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We show how preferential attachment can emerge in an optimi-
zation framework, resolving a long-standing theoretical contro-
versy. We also show that the preferential attachment model so
obtained has two novel features, saturation and viability, which
have natural interpretations in the underlying network and lead to
a power-law degree distribution with exponential cutoff. More-
over, we consider a generalized version of this preferential attach-
ment model with independent saturation and viability, leading to
a broader class of power laws again with exponential cutoff. We
present a collection of empirical observations from social, biolog-
ical, physical, and technological networks, for which such degree
distributions give excellent fits. We suggest that, in general,
optimization models that give rise to preferential attachment with
saturation and viability effects form a good starting point for the
analysis of many networks.

Preferential attachment (PA) has a long tradition as a model
to describe social, biological, and technological networks. It

is often assumed to be the underlying mechanism at work when
power law distributions are observed in data sets. Although the
basic PA model and simple variants have had remarkable success
in describing various networks, some authors have suggested that
these models are not fundamental (1–3), and/or that they do not
have the subtle properties necessary to describe empirical ob-
servations in real networks (4–6), and often suggest optimization
as an alternate mechanism which gives rise to power laws. In a
recent technical work, we introduced a mathematical model
which implicitly addresses some of these concerns (7, 8).

The purpose of this manuscript is threefold. First, we show
how a form of PA can emerge as a consequence of a natural
competition model of networks, to a large extent resolving a
long-standing controversy between those who view PA as an
axiom and those who argue that power laws should arise from a
fundamental optimization framework.

Second, we show that the PA model so obtained has two novel
features, which we call saturation and viability. The saturation
leads to an eventual exponential cutoff of the PA power-law
degree distribution. Therefore, we call our model tempered PA
(TPA). Previously, saturation was put directly into the PA model
(9) and later, into more general network models (10), to explain
a broad range of empirical data that exhibit power-laws with
exponential cutoffs. Here, we show that saturation and the
corresponding cutoffs can arise naturally from an underlying
optimization model. Our model exhibits another property, via-
bility, which reflects the fact that not all attempts to create new
nodes are successful. The saturation and the viability together
determine the value of the power law. Despite the fact that we
have not seen viability discussed in previous works, we believe it
to be as fundamental a property of network growth as saturation.

The third purpose of this work is to fit empirical observations
from a variety of networks. The simple competition model we
propose has only a single parameter, and thus both the saturation
and viability are functions of this one parameter. However,
because these are, in general, two independent effects, it is
natural to assume that saturation and viability would be char-

acterized by two independent parameters. Thus we consider the
simplest two-parameter TPA model. We show that this model
gives very good fits for a variety of social, biological, and
technological networks. In particular, the two-parameter TPA
model gives an excellent fit to previously unexplained high-
quality data of Internet structure compiled by the Cooperative
Association for Internet Data Analysis (CAIDA, www.caida.org).

Interestingly, for almost all data sets analyzed, the fits ob-
tained result in the power law portion of the degree distribution
having exponent between 1 and 2 (see Table 1). However, the
power law in the basic preferential attachment model (11, 12) is
3, and power laws in more general models including mixtures of
preferential and uniform attachment achieve exponents greater
than 2 (13–17). Our two-parameter TPA model with saturation
and viability gives power laws between 1 and 3, and thus provides
a much better fit to a large body of empirical observations.

It is not the intent of this work to propose that this simple
two-parameter TPA model describes a significant fraction of all
networks. Instead, we are merely using this model as a prototype
of a class of models based on optimization that exhibit saturation
and viability effects in addition to preferential attachment. We
suggest that the full class of such models provides a good starting
point for the analysis of many networks. This class of models may
also provide a good starting point for the numerical simulation
of network topologies. TPA, like the standard PA processes,
requires only minimal computational resources: to simulate a
system of size N nodes requires computational time linear in N.

PA vs. Optimization
PA, also called proportional attachment or cumulative advan-
tage, has a long and illustrious history. It is often assumed to be
the underlying mechanism at work when power law distributions
are observed in data sets. Although introduced by the mathe-
matician Polya in 1923 (18), the concept of PA was popularized
by Zipf and Simon in the 1940s and 1950s, respectively, as an
explanation for the power law distribution observed empirically
in the population sizes of cities (19), and the distribution of
wealth amongst members of a society (20). Also in the 1950s,
Mandelbrot proposed an alternate view, that power law distri-
butions could arise as solutions to underlying optimization
problems. Mandelbrot’s focus was on statistical properties of
written language, and on optimizing the amount of information
transmitted per symbol (1). A series of exchanges between
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Mandelbrot and Simon soon ensued, published in the journal
Information and Control, and launched a still-unresolved public
controversy about whether PA or optimization is the more
appropriate explanation for emergence of power laws. In recent
years, we have seen a flurry of activity on PA, especially in the
context of networks, sparked by the model of network growth via
PA introduced by Barabási and Albert in 1999 (11). In their
model, nodes arrive sequentially and attach to existing nodes
with probability proportional to the existing node’s current
degree. The Barabási–Albert model has been used extensively to
describe growth of many classes of networks from social to
technological ones. The complementary approach of studying
the optimization origins of power laws although dormant for
many years, has also recently gained renewed interest (2, 3). For
a review of the historical debate, see ref. 21 and references
therein; for PA, see ref. 22 and references therein.

Our model resolves the long-standing controversy, unifying
both philosophical camps, showing that PA and optimization can
be intimately related. Furthermore, it elucidates the potential
origins of PA. It is surprising that, until now, despite the decades
of study of PA and its widespread uses, no one has investigated
or introduced an underlying optimization mechanism that gives
rise to it.

Emergence of Preferential Attachment
General Framework. Rather than assuming the PA premise that
the ‘‘rich get richer,’’ we start by considering underlying tradeoffs
between constrained resources, as in ref. 3. We first consider the
framework at a high-level, illustrating its applicability with a
specific idealized example, in rough analogy with growth of the
Internet. We later introduce the precise model analyzed math-
ematically. Consider the Internet at the autonomous systems
(AS) level, represented as a collection of nodes {j} linked to one
another (the link structure is not important for now), further
consider its growth via introduction of new ASes (i.e., new
service providers). Each newly arriving entity, labeled t, has to
connect to the existing physical network and also establish
peering relationships with other existing nodes to route and
transmit data packets. Node t will want to make connections that
minimize the monetary startup costs required, while still guar-
anteeing good network performance for its users (this is the
tradeoff). Monetary startup costs are not from laying fiber-optic
cable to make the physical connection. There are currently
thousands of miles of available cable that have already been laid,
but are not yet in use (23) (i.e., ‘‘dark fiber’’), and the Internet
backbone currently contains a large amount of excess capacity
(24). Startup costs are instead associated with renting ‘‘lit’’ fiber
from existing carriers and negotiating peering agreements. We
make a simplified model based on these heuristics: node t
chooses to fully peer with one other node j, but to reach j it must
make agreements to rent lit fiber from ntj carriers (i.e., ntj transit

intervals). Formally, we can say that the new entity t wants to
minimize the cost function

ct ! min
j

!"ntj # hj" . [1]

Here, ntj reflects how many fiber transit intervals a data packet
sent from t to j has to traverse. hj is a measure of network distance
from node j to the core of the network, hence reflects the
network delay experienced by node j. Also, " is a dimensionless
constant which determines the relative weighting between the
two metrics, with "#0. Node t wants to connect to j that has the
best network performance, relative to the number of transit
intervals traversed. Note that we can consider the general form
of Eq. 1,

ct ! min
j

!"$ tj # hj" , [2]

where $tj and hj are two distinct metrics in competition, and
extend the framework to different contexts. For instance, in a
systems biology setting, the tradeoff might involve the ability to
evolve quickly versus specialization/efficiency. The protein-
interaction network of the system could be used as a basis for
both metrics. For instance, ease of evolution could be measured
by quantifying the extent of modularity of this network. Effi-
ciency could be measured by quantifying the number of distinct
modules involved in crucial control pathways.

Formal Model Specification. A precise mathematical model for Eq.
1 is constructed by considering a one-dimensional line, as shown
in Fig. 1. We begin at time 0 with a single root node, labeled 0.
New nodes arrive one at a time, at random positions along the
unit line. Each arriving node t chooses to connect to the existing
node j, which minimizes Eq. 1. Here, ntj is the number of nodes
already present in the interval between t and j (which can be
interpreted as the number of transit intervals required to reach
j), and hj (the network performance degradation experienced by
j) is measured by the hop-count of node j to the root node. To
simplify our analysis, we add the constraint that xj % xt, where xj
is the physical distance of node j to the root (i.e., we require that
nodes only connect to nodes that are closer to the root). Finally,
ties are broken by connecting to the node with the shortest distance
between xj and xt.

It is not hard to show that, given the cost function Eq. 1 and
definitions above, node t will connect either to the node i directly
to its left (which has cost ci & hi because nti & 0), or to the parent
of i, denoted p (which has cost cp & "ntp ' hi ( 1, because hp &
hi ( 1). Thus, unlike other optimization models (3), ours requires
only local information. Comparing ci and cp, if ntp % 1/", node t
attaches to p; otherwise, it attaches to i. Denoting the degree of a
node p as dp, we see that when dp % 1/", any new arrival that lands
adjacent to p, or to one of its children, connects to p (node p’s
attractiveness is proportional to its degree, and its children are

Table 1. Empirical observations of power-law with exponential decay distributions, p(x) ) x!B

exp(!x"C)

System with p(x) ) x(B exp((x"C) Exponent, B Cutoff, C

Full protein-interaction map of Drosophila (26) 1.20 * 0.08 27 * 4
High-confidence protein-interaction map of Drosophila (26) 1.26 * 0.25 3.9 * 0.8
Gene-flow"hybridization network of plants as function

of spatial distance (27)
0.75 105 m

Earthquake magnitude (28, 29) 1.35–1.7 +1021 Nm
Avalanche size of ferromagnetic materials (30) 1.2–1.4 L1.4 (L is sample size)
ArXiv coauthor network (25) 1.3 * 0.1 53 * 5
MEDLINE coauthor network (25) 2.1 * 0.5 +5,800
PNAS paper citation network (10) 0.49 4.21
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‘‘infertile’’). If dp $ 1/", any new arrival that lands adjacent to p, or
to one of its closest 1/" children, connects to p. However, if it lands
to the right of a farther away child of p, that child acquires the
attachment (node p’s attractiveness has saturated at 1/", and all but
the closest 1/" children have become ‘‘fertile’’). Introducing the
notation A & !1/"" (i.e., the smallest integer greater than or equal
to 1/"), we can summarize the probability of a fertile node p
acquiring the next attachment as

Pt3p,t- ! min,dp,A- /N, t- , [3]

where N(t) is the total number of nodes present at the arrival of
node t. Infertile children do not acquire attachments. A node
may be initially infertile, but once enough attachments occur that
there are at least (A ( 1) children between the node and its
parent p, that node becomes fertile.

The TPA process thus defined differs from the original PA
model in two respects: (i) Each node produces A ( 1 infertile
children before producing fertile ones. (ii) The preferential
attachment of each fertile node saturates at degree A, beyond
which the node does not become any more attractive. We call the
second effect ‘‘saturation,’’ indicating that fertile nodes become
more attractive only up to a certain threshold. Saturation effects
clearly occur in real systems with resource constraints. We call
the first effect “viability”: each node is either viable or not viable.
In general, one expects a distribution of viability: not all children
have an equal ability to procreate, not all social contacts have the
same networking capabilities, not all businesses have the same
abilities to successfully spinoff subsidiary companies, and not all
ASes have the same attractiveness to their peers.

As one might expect, TPA leads to a different degree distri-
bution from the standard PA model. Whereas the Barabási–
Albert model produces a degree distribution that is a power law
with exponent 3 on all scales, our one-parameter TPA model
leads to a power law with exponent 2 up to the threshold A, and
exponential decay for degrees above A. More explicitly, we find
that the probability of observing a node of degree d is p(d) . d(2

for d % A, and p(d) . exp((d&) for d # A, with & & log(1 ' 1/A)
(see refs. 7 and 8 for the derivation of this degree distribution).

Obviously, because our competition model contains only a
single parameter, both the viability and the saturation thresholds
of the corresponding preferential attachment model are func-

tions of this parameter. From the viewpoint of describing real
systems, there is no reason to expect the viability and saturation
to be determined by a common parameter, and thus it is natural
to consider a system with two independent parameters, a via-
bility threshold A1 and a saturation threshold A2. Indeed, al-
though it seems reasonable that saturation, which often reflects
global resource limitations, may sometimes be characterized by
a single cutoff, we believe that viability will have a distribution
of values reflecting this distribution of viabilities in the popula-
tion. Thus, in realistic models, we would expect nodes with a
distribution of viabilities and saturations, with each distribution
being described by one or more parameters. Nevertheless, for
simplicity, we next focus on the model with two independent
thresholds, A1 and A2, which we will call two-parameter TPA.

Certain limiting cases of the two-parameter TPA model are
worth noting. If A1 & 1 and A2 & /, it is the standard model of
PA. If A1 & 1 and A2 is finite, it is the standard model of PA with
a cutoff. On the other hand, if A1 & A2 & 1, it is a uniform
attachment model.

The mathematical analysis of the two-threshold model has
been undertaken in refs. 7 and 8, where we have shown that the
probability of observing a node of degree d is a power law up to
A2, p(d) . d(', with some exponent ' between 1 and 3, whose
exact value depends on both A1 and A2. More precisely, ' is
decreasing in A1 and increasing in A2, and is obtained as the
largest eigenvalue of an explicit finite-dimensional matrix as
given in refs. 7 and 8. For d # A2, the degree distribution decays
exponentially, p(d) . exp((d&), where & is a simple function of
' and A2.

Finally, if one relaxes the constraint of hard thresholds, i.e., if
one allows certain distributions of saturations and viabilities,
each again characterized by a single parameter, we would expect
that the resulting degree distribution is well approximated by a
somewhat smoothed version of that above, namely a power law
multiplying an exponential decay, henceforth denoted PLED.
Below, we show how such a distribution has been used to fit a
wide variety of network data. Then, we look specifically at
previously unexplained AS Internet data and show how it is fit
remarkably well by the (A1, A2) two-parameter TPA distribution,
and also by a simple PLED, again with two parameters.

From our perspective, the most interesting open theoretical
question is to produce a competition model which is provably
equivalent to preferential attachment with independently tun-
able saturation and viability.

Correspondence with Data
It has been found repeatedly that PLEDs may provide a much
better statistical fit to data than do pure power laws. For
instance, consider scientific collaboration and citation networks.
The in-degree distribution of the network of paper citations for
a 20'year collection of papers published in PNAS (10), and
likewise the connectivity distributions of coauthor networks
from astrophysics, condensed matter, high energy, and computer
science databases (25), all are substantially better fit by power-
laws with exponential tails than by pure power laws. There are
numerous other such examples from a range of fields, spanning
earth sciences, ecology, biology, and physics. For some examples
of systems where PLEDs are found to provide the best fit to
empirical data, see Table 1.

For power laws to continue indefinitely with no upper cutoff
or finite-size effects is physically unrealistic if resources are
constrained. To explain the exponential decay observed empir-
ically in a range of networks, saturation similar to that in Eq. 3
has been put in at the axiomatic level (9, 10). For instance, the
rate at which a paper gains citations, or the level of activity of an
individual scientist, is considered to eventually saturate.

In physical systems, the exponential decay of a power-law
often arises due to some finite-length scale in the problem, such

0 p i t

A

B

Fig. 1. The one-parameter TPA model. (A) An example of the growth process
on the line, with 1/" & 4. Node t arrives and wants to minimize the cost
function "ntj ' hj, where ntj is the number of existing nodes in the interval
between t and j, and hj is the hop-count of node j to the root. The minimization
can only be achieved by connecting to the adjacent node i (so that nti & 0), or
to the parent of i (which has hp & hi ( 1). If ntp $ 1/" (as is the case illustrated),
i gains the new attachment, otherwise p does. Thus as soon as there are 1/"
children of node p, node p’s attractiveness saturates. (B) The equivalent
network structure resulting from the growth process on the line.
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as the overall system size. PLEDs are a signature of Barkhausen
noise in ferromagnetic materials, describing both the distribution
of sizes and the duration of avalanches (30). Likewise, in
experiments on explosive fragmentation, the distribution of
fragment mass is shown to obey a PLED (31). Such a distribution
also provides the best fit to the data of the magnitude of
earthquakes spanning a #20-year period, as documented in the
Harvard Centroid–Moment Tensor Database (28, 29).

We are beginning to understand the complex networked
structure of biological systems. Several years ago, it was recog-
nized that protein interaction networks appear to have heavy-
tailed degree distributions (32). New technologies for gene-
sequencing now allow for more precise determination of this
distribution. For instance, consider the protein-interaction net-
work for Drosophila. Giot et al. (26) constructed the full,
genome-scale, protein interaction map (consisting of 20,439
unique interactions), as well as the high-confidence protein-
interaction map, which isolates only the biologically relevant
interactions (consisting of 4,780 unique interactions and 4,679
proteins) (26). The distribution of the number of interactions per
protein is analyzed for both the full and the high-confidence
map. The authors remark that ‘‘neither distribution may be
adequately fit by a single power-law. Both may be fit, however,
by . . . Prob(n) ) n("exp((n.’’ The values for the parameters
obtained by a fit to the data (with r2 # 0.98 in both cases) are
given in Table 1.

As seen in Table 1, the exponents ' for the power-law portion
tend to be between 1 and 2, although there are a few instances
of ' % 1. Recall that the original PA model has ' & 3 (11, 12).
A variety of modified versions of PA have been considered. A
combination of PA plus uniform attachment, yielding ' # 2 was
proposed by Dorogovtsev et al. (13) and rigorously analyzed in
refs. 15 and 16. A ‘‘copying model’’ of network growth was
proposed and rigorously shown to give ' # 2 (17). A similar
model, worth noting because it considers attachment either to a
random node or its parent, also achieves ' # 2 (33). Finally,
simulations and heuristic calculations suggest that a modified
copying model gives ' # 1 (34, 35). Our two-parameter TPA
model is the first to rigorously produce the regime 1 % ' % 3.

Furthermore, optimization is a valid scenario in both biological
and technological contexts.

Fitting the Internet AS-Level Data
We are interested in the topology of the Internet at the AS-level.
There are a number of sources of such data, obtained using
different methodologies, which reveal different features of the
topology (for instance, ‘‘tangential’’ versus ‘‘radial’’ links). In
particular, we concentrate on the topology view extracted from
the RIPE WHOIS database (maintained by network operators),
as compiled and characterized by CAIDA. See refs. 5 and 6 for
access to background and further information on the validity of
this data.

The WHOIS data does not fit the standard paradigm that the
AS-level topology follows a power law degree distribution. The
two standard views that do support the power law paradigm

TPA fit
Whois data

Fig. 2. CCDF of the ‘‘Whois’’ AS-level connectivity of the Internet. The circles
are data compiled by CAIDA from the RIPE WHOIS database (5, 6). The line is
the theoretical TPA CCDF with A1 & 187 and A2 & 90 (resulting in the power
law portion of the distribution having exponent ' & 1.83).

Fig. 3. Comparison of PA and TPA graphs. Both graphs are grown to n &
1,000 nodes. The oldest N/4 nodes are colored blue, the next quarter green,
then red, and finally orange. (A) PA graph. (B) TPA with A1 & 17, A2 & 10, thus
' & 1.83. Note the effects of aging in TPA; in contrast to PA, very few of the
newest nodes attach to the root. Also, due to the minimization of hop-count,
the diameter of the TPA graph is much smaller than that of the PA graph. By
varying the choice of parameters A1 and A2, it is possible to achieve graphs of
appearance intermediate between A and B, or even more extreme than B with
respect to the diameter and the number of new nodes attaching to the root.
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(built from direct traceroute sampling or extracted from BGP
tables) both rely on traceroute-like sampling (5). Traceroute
sampling has been shown to produce biases that can make an
underlying simple random graph appear to have a power law
degree distribution (36, 37). Though recent heuristic arguments
suggest that, despite these biases, it is possible to use traceroute-
like probes to distinguish heavy-tailed degree distributions from
an exponential distribution, it is not possible to determine the
precise form of the distribution (38). In refs. 5 and 6, the RIPE
WHOIS data are put forth as a valid view of the AS-level
Internet and the lack of agreement with the power-law paradigm
discussed at various points. We show that our TPA model with
A1 0 A2 provides a remarkable fit to this data. Furthermore, a
simple PLED provides a similar fit. For explicit details on the
fitting procedure see ref. 39 and supporting information (SI)
Appendix.

Fig. 2 is a plot of the AS-level connectivity of the Internet
constructed from the RIPE WHOIS data. The complementary
cumulative distribution function (CCDF), ccdf(x) & 1 (
1d&1

x(1p(d), is plotted, along with the CCDF of the best fit provided
by the TPA model, obtained for viability A1 & 187 and saturation
A2 & 90, corresponding to an exponent of ' & 1.83 for the power
law portion of the distribution. R2 & 0.97 for this fit. We do not
include vertices of degree one in Fig. 2. As noted in refs. 5 and
6, technically, nodes should be of degree at least two to qualify
for an AS number; therefore, the degree d & 1 data are
unreliable. See refs. 5 and 6 for further discussion. See ref. 40 for
a detailed discussion of the role of constraints and optimization
in the structure of the Internet backbone.

For illustrative purposes we generate an image of a corre-
sponding TPA graph. To render a small graph, we have scaled
A1 and A2 down, while maintaining the value of ' & 1.83 fixed.
Fig. 3 compares this resulting TPA graph with a PA graph of the
same number of nodes.

Discussion and Further Work
We show that an underlying optimization mechanism can give
rise to a form of preferential attachment (namely, the one-
parameter TPA model). In addition to elucidating underlying
causes of PA, the optimization also provides a mechanism for the
emergence of saturation, leading to more realistic distributions
of power laws with exponential tails. The most intriguing open
question is to construct a simple competition model that gives

rise to tempered preferential attachment with independent
saturation and viability. This more general two-parameter TPA
model (with viability and saturation) provides a paradigm for
achieving degree distributions with power law exponent 1 % ' %
3 and eventual exponential decay.

The competition framework is very general and we conjecture
that, in addition to the metrics defined in Eq. 1, there are several
other metrics which would give rise to a form of TPA in other
contexts, such as in a system’s biology setting or with regards to
the economics of trade relations. The metrics presented herein
were inspired by analogy with the AS level Internet.

From a practical viewpoint, the TPA model could be ex-
tremely useful due its potential widespread applicability, yet the
low overhead required for numerical simulation. As shown
above, the optimization model giving rise to the one-parameter
TPA model is purely local, unlike typical optimization models
(for instance, ref. 3) that require that all alternatives be evaluated
before the global optimal can be determined. Numerical simu-
lation of the one- or two-parameter TPA model is very similar
to simulation of the standard PA process. Both TPA and PA
require computational time linear in N to generate a network of
size N, but for TPA we must keep track of a small amount of
additional information (i.e., which vertices are fertile).

Here, our focus is on degree distributions. Although the
degree distribution is an important characteristic of a network,
the fine structure is equally important. We have yet to charac-
terize the fine structures resulting via TPA. Our basic model is
a tree, and thus has no clustering coefficient; this could be
addressed by the modification that each newly arriving node
makes m # 1 distinct links to existing nodes.

Finally, similar to PA and the model of ref. 3, our model is an
equilibrium one. The values of the controlling parameters (A1
and A2) are fixed initially and never change. We expect that to
make the model more realistic, these thresholds should change
as a function of time or with feedback. In addition, we are
interested in considering models where viability is described by
a distribution of values, rather than herein, where it is described
by a single threshold.

We thank Chen-Nee Chuah for her critical reading of our manuscript and
the anonymous referees for suggestions. This work benefited from
several of the authors attending the Mathematical Sciences Research
Institute ‘‘Probability, Algorithms and Statistical Physics’’ program and,
in particular, the ‘‘Models of Real-World Random Networks’’ workshop.
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