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Outline 

• Introduction to III-nitride materials 

• Characteristics and advantages of nonpolar/semipolar III-nitrides 

• Semipolar (202 1 ) and nonpolar (101 0) InGaN/GaN LEDs 

• Nonpolar/semipolar LEDs based on bottom-up selective-area epitaxy 

• Polarization-pinned nonpolar vertical-cavity surface-emitting lasers 

• Summary 

D. Feezell 
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Introduction to III-Nitrides 

D. Feezell 
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III-Nitride Materials 

• Direct band gaps ranging from 0.7 eV (InN) to 3.4 eV (GaN) to 6.0 eV (AlN) 

• Enable high-performance UV, violet, blue, and green emitters 

• Robust against high dislocation densities (108 cm-2), thermally stable, radiation tolerant 

• In general, alloys not lattice matched to GaN 

D. Feezell 

• Solid-state lighting 

• Visible and UV lasers 

• Power electronics 

• Multijunction solar cells 

• Radiation hard devices 
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• Two interlaced hexagonal close 

packed (HCP) lattices 

• Horizontal planes of Ga atoms and 

N atoms 

• Each unit cell contains 2 Ga atoms 

and 2 N atoms 

• Bonding in GaN is 60% covalent 

with 40% ionic character 

GaN Crystal Structure (Wurtzite) 

D. Feezell 
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Select GaN Crystal Planes 

D. Feezell 
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Polarization in III-Nitrides 

• Piezoelectric polarization (PPZ) – due to 
strain (e.g. – InGaN/GaN or AlGaN/GaN) 

• Spontaneous polarization (PSP) – present in 
unstrained lattices and is due to charge 
asymmetry  

• PPE becomes larger for higher indium 
contents (i.e. – green and yellow emitters) 

 

Polarizations induce large internal electric fields (~MV/cm) which distort the band diagrams 

We can use nonpolar and semipolar orientations to eliminate the effects of polarization 

D. Feezell 
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Characteristics and Advantages of 
Nonpolar/Semipolar III-Nitrides 

D. Feezell 
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Energy Band Diagrams for SQW Blue LEDs 

𝐒𝐞𝐦𝐢𝐩𝐨𝐥𝐚𝐫 (𝟐𝟎𝟐 𝟏) 

𝐒𝐞𝐦𝐢𝐩𝐨𝐥𝐚𝐫 (𝟐𝟎𝟐 𝟏 ) 

𝐏𝐨𝐥𝐚𝐫 (𝟎𝟎𝟎𝟏) 

𝐍𝐨𝐧𝐩𝐨𝐥𝐚𝐫 (𝟏𝟎𝟏 𝟎) 
D. Feezell, J. Disp. Technol. 9, 190-198 (2013) 

D. Feezell 
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Wavefunction Overlaps for SQW Blue LEDs 

3 nm In0.23Ga0.77N SQW LEDs (  450 nm) 
 

simulated using SiLENSe 

Wavefunction overlap is strongly affected by direction and 
magnitude of internal electric fields 

D. Feezell 

D. Feezell, J. Disp. Technol. 9, 190-198 (2013) 
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m-plane: 

• High output power for 
QW widths up to 20 nm 

• Pmax for QW widths of 
8-12 nm 

 

Violet LEDs:  6x MQW QW-width series 

Novel Device Designs 

c-plane: 

• QWs  3 nm thick 

• Polarization-related fields 

• Decline in output power 
for thick QWs 

 

K. C. Kim et al., Appl. Phys. Lett. 91, 181120 (2007).  

Reduction of internal electric fields enables novel devices designs 

D. Feezell 
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Polarized Emission 

Band structures after Scheibenzuber, Phys. Rev. B 80, 115320 (2009). 
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 𝒀′ → 𝑬 ⊥ 𝒄 

 

  𝑿′ → 𝑬 ∥ 𝒄 

 

 𝑯𝑯 ,  𝑳𝑯 =  𝑿 ± 𝒊𝒀  
→ 𝒖𝒏𝒑𝒐𝒍𝒂𝒓𝒊𝒛𝒆𝒅 𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏 

H. Tsujimura et al., Jpn. J. Appl. Phys. 42, L1010 (2007).  

Nonpolar VCSELs are polarization pinned with E  c 

D. Feezell 
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• QCSE reduced 

• Optical matrix elements increased 

• Emission anisotropic 

• Optical gain increased 

• Hole effective mass reduced 

• Transparency carrier density reduced 

• Growth and design flexibility improved 

Summary of Benefits for Nonpolar/Semipolar 

D. Feezell 

D. Feezell and S. Nakamura, “Nonpolar and Semipolar Group III-Nitride Lasers,” in Semiconductor Lasers:  Fundamentals 
and Applications, Edited by A. Baranov and E Tournie, Woodhead Publishing, ISBN13: 9780857091215 (2013). 
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Semipolar 202 1  and Nonpolar 
101 0  InGaN/GaN LEDs 

D. Feezell 
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Applications for III-Nitride LEDs 

Solid-state lighting 

Backlighting 

Architectural  lighting Automotive lighting 

Horticulture Street lighting 

D. Feezell 
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White LEDs vs. Conventional Lighting 

• Available  >130 lm/W phosphor-converted commercial LED products 

• Emerging >200 lm/W LED prototypes  

• ~250 lm/W possible for phosphor converted LEDs 
M. Krames, CLEO (2009) 

Nichia (small chip) 

249 lm/W 

Nichia (power chip) 

183 lm/W 

D. Feezell 

Cree 

276 lm/W 
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Issues Plaguing GaN-Based LEDs 

Green Gap Efficiency Droop 

• Auger recombination 

• Carrier leakage 

 

• Polarization-related electric fields 

• Strain 

• Threading dislocations 

• Indium inhomogeneity 

D. Feezell 
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Semipolar (202 1 ) is a promising new orientation: 

• Low polarization-related electric fields 

• Fields in same direction as c-plane, ¼ the magnitude 

• Large wavefunction overlap for LED current 
densities 

• Very small blue shift 

• Very narrow FWHM  

• Highly polarized emission 

• High indium uptake for high growth temperature 

Semipolar 202 1  Light-Emitting Diodes 

D. Feezell 
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Growth on Free-Standing GaN Substrates 

• Mitsubishi Chemical Corporation 

• Dislocation density < 5x106 cm-2 

• MOCVD growth conditions are similar 
to those for c-plane on sapphire 

Nonpolar/semipolar GaN substrates cut from  
HVPE-grown c-plane GaN boules 

MQW  LED 

K. Fujito et al., MRS Bulletin 34 313 (2009) 

D. Feezell 
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*TEM image courtesy of Feng Wu 

Higher growth temperature results in high-quality InGaN active regions 

High Quality Blue InGaN (202 1 ) QWs  

D. Feezell 

C. Pan et al., Appl. Phys. Express  5 062103 (2012) 
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Transparent  
Package 

LED Structure and Process 

• Top-emitting ITO-based chip 

• 0.1 mm2 active area 

• Patterned backside roughening 

• ZnO-based transparent LED package 

Y. Zhao et. al., Appl. Phys. Express 3 10210 (2010) 
C. Pan et. al., Jpn. J. Appl. Phys. 49 080210 (2010) 

ZnO Stand 

ITO-based p-contact 
 

202 1  GaN 

n-GaN 

n-InGaN/GaN SL 

InGaN/GaN QWs 

AlGaN EBL 

p-GaN 

ITO 
Ti/Au 

Ti/Au 

Ti/Al/Ni/Au 

Simulated Light Extraction 
Efficiency ~75% 

D. Feezell 
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Blue (202 1 ) LEDs:  EQE vs. Current Density  

• 0.1 mm2 active area 

• Thick (12 nm) SQW 
active region 

• ITO-based chip 

𝐷𝑟𝑜𝑜𝑝 % =
(𝐸𝑄𝐸𝑃𝑒𝑎𝑘−𝐸𝑄𝐸) 

𝐸𝑄𝐸𝑃𝑒𝑎𝑘
 

35 (A/cm2) 100 (A/cm2) 200 (A/cm2) 300 (A/cm2) 400 (A/cm2) 

EQE (%) 52.4 50.1 45.3 43.0 41.2 

Droop (%) 0.7 5.1 14.1 18.4 21.9 

C. Pan et al., Appl. Phys. Express 5 062103 (2012) 

D. Feezell 
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Blue (202 1 ) LEDs:  LOP vs. Current Density  

• 0.1 mm2 active area 

• Thick (12 nm) SQW 
active region 

• >450 mW peak 
output power 

• ~5 chips needed for 
60 W incandescent 
replacement 

35 (A/cm2) 100 (A/cm2) 200 (A/cm2) 300 (A/cm2) 400 (A/cm2) 

LOP (mW) 51.2 140.0 253.4 360.9 460.3 

D. Feezell 

C. Pan et al., Appl. Phys. Express 5 062103 (2012) 
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• Studied IQE and carrier lifetimes in three 202 1  structures 

• 12 nm total active region thickness (1x12 nm, 2x6 nm, 3x4 nm) 

• 450 nm peak wavelength 

Blue (202 1 ) LEDs:  IQE and Carrier Lifetimes 

Epitaxial Structures 

Wafer 
1 QW 2 QW 3 QW 

141127EL 141127FL 141127DL 

p/p++ GaN 110 nm (Mg = 2e19 cm-3/1.6e20 cm-3) 

AlGaN EBL 10 nm (Mg = 1e19 cm-3) 

GaN Barrier 12 nm (uid) 

Active region 12 nm InGaN QW 

6 nm InGaN QW 4 nm InGaN QW 

4 nm GaN barrier 

4 nm GaN barrier 

4 nm InGaN QW 

4 nm GaN barrier 

6 nm InGaN QW 4 nm InGaN QW 

GaN Barrier 12 nm (uid) 

n GaN 2 μm (Si = 3e18 cm-3) 

D. Feezell 

S. Okur, et al., submitted to Optics Express  
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Temperature-dependent and time-resolved photoluminescence 

Micro-Photoluminescence (µ-PL) System 

D. Feezell 

~50 µm spot diameter 

Collaboration with 
Center for Integrated 

Nanotechnologies 
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• Non-radiative lifetime assumed to be infinite at 10 K 

• IQE maximum in the 1 x 12 nm structure 

• Excitation power level accesses SRH and radiative regimes 

Internal Quantum Efficiency (IQE) 

D. Feezell 
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S. Okur, et al., submitted to Optics Express  
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• TRPL decay fit with bi-exponential function (𝐴1𝑒−𝑡 𝜏1 + 𝐴2𝑒−𝑡 𝜏2 ) to extract 
PL lifetime 

• Slower decay associated with carrier lifetime 

• PL lifetime longest for 1 x 12 nm structure 

 

Time-Resolved Photoluminescence 

D. Feezell 
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S. Okur, et al., submitted to Optics Express  
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• Similar radiative lifetime 
for all structures 

• Longer non-radiative 
lifetime for thicker QWs 

• Correlated with higher IQE 
for thicker QWs 

• Related to influence of 
QW interface defects 

 

 

Radiative and Non-Radiative Carrier Lifetimes 

.  

D. Feezell 
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S. Okur, et al., submitted to Optics Express  
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The Second Wave:  Smart Lighting 

Translational Research 
Testbeds 

Goal: Plenoptic light field sensing  
• Color quality 
• Intensity 
• Direction (Light Flow) 
• Data 

 

Goal: Maximize light quality  
and minimize energy use 

 
        

Goal: Communications with 
Illumination (Dual Use) 

Goal: Luminaires with dynamic 
• Brightness control 
• Spectral control 
• Beam shaping capability 
• Integrated data communications 

 

 
 

Slide courtesy of  Prof. R. Karlicek, RPI 
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• Short carrier lifetime on nonpolar 

• Micro-LEDs for large RC bandwidth 

• 3 x 6 nm QWs, 15 nm barriers 

• RF bandwidth characterized 

High-Speed Nonpolar 101 0  LEDs 
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D. Feezell 

A. Rashidi, et al., submitted to Photon. Technol. Lett. 
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• Maximum 3 dB bandwidth is 524 MHz at 10 kA/cm2 

• Bandwidth increases with current density but saturates due to heating and 
carrier escape 

• Among the highest bandwidths reported for GaN-based LEDs 

RF Bandwidth Characterization 
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60 µm diameter  

A. Rashidi, et al., submitted to Photon. Technol. Lett. 
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Equivalent Circuit Model 
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D. Feezell 

Fitting real and imaginary parts of the transfer function yields R and C 

A. Rashidi, et al., submitted to Photon. Technol. Lett. 
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• LEDs are currently carrier lifetime limited since 𝑓𝑅𝐶 > 𝑓3𝑑𝐵  

• Reduce active region volume to increase carrier density (𝑅𝑠𝑝 ∝ 𝑁2) 

• Reduce barrier widths to increase tunneling 

RC Bandwidth 
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𝑓𝑅𝐶 = 
1

2𝜋

1

𝜏𝑅𝐶
 

Frequency response of equivalent 
circuit plotted and RC limited 3 dB 
bandwidth determined 

A. Rashidi, et al., submitted to Photon. Technol. Lett. 
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Bottom-Up Selective-Area Growth 

D. Feezell 
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Core-Shell Nanostructure LEDs 

Potential Advantages of Nanowall LEDs: 

• Polarization-free, nonpolar (m-plane) active regions will help reduce droop 

• Large effective active region area will reduce carrier density for a given current density and 

mitigate droop 

• Elimination of threading dislocations (TDs) will reduce non-radiative recombination and improve 

lifetime 

• Strain relaxed structures may allow for higher indium contents without defect generation 

(potential green gap solution) 

• Cost effective nonpolar/semipolar structures in patterned dielectric apertures on sapphire or 

silicon 

nonpolar 

InGaN active 

region 

SiNx 

Al2O3 or Si substrate 

buffer/template 

n-GaN p
-G

a
N

 

ITO 

transparent 

electrode 

D. Feezell 
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• Threading dislocations bend 90°near 
free surface  

 Large areas of defect-
free nanostructures 

Dislocation free regions 

Threading dislocations 

A. Rishinaramangalam et al., EMC (2010) 

Core-Shell Advantages 

• Larger effective active region area for 
the same planar footprint  Lower 
carrier density for a given current 
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Nanostructure Template Processing 

Sapphire 

n-GaN 

SiNx 

Sapphire 

n-GaN 

SiNx 
PR 

Sapphire 

n-GaN 

SiNx 
PR 

Sapphire 

n-GaN 

SiNx 
Ni 

Sapphire 

n-GaN 

SiNx 
Ni 

Sapphire 

n-GaN 

SiNx 

1) Starting wafer 2) Spin ARC and PR 3) Interferometric lithography 

4) Ni deposition and lift-off 5) Secondary photolithography 

and RIE of SiNx 

6) Liftoff and piranha clean 

PR 

D. Feezell 
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• Nanoscale light-emitting 
diodes 

• Nanoscale lasers 

• Nanoscale transistors 

• Solar cells 

• Intersubband detectors 

• Hydrogen generation 

 

Core-Shell Nanostructures - Applications 

3 µm 

3 µm 3 µm 

3 µm 

D. Feezell 
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Pulsed Mode MOCVD Technique 

• Pulsed mode technique → locally 

low V/III ratio  

• Temperature from 900oC to 950oC 

• Pressure 100 Torr 

• TMGa flow  26.7 µmol/min 

• V/III ratio of 100 

• H2 flow of 3000 sccm 

• N2 flow of 1000 sccm 

Y. T. Lin et.al. Nanotechnology. 23 (46) (2012) 

D. Feezell 

A. Rishinaramangalam et al., J. Electron. Mat. 44, 1255 (2015) 
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GaN Cores with 3X InGaN Quantum Wells 

InGaN quantum wells on nanowires, nanowalls, and triangular stripes 

D. Feezell 

A. Rishinaramangalam et al., J. Electron. Mat. 44, 1255 (2015) 
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Triangular Nanostripes 

• Higher indium uptake on {101 1} family of planes 

• Low polarization-related electric fields compared to 
c-plane 

• High light extraction efficiency 

• Continuous flow MOCVD 

• Key challenge is current leakage in the diode 

5 µm 

10 µm 

0.5 µm 

n GaN 

InGaN/GaN 

QWs 

D. Feezell 
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• Addition of n-AlGaN underlayer significantly reduces leakage current 

• Addition of p-AlGaN electron blocking layer (EBL) has smaller effect 

• Poly-AlGaN grows on dielectric mask, covering the mask and filling voids 

• Effect on impurity concentration shown with SIMS 

 

Leakage Current Reduction with AlGaN 

D. Feezell 

A. Rishinaramangalam, et al., submitted to Appl. Phys. Mat. 
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• Silicon and oxygen impurities significantly reduced in sample with 
AlGaN underlayer 

• Mg incorporation increased in sample with AlGaN underlayer 

• Leakage current eliminated by addition of AlGaN underlayer 

SIMS Profiles Without and With Underlayer 

D. Feezell 

Without underlayer With underlayer 

A. Rishinaramangalam, et al., submitted to Appl. Phys. Mat. 
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Electrically Injected Triangular Nanostripe LEDs 

D. Feezell 

A. Rishinaramangalam, et al., Appl. Phys. Express 9, 032101 (2016) 

• Spectra exhibit multiple evolving peaks 

• Initial blue shift evolves to stable wavelength at higher current 

• Broad spectrum related to QW non-uniformities and poor current spreading 

*Unpackaged, on-wafer measurement 
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• Single growth of arrays with 
different pitches 

• Red shift as pitch increases  

• Potential for monolithic multi-
color LEDs 

Electrically Injected Nanowire LEDs 
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M. Nami, et al., submitted to Nanotechnology (2016) 
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• EL spectra show broad emission and evolving dominant wavelength 

• PL spectra show broad emission but no change in shape 

Room-Temperature PL and EL 

PL:  405 nm excitation  EL  

D. Feezell 
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S. Okur et al., submitted to  Appl. Phys. Letters  
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• Indium composition higher near the apex 

• QWs thicker near the apex 

• Poor current spreading leads to non-
uniform injection, causing change in 
wavelength with current 

• Longer wavelengths from the apex, 
shorter wavelengths from the sidewalls 

TEM and EDS Show QW Non-Uniformities 

D. Feezell 

A. Rishinaramangalam, et al., Appl. Phys. Express 9, 032101 (2016) 

3.3 V 6.5 V 

S. Okur et al., submitted to  Appl. Phys. Letters  
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• TEM, EDS, and current spreading simulations indicate longer wavelength 
emission from the apex and shorter wavelength emission from the sidewalls 

• Spectrally resolved integrated PL gives an indication of the IQE in different 
regions of the stripe (e.g., apex vs. sidewalls) 

• IQE is higher in the longer wavelength portion of the spectrum! 

Spectrally Resolved Internal Quantum Efficiency 

S. Okur et al., submitted to  Appl. Phys. Letters  

D. Feezell 

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 Below 450 nm

 Above 450 nm

IQ
E

Energy Density (J/cm
2
)

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

IQE = 100% line

 

 

 Below 450 nm RT

 Above 450 nm RT

 Below 450 nm LT

 Above 450 nm LT

In
te

g
ra

te
d

 P
L

 I
n

te
n

s
it
y
 (

a
rb

. 
u

n
it
s
)

Energy Density (J/cm
2
)

IQE 100% line

𝐼𝑄𝐸 = 𝜂 ∗
𝐼𝑃𝐿 (𝑅𝑇)

𝐼𝑃𝐿 (𝐿𝑇)
 

Y. Iwata et. al, J. Appl. Phys. 117, 075701 (2015). 
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S. Okur et al., submitted to  Appl. Phys. Letters  
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• PL transients measured within a 5 nm linewidth around central wavelengths of 420, 440, 
460, 480 nm at different excitation levels 

• PL lifetime (𝜏) generally increases as wavelength increases and as injection level increases 

35 μJ/cm2  

𝐴𝑒−𝑡 𝜏  
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S. Okur et al., submitted to  Appl. Phys. Letters  
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Radiative and Non-Radiative Carrier Lifetimes 

• Radiative recombination lifetimes for the two central wavelengths are very 
similar in magnitude 

• Non-radiative recombination lifetimes around 480 nm are at least two times 
larger than those around 420 nm  lower density of defects near the apex, 
reduced strain near the apex, inhomogeneous indium composition near the apex 

I. Tischer et. al, J. Mater. Res. 2, 7 (2015). 

Weng et al., Nanoscale Research Letters (2015) 
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Nonpolar 101 0  GaN-Based VCSELs 

D. Feezell 
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VCSEL Geometry and Characteristics 

Invented by Kenichi Iga at the Tokyo 
Institute of Technology (1977) 

S.O. Kasap, Optoelectronics and Photonics (2013) 

D. Feezell 

• Low power consumption 

• Small device footprint 

• Circular output beam 

• Single-longitudinal-mode operation 

• Densely-packed, two-dimensional arrays 

• Wafer-level characterization 

One challenge is achieving stable and predictable polarization of the output 
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Applications for GaN-Based VCSELs 

Optical data storage 

Head-up displays 

High-resolution printing Projectors 

Bio-sensing 

D. Feezell 

Chip-scale atomic clocks 
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Nonpolar GaN-Based VCSELs 

Nonpolar GaN Flip-Chip Process 

III-Nitrides VCSELs 

Small footprint, low power consumption, 

single-mode operation 

Large optical gain and emission with polarization stability Overcomes key materials challenges 

Nonpolar GaN enables polarization-pinned VCSELs 

Access to UV wavelengths 

D. Feezell 



56 

Polarization-Pinned Emission 

Angle-resolved emission  
intensity nonpolar VCSEL 

• Polarization of the light output pinned 
with E  c 

• Confirmed on multiple devices and 
multiple wavelengths under a range of 
injection levels 

• Polarization ratio of ~100% measured 

• Advantageous for polarization-sensitive 
optical systems: spectroscopy, atomic 
clocks, data storage, backlighting 
 

C. Holder, et al., Appl. Phys. Lett. 105, 031111 (2014) 

D. Feezell 
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• Nonpolar/semipolar III-nitrides eliminate effects from polarization-related electric 
fields 

– High optical efficiency and gain 

– Fast carrier lifetime 

– Polarized emission 

– Lower QCSE - design flexibility  

• Demonstrated high-efficiency LEDs with low droop, high IQE, and large modulation 
bandwidth on free-standing GaN substrates 

• Nanostructures exhibit unique properties that may be beneficial for solving some 
long-standing III-nitride materials issues 

• Demonstrated electrically injected nanostructure LEDs and analyzed the QW 
properties in core-shell structures 

• Higher efficiency green emitters may be enabled by growth on strain-relaxed 3D 
structures 

• Nonpolar GaN enables polarization pinned UV and visible VCSELs 
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Funding Sources 
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Thank You! 
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