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Big Data Era: Mobile Data Traffic
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Big Data Era: Biomedical Data Growth
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Characteristics of Big Data (5V)

@ Volume: terabytes (TB), petabytes (PB), exabytes (EB), zettabytes
(ZB)...

Variety: different types like text, audio, image, video...

Velocity: real-time data

Veracity: unreliable data quality

Variability: data inconsistency

Shuguang (Robert) Cui (UCDavis) Learning over Limited Data Samples September 23, 2016 4 /62



High-Dimensional Data

@ Examples:

» Microarray: Human has 20,000-25,000 genes

» Mobile user data: more than 0.4 billion users in China Mobile
@ Curse of dimensionality:

» As the dimensionality increases, active data becomes more and more
sparse.

> Processing based on the distance between points becomes less
meaningful.

@ One solution: feature selection

New challenge: limited data samples (labeled data)
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Outline

@ Feature selection, interaction measures, logistic regression

System models

Pairwise interaction and interaction graph

@ Detection of pairwise interactions

Detection of pairwise interactions+individual effects
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Example in Biology
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Genes & Diseases

Gene: a region of DNA that serves some function
via encoding the proteins

(more than 20,000 human genes)

Disease: cancer, asthma, cardiopathy. ..

that are affected by proteins
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Feature Selection

output

features

Features: genes,... Output: healthy orill, ...
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Feature Selection

output

features

Features: genes,... Output: healthy orill, ...
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Feature Selection

highly related

output

features

Features: genes,... Output: healthy orill, ...
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Example in Cellular Systems

@ System state is user dependent; so each user could be treated as a
feature

o Traffic mostly from pairs of nodes
@ System states highly dependent on pairwise interactions

@ Useful in identifying key pairs of users for various purposes: prioritized
services, VIP customer tagging, precision advertisement...
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Advantages of Feature Selection

Simplify model's structure

Improve model interpretability

@ Shorten training time

Prevent model overfitting
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Feature Selection Methods

Three types:

o Filter methods [Ng (1998)]
@ Wrapper methods [Kohavi and John (1997)]
e Embedded methods [Breiman, Friedman, Olshen, and Stone (1984)]

Two key questions:

@ How to measure relevance?

@ How to efficiently (requiring less samples) find the optimal subset?
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Individual Feature Selection

1) Pearson’s correlation coefficient

Cov(X,Y)
a?(X)a?(Y)

N
2 (0 = X)(yn =)

p(X, Y) =

Shuguang (Robert) Cui (UCDavis) Learning over Limited Data Samples September 23, 2016 15 / 62



Individual Feature Selection (Continued)

2) Mutual information

1Y) = D(p(X, Y)Ip(X)p(Y ZP”'g pi)}a{))

Estimation
p(-) = sampling distribution
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Individual Feature Selection (Continued)

3) Maximal information coefficient (MIC) [Reshef et. al. (2011)]

MIC(X;Y) = max xv)
IXI1YI<B log, |min{|X|,|Y|}

e X and Y discretize X and Y

o |X|,|Y|: # of possible values

e B = NO® (N: # of data samples)
e 0K MICL1
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Pairwise Feature Interactions

H(Z)

H(X) i H)

Bivariate synergy [Anastassiou (2007)]

SYN(X1, Xo; Y) = I(X1, Xo; Y) = 1(X1; Y) — 1(Xa; Y)
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Our Measure

@ Define a new measure called “influence”.

@ Useful in the detection of the pairwise interactions in logistic
regression models.

@ Express the pairwise interactions by “interaction graph”.

@ Solve the case when the interaction graph is acyclic with a polynomial
algorithm.

@ Require lower order probability distribution information or much less
number of samples.

Shuguang (Robert) Cui (UCDavis) Learning over Limited Data Samples September 23, 2016 19 / 62



Logistic Regression Models

Linear regression models
Y~ B:-X=p1X1+ B2Xo+ -+ BaXa
Logistic regression models
Pr(Y =41|X) ~8-Xand Pr(Y =—-1|X) =1—Pr(Y = +1|X)

§o(x):=1/(1+e7) €[0,1]
Pr(Y = +1|X) ~ o(8 - X) and Pr(Y = —1|X) =1 —Pr(Y = +1|X)
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Pairwise Interaction

Logistic regression model with individual effects and pairwise interactions

Pr(Y = 4+1|X) ~ o(B1.X1 + BoXo + - - - + Ba Xy
+B12X1 X0 + B13X1 X3 + - - + Ba—1,dXd-1Xq)

Pr(Y = —1|X) = 1 — Pr(Y = +1|X)
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System Model

o X1,Xo,..., Xy are binary covariates
Pr{Xi=+1} =Pr{Xi= -1} =1/2,for i =1,2,...,d.
@ Y is a binary outcome variable

Pr{Y = +1|X1, X, . .. Xd}_a(ZB,X+ 3 ﬁ,JXX)

1<i<yj<d
Pr{Y = —1|X1,X2, . ,Xd} =1- PI’{Y = +1|X1,X2, e ,Xd}

=o(- ZB,X— > BuXX)

1<i<j<d

o(x) :=1/(1 4 e *): the sigmoid function
» [3;: the parameter corresponding to the individual effect X; for
1<i<d.

» (i j: the parameter corresponding to the covariate pair {X;, X;} for
1<i<j<d.
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Individual Effects and Pairwise Interactions

o Definitions:

Bi # 0: X; has an individual effect.

B; = 0: X; has no individual effect.

Bij # 0: Xi and X; has a pairwise interaction.
Bij = 0: X; and X; has no pairwise interaction.

v vy VvYy

o Target:

Detect all individual effects and pairwise interactions in logistic

regression models.
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Motivation 1: Detection of the Graph Underlying an Ising
Model [Bresler (2015)]

Ising models on a graph G = (V, E) with |V|=d

F(x, %0, xp) =expq » Bixi+ Y Bijxixg — D)
eV {ij}eE
parameter vector: 5 = {f;}icy U {/BiJ}{i,j}eE
normalizing constant: ®(/3)

o
o
@ the maximum degree of nodes is p
o o< |Bijl < B, |Bil < h.
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Motivation 1: Detection of the Graph Underlying an Ising
Model [Bresler (2015)] (Continued)

Theorem (Bresler 2015)

254p+1 .
Let § = %6_2(5””’), i %, =5, 0= (72)2. Suppose we

observe n samples with

s 144(C + 3) o &
= (6*)25%* gc‘

Then with probability at least 1 — (, there exists an algorithm to detect
the structure of G running in polynomial time O(¢*dn).
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]

Chow-Liu representation:

p(X1, X2, X3, X4, Xs)
= p(X1) - p(Xa|X1) - p(X53| X1, X2) - p(Xa| X1, X2, X3) - p(X5| X1, X2, X3, Xa)
~ p(X1) - p(Xe|X1) - p(X3|X2) - p(Xa|X2) - p(X5|X2)
(first-order product approximation)
= p'(X1, X2, X3, X4, Xs)

Target: Find p’ to minimize the Kullback-Leibler distance D(p||p’)
between p and p'.
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]
(Continued)

Chow-Liu Algorithm:

e Construct a weighted complete graph G = (V, E) with
V = {V1,V2,...,Vd}.

@ The weight w(v;, vj) of edge (v;, v;j) is assigned to be /(Xi; Xj).

e Find the maximum spanning tree T of G (by Kruskal's algorithm or
Prim’s algorithm).

@ Set a node v to be the root of T, then rank the other nodes by their
depths.
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Our Work

@ Model all pairwise interactions by a so-called interaction graph; treat
individual effect as special cases.

o Establish an algorithm with a similar style as Chow-Liu algorithm to
detect the structure of the interaction graph from a limited number of

samples.

@ Use “influence” as the measure of correlation between the pairs and
the outcome, requiring lower-oder probabilities only.

@ Sample complexity and running time are both polynomial functions of
the number of features.
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Model with only Pairwise Interactions

o Assumption:
No individual effects (8; = 0 for 1 < < d).

o For example:
> b5 features X1, X5, X3, X4, X5
> 512,523,024, 025 # 0 and other 3;; =0
Pr{Y = +1[|X1, X2, X3, X4, X5} = 0(B12X1X2 + B2,3X2X3

+ B2.aXaXy + P25 X2X5)
PF{Y = —1|X1,X2,X3,X4,X5} =1- PF{Y = —|—1|X1,X27X3,X4,X5}
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Interaction Graph

Interaction Graph: Let G = (V/, E) be the interaction graph with
V ={v1,v,...,vq}, and the edge (v;, v;) € E if and only if the
coefficient 3; ; corresponding to X; and X is nonzero.

For example:

Pr{Y = +1|X1, X5, X3, X4, X5 } ° e
= 0(f12X1X0 + [23X2X3
+ B2,4X0X4 + B2,5X2Xs5) @
Pr{Y: —1|X1,X2,X3,X4,X5} @ @

=1—Pr{Y = +1|X1, X2, X3, X4, X5} B2, 52,3, B2.4, P25 # 0
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Assumption, Difficulty & Target

@ Assumption:
The interaction graph G = (V, E) is acyclic.
» When there are at most two interactions, G is always acyclic.

» When the number of interactions is far less than the number of
features, G is acyclic with a high probability.

o Difficulty:
We don’t know which edges this graph has.

o Target:
Detect the structure of the interaction graph from limited
samples.
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Construction of a Weighted Complete Graph
Construct a weighted complete graph G’ = (V/, E’) by

o Vi=(v{,v,...,Vv))
o The weight of any edge (v/,v) € E' is
ij 1
wiigy = £ Qo1 — 20
Here,
°o QY 2 Pr(Y = i3|X; = i1, X; = i2)

i1,02,i3
e f: a nonnegative, strictly i mcreasmg function on [0,1/2].

e.g. (1) f(x) = 2x:
Wiijy = ‘Qﬁ,l - Qi’,Jl,fl‘
(2) f(x) £ (1/2 4 x)log(1 4+ 2x) + (1/2 — x) log(1 — 2x) and 0log0 = 0:
Qilois Qi
wyijy = 3log2 + Z 1212’3 log 1[’12’ 2,
I'17I'2,I'3€{17—1}
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Best Choice of the Weights

We choose N N
_ | i i .
wiijy = ’Ql’Ll — QLl’_l (influence).

o Easily estimated by the empirical distributions of n samples
(Xa[t], Xa[t], - .- s Xa[t], Y[t]) for 1 <t < n:

. 8 «
Wiijy = ‘; > Lol e i) =(+1s1en) — 1]

t=1

@ It has a lower estimation error than other measures with more
complicated forms.
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Structure Detection of the Interaction Graph (Case 1)

e Case 1: The third-order joint probability p(Xj, X;, Y) is known.

@ wy; ;) can be calculated from the third-order joint distribution of
Xia )(j’ Y

i i
wiijy = | Q11 — @11

= |Pr{Y = +1|X; = +1,X; = +1} — Pr{Y = —1|X; = +1, X; = +1}
=[8Pr{X; =+1,X;=+1,Y = +1} — 1
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Theorem on Detection (Case 1)

Theorem

Let T = (V', ET) be the maximum spanning tree of G'. Then

(vi,vj) € E if and only if (v}, v]) € ET and w;j, > 0.

edges in the interaction graph

)

non-zero weighted edges in the maximum spanning tree
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Detection Algorithm (Case 1)

Algorithm (Detecting the interaction graph)
o Construct a weighted graph G' = (V', E') with V' = {v{, v}, ..., v}}.
o The weight wy; j, of edge (v}, v;) is assigned to be
IPr{Y = +1|X; = +1, X; = +1} = Pr{Y = —1|X; = +1, X; = +1}|.
e Find the maximum spanning tree T' = (V' ET) of G’ (by Kruskal's
algorithm or Prim’s algorithm).
o Then the edges in G are {(vi,v;) : (v;,vj) € ET and wy; j; > 0}.

The algorithm is executed in polynomial time O(d?).
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Structure Detection of the Interaction Graph (Case 2)

o Case 2:
» The third-order joint probability p(X;, Xj, Y) is unknown.
» Any non-zero parameter 3;; satisfies that

A< |Bijl < .

o Weight assignment: With n samples (Xi[t], X2[t], ..., X4[t], Y][t]) for
1 <t < n, we estimate

W{iJ} = ‘8 PF{X,' = —i—l,Xj = +1, Y = +1} — ].|

8 n
- Z L(x,1. %081, Y[E]) =(+1,+1,41) — 1[-
t—1

Wiijy =
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Theorem on Detection (Case 2)

Let
v = \/g [o(A+3p) — o(=A+3u)].

Theorem
Assume for 1 < i< j<d,
Wi gy — wyijyl < /2
Let T = (V' ET) be the maximum spanning tree of G'. Then

/

(vi,vj) € E if and only if (vj,vj) € ET and wy;j; > /2.

edges in the interaction graph

0

large weighted edges in the maximum spanning tree
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Detection Algorithm (Case 2)

Algorithm (Detecting the interaction graph)
o Construct a weighted graph G' = (V', E') with V' = {v{, v3,...,v}}.

/

vj, V) is assigned to be

o The weight wy; j, of edge (V]

8 n
— D X Y=+ — 1
t=1

e Find the maximum spanning tree T' = (V' ET) of G' (by Kruskal's
algorithm or Prim’s algorithm).

© Then the edges in G are {(v;,v;) : (v/,Vv]) € Er and wy; j, > v/2}.

The algorithm is executed in polynomial time O(nd?).
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Sample Complexity (Case 2)

Theorem
Fix 0 < e <1 and let n be a positive integer such that
128  d? 647d d?

n>—log— = log —.
T e oA +3u) —o(-A+3p) T €

(1)

Then with probability at least 1 — €, the algorithm can successfully detect
the graph G from n i.i.d. samples of (X1, Xa,..., X4, Y).

The order of sample complexity: © (d log g)
Running time: © (d3 log %)
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Models with both Individual Effects and Pairwise
Interactions

o For example:
> 4 features Xi, X5, X3, Xy
> (2,012,323, 2,4 # 0 and other 3;, 3;; = 0
Pr{Y = +1|X1, X2, X3, Xa} = (52X + P12X1 X2

+02,3X2X3 + (2,4 X2Xa)
PI’{Y = —1|X1,X2,X3,X4} =1- PF{Y = +1|X1,X2,X3,X4}
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Extended Interaction Graph
For extended interaction graph G = (V, E),
o V = {w(virtual vertex), vi,va,...,v4}
@ (vo,v;) € E if and only if X; has an individual effect
e (vi,v;) € E if and only if X; and X; have a cooperative interaction

With the help of the virtual vertex vy, G can capture all individual effects
and pairwise interactions.

For example:

Pr{Y = +1|X1, X2, X3, Xa } @ @

= 0(BaXo + P1,2X1 X2 @
+ 82,3 X2 X3 + B2,4X2Xs)

Pr{Y = —1|X1, X2, X3, Xa } @ @

=1- PI’{ Y = —i—l’Xl, X2, X3, X4} B2, 812, 82,3, B2.4 # 0

Shuguang (Robert) Cui (UCDavis) Learning over Limited Data Samples September 23, 2016 42 / 62



Auxiliary Model

@ Assumption:
The extended interaction graph G = (V, E) is acyclic.

o Auxiliary model: Pr{X; = +1} = Pr{X; = —1} = 1/2 for
0<i<d
(Xo: the virtual feature corresponding to the virtual node vp)

PH{Y = +11%0, X1, Xa, . .., X4} _J(ZB,XOX + Y 5,uxx)
1<i<j<d

Pr{V = —1‘)”(0,;(1,)?2,. .. ,)?d} =1- PI’{Y = —|—1|X0,X1,X2, ... ,)N(d}

o - Z@XOX— > BikK)

1<i<j<d
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Relationship between Original Model and its Auxiliary
Model

@ Original model:
wyo,iy := [4Pr(Xi = +1,Y = +1) — 1|
Wiy = |4Pr (X,' = —|—1,)(j = +1, Y = +1)
+4Pr(X;=-1,X;=-1,Y = +1) — 1|

o Auxiliary model:

Wiijy =

Pr(Y = +1|X; = +1,%; = +1) = Pr(Y = —1|X; = +1,X; = +1)

Theorem
For0<i<j<d,
Wij = Wi
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|dea of Converting

@ Original model and auxiliary model share the same interaction graph.
@ Auxiliary model contains only pairwise interactions.

@ Assign the empirical weight of the original model into each edge of
the auxiliary model.
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Detection Algorithm of Extended Interaction Graphs

Algorithm

e Construct a weighted complete graph G' = (V', E') with
V' ={vj,vi,v3,..., v}

® For1 <i<d, the weight wyg ;, of edge (vg,v;

v{) is assigned to be

|§ > 1(xile ylel) = (+1,+1) - 1

for 1 <i < j<d, the weight wy; j of edge (v], V] ) is assigned to be
4 n
'; D A((xilel X[t ylE) = (1,41, +1)+

—Zl (Calt] %t yle]) = (=1, =1, +1)) = 1}.

v
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Detection Algorithm of Extended Interaction Graphs
(Continued)

Algorithm

o Find the maximum spanning tree T' = (V', Et) of G’ (by Kruskal's
algorithm or Prim’s algorithm).

o Then the edges in G are {(vi, v;) : (vj,vj) € ET and wy; j; >+'/2},
with Let

¥ =\ sy 7+ 30 — o (A 3.

The algorithm is also executed in polynomial time.
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Advantages of Our Measure

o Estimation aspect:
It is easier to estimate and analyze a measure only related to
lower-order conditional probabilities than other entropy-related
measures.

o Detection aspect:

It can be used to detect all pairwise interactions with a low error
probability, better than other known algorithms with other measures.
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Non-Uniform Case

@ Assumption:

> (non-uniform features) X1, Xy, ..., Xy are binary variables
Pr{X; =1} = p;, Pr{X; = =1} = g; with p; + q; = 1, for
i=1,2,....d

» The interaction graph G = (V/, E) is simply a path of length at most 4.

o Target:
Reconstruct the graph from the samples of (X1, X2, ..., Xy, Y).

e Construction:
Construct a weighted complete graph G’ = (V/, E’) by
> V= (v v v)
> The weight of any edge (v/,vj) € E' is

_|nid ij ij iJj
Wiijy = Q+1,+1,+1 + Q—l,—1,+1 + Q—1,+1,—1 + Q+1,—1,—1

i i i i
—QU1 11— Q0 1~ Qg — Q]
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Theorem on Detection (Non-uniform Case)

Theorem
Let T = (V' ET) be the maximum spanning tree of G'. Then

(vi,vj) € E if and only if (v}, v]) € ET and wy;j, > 0.

When the interaction graph G = (V/, E) is simply a path of length at most
4'

edges in the interaction graph

)

non-zero weighted edges in the maximum spanning tree
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Hardness on Detection (Non-uniform Case)

Theorem

Assume that the interaction graph is a path of length 5. If the weight of

edge (v/,v!) in G' is assigned to be

_ ij : ij
wii i = max Q. . — min
(i} ih,ie{+1,-1} B b sef{+1,-1) 2B
or

b | A i A o
w(vi,v)) = Q1411+ Q% 11 QX 11 1+ Q1

iJ iJ iJ iJ
_Q+1,+1,—1 - Q—l,—l,—l - Q—1,+1,+1 - Q+1,—1,+1 )

then there exists a counterexample where we cannot correctly detect the
structure of the interaction graph by finding the maximum spanning tree
of G'.

The theorem for the uniform cases cannot be extended into the generic

non-uniform cases.
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Simulation Experiments

@ 1000 logistic regression models
@ 15 features, 5 individual effects, 10 pairwise interactions
@ 400, 800, 1200, 1600, 2000 samples

@ Detection of the interaction graphs
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Results of Simulation Experiments - Part 1
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Results of Simulation Experiments - Part 2
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Comparison of detection correctness among mRMR forwarding selection
[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and our algorithm.
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Results of Simulat
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Results of Simulation Experiments - Part 4
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logistic regression [Park & Hastie (2007)] and our Algorithm.
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Conclusion

@ Logistic regression models:

Pr(Y = 41X X0, Xa} =0 30 AXit Y BxiX)

1<i<d 1<i<j<d
PF{Y = —1|X1,X2, . ,Xd} =1- PI’{Y = +1|X1,X2,. .. ,Xd}

Interaction graph G = (V, E):
(vi,vj) € E < p;j #0.

Pairwise interaction measure: influence

Detection of the interaction graph:

» Construct a weighted graph.
» Find its maximum spanning tree.
> Pick the edges with large weights.

o Extended to the models with both individual effects and pairwise
interactions.
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