present in this example).

A step may also specify how to handle exceptions
that are reported during the execution of its descen-
dant steps. An exception handler can be a Little-JIL
step, capable of defining an arbitrarily complex re-
sponse to an exception, or can be a simple handler
that specifies only how execution should continue af-
ter the occurrence of the exception. In the example in
Figure 2, the X on the “authenticate and issue ballot”
step bar connects to a simple handler that handles
VoterUnqualifiedException that might be thrown
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Figure 2: Little-JIL process model: Elaboration of step “authenticate, issue ballot, and record vote”

by the sub-step “check off voter as voted”. In this
example, the simple handler specifies that the sub-
step throwing the exception will be terminated, and
process execution moves on to the next step in line
(“issue ballot”—which in turns invokes “issue regular
ballot” or “issue provisional ballot” depending on the
value of the artifact voterQualified).

Each Little-JIL step has an artifact declaration
defining the artifacts it will be accessing and/or pro-
viding. Artifacts are generally passed through the
coordination hierarchy between steps and their sub-
steps. For example, the ballot artifact is output
from the step “authenticate and issue ballot” to its
parent step “authenticate, issue ballot and record
vote”, which then passes it down as the input into
the sub-step “record voter preference”.

A Little-JIL process model also includes agent
specifications. Each step specifies the kind of agent
that is to be assigned to be responsible for the execu-
tion of that step. Voter and Election Official are two
specifications of agents in the election process model
(not shown in the diagram).

More details about Figure 2 are discussed later in
section 4.2 where we explain the application of FTA
to the process model.

4 Identifying process vulnerabilities
using FTA

This section presents FTA and describes the appli-
cation of FTA to the Yolo County election process
model to identify process vulnerabilities and create
attack scenarios that might exploit the vulnerabilities
to cause the hazard that an unqualified voter receives
a regular ballot.

4.1 FTA overview

FTA is a deductive, top-down analytical technique
used in a variety of industries [4, 9, 12, 35] to study
hazards. In an election process, an example of a haz-
ard is that “an unqualified voter gets a regular bal-
lot”. With FTA, one first postulates the possibility of
a hazard, and then attempts to find out which events
in the process could combine to cause the actual oc-
currence of the hazard. Given the hazard, FTA pro-
duces a fault tree, a graphical model of all the various
combinations of events that can lead to the hazard.

A fault tree consists of two basic elements: events
and gates. At the top (root) of the fault tree is
the hazard. In the fault tree, intermediate events
are elaborated further, and primary events are not.
Events are connected to each other by Boolean-logic
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gates. A gate connects one or more lower-level input
events to a single higher-level output event. There
are three types of gates:

• AND gates: the output event occurs if and only
if all the input events occur, implying that the
occurrence of all of the input events causes the
output event;

• OR gates: the output event occurs if and only if
at least one of the input events occurs, implying
that the occurrence of any of the input events
causes the output event; and

• NOT gates: the output event occurs if and only
if the (only) input event does not occur.

Figure 3 shows a fault tree example with the top
event, or hazard, Artifact “ballot” to “record voter
preference” is wrong1. An OR gate connects this
event with another lower-level event, Artifact “regu-
larBallot” is wrong when step “issue regular ballot” is
completed, meaning that the higher-level event occurs
if the lower-level events occurs. With further elab-
oration, the event Artifact “regularBallot” is wrong
when step “issue regular ballot” is completed, which
occurs if and only if both of the two lower-level events
occur, is connected to the lower-level events through
an AND gate. The event Step “get voter name” pro-
duces wrong “voterName” is a primary event so it is
not elaborated further in the fault tree. This fault
tree is an abstract view of the larger fault tree result-
ing from the application of FTA to the Yolo County
process model with the hazard “an unqualified voter
gets a regular ballot”, which is discussed further in
the next section 4.2.

A cut set is a set of event literals such that the
occurrence of all the event literals is a sufficient con-
dition for the hazard to occur. An event literal is
either a primary event or the negation of a primary
event. A cut set is considered minimal if, when any
of its event literals is removed, the resulting set is no
longer a cut set.

A minimal cut set (MCS) indicates one potential
process vulnerability, which might be a flaw or weak-
ness in the process’s design, implementation, or op-
eration and management, that could be exploited to
allow a hazard to occur. An MCS with one element
represents a single point of failure. The probability
of a hazard occurring can be calculated if sufficient
information about the probabilities of event literals
in the MCSes is available.

Many software tools, commercial as well as open-
source, facilitate the manual construction of fault
trees. When fault trees become large, which they typ-

1Section 4.2.1 will explain in detail how this top event cor-
responds to “an unqualified voter gets a regular ballot”.

ically do, manual construction, even with such tool
support, may be error-prone and time-consuming.
There have been attempts to generate fault trees au-
tomatically, for example from source code written in
Ada [18]. We developed a process-driven FTA tool
to automate fault tree construction and MCS cal-
culation from process models written in sufficiently
precisely-defined languages [4]. Thus, for example,
given a process model written in the Little-JIL lan-
guage, and a hazard specification, this tool constructs
a fault tree and then calculates its MCSes.

4.2 Example: can an unqualified voter get a
regular ballot?

In this section we present an example of applying
FTA to the Yolo County election process model, in-
cluding the specification of a hazard of interest, the
derived fault tree and its MCSes, and the multiple in-
terpretations of one MCS that resulted in developing
multiple attack scenarios.

4.2.1 The hazard and its specification

One of the requirements of an election process is that
only qualified voters may vote. By definition, a “qual-
ified voter” at the time the voting takes place is one
who has registered and not cast a ballot. By applying
FTA to the election process model with a representa-
tion of the hazard “an unqualified voter gets to vote”
we expect to expose vulnerabilities in the process that
attackers might exploit to allow unqualified voters to
cast ballots.

The process-driven FTA tool allows a fault tree
hazard to be modeled as an artifact being either in-
correct input to, or incorrect output from, a step2.
Therefore, we model the hazard of interest as an in-
correct artifact provided or accessed by a step in the
process. With respect to the hazard “an unqualified
voter gets to vote”, the ballot is the artifact of inter-
est in the Yolo County’s election process model. The
step “record voter preference” is where a voter casts
the ballot. This step takes the artifact ballot as input
(see Figure 2). Thus the hazard specified with this
tool is: Artifact “ballot” to “record voter preference”
is wrong.

It is important to note that this fault tree hazard
models two different cases, namely “an unqualified
voter getting a regular ballot” and “a qualified voter
not getting a regular ballot”. Thus some analysis skill
is required to model a fault tree hazard, and to inter-
pret the MCSes resulting from FTA. We address this
issue further in the next subsection, and in Section 8.

2An artifact may be incorrect for a number of reasons such
as being of wrong type or containing incorrect information. At
this point we do not distinguish between these cases.
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Figure 3: Abstract view of the Yolo fault tree containing only the events relevant to one example MCS

4.2.2 The derived fault tree and MCSes

With the hazard defined as above, the FTA tool pro-
duces a fault tree with more than 100 nodes. At
the top of the tree is the hazard Artifact “ballot” to
“record voter preference” is wrong.

Based on that fault tree, the FTA tool computes 11
MCSes having cardinalities ranging from 2 to 4; there
are no single points of failure. Although an MCS con-
tains event literals that lead to the occurrence of the
hazard, understanding how the MCS events could oc-
cur in the process and making sense out of the MCS
are non-trivial. It is worth noting that only 5 of those
11 MCSes consist of events that cause the process
hazard of interest, “an unqualified voter gets a regu-
lar ballot”. Another 5 MCSes consist of events that
cause the “a qualified voter does not get a regular bal-
lot” process hazard. The remaining MCS indicates a
wrong ballot being issued due to an incorrect voting
roll.

To illustrate, here we describe in more detail the
elaboration of the step “authenticate, issue ballot and
record vote” shown in Figure 2. The step “authen-

ticate, issue ballot and record vote” is decomposed
into two sequential sub-steps, “authenticate and is-
sue ballot” and “record voter preference”. The latter
sub-step is where the hazard is defined. Its details
are elaborated in another diagram but they are not
important for the discussion here. The former sub-
step, “authenticate and issue ballot”, itself has three
sub-steps, performed in the following order: “perform
pre-vote authentication”, “check off voter as voted”,
and “issue ballot”. The step “issue ballot” itself is
a try step (denoted by an arrow with an X on its
step bar); this means its first sub-step “issue regu-
lar ballot” will be attempted first. If no exception is
thrown when “issue regular ballot” is completed, the
step “issue ballot” is also completed. If an exception
is thrown while performing “issue regular ballot”, the
next alternative “issue provisional ballot” will be ex-
ecuted. In this case, the process is modeled so that
VoterUnqualifiedException will be thrown while
performing “issue regular ballot” if its prerequisite
voterQualified==true fails.

To understand the difficulties of interpreting an
MCS, consider the 4 event literals that comprise one
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of the computed MCSes:

1. Step “get voter name” produces wrong
“voterName”

2. Step “verify voter has not voted” does
not throw “VoterNotRegisteredException”
(while checking prerequisite)

3. Step “check off voter as voted” does not
throw “VoterUnqualifiedException” (while
checking prerequisite)

4. Step “issue regular ballot” does not throw
“VoterUnqualifiedException”

Figure 3 displays an abstract view of the derived
fault tree. This view contains only the nodes related
to the events in the MCS being discussed. It shows
how the combination of the primary events lead to the
hazard. We provide two different scenarios in which
all of the event literals in this MCS can happen but
differ depending how one event literal is interpreted.

4.2.3 Scenario 1

Event literal 1 Step “get voter name” produces wrong
“voterName” can be interpreted as an impostor gives
the election official the name of a legitimate voter but
the name given is not the impostor’s name. This is
the step “get voter name”. The next step is “confirm
voter name in in voting roll”. In this case, the inter-
pretation is that the name really is in the voting roll.
Thus the artifact voterRegistered output from this
step evaluates to true, and is then passed to the next
step “verify voter has not voted” (literal 2). As the
prerequisite for this step is voterRegistered==true,
no exception is thrown. The real registered voter has
not voted, so the step “verify voter has not voted”
produces voterQualified with value true. This ar-
tifact is passed to the subsequent steps “check off
voter as voted” and “issue regular ballot” (literals
3 and 4 respectively). Neither of these steps would
throw an exception while checking prerequisites, sat-
isfying event literals 3 and 4 in the MCS respectively.

Thus, in this scenario, an impostor has provided
the name of a registered voter who has not voted,
and so the impostor can vote with a regular ballot.

4.2.4 Scenario 2

The previous scenario assumed that the real voter
had not yet voted. Changing this assumption to one
in which the real voter has already voted changes the
interpretation of the MCS. More precisely, in this case
the artifact voterQualified, output from the step
“verify voter has not voted” (literal 2) evaluates to
false.

Now the step “check off voter as voted” (literal 3)
should throw VoterUnqualifiedException, because
the prerequisite condition voterQualified==true is
not satisfied. But that literal in the MCS says the
step “check off voter has voted” does not throw the
VoterUnqualifiedException—perhaps the agent
performing the step is not doing the job right. It
could be a mistake, but it could also be malicious
behavior. One interpretation is that the agent mali-
ciously ignores the fact that voterQualified’s value
is false (that is, that the named voter has already
voted). Similarly, suppose the agent performing the
step “issue regular ballot” (literal 4) maliciously ig-
nores that voterQualified’s value is false and does
not throw the VoterUnqualifiedException.

In this particular scenario, the impostor is using
the name of a registered voter who has already voted.
The hazard occurs because of collusion with the elec-
tion official(s), who ignores the fact that the voter is
marked as having voted in the voting roll, and issues
a regular ballot to the impostor voter. A slightly dif-
ferent scenario, having the same result, is that the
impostor uses the name of a registered voter who has
already voted, but the election officials simply make
mistakes performing the steps (marking the voter as
voted and issuing the regular ballot) and let the im-
postor vote with a regular ballot—there need not be
any malicious intent on the part of the election offi-
cials.

This example shows how interpreting one event
in an MCS in different ways can result in different
scenarios causing a hazard. The challenge of inter-
preting MCSes will be discussed further in section 8.
Each interpreted MCS scenario exposes a potential
vulnerability in the process. One question, then, is
whether all of the event literals in the MCS can occur
in one process execution, and, in particular, whether
attacker agents could cause all of those events to oc-
cur. In short, “can attackers exploit the potential
vulnerability to create a real vulnerability and un-
dermine the integrity of the process?” Note that an
MCS shows what events must or must not occur for
the hazard to occur. It also shows which agents are
involved in those events but not what specific actions
each must take, how practical these actions are, and
what the associated costs are. Domain expert knowl-
edge is required to devise a credible attack plan—
a scheme to exploit a vulnerability to create a haz-
ardous situation. A well-defined attack plan enables
further analysis, for example, to formally prove that
a process model is resilient against such an attack,
or to derive a process execution in which the attack
succeeds so that countermeasures can be proposed for
modifying the process. The next section presents the
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analysis of a process model when such an attack plan
is available.

5 Analyzing a process model in the
presence of an attack plan using
model checking

The work described in the previous section produces
informal attack scenarios based on the MCSes. Do-
main experts can select which potential attacks are
worth investigating. These can be crafted into formal
attack plans, allowing analysis to evaluate whether
the attacks can succeed. This section describes an
approach for using model checking to analyze a pro-
cess model in the presence of an attack plan to de-
termine if the attack would succeed. The idea is to
consider both the process of interest and the attack.
We illustrate this approach using an example from
the Yolo County election process model with an im-
postor attack plan.

Model checking exhaustively explores all possible
execution paths in a finite model of a process, de-
termines whether a particular property holds in the
model, and produces a counterexample if the prop-
erty does not hold. If we can combine a detailed
attack plan with the model of the attacked process,
we can apply model checking to the combined model
to determine whether the attack could succeed. To
do this, we need to have appropriate formal represen-
tations of the process model, the attack plan, and the
property representing the failure of the attack. The
model checking tool FLAVERS [8] can take as input
a process model represented in Little-JIL and a prop-
erty represented as a finite-state automaton (FSA).
We therefore model the attack plan as a process def-
inition in Little-JIL and compose it with the model
of the process being attacked.

We proceed as follows:

1. Model the attack plan in Little-JIL to obtain the
attacking process model.

2. Compose the attacking process model with the
attacked process model, yielding the composed
process model.

3. Apply FLAVERS to determine if the composed
process model satisfies the property “the attack-
ing process fails”. If the property is not satisfied,
we examine a counterexample trace produced by
FLAVERS to propose process improvements via
process modifications.

The following sub-sections describe each step.

5.1 Modeling an attack plan in Little-JIL

An attack plan needs to be more than a set of attack-
ing events; it needs to specify where in the attacked

process these events are to occur, and which artifacts
the attacking events need to corrupt. As noted in
the previous section, an MCS derived from the pro-
cess model’s fault tree contains information about the
process steps that an adversary might exploit. In or-
der for domain experts to create a Little-JIL attack
model, the experts will have to augment the MCS in-
formation with coordination diagrams, artifact flows,
and agent specifications. The level of detail in the re-
sulting model will have to match that of the attacked
process model so that the attacking and attacked pro-
cess models can be composed3.

The first interpretation of the MCS example in
the previous section 4.2.3 suggests that if an impos-
tor has provided the name of a registered voter who
has not voted, the impostor can vote with a regular
ballot. Based on this insight, together with the at-
tacked process model’s steps that are involved in the
MCS, an attack plan might be crafted into a Little-
JIL process model as shown in Figure 4. The attack-
ing process model requires the step “gather name of
unlikely voter” to provide the artifact “voterName”,
which is passed into the step “give name” (a sub-
step of the step “impostor pass the authentication
check”), and then from there it will be passed to the
attacked process model’s step “get voter name” as we
will explain later when we compose the process mod-
els. Also, to match the level of detail of the attacked
process model, we make sure that the attacking pro-
cess model is elaborated to contain the steps “get reg-
ular ballot” and “impostor cast ballot” correspond-
ing to the steps “issue regular ballot” and “record
voter preference” in the attacked process model re-
spectively.

5.2 Composing the attacking process model
with the attacked process model

The next step is to compose the attacking process
model with the attacked process model. To do this,
we create a new process model in which the two sub-
processes, the attacking and the attacked process,
execute in parallel with appropriate synchronization.
Currently, this is done manually based on the intu-
itions and experiences of domain experts. For this
example, we create a new root step “composed pro-
cess” with a parallel sequencing badge and make the

3If an attack plan already exists in another format it could
be converted to a Little-JIL attacking process model. The
method of conversion will vary depending on the original for-
mat and the information contained in the attack plan. Note
that conversion to Little-JIL might not be straightforward if
the original attack plan lacks details or is too abstract, requir-
ing domain experts to be consulted. In some cases, it might
be easier to model an attack plan in Little-JIL from scratch
rather than convert it from an existing format.
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3. Using FSV to analyze processes in presence of attacks > Method > Step1
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Figure 4: Impostor attack plan as a Little-JIL process model

Composed Process

conduct election attack by impersonation

get voter name give name

…

issue regular ballot get regular ballot

…
voterName

(regular) ballot

…

…

Figure 5: Composed process model: The root step
“composed process” is a parallel step composing the
two sub-processes: the attacked and the attacking.
The Little-JIL channel feature is used to define how
artifacts such as “voterName” and “ballot” must be
passed between the steps of the attacking and at-
tacked sub-processes in order to support the defined
attack.

two sub-process models (“conduct election” and “at-
tack by impersonation”) sub-steps of the new step,
as shown in Figure 5.

To synchronize the two sub-processes, we care-
fully examine common artifacts and common activi-
ties shared between the sub-processes. In this exam-
ple, the artifact representing a voter’s name named
voterName is common to both sub-processes. A
quick traversal through the steps providing or ac-
cessing that artifact suggests where to set up the
synchronization: the step “give name” in the at-
tacking sub-process model has voterName as out-
put, and that artifact can be passed to the step
“get voter name” in the attacked sub-process model,
which takes voterName as input. Also, the step “is-

sue regular ballot” in the attacked model produces
the artifact “ballot”, which can be passed into the
step “get regular ballot” in the attacking model.

When devising the attack plan from the fault tree’s
MCSes, domain experts may already have some idea
about where the synchronization points should be,
and which attack steps aim at which parts of the at-
tacked process. In the future, we plan to implement
support for identifying these points when devising at-
tack plans from MCSes to assist the process model
composition.

Steps representing the same activities must also be
examined carefully. For example, the step “impostor
cast ballot” in the attacking sub-process and the step
“record voter preference” in the attacked sub-process
both represent the activity of the voter casting the
ballot, as shown in Figure 6. These pairs of steps
can be synchronized using message passing, so that
the steps of the attacking and attacked sub-processes
occur in the proper temporal order for the attack.

Little-JIL channels provide support for syn-
chronous and asynchronous message passing. A chan-
nel declared at a Little-JIL step is accessible by all of
its descendant steps. If a step writes an artifact to a
channel, that artifact is available in the channel for
access as soon as the writing step completes without
an exception being raised, but the artifact is not avail-
able if the step terminates because of an exception. If
a step is declared to take an artifact from a channel
and the channel is empty, the step is blocked from
execution until the artifact becomes available. For
example (see Figure 5), the channel VoterName is de-
clared at the root step of the composed process model
to allow synchronization: the step “give name” writes
the artifact voterName to the channel; and the step
“get voter name” takes the artifact from that channel.
Thus, the step “get voter name” can only proceed if
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Synchronization example: record voter preference

token ▷

In this example, the token 

channel serves merely for 

synchronization purposes, not 

for artifact flow.

part of “conduct election” sub-process

token▶

part of “attack by impersonation” sub-process

Figure 6: Example of synchronization using steps representing the same activities.

the “give name” step writes the artifact to the chan-
nel. Similarly, the step “issue regular ballot” in the
attacked sub-process writes the “ballot” artifact into
a predefined channel when it completes its execution.
Only then can the step “get regular ballot” in the
attacking sub-process proceed and complete.

This same approach can be used for synchronizing
the step representing the same activity. For example,
both steps “record voter preference” (part of the at-
tacked sub-process) and “impostor cast ballot” (part
of the attacking sub-process) represent the activity
of the voter casting the ballot (Figure 6). Through a
predefined channel, a token is passed upon the com-
pletion of the step “record voter preference” to the
step “impostor cast ballot”. By doing this, we make
sure that the step “impostor cast ballot” cannot com-
plete unless the step “record voter preference” com-
pletes.

5.3 Performing verification

Having the composed process model, we now want to
perform the verification of the property representing
the absence of a successful attack. In other words, the
attack must never complete. We specify this prop-
erty as an FSA as shown in Figure 7. The event
“attack succeeds” is the only event specified in the
FSA, which starts in an accepting state. If the event
“attack succeeds” occurs, the FSA will progress to
the violation state. Note that the property is spec-
ified somewhat independently of the process model,
thus before the verification can be done, the associ-
ation must be specified between the property events
and the process events.

3. Using FSV to analyze processes in presence of attacks > Method > Step 3 

Step 3: Specify Property

Desired property: the absence of a successful attack

– Specified as a finite state automaton

34

When doing the verification, the event “attack succeeds” is then bound 

to step “attack by impersonation” being completedFigure 7: Property as an FSA representing attack
never succeeding

When verifying a Little-JIL process model using
FLAVERS, each event in the property has to be
bound (correspond) to one or more events in the pro-
cess model. Events in a Little-JIL process model in-
clude a specific exception being thrown by a step or
a step being in a specific state. The execution of a
Little-JIL step is modeled as progress through sev-
eral states. Step execution begins in the posted state
during which execution of the step is assigned to an
agent. Execution then proceeds to the started state,
when the agent begins performing the step. Eventu-
ally the step enters either the completed state (normal
execution) or the terminated state (execution ends
with an exception). In this example, the event “at-
tack succeeds” in the property FSA is bound to the
event the step “attack by impersonation” is completed
in the process model.

Running FLAVERS on the composed model shows
that the property is violated—the step “attack by im-
personation” can succeed. The produced counterex-
ample reveals an attack trace in which the impostor
provides the election official with a voter’s name, the
step “confirm name in voting roll” does not throw an
exception, and all the subsequent steps are carried
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out normally without any exception being thrown:
the election official verifies that the voter has not
voted, checks off the voter’s name in the voting roll,
issues a regular ballot, the impostor gets the regu-
lar ballot and casts the ballot. The counterexample
suggests that the impersonation attack could succeed
when an attacker has access to the name of a regis-
tered voter who has not voted.

The attack trace may also provide domain experts
with some insights about how to modify the process
to thwart the attack. In this case, an additional au-
thentication step could be added to the attacked sub-
process model, so that the impostor will fail to au-
thenticate (for example, a secret PIN that only the
voter knows, or some biometric information). The
step “additional authentication” is declared to take
an authentication artifact from a predefined channel
in order to proceed. Since there is no step in the
attacking sub-process that provides such an artifact
to the channel, the attacking sub-process will not be
able to reach the completed state. This is verified by
running the verification on the new composed model.

In the second scenario (Section 4.2.4), the impostor
has the name of a registered voter, but in this case the
registered voter has already voted. An election offi-
cial, however, ignores that the voting roll shows the
voter has voted. The election official issues a regular
ballot to the impostor voter, allowing the hazard to
occur. The attack plan devised from this scenario
is similar to the one discussed above, except that
the agent performing the step “verify voter has not
voted” and the agent performing the step “check off
voter as voted” must never raise any exception while
performing these steps. Composing this attack plan
with the attacked election process model is similar to
the previous case; that is, the parallel root step is cre-
ated and channels for synchronization are declared.
But now we have to model the behavior of the in-
side attackers, the agents performing the steps “verify
voter has not voted” and “check off voter as voted”,
such that no exception will ever be raised at these
steps. For this to work, the step “verify voter has not
voted” only throws VoterUnqualifiedException if
its prerequisite voterQualified==true fails. The
same is true for the step “check off voter as voted”.
Thus, we can model these inside attack behaviors
by either setting the value of the Boolean artifact
voterQualified to true, or removing the prerequi-
sites from these steps.

Applying FLAVERS to this new composed process
model shows that the attack might succeed. The
countermeasure for this scenario is more complex
than that of the first scenario. Perhaps the most
appropriate is to have election officials work in pairs,

in the hope that errors by one election official would
be caught by the second. Thus, the improvement
here would be to add an additional agent and extra
checking steps.

These examples show that the model can validate
that an attack will be successful. For more complex
attacks, one could send each artifact to a number of
different places in the process and look for combina-
tions of destinations that would cause the attack to
succeed. In this way, one could also examine variants
that might attack the process in unanticipated ways.

6 Related Work

6.1 Attack modeling

Several attack models have been proposed, each pro-
viding a different representation of attacks. Moore
et al. modeled attacks in the form of attack trees
and attack patterns for the purpose of documenta-
tion [23]. Lazarus created a catalog of election at-
tacks in the form of an attack tree [17], attempting
to provide a threat model and a quantitative threat
evaluation reusable across different jurisdictions.

These attack trees lack specification of artifact
flows and temporal ordering of events that are nec-
essary for supporting formal analyses of the sort de-
scribed in this paper. In fact, Lazarus’s catalog of
informally specified attacks includes many attacks
that could be represented with our approach, includ-
ing the impostor attack that we use as an exam-
ple in this paper. To study the vulnerability of our
modeled election processes to this attack, however,
would require the addition of such temporal ordering
and artifact flow. Several researchers have proposed
approaches to overcome the limitations with attack
trees. Jürgenson and Willemson introduced temporal
order to the attacker’s decision-making process [14].
Helmer et al. used augmented Software Fault Trees
(SFTs), attack trees with temporal order, to model
intrusions; in their representation, the root node rep-
resents the intrusion and an MCS contains events to
be monitored to detect intrusions [11]. Their SFTs
are then automatically converted to colored Petri nets
for intrusion detection systems. Simple Petri nets
have also been used to model attacks [21, 40]. Mc-
Dermott [21] suggested using labeled tokens in Petri
nets to indicate different attackers (an approach to
agent specification). The modeled attacks are then
used to discover and analyze attack scenarios in pen-
etration testing.

Templeton and Levitt proposed a requires/provides
model to represent attacks. A concept (sub-attack)
is specified by the capabilities it requires and pro-
vides [34]. This model features the composition of
sub-attacks to form more sophisticated attacks. Us-
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ing this model, Peisert et al. described multi-stage
attacks for use in forensic analysis [25] and forensic
analysis of elections in particular [2]. This technique
sought to use the natural constraint of the limited
number of entry points into a system and the lim-
ited, enumerable number of assets that one might
wish to defend to provide insight as to where and
how to monitor an otherwise complex and unwieldy
system. However, like attack trees, this model lacks
agent specifications and artifact flows.

In addition to these graph-based approaches, Cup-
pens and Ortalo proposed a declarative language
(LAMBDA) for specifying attacks in terms of pre-
and post-conditions [6]. The language is modular and
hierarchical. Higher-level attacks can be described
using lower-level attacks as components. Attack spec-
ifications contain information for specification-based
intrusion detection systems, which detect malicious
activity whenever specifications are violated [16].

Attacks are modeled differently for different pur-
poses as discussed above. We refer to a process mod-
eling language with rich semantic features as a pro-
cess definition language. Little-JIL is an example of
such a language, which we have found serves our pur-
poses well.

6.2 Formal reasoning in security

Applying model checking in the security field is not
new. Ritchey and Ammann used it to analyze net-
work vulnerabilities by encoding the vulnerabilities
in a state machine description suitable for a model
checker and then asserting that an attacker can-
not acquire a given privilege on a given host [30].
Similar to the second phase of our approach, using
model checking to formally assess an attack’s success,
Ritchey and Ammann’s approach requires knowing
the vulnerabilities and their exploits in advance. The
first phase of our approach, using FTA, complements
their approach by helping to identify vulnerabilities
and to devise attack plans that can then be used for
model checking. Another difference is that their vul-
nerabilities are simply system attributes (e.g., a host
running Apache version 1.04), and exploits are de-
scribed by lists of prerequisite vulnerabilities, host
computer access levels, and the resulting access levels
of the connected hosts. Thus, the attack plans that
are developed using our methods are more detailed
and have more structure.

A large body of work has applied model checking
to security protocol verification. For example, Lowe
used the FDR model checker to find a subtle attack on
the Needham-Schroeder authentication protocol [20].
Meadows created the NRL Protocol Analyzer, a tool
based on a combination of state exploration and the-

orem proving techniques, and analyzed the Internet
Key Exchange protocol [22]. Compagna verified se-
curity protocols using a SAT-based model checking
approach [5]. Additionally, Powell and Gilliam pro-
posed a compositional model checking approach. In
their approach, security property verification results
of individual components of a large system are ex-
trapolated for the overall system, which would other-
wise be beyond the capabilities of current state of the
art model checkers due to state space explosion prob-
lem [26]. They applied their approach in verifying the
Secure Socket Layer protocol for NASA systems [27].

Another line of formal reasoning in security stud-
ies attack generation. Sheyner et al. began with
rules capturing atomic attacks such as buffer over-
flows [32]and modeled a computer network system as
a finite state machine where state transitions corre-
spond to the atomic attacks. They then used model
checking to generate an attack graph in which any
path from a root node (an initial system state) to a
leaf node (an unsafe system state) shows a sequence of
atomic attacks an intruder can employ to attack the
system. Based on the generated attack graph, they
developed a minimal set of atomic attacks that must
be removed to thwart the intruder. Our approach
uses FTA, rather than model checking, to generate
possible attacks. The attacks generated by their ap-
proach are more like what we have called attack sce-
narios. In our approach, given a hazard we devise
(a class of) attack plans that are more detailed than
attack scenarios. Also, our focus is on overall pro-
cesses, rather than on the components (such as com-
puter networks and sub-systems) that these processes
integrate.

6.3 Process-based security analysis in the
election domain

Raunak et al. [29] used model checking to show that a
property about an election process holds if all agents
perform the steps correctly, but that the same prop-
erty may be violated if some agents are dishonest.
Our work develops the attacks in a more systematic
manner.

Closest to our approach, and also applied in the
election domain, is the work of Weldemariam and Vil-
lafiorita [38] that attempts to discover attacks. They
model procedures that are best practices, defining
how critical assets are to be managed, elaborated, and
transformed. They then inject threats—actions that
alter some features of an asset or allow some actors
privileges (e.g. a read privilege) on some assets—into
the original model to get an extended model that is
encoded as the input for the NuSMV model checker.
They then specify a property (e.g., “It is never the
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case that poll officers receive an altered version of
the election software that can be run on the ma-
chines”) and use the model checker to verify it. A
counterexample produced when the property is vio-
lated is an example of an attack. Our approach dif-
fers from theirs. First, we use FTA instead of model
checking to devise more structured and more detailed
attack plans given a hazard. Their attack generation
method is very similar to Sheyner et al’s mentioned
above. Second, their paper does not describe how
the feasibility of the generated attack is determined
whereas we describe how our approach does so by ap-
plying model checking to the composition of a process
model and an attack plan (Section 5). In addition,
they claim that injecting all possible threat-actions
at all possible steps of the procedure is “the best and
most general strategy”. However, our view is that
this approach is likely to produce many false-positives
that obscure the true positives, with feasible attacks
potentially being obscured by an excessive number
of attacks that will prove to be infeasible. Thus our
approach emphasizes the importance of determining
the feasibility of a candidate attack by finding a ver-
ification counterexample. Finally, since the example
procedure shown in their paper contains only sequen-
tial steps with asset flows, it is not clear whether their
process models are able to represent concurrency and
exception handling, key parts of real-world election
processes.

7 Limitations and Future Work

Our approach has some limitations. First, it is based
on process models, which inevitably capture real-
world processes incompletely. Any model will omit
some details, possibly because they are irrelevant
or possibly because they cannot be modeled conve-
niently in a given modeling notation. But we view
the process model as a living document to be up-
dated on an ongoing basis, for example when the
process is modified, when more process details are
needed for analysis, or when superior modeling capa-
bilities become available. In general we expect that
when changes or elaborations are necessary, they will
be of the sort that can be modeled relatively easily
and then re-analyses can be done relatively quickly
on the modified model using existing specifications
of hazards and properties. Radical process changes
can be expected to entail considerably more modeling
and analysis work, but are expected to be far more in-
frequent. Second, since our approach starts with the
identification of specific hazards that are then used
to identify specific process vulnerabilities, we must
acknowledge that there will always be hazards that
were not initially considered or that might be partic-

ularly difficult to represent. Given that election pro-
cess vulnerabilities will probably be recognized incre-
mentally over time (perhaps as previously recognized
vulnerabilities are better defended against) it will be
necessary to perform our analyses incrementally as
these vulnerabilities are identified. Thus, the work
described here should be taken as a specification of a
single iteration in what we believe must be a contin-
uing iterative procedure of identification of hazards
and removal of consequent vulnerabilities.

Despite these limitations, our initial evaluations
and experiences with this process-model-based anal-
ysis approach are promising and suggest several av-
enues of research to extend this work. One such ex-
tension is to increase the level of automation as much
as possible so that human participation can be re-
stricted to activities that make the best possible use
of human intuition and judgment. Currently, we can
automatically generate fault trees and therefore the
MCSes used to identify process vulnerabilities; and
we can automate use of the formal verification to de-
termine the possibility of the success of an attack
plan. However, using insights derived from the MC-
Ses, domain experts still need to manually devise at-
tack plans. In future work, we hope to be able to au-
tomate the construction of at least initial attack plans
from an MCS. The resulting plans might be coarse
but it would give domain experts a better starting
point for elaborating these plans into ones that are
more detailed. Moreover, process model composition
(integrating an attack plan and the attacked process
model) was done manually in this work by having hu-
mans study the two models and identify synchroniza-
tion point. We believe that this model composition
can also be at least partially automated.

We also want to look into ways to simplify the in-
terpretation of MCSes. One MCS can be interpreted
in multiple ways, complicating the analysis. For ex-
ample, the MCS event “failure to throw an exception”
could be interpreted to mean that the exception is not
thrown at all or that it is not thrown when it is sup-
posed to be thrown. These interpretations lead to
different scenarios, as shown in the example in Sec-
tion 4.2. An OR gate in the fault tree can be used
to distinguish between these interpretations, but this
increases the fault tree size, and probably the number
of MCSes as well. Thus the value of such automated
help needs to be determined through further research.
Other research is needed to address such additional
issues as determining whether resulting scenarios are
equivalent, or whether we should define one formal
attack plan for each scenario or one formal attack
plan that covers multiple scenarios.

Another way in which our approach could be ex-
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tended to suggest process vulnerabilities is by con-
sidering the agents that perform the steps involved
in an MCS. It might be the case that an MCS does
not comprise a single point of failure, but that all the
steps in the MCS are performed by only one agent.
In that case, that agent might be viewed as a sin-
gle point of threat. Or when two or more agents are
involved, collusion or coercion might be a possibility
worth considering. Therefore analyses of the agents
that execute MCS steps can provide domain experts
with additional insights into process vulnerabilities.

Our approach could also be extended to provide
better insights into vulnerabilities to insider attacks.
In section 5.2, we used channels as a mechanism for
studying how well outsider attacking behaviors could
be defended by insiders executing the election pro-
cess. But other approaches are likely to be more ef-
fective in representing an attack that involves collu-
sion between outside attackers and privileged agents
inside the process. We intend to explore the use of
detailed specifications of agent behaviors, including
specifications of malicious and collusive behaviors of
agents inside the attacked process (inside attackers)
as well as the behaviors of those attacking the pro-
cess (outside attackers), to explore vulnerabilities to
insider attacks.

8 Conclusion

This paper describes a systematic and semi-
automated approach to continuous process improve-
ment by automatically identifying process vulnera-
bilities by applying FTA to a detailed model of the
election process. The derived MCSes provide insights
about potential attacks that are then used to create
attack plans. After composing each attack plan with
the detailed process model, model checking is used
to determine if the attack can succeed. The gener-
ated counterexample(s) can be used by domain ex-
perts to improve the process so that it can thwart
such attacks. We envision this approach being ap-
plied incrementally as election processes evolve with
the introduction of new laws and technology.

To evaluate this approach, we applied it to a
portion of the Yolo County election process. Our
preliminary results seem encouraging. Some results
were what we expected, such as identifying the
vulnerabilities that an impostor can exploit to attack
the process, formally verifying that the attack might
succeed, and verifying that the same attack will
fail after appropriate process modification. What
was unexpected was the variety of possible attack
scenarios that could often be derived from a single
MCS. We believe that reducing this variability so as
to improve the focus on more feasible and worrisome

attacks is one of the more important directions for
future work that we should explore. We also look
forward to conducting a more extensive evaluation
using more comprehensive models of real-world
election processes. We hope that such an extensive
evaluation will identify unrecognized or overlooked
potential attacks and demonstrate the effectiveness
of process modeling and analysis to detect and
successfully defend those attacks.
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