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Big Data Era: Mobile Data Traffic

Source: http://dazeinfo.com/
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Big Data Era: Biomedical Data Growth

Source: https://www.nlm.nih.gov/
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Characteristics of Big Data (5V)

Volume: terabytes (TB), petabytes (PB), exabytes (EB), zettabytes
(ZB)...

Variety: different types like text, audio, image, video...

Velocity: real-time data

Veracity: unreliable data quality

Variability: data inconsistency
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High-Dimensional Data

Examples:
I Microarray: Human has 20,000-25,000 genes
I Mobile user data: more than 0.4 billion users in China Mobile

Curse of dimensionality:
I As the dimensionality increases, active data becomes more and more

sparse.
I Processing based on the distance between points becomes less

meaningful.

One solution: feature selection

New challenge: limited data samples (labeled data)
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Outline

Feature selection, interaction measures, logistic regression

System models

Pairwise interaction and interaction graph

Detection of pairwise interactions

Detection of pairwise interactions+individual effects
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Example in Biology

Central Dogma of Molecular Biology
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Genes & Diseases

Gene: a region of DNA that serves some function

via encoding the proteins

(more than 20,000 human genes)

Disease: cancer, asthma, cardiopathy. . .

that are affected by proteins
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Feature Selection

Features: genes,. . . Output: healthy or ill, . . .
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Feature Selection
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Feature Selection

Features: genes,. . . Output: healthy or ill, . . .
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Example in Cellular Systems

System state is user dependent; so each user could be treated as a
feature

Traffic mostly from pairs of nodes

System states highly dependent on pairwise interactions

Useful in identifying key pairs of users for various purposes: prioritized
services, VIP customer tagging, precision advertisement...
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Advantages of Feature Selection

Simplify model’s structure

Improve model interpretability

Shorten training time

Prevent model overfitting
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Feature Selection Methods

Three types:

Filter methods [Ng (1998)]

Wrapper methods [Kohavi and John (1997)]

Embedded methods [Breiman, Friedman, Olshen, and Stone (1984)]

Two key questions:

How to measure relevance?

How to efficiently (requiring less samples) find the optimal subset?
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Individual Feature Selection

1) Pearson’s correlation coefficient

ρ(X ,Y ) =
Cov(X ,Y )√
σ2(X )σ2(Y )

≈

N∑
n=1

(xn − x̄)(yn − ȳ)√
N∑

n=1
(xn − x̄)2 ·

√
N∑

n=1
(yn − ȳ)2
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Individual Feature Selection (Continued)

2) Mutual information

I (X ;Y ) = D(p(X ,Y )||p(X )p(Y )) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)

Estimation
p(·) ≈ sampling distribution
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Individual Feature Selection (Continued)

3) Maximal information coefficient (MIC) [Reshef et. al. (2011)]

MIC (X ;Y ) = max
|X̃ |·|Ỹ |<B

I (X̃ ; Ỹ )

log2

[
min{|X̃ |, |Ỹ |}

]
X̃ and Ỹ discretize X and Y

|X̃ |, |Ỹ |: # of possible values

B = N0.6 (N: # of data samples)

0 ≤ MIC ≤ 1
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Pairwise Feature Interactions

Bivariate synergy [Anastassiou (2007)]

SYN(X1,X2;Y ) = I (X1,X2;Y )− I (X1;Y )− I (X2;Y )
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Our Measure

Define a new measure called “influence”.

Useful in the detection of the pairwise interactions in logistic
regression models.

Express the pairwise interactions by “interaction graph”.

Solve the case when the interaction graph is acyclic with a polynomial
algorithm.

Require lower order probability distribution information or much less
number of samples.
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Logistic Regression Models

Linear regression models

Y ∼ β · X = β1X1 + β2X2 + · · ·+ βdXd

Logistic regression models

Pr(Y = +1|X) ∼ β · X and Pr(Y = −1|X) = 1− Pr(Y = +1|X)

⇓ σ(x) := 1/(1 + e−x) ∈ [0, 1]

Pr(Y = +1|X) ∼ σ(β · X) and Pr(Y = −1|X) = 1− Pr(Y = +1|X)
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Pairwise Interaction

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +1|X) ∼ σ(β1X1 + β2X2 + · · ·+ βdXd

+β1,2X1X2 + β1,3X1X3 + · · ·+ βd−1,dXd−1Xd)

Pr(Y = −1|X) = 1− Pr(Y = +1|X)
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System Model

X1,X2, . . . ,Xd are binary covariates
Pr{Xi = +1} = Pr{Xi = −1} = 1/2, for i = 1, 2, . . . , d .

Y is a binary outcome variable

Pr{Y = +1|X1,X2, . . . ,Xd} = σ
( d∑

i=1

βiXi +
∑

1≤i<j≤d
βi ,jXiXj

)
Pr{Y = −1|X1,X2, . . . ,Xd} = 1− Pr{Y = +1|X1,X2, . . . ,Xd}

= σ
(
−

d∑
i=1

βiXi −
∑

1≤i<j≤d
βi ,jXiXj

)

I σ(x) := 1/(1 + e−x): the sigmoid function
I βi : the parameter corresponding to the individual effect Xi for

1 ≤ i ≤ d .
I βi,j : the parameter corresponding to the covariate pair {Xi ,Xj} for

1 ≤ i < j ≤ d .
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Individual Effects and Pairwise Interactions

Definitions:

I βi 6= 0: Xi has an individual effect.
I βi = 0: Xi has no individual effect.
I βi,j 6= 0: Xi and Xj has a pairwise interaction.
I βi,j = 0: Xi and Xj has no pairwise interaction.

Target:
Detect all individual effects and pairwise interactions in logistic

regression models.
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Motivation 1: Detection of the Graph Underlying an Ising
Model [Bresler (2015)]

Ising models on a graph G = (V ,E ) with |V | = d

f (x1, x2, . . . , xp) = exp

∑
i∈V

βixi +
∑
{i ,j}∈E

βi ,jxixj − Φ(β)


parameter vector: β = {βi}i∈V ∪ {βi ,j}{i ,j}∈E
normalizing constant: Φ(β)

the maximum degree of nodes is p

α ≤ |βi ,j | ≤ β, |βi | ≤ h.
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Motivation 1: Detection of the Graph Underlying an Ising
Model [Bresler (2015)] (Continued)

Theorem (Bresler 2015)

Let δ = 1
2e
−2(βp+h), τ∗ = α2δ4p+1

16pβ , ε∗ = τ∗

2 , `∗ = 8
(τ∗)2

. Suppose we

observe n samples with

n ≥ 144(`∗ + 3)

(ε∗)2δ2`∗
log

d

ζ
.

Then with probability at least 1− ζ, there exists an algorithm to detect
the structure of G running in polynomial time O(`∗dn).
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]

Chow-Liu representation:

p(X1,X2,X3,X4,X5)

= p(X1) · p(X2|X1) · p(X3|X1,X2) · p(X4|X1,X2,X3) · p(X5|X1,X2,X3,X4)

≈ p(X1) · p(X2|X1) · p(X3|X2) · p(X4|X2) · p(X5|X2)

(first-order product approximation)

= p′(X1,X2,X3,X4,X5)

Target: Find p′ to minimize the Kullback-Leibler distance D(p||p′)
between p and p′.
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]
(Continued)

Chow-Liu Algorithm:

Construct a weighted complete graph G = (V ,E ) with
V = {v1, v2, . . . , vd}.
The weight w(vi , vj) of edge (vi , vj) is assigned to be I (Xi ;Xj).

Find the maximum spanning tree T of G (by Kruskal’s algorithm or
Prim’s algorithm).

Set a node v to be the root of T , then rank the other nodes by their
depths.
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Our Work

Model all pairwise interactions by a so-called interaction graph; treat
individual effect as special cases.

Establish an algorithm with a similar style as Chow-Liu algorithm to
detect the structure of the interaction graph from a limited number of
samples.

Use “influence” as the measure of correlation between the pairs and
the outcome, requiring lower-oder probabilities only.

Sample complexity and running time are both polynomial functions of
the number of features.
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Model with only Pairwise Interactions

Assumption:
No individual effects (βi = 0 for 1 ≤ i ≤ d).

For example:

I 5 features X1,X2,X3,X4,X5

I β1,2, β2,3, β2,4, β2,5 6= 0 and other βi,j = 0

Pr{Y = +1|X1,X2,X3,X4,X5} = σ(β1,2X1X2 + β2,3X2X3

+ β2,4X2X4 + β2,5X2X5)

Pr{Y = −1|X1,X2,X3,X4,X5} = 1− Pr{Y = +1|X1,X2,X3,X4,X5}
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Interaction Graph

Interaction Graph: Let G = (V ,E ) be the interaction graph with
V = {v1, v2, . . . , vd}, and the edge (vi , vj) ∈ E if and only if the
coefficient βi ,j corresponding to Xi and Xj is nonzero.
For example:

Pr{Y = +1|X1,X2,X3,X4,X5}
= σ(β1,2X1X2 + β2,3X2X3

+ β2,4X2X4 + β2,5X2X5)

Pr{Y = −1|X1,X2,X3,X4,X5}
= 1− Pr{Y = +1|X1,X2,X3,X4,X5}
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Assumption, Difficulty & Target

Assumption:
The interaction graph G = (V ,E ) is acyclic.

I When there are at most two interactions, G is always acyclic.
I When the number of interactions is far less than the number of

features, G is acyclic with a high probability.

Difficulty:
We don’t know which edges this graph has.

Target:
Detect the structure of the interaction graph from limited

samples.
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Construction of a Weighted Complete Graph
Construct a weighted complete graph G ′ = (V ′,E ′) by

V ′ = (v ′1, v
′
2, . . . , v

′
d)

The weight of any edge (v ′i , v
′
j ) ∈ E ′ is

w{i ,j} = f

(∣∣∣∣Q i ,j
1,1,1 −

1

2

∣∣∣∣) .
Here,

Q i ,j
i1,i2,i3

, Pr(Y = i3|Xi = i1,Xj = i2)

f : a nonnegative, strictly increasing function on [0, 1/2].

e.g. (1) f (x) , 2x :

w{i ,j} =
∣∣∣Q i ,j

1,1,1 − Q i ,j
1,1,−1

∣∣∣
(2) f (x) , (1/2 + x) log(1 + 2x) + (1/2− x) log(1− 2x) and 0 log 0 , 0:

w{i ,j} = 3 log 2 +
∑

i1,i2,i3∈{1,−1}

Q i ,j
i1,i2,i3

4
log

Q i ,j
i1,i2,i3

4
.
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Best Choice of the Weights

We choose
w{i ,j} =

∣∣∣Q i ,j
1,1,1 − Q i ,j

1,1,−1

∣∣∣ (influence).

Easily estimated by the empirical distributions of n samples
(X1[t],X2[t], . . . ,Xd [t],Y [t]) for 1 ≤ t ≤ n:

ŵ{i ,j} =

∣∣∣∣8n
n∑

t=1

1(Xi [t],Xj [t],Y [t])=(+1,+1,+1) − 1

∣∣∣∣.
It has a lower estimation error than other measures with more
complicated forms.
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Structure Detection of the Interaction Graph (Case 1)

Case 1: The third-order joint probability p(Xi ,Xj ,Y ) is known.

w{i ,j} can be calculated from the third-order joint distribution of
Xi ,Xj ,Y

w{i ,j} =
∣∣∣Q i ,j

1,1,1 − Q i ,j
1,1,−1

∣∣∣
= |Pr{Y = +1|Xi = +1,Xj = +1} − Pr{Y = −1|Xi = +1,Xj = +1}|
= |8 Pr{Xi = +1,Xj = +1,Y = +1} − 1|
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Theorem on Detection (Case 1)

Theorem

Let T = (V ′,ET ) be the maximum spanning tree of G ′. Then

(vi , vj) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and w{i ,j} > 0.

edges in the interaction graph
m

non-zero weighted edges in the maximum spanning tree
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Detection Algorithm (Case 1)

Algorithm (Detecting the interaction graph)

Construct a weighted graph G ′ = (V ′,E ′) with V ′ = {v ′1, v ′2, . . . , v ′d}.
The weight w{i ,j} of edge (v ′i , v

′
j ) is assigned to be

|Pr{Y = +1|Xi = +1,Xj = +1} − Pr{Y = −1|Xi = +1,Xj = +1}|.
Find the maximum spanning tree T ′ = (V ′,ET ) of G ′ (by Kruskal’s
algorithm or Prim’s algorithm).

Then the edges in G are {(vi , vj) : (v ′i , v
′
j ) ∈ ET and w{i ,j} > 0}.

The algorithm is executed in polynomial time O(d2).
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Structure Detection of the Interaction Graph (Case 2)

Case 2:
I The third-order joint probability p(Xi ,Xj ,Y ) is unknown.
I Any non-zero parameter βi,j satisfies that

λ ≤ |βi,j | ≤ µ.

Weight assignment: With n samples (X1[t],X2[t], . . . ,Xd [t],Y [t]) for
1 ≤ t ≤ n, we estimate

w{i ,j} = |8 Pr{Xi = +1,Xj = +1,Y = +1} − 1|

by

ŵ{i ,j} =

∣∣∣∣8n
n∑

t=1

1(Xi [t],Xj [t],Y [t])=(+1,+1,+1) − 1

∣∣∣∣.
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Theorem on Detection (Case 2)
Let

γ =

√
2

πd
[σ(λ+ 3µ)− σ(−λ+ 3µ)] .

Theorem

Assume for 1 ≤ i < j ≤ d,

|ŵ{i ,j} − w{i ,j}| < γ/2.

Let T = (V ′,ET ) be the maximum spanning tree of G ′. Then

(vi , vj) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and ŵ{i ,j} > γ/2.

edges in the interaction graph
m

large weighted edges in the maximum spanning tree
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Detection Algorithm (Case 2)

Algorithm (Detecting the interaction graph)

Construct a weighted graph G ′ = (V ′,E ′) with V ′ = {v ′1, v ′2, . . . , v ′d}.
The weight w{i ,j} of edge (v ′i , v

′
j ) is assigned to be∣∣∣∣8n

n∑
t=1

1(Xi [t],Xj [t],Y [t])=(+1,+1,+1) − 1

∣∣∣∣.
Find the maximum spanning tree T ′ = (V ′,ET ) of G ′ (by Kruskal’s
algorithm or Prim’s algorithm).

Then the edges in G are {(vi , vj) : (v ′i , v
′
j ) ∈ ET and w{i ,j} > γ/2}.

The algorithm is executed in polynomial time O(nd2).
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Sample Complexity (Case 2)

Theorem

Fix 0 < ε < 1 and let n be a positive integer such that

n ≥ 128

γ2
log

d2

ε
=

64πd

[σ(λ+ 3µ)− σ(−λ+ 3µ)]2
log

d2

ε
. (1)

Then with probability at least 1− ε, the algorithm can successfully detect
the graph G from n i.i.d. samples of (X1,X2, . . . ,Xd ,Y ).

The order of sample complexity: Θ
(
d log d

ε

)
Running time: Θ

(
d3 log d

ε

)
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Models with both Individual Effects and Pairwise
Interactions

For example:

I 4 features X1,X2,X3,X4

I β2, β1,2, β2,3, β2,4 6= 0 and other βi , βi,j = 0

Pr{Y = +1|X1,X2,X3,X4} = σ(β2X2 + β1,2X1X2

+β2,3X2X3 + β2,4X2X4)

Pr{Y = −1|X1,X2,X3,X4} = 1− Pr{Y = +1|X1,X2,X3,X4}
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Extended Interaction Graph
For extended interaction graph G = (V ,E ),

V = {v0(virtual vertex), v1, v2, . . . , vd}
(v0, vi ) ∈ E if and only if Xi has an individual effect

(vi , vj) ∈ E if and only if Xi and Xj have a cooperative interaction

With the help of the virtual vertex v0, G can capture all individual effects
and pairwise interactions.

For example:

Pr{Y = +1|X1,X2,X3,X4}
= σ(β2X2 + β1,2X1X2

+ β2,3X2X3 + β2,4X2X4)

Pr{Y = −1|X1,X2,X3,X4}
= 1− Pr{Y = +1|X1,X2,X3,X4}

Shuguang (Robert) Cui (UCDavis) Learning over Limited Data Samples September 23, 2016 42 / 62



Auxiliary Model

Assumption:
The extended interaction graph G = (V ,E ) is acyclic.

Auxiliary model: Pr{X̃i = +1} = Pr{X̃i = −1} = 1/2 for
0 ≤ i ≤ d .
(X̃0: the virtual feature corresponding to the virtual node v0)

Pr{Ỹ = +1|X̃0, X̃1, X̃2, . . . , X̃d} = σ
( d∑

i=1

βi X̃0X̃i +
∑

1≤i<j≤d
βi ,j X̃i X̃j

)
Pr{Ỹ = −1|X̃0, X̃1, X̃2, . . . , X̃d} = 1− Pr{Ỹ = +1|X̃0, X̃1, X̃2, . . . , X̃d}

= σ
(
−

d∑
i=1

βi X̃0X̃i −
∑

1≤i<j≤d
βi ,j X̃i X̃j

)
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Relationship between Original Model and its Auxiliary
Model

Original model:

w{0,i} := |4Pr (Xi = +1,Y = +1)− 1|
w{i ,j} := |4Pr (Xi = +1,Xj = +1,Y = +1)

+ 4Pr (Xi = −1,Xj = −1,Y = +1)− 1|

Auxiliary model:

w̃{i ,j} :=∣∣∣Pr(Ỹ = +1|X̃i = +1, X̃j = +1)− Pr(Ỹ = −1|X̃i = +1, X̃j = +1)
∣∣∣

Theorem

For 0 ≤ i < j ≤ d,
wi ,j = w̃i ,j
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Idea of Converting

Original model and auxiliary model share the same interaction graph.

Auxiliary model contains only pairwise interactions.

Assign the empirical weight of the original model into each edge of
the auxiliary model.
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Detection Algorithm of Extended Interaction Graphs

Algorithm

Construct a weighted complete graph G ′ = (V ′,E ′) with
V ′ = {v ′0, v ′1, v ′2, . . . , v ′d}.
For 1 ≤ i ≤ d, the weight w{0,i} of edge (v ′0, v

′
i ) is assigned to be∣∣∣∣∣4n

n∑
t=1

1((xi [t], y[t]) = (+1,+1))− 1

∣∣∣∣∣ ;

for 1 ≤ i < j ≤ d, the weight w{i ,j} of edge (v ′i , v
′
j ) is assigned to be∣∣∣∣∣4n

n∑
t=1

1((xi [t], xj [t], y[t]) = (+1,+1,+1))+

4

n

n∑
t=1

1((xi [t], xj [t], y[t]) = (−1,−1,+1))− 1

∣∣∣∣∣ .
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Detection Algorithm of Extended Interaction Graphs
(Continued)

Algorithm

Find the maximum spanning tree T ′ = (V ′,ET ) of G ′ (by Kruskal’s
algorithm or Prim’s algorithm).

Then the edges in G are {(vi , vj) : (v ′i , v
′
j ) ∈ ET and w{i ,j} > γ′/2},

with Let

γ′ =

√
2

π(d + 1)
[σ(λ+ 3µ)− σ(−λ+ 3µ)] .

The algorithm is also executed in polynomial time.
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Advantages of Our Measure

Estimation aspect:
It is easier to estimate and analyze a measure only related to
lower-order conditional probabilities than other entropy-related
measures.

Detection aspect:
It can be used to detect all pairwise interactions with a low error
probability, better than other known algorithms with other measures.
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Non-Uniform Case

Assumption:

I (non-uniform features) X1,X2, . . . ,Xd are binary variables
Pr{Xi = 1} = pi , Pr{Xi = −1} = qi with pi + qi = 1, for
i = 1, 2, . . . , d

I The interaction graph G = (V ,E ) is simply a path of length at most 4.

Target:
Reconstruct the graph from the samples of (X1,X2, . . . ,Xd ,Y ).

Construction:
Construct a weighted complete graph G ′ = (V ′,E ′) by
I V ′ = (v ′1, v

′
2, . . . , v

′
d)

I The weight of any edge (v ′i , v
′
j ) ∈ E ′ is

w{i,j} =
∣∣∣Q i,j

+1,+1,+1 + Q i,j
−1,−1,+1 + Q i,j

−1,+1,−1 + Q i,j
+1,−1,−1

−Q i,j
+1,+1,−1 − Q i,j

−1,−1,−1 − Q i,j
−1,+1,+1 − Q i,j

+1,−1,+1

∣∣∣ .
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Theorem on Detection (Non-uniform Case)

Theorem

Let T = (V ′,ET ) be the maximum spanning tree of G ′. Then

(vi , vj) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and w{i ,j} > 0.

When the interaction graph G = (V ,E ) is simply a path of length at most
4,

edges in the interaction graph
m

non-zero weighted edges in the maximum spanning tree
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Hardness on Detection (Non-uniform Case)

Theorem

Assume that the interaction graph is a path of length 5. If the weight of
edge (v ′i , v

′
j ) in G ′ is assigned to be

w{i ,j} = max
i1,i2,i3∈{+1,−1}

Q i ,j
i1,i2,i3

− min
i1,i2,i3∈{+1,−1}

Q i ,j
i1,i2,i3

.

or

w(v ′i , v
′
j ) =

∣∣∣Q i ,j
+1,+1,+1 + Q i ,j

−1,−1,+1 + Q i ,j
−1,+1,−1 + Q i ,j

+1,−1,−1

−Q i ,j
+1,+1,−1 − Q i ,j

−1,−1,−1 − Q i ,j
−1,+1,+1 − Q i ,j

+1,−1,+1

∣∣∣ ,
then there exists a counterexample where we cannot correctly detect the
structure of the interaction graph by finding the maximum spanning tree
of G ′.

The theorem for the uniform cases cannot be extended into the generic
non-uniform cases.
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Simulation Experiments

1000 logistic regression models

15 features, 5 individual effects, 10 pairwise interactions

400, 800, 1200, 1600, 2000 samples

Detection of the interaction graphs
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Results of Simulation Experiments - Part 1

Detection correctness by our algorithm using different parameter ranges
[−µ,−λ] ∪ [λ, µ].
Shuguang (Robert) Cui (UCDavis) Learning over Limited Data Samples September 23, 2016 53 / 62



Results of Simulation Experiments - Part 2

Comparison of detection correctness among mRMR forwarding selection
[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and our algorithm.
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Results of Simulation Experiments - Part 3

Comparison of prediction correctness among mRMR forwarding selection
[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and L1-penalized logistic regression [Park &
Hastie (2007)], and our algorithm.
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Results of Simulation Experiments - Part 4

Comparison of false positive rates for detection between L1-penalized
logistic regression [Park & Hastie (2007)] and our Algorithm.
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Conclusion

Logistic regression models:

Pr{Y = +1|X1,X2, . . . ,Xd} = σ
( ∑

1≤i≤d
βiXi +

∑
1≤i<j≤d

βi ,jXiXj

)
Pr{Y = −1|X1,X2, . . . ,Xd} = 1− Pr{Y = +1|X1,X2, . . . ,Xd}

Interaction graph G = (V ,E ):

(vi , vj) ∈ E ⇐⇒ βi ,j 6= 0.

Pairwise interaction measure: influence

Detection of the interaction graph:
I Construct a weighted graph.
I Find its maximum spanning tree.
I Pick the edges with large weights.

Extended to the models with both individual effects and pairwise
interactions.
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Thank you!
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