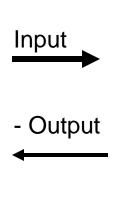
Engineering Fundamentals-Thermodynamics

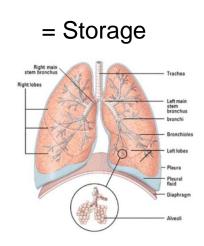
By Professor Paul A. Erickson

Basic Thermodynamics

- Conservation of Mass
- Conservation of Energy
- Principle of State and Phase
- Principle of Entropy
- Thermodynamic Cycles
 - Carnot
 - Rankine
 - Air Standard Cycles
 - Otto
 - Diesel
 - Brayton
 - Refrigeration Cycle (also Heat Pump)
- Air/Water Mixtures

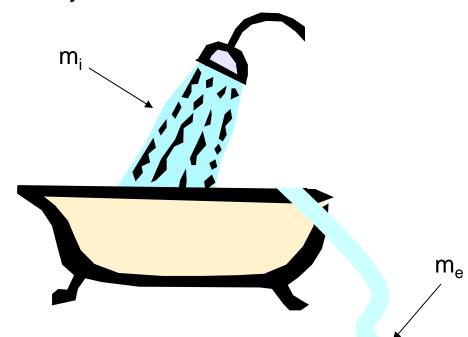

Basic Thermo Processes and Terms

- Adiabatic
- Isothermal
- Isobaric
- Isometric or Isochoric
- Isentropic
- Isenthalpic
- Polytropic
- Ideal Gas
- Incompressible substances


- Intensive and Extensive Properties
- Compressibility
- Reduced Temperature and Pressure
- Constant and Variable Specific Heat
- Relative Pressure and Volume
- Flow Work
- Boundary Work
- Enthalpy
- Entropy
- Thermal Efficiency and COP
- Relative and Absolute Humidity

Conservation of Mass

Epicurus (341–270 BC). Describing the nature of the universe, "the sum total of things was always such as it is now, and such it will ever remain."


Must be linked with Conservation of Energy

$$E = mc^2$$

Continuity Equation

Conservation of Mass

(Total Mass Entering a System)-(Total Mass Leaving the System) = Net change in mass within system

Steady flow implies no change in mass within cv

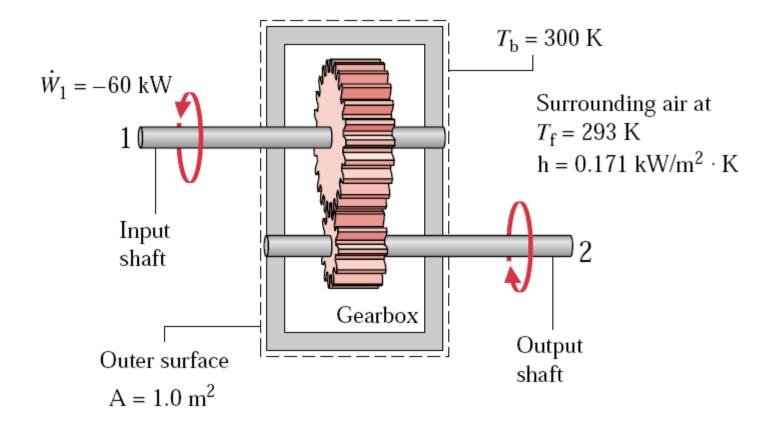
$$\sum \dot{m}_{e} - \sum \dot{m}_{i} + \frac{d}{dt} m_{cv} = 0$$

Conservation of Energy

Lights on or off Energy is always conserved... But that isn't what they mean!

Energy is neither created nor destroyed

1st Law of Thermodynamics

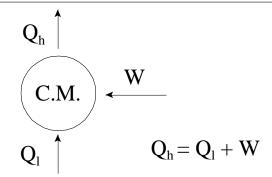

Conservation of Energy Energy can neither be created nor destroyed

$$Input - Output = Storage$$

$$\dot{W} - \dot{Q} + \sum \dot{m}e_{out} - \sum \dot{m}e_{in} + \frac{d}{dt}[me_{cv}] = 0$$

Where W is the work done by the system Q is the heat transferred to the system and

$$e = h + \frac{V^2}{2} + gz$$



What is the output shaft power?

ENG 105 8

A refrigeration cycle has heat transfer $Q_{\rm out}$ 3200 Btu and net work of $W_{\rm cycle}$ 1200 Btu. Determine the coefficient of performance for the cycle.

High Temperature Reservoir

Low Temperature Reservoir

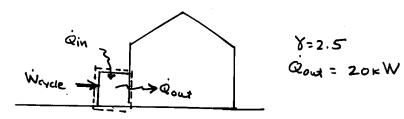
$$\beta = \frac{Q_{in}}{W_{cycle}}$$

$$W_{cycle} = Q_{out} - Q_{in}$$

$$Q_{in} = Q_{out} - W_{cycle}$$

$$= 3200 - 1200$$

$$= 2000 \text{ Bhu}$$

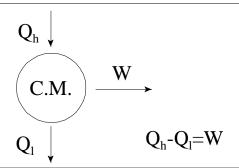

$$\beta = \frac{2000}{1200} = 1.667$$

ENG 105 9

A heat pump cycle whose coefficient of performance is 2.5 delivers energy by heat transfer to a dwelling at a rate of 20 kW.

- (a) Determine the net power required to operate the heat pump, in kW.
- **(b)** Evaluating electricity at \$0.08 per determine the cost of electricity in a month when the heat pump operates for 200 hours.

KNOWN: Operating data are provided for a heat pump. FIND: Determine the net power required to operate the heat pump and its monthly cost.

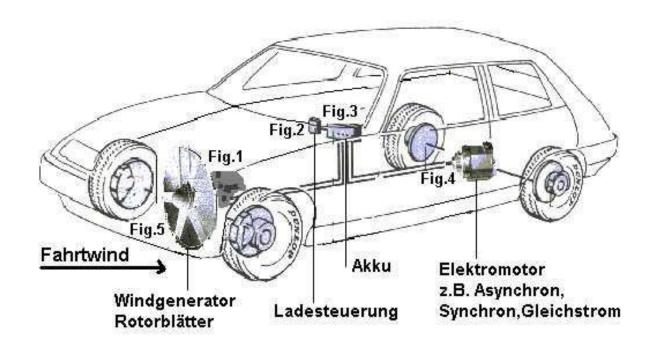

ASSUMPTIONS: 1 The System undergoes a heat pump cycle. 2. The cycle operates steadily for 200 h monthly. 3. Electricity is valued at \$ 0.08/kW.h.

ANALYSIS: (a) The coefficient of performance for the heat pump is

(b) with assumptions 2,3

For a power cycle, the heat transfers are Qin 25,000 kJ and Qout 15,000 kJ. Determine the net work, in kJ, and the thermal efficiency.

High Temperature Reservoir


Low Temperature Reservoir

Waycle = Qin - Qout
= 25,000 - 15,000 = 10,000 kJ Wayck

$$N = \frac{\text{Waycle}}{\text{Qin}} = \frac{10,000}{25,000} = 0.4 (40\%) \frac{\text{N}}{\text{N}}$$

ENG 105 11

Perpetual Motion

$$\dot{W} - \dot{Q} + \sum \dot{m}e_{out} - \sum \dot{m}e_{in} + \frac{d}{dt}[me_{cv}] = 0$$

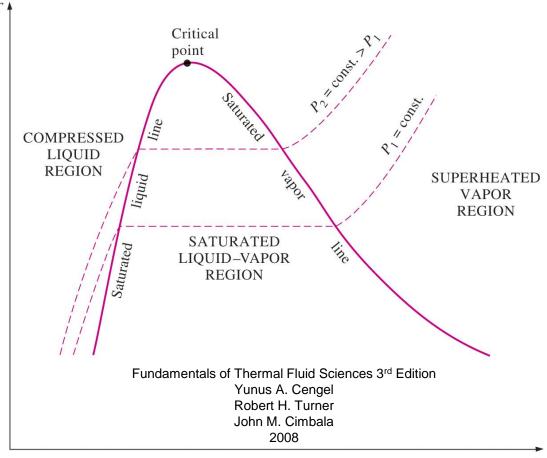
Perpetual Motion is a Technical Foul

Principle of State and Phase-Terms

- Intensive and extensive properties (State Postulate)
- Pure substance
- Equilibrium
- Specific properties
- Compressed (Sub Cooled) Liquid
- Quality
- Two-phase region
- Vapor dome
- Superheated region
- Critical properties
- Ideal gas
- Gas constant
- Compressibility factor
- Reduced temperature and pressure
- Compressed liquid assumption

Can You find Properties???

Thermodynamic Properties


- Volume
 - Specific Volume
 - Density
- Pressure
 - Gauge
 - Absolute
 - Units
- Temperature
 - Units and Scales
- Energy
 - Internal Energy
 - Enthalpy (internal energy + boundary/flow work)
 - Kinetic and Potential
- Quality
- Entropy

The state postulate

The minimum number of independent intensive properties to find the state for a simple compressible system is two.

- Two-phase region
- Superheated vapor
- Triple line
- Saturation state
- Compressed liquid
- Vapor dome
- Critical point

Look up Properties for Each Case

Pressure is 100kPa Review Quality Equations subscripts f,fg,g

$$x = m_g/m_t$$

- (a) is saturated liquid
- (a) is liquid at 20 C
- (b) is two phase quality (x) of .7
- (c) is saturated vapor
- (c) is superheated vapor at 120 C

Specific volume, specific internal energy, specific enthalpy, and specific entropy as properties

Table T-3 (Continued)

		Specific Volume m³/kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg·K		
Press.	Temp. °C	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor v _s	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid h _f	Evap.	Sat. Vapor h _g	Sat. Liquid <i>s</i> r	Sat. Vapor s _g	Press. bar
0.80	93.50	1.0380	2.087	391.58	2498.8	391.66	2274.1	2665.8	1.2329	7.4346	0.80
0.90	96.71	1.0410	1.869	405.06	2502.6	405.15	2265.7	2670.9	1.2695	7.3949	0.90
1.00	99.63	1.0432	1.694	417.36	2506.1	417.46	2258.0	2675.5	1.3026	7.3594	1.00
1.50	111.4	1.0528	1.159	466.94	2519.7	467.11	2226.5	2693.6	1.4336	7.2233	1.50
2.00	120.2	1.0605	0.8857	504.49	2529.5	504.70	2201.9	2706.7	1.5301	7.1271	2.00
2.50	127.4	1.0672	0.7187	535.10	2537.2	535.37	2181.5	2716.9	1.6072	7.0527	2.50
3.00	133.6	1.0732	0.6058	561.15	2543.6	561.47	2163.8	2725.3	1.6718	6.9919	3.00
3.50	138.9	1.0786	0.5243	583.95	2546.9	584.33	2148.1	2732.4	1.7275	6.9405	3.50
4.00	143.6	1.0836	0.4625	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959	4.00
4.50	147.9	1.0882	0.4140	622.25	2557.6	623.25	2120.7	2743.9	1.8207	6.8565	4.50
5.00	151.9	1.0926	0.3749	639.68	2561.2	640.23	2108.5	2748.7	1.8607	6.8212	5.00
6.00	158.9	1.1006	0.3157	669.90	2567.4	670.56	2086.3	2756.8	1.9312	6.7600	6.00
7.00	165.0	1.1080	0.2729	696.44	2572.5	697.22	2066.3	2763.5	1.9922	6.7080	7.00
8.00	170.4	1.1148	0.2404	720.22	2576.8	721.11	2048.0	2769.1	2.0462	6.6628	8.00
9.00	175.4	1.1212	0.2150	741.83	2580.5	742.83	2031.1	2773.9	2.0946	6.6226	9.00
10.0	179.9	1.1273	0.1944	761.68	2583.6	762.81	2015.3	2778.1	2.1387	6.5863	10.0
15.0	198.3	1.1539	0.1318	843.16	2594.5	844.84	1947.3	2792.2	2.3150	6.4448	15.0
20.0	212.4	1.1767	0.09963	906.44	2600.3	908.79	1890.7	2799.5	2.4474	6.3409	20.0
25.0	224.0	1.1973	0.07998	959.11	2603.1	962.11	1841.0	2803.1	2.5547	6.2575	25.0
30.0	233.9	1.2165	0.06668	1004.8	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869	30.0
35.0	242.6	1.2347	0.05707	1045.4	2603.7	1049.8	1753.7	2803.4	2.7253	6.1253	35.0
40.0	250.4	1.2522	0.04978	1082.3	2602.3	1087.3	1714.1	2801.4	2.7964	6.0701	40.0
45.0	257.5	1.2692	0.04406	1116.2	2600.1	1121.9	1676.4	2798.3	2.8610	6.0199	45.0
50.0	264.0	1.2859	0.03944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734	50.0
60.0	275.6	1.3187	0.03244	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892	60.0
70.0	285.9	1.3513	0.02737	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133	70.0
80.0	295.1	1.3842	0.02352	1305.6	2569.8	1316.6	1441.3	2758.0	3.2068	5.7432	80.0
90.0	303.4	1.4178	0.02048	1350.5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772	90.0
100.	311.1	1.4524	0.01803	1393.0	2544.4	1407.6	1317.1	2724.7	3.3596	5.6141	100.
110.	318.2	1.4886	0.01599	1433.7	2529.8	1450.1	1255.5	2705.6	3.4295	5.5527	110.
120.	324.8	1.5267	0.01426	1473.0	2513.7	1491.3	1193.6	2684.9	3.4962	5.4924	120.
130.	330.9	1.5671	0.01278	1511.1	2496.1	1531.5	1130.7	2662.2	3.5606	5.4323	130.
140.	336.8	1.6107	0.01149	1548.6	2476.8	1571.1	1066.5	2637.6	3.6232	5.3717	140.
150.	342.2	1.6581	0.01034	1585.6	2455.5	1610.5	1000.0	2610.5	3.6848	5.3098	150.
160.	347.4	1.7107	0.009306	1622.7	2431.7	1650.1	930.6	2580.6	3.7461	5.2455	160.
170.	352.4	1.7702	0.008364	1660.2	2405.0	1690.3	856.9	2547.2	3.8079	5.1777	170.
180.	357.1	1.8397	0.007489	1698.9	2374.3	1732.0	777.1	2509.1	3.8715	5.1044	180.
190.	361.5	1.9243	0.006657	1739.9	2338.1	1776.5	688.0	2464.5	3.9388	5.0228	190.
200.	365.8	2.036	0.005834	1785.6	2293.0	1826.3	583.4	2409.7	4.0139	4.9269	200.

Saturated Water Pressure Table

		Specific Volume m³/kg		Internal Energy kJ/kg			Enthalpy kJ/kg		Enti kJ/k		
Temp. °C	Press. bar	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor v _g	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid h _f	Evap.	Sat. Vapor h _g	Sat. Liquid s _f	Sat. Vapor ⁸ g	Temp °C
.01 4 5 6 8 10 11 12	0.00611 0.00813 0.00872 0.00935 0.01072 0.01228 0.01312 0.01402 0.01497	1.0002 1.0001 1.0001 1.0001 1.0002 1.0004 1.0004 1.0005 1.0007	206.136 157.232 147.120 137.734 120.917 106.379 99.857 93.784 88.124	0.00 16.77 20.97 25.19 33.59 42.00 46.20 50.41 54.60	2375.3 2380.9 2382.3 2383.6 2386.4 2389.2 2390.5 2391.9 2393.3	0.01 16.78 20.98 25.20 33.60 42.01 46.20 50.41 54.60	2501.3 2491.9 2489.6 2487.2 2482.5 2477.7 2475.4 2473.0 2470.7	2501.4 2508.7 2510.6 2512.4 2516.1 2519.8 2521.6 2523.4 2525.3	0.0000 0.0610 0.0761 0.0912 0.1212 0.1510 0.1658 0.1806 0.1953	9.1562 9.0514 9.0257 9.0003 8.9501 8.9008 8.8765 8.8524 8.8285	.01 4 5 6 8 10 11 12 13
14 15 16 17 18 19	0.01598 0.01705 0.01818 0.01938 0.02064 0.02198	1.0008 1.0009 1.0011 1.0012 1.0014 1.0016	82.848 77.926 73.333 69.044 65.038 61.293	58.79 62.99 67.18 71.38 75.57 79.76	2394.7 2396.1 2397.4 2398.8 2400.2 2401.6	58.80 62.99 67.19 71.38 75.58 79.77	2468.3 2465.9 2463.6 2461.2 2458.8 2456.5	2527.1 2528.9 2530.8 2532.6 2534.4 2536.2	0.2099 0.2245 0.2390 0.2535 0.2679 0.2823	8.8048 8.7814 8.7582 8.7351 8.7123 8.6897	14 15 16 17 18 19
20 21 22 23 24	0.02339 0.02487 0.02645 0.02810 0.02985	1.0018 1.0020 1.0022 1.0024 1.0027	57.791 54.514 51.447 48.574 45.883	83.95 88.14 92.32 96.51 100.70	2402.9 2404.3 2405.7 2407.0 2408.4	83.96 88.14 92.33 96.52 100.70	2454.1 2451.8 2449.4 2447.0 2444.7	2538.1 2539.9 2541.7 2543.5 2545.4 2547.2	0.2966 0.3109 0.3251 0.3393 0.3534	8.6672 8.6450 8.6229 8.6011 8.5794	20 21 22 23 24
25 26 27 28 29	0.03169 0.03363 0.03567 0.03782 0.04008	1.0029 1.0032 1.0035 1.0037 1.0040	43.360 40.994 38.774 36.690 34.733	104.88 109.06 113.25 117.42 121.60	2411.1 2412.5 2413.9 2415.2	104.89 109.07 113.25 117.43 121.61	2439.9 2437.6 2435.2 2432.8	2547.2 2549.0 2550.8 2552.6 2554.5	0.3674 0.3814 0.3954 0.4093 0.4231	8.5580 8.5367 8.5156 8.4946 8.4739	25 26 27 28 29
30 31 32 33 34	0.04246 0.04496 0.04759 0.05034 0.05324	1.0043 1.0046 1.0050 1.0053 1.0056	32.894 31.165 29.540 28.011 26.571	125.78 129.96 134.14 138.32 142.50	2416.6 2418.0 2419.3 2420.7 2422.0	125.79 129.97 134.15 138.33 142.50	2430.5 2428.1 2425.7 2423.4 2421.0	2556.3 2558.1 2559.9 2561.7 2563.5	0.4369 0.4507 0.4644 0.4781 0.4917	8.4533 8.4329 8.4127 8.3927 8.3728	30 31 32 33 34
35 36 38 40 45	0.05628 0.05947 0.06632 0.07384 0.09593	1.0060 1.0063 1.0071 1.0078 1.0099	25.216 23.940 21.602 19.523 15.258	146.67 150.85 159.20 167.56 188.44	2423.4 2424.7 2427.4 2430.1 2436.8	146.68 150.86 159.21 167.57 188.45	2418.6 2416.2 2411.5 2406.7 2394.8	2565.3 2567.1 2570.7 2574.3 2583.2	0.5053 0.5188 0.5458 0.5725 0.6387	8.3531 8.3336 8.2950 8.2570 8.1648	35 36 38 40 45
50 55 60 65 70	0.1235 0.1576 0.1994 0.2503 0.3119	1.0121 1.0146 1.0172 1.0199 1.0228	12.032 9.568 7.671 6.197 5.042	209.32 230.21 251.11 272.02 292.95	2443.5 2450.1 2456.6 2463.1 2469.6	209.33 230.23 251.13 272.06 292.98	2382.7 2370.7 2358.5 2346.2 2333.8	2592.1 2600.9 2609.6 2618.3 2626.8	.7038 .7679 .8312 .8935 .9549	8.0763 7.9913 7.9096 7.8310 7.7553	50 55 60 65 70
75 80 85 90 95	0.3858 0.4739 0.5783 0.7014 0.8455	1.0259 1.0291 1.0325 1.0360 1.0397	4.131 3.407 2.828 2.361 1.982	313.90 334.86 355.84 376.85 397.88	2475.9 2482.2 2488.4 2494.5 2500.6	313.93 334.91 355.90 376.92 397.96	2321.4 2308.8 2296.0 2283.2 2270.2	2643.7 2651.9 2660.1	1.0155 1.0753 1.1343 1.1925 1.2500	7.6824 7.6122 7.5445 7.4791 7.4159	75 80 85 90 95

Saturated Water Temperature Table

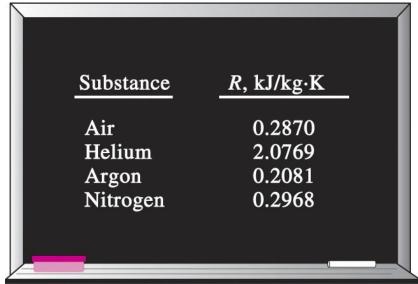
Table T-4 Properties of Superheated Water Vapor

°C	υ m³/kg	u kJ/kg	h kJ/kg	s kJ/kg ⋅ K	v m³/kg	и kJ/kg	h kJ/kg	s kJ/kg · K	υ m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K
	p =	0.06 bar	= 0.006	MPa	p =	0.35 bar	= 0.035	MPa	p = 0.70 bar = 0.07 MPa			
		$(T_{\rm sat} = 3$	36.16°C)			$(T_{\text{sat}} = T_{\text{sat}})$	72.69°C)		$(T_{sat} = 89.95^{\circ}C)$			
Sat.	23.739	2425.0	2567.4	8.3304	4.526	2473.0	2631.4	7.7158	2.365	2494.5	2660.0	7.4797
80	27.132	2487.3	2650.1	8.5804	4.625	2483.7	2645.6	7.7564	2.434	2509.7	2680.0	7.5341
120	30.219	2544.7	2726.0	8.7840	5.163	2542.4	2723.1	7.9644	2.571	2539.7	2719.6	7.6375
160	33.302	2602.7	2802.5	8.9693	5.696	2601.2	2800.6	8.1519	2.841	2599.4	2798.2	7.8279
200	36.383	2661.4	2879.7	9.1398	6.228	2660.4	2878.4	8.3237	3.108	2659.1	2876.7	8.0012
240	39.462	2721.0	2957.8	9.2982	6.758	2720.3	2956.8	8.4828	3.374	2719.3	2955.5	8.1611
280	42.540	2781.5	3036.8	9.4464	7.287	2780.9	3036.0	8.6314	3.640	2780.2	3035.0	8.3162
320	45.618	2843.0	3116.7	9.5859	7.815	2842.5	3116.1	8.7712	3.905	2842.0	3115.3	8.4504
360	48.696	2905.5	3197.7	9.7180	8.344	2905.1	3197.1	8.9034	4.170	2904.6	3196.5	8.5828
400	51.774	2969.0	3279.6	9.8435	8.872	2968.6	3279.2	9.0291	4.434	2968.2	3278.6	8.7086
440	54.851	3033.5	3362.6	9.9633	9.400	3033.2	3362.2	9.1490	4.698	3032.9	3361.8	8.8286
500	59.467	3132.3	3489.1	10.1336	10.192	3132.1	3488.8	9.3194	5.095	3131.8	3488.5	8.9991
	p =	= 1.0 bar	= 0.10 N	ſPa	p :	= 1.5 bar	= 0.15 N	ſΡa	p = 3.0 bar = 0.30 MPa			
				$(T_{\rm sat} = 1$	11.37°C)		$(T_{\text{sat}} = 133.55^{\circ}\text{C})$					
Sat.	1.694	2506.1	2675.5	7.3594	1.159	2519.7	2693.6	7.2233	0.606	2543.6	2725.3	6.9919
100	1.696	2506.7	2676.2	7.3614								
120	1.793	2537.3	2716.6	7.4668	1.188	2533.3	2711.4	7.2693				
160	1.984	2597.8	2796.2	7.6597	1.317	2595.2	2792.8	7.4665	0.651	2587.1	2782.3	7.1276
200	2.172	2658.1	2875.3	7.8343	1.444	2656.2	2872.9	7.6433	0.716	2650.7	2865.5	7.3115
240	2.359	2718.5	2954.5	7.9949	1.570	2717.2	2952.7	7.8052	0.781	2713.1	2947.3	7.4774
280	2.546	2779.6	3034.2	8.1445	1.695	2778.6	3032.8	7.9555	0.844	2775.4	3028.6	7.6299
320	2.732	2841.5	3114.6	8.2849	1.819	2840.6	3113.5	8.0964	0.907	2838.1	3110.1	7.7722
360	2.917	2904.2	3195.9	8.4175	1.943	2903.5	3195.0	8.2293	0.969	2901.4	3192.2	7.9061
400	3.103	2967.9	3278.2	8.5435	2.067	2967.3	3277.4	8.3555	1.032	2965.6	3275.0	8.0330
440	3.288	3032.6	3361.4	8.6636	2.191	3032.1	3360.7	8.4757	1.094	3030.6	3358.7	8.1538
500	3.565	3131.6	3488.1	8.8342	2.376	3131.2	3487.6	8.6466	1.187	3130.0	3486.0	8.3251
	p =	ſPa	p :	= 7.0 bar		ſΡa	p = 10.0 bar = 1.0 MPa					
		$(T_{\rm sat} = 1$			$(T_{\rm sat} = 1$	64.97°C)		$(T_{\text{sut}} = 179.91^{\circ}\text{C})$				
Sat.	0.3749	2561.2	2748.7	6.8213	0.2729	2572.5	2763.5	6.7080	0.1944	2583.6	2778.1	6.5865
180	0.4045	2609.7	2812.0	6.9656	0.2847	2599.8	2799.1	6.7880				
200	0.4249	2642.9	2855.4	7.0592	0.2999	2634.8	2844.8	6.8865	0.2060	2621.9	2827.9	6.6940
240	0.4646	2707.6	2939.9	7.2307	0.3292	2701.8	2932.2	7.0641	0.2275	2692.9	2920.4	6.8817
280	0.5034	2771.2	3022.9	7.3865	0.3574	2766.9	3017.1	7.2233	0.2480	2760.2	3008.2	7.0465
320	0.5416	2834.7	3105.6	7.5308	0.3852	2831.3	3100.9	7.3697	0.2678	2826.1	3093.9	7.1962
360	0.5796	2898.7	3188.4	7.6660	0.4126	2895.8	3184.7	7.5063	0.2873	2891.6	3178.9	7.3349
400	0.6173	2963.2	3271.9	7.7938	0.4397	2960.9	3268.7	7.6350	0.3066	2957.3	3263.9	7.4651
440	0.6548	3028.6	3356.0	7.9152	0.4667	3026.6	3353.3	7.7571	0.3257	3023.6	3349.3	7.5883
500	0.7109	3128.4	3483.9	8.0873	0.5070	3126.8	3481.7	7.9299	0.3541	3124.4	3478.5	7.7622
600	0.8041	3299.6	3701.7	8.3522	0.5738	3298.5	3700.2	8.1956	0.4011	3296.8	3697.9	8.0290

THE IDEAL-GAS EQUATION OF STATE

- Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance.
- The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the *P-v-T* behavior of a gas quite accurately within some properly selected region.

$$P = R\left(\frac{T}{V}\right) PV = RT$$
 Ideal gas equation of state

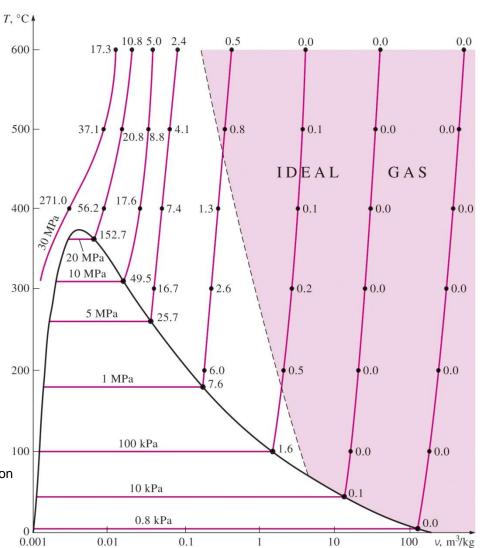

$$R = \frac{R_u}{M} \qquad (kJ/kg \cdot K \text{ or } kPa \cdot m^3/kg \cdot K)$$

R: gas constant

M: molar mass (kg/kmol)

 R_u : universal gas constant

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$


Different substances have different gas constants.

Ideal Gas

pV=mRT pV=nRuT

Ideal gas model only valid away from two phase region and critical point

Fundamentals of Thermal Fluid Sciences 3rd Edition Yunus A. Cengel Robert H. Turner John M. Cimbala 2008

An automobile tire is inflated with air. The pressure rise of air in the tire when the tire is heated to 50 C and the amount of air that must be bled off to reduce the pressure to the original value are to be determined. **Assumptions 1** At specified conditions, air behaves as an ideal gas. **2** The volume of the tire remains constant.

Properties The gas constant of air is $R = 0.287 \text{ kPa.m}^3/\text{kg.K}$

Analysis Initially, the absolute pressure in the tire is

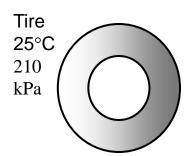
$$P_1 = P_g + P_{\text{atm}} = 210 + 100 = 310 \text{kPa}$$

Treating air as an ideal gas and assuming the volume of the tire to remain constant, the final pressure in the tire can be determined from

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \longrightarrow P_2 = \frac{T_2}{T_1} P_1 = \frac{323 \text{ K}}{298 \text{ K}} (310 \text{ kPa}) = 336 \text{ kPa}$$

Thus the pressure rise is

$$\Delta P = P_2 - P_1 = 336 - 310 = 26 \text{ kPa}$$

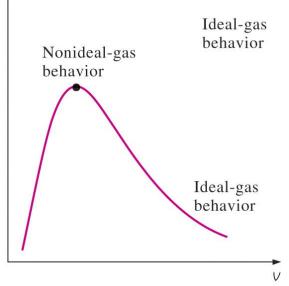

The amount of air that needs to be bled off to restore pressure to its original value is

$$m_1 = \frac{P_1 V}{RT_1} = \frac{(310 \text{ kPa})(0.025 \text{ m}^3)}{(0.287 \text{ kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K})(298 \text{ K})} = 0.0906 \text{ kg}$$

$$m_2 = \frac{P_1 V}{RT_2} = \frac{(310 \text{ kPa})(0.025 \text{ m}^3)}{(0.287 \text{ kPa} \cdot \text{m}^3/\text{kg} \cdot \text{K})(323 \text{ K})} = 0.0836 \text{ kg}$$

$$\Delta m = m_1 - m_2 = 0.0906 - 0.0836 = \mathbf{0.0070 \text{ kg}}$$

Initial Condition



Compressibility Factor

Reduced pressure
$$P_R = P_{\text{cr}}$$
 Reduced temperature $T_R = T_{\text{cr}}$ T_{cr} $T_{$

$$v_R = \frac{v_{\text{actual}}}{RT_{\text{cr}}/P_{\text{cr}}}$$

Pseudo-reduced specific volume

Gases deviate from the ideal-gas behavior the most in the neighborhood of the critical point.

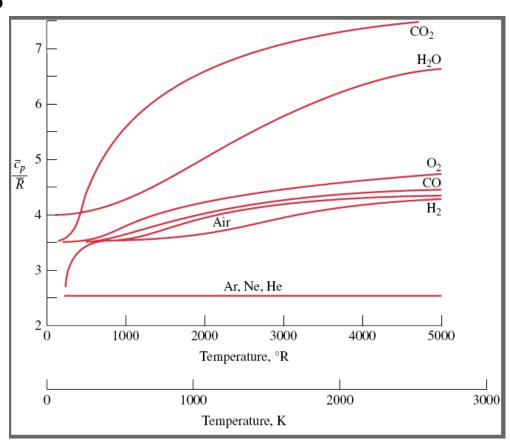
Comparison of *Z* factors for various gases.

Reduced

Charles' and Boyle's Law

Uses ideal gas law and conservation of mass in steady flow to determine volume at another pressure and temperature.

$$V_1 = rac{V_2 imes P_2 imes T_1}{T_2 imes P_1}$$
 Derive


Exhaust emissions at collected temperature and pressure to standard temperature and pressure

Ambient Standard 1 bar 25°C

Standard 1 atm 0°C

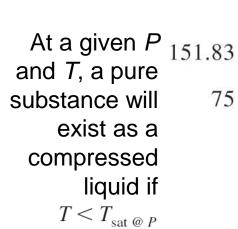
Specific Heat

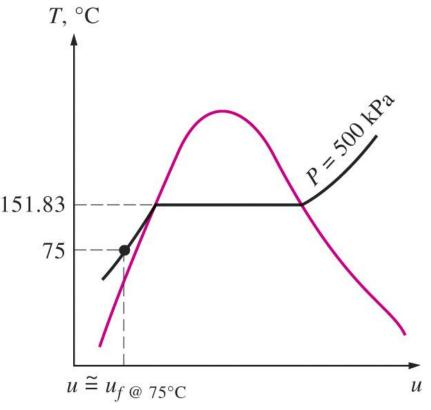
- Constant volume (Internal Energy)
- Constant pressure (Enthalpy)
- Ratio of specific heats
- Specific heat
 - Solids
 - Liquids

The compressed liquid properties depend on temperature much more strongly than they do on pressure.

$$y \cong y_{f@T}$$
 $y \rightarrow v$, u , or h

A more accurate relation for h


$$h \cong h_{f @ T} + \nu_{f @ T} (P - P_{\text{sat } @ T})$$


Given: P and T

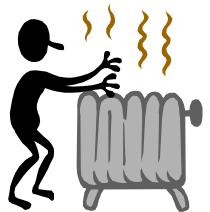
$$v \cong v_{f @ T}
u \cong u_{f @ T}
h \cong h_{f @ T}$$

A compressed liquid may be approximated as a saturated liquid at the given temperature.

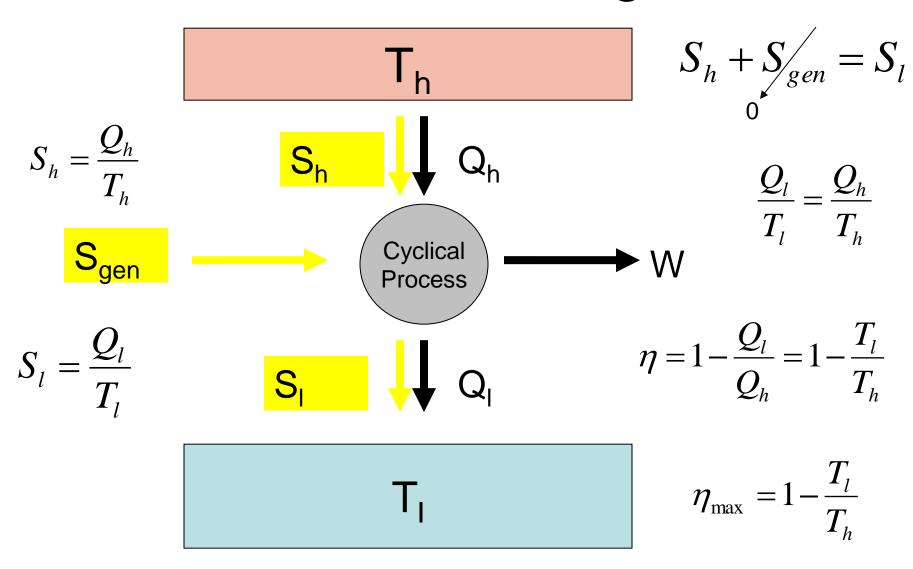
Compressed Liquid Assumption

Principle of Entropy

- Total Entropy is ALWAYS increasing
- 2nd Law of Thermodynamics
- Irreversibilities
 - Friction
 - Unrestrained expansion
 - Heat Transfer
 - Mixing
 - Resistance etc
- Carnot Efficiency and Coefficient of Performance
- Isentropic Efficiency


What creates Entropy

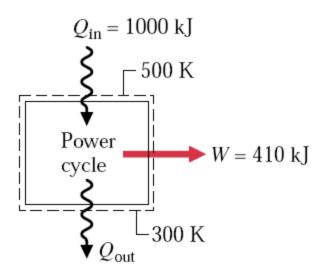
- Major Irreversibilities
 - Friction
 - Unrestrained Expansion
 - Heat Transfer
- Minor
 - Mixing, spontaneous reaction
 - Resistance



Total entropy always increases

Carnot Heat Engine

Any thermal efficiency above Carnot thermal efficiency is a violation of the Second Law


- Perpetual Motion Machine of the 2nd Kind PMM-2
- This concept applies to heat engines, refrigerators, heat pumps and any other system
- The best you can do is to have no change in entropy on the WHOLE system. (individual processes may see reductions in entropy)

Perpetual Motion is a Technical Foul

Examples

An "inventor" claims to have built a device which receives 1000 kJ at 500K and converts it to 410 kJ exhausting heat to the environment at 300K. Is this Possible?

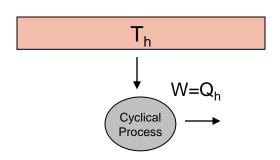
 Max Efficiency = 1-TI/Th =1-(300K/500K)=40%

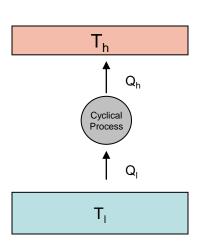
Isentropic Efficiency

- Processes are not Isentropic
- Isentropic cases are a best case scenario
- Efficiency can be related to the Isentropic case
 - Turbines
 - Pumps and Compressors
 - Nozzles

Isentropic Efficiency

$$\eta_T = \frac{Actual\ Turbine\ Work}{Isentropic\ Turbine\ Work} = \frac{W_a}{W_s} = \frac{h_1 - h_{2a}}{h_1 - h_{2s}}$$


$$\eta_C = \frac{Isentropic\ Compressor\ Work}{Actual\ Compressor\ Work} = \frac{W_s}{W_a} = \frac{h_{2s} - h_1}{h_{2a} - h_1}$$

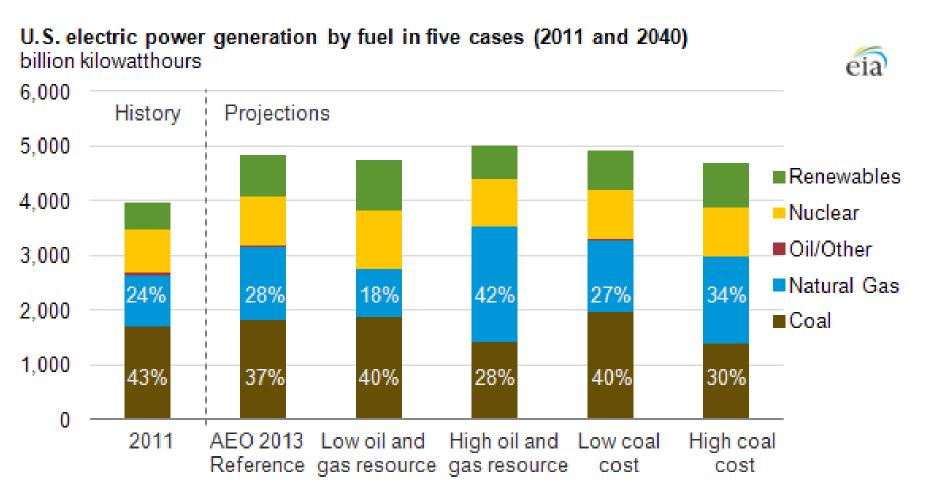

$$\eta_N = \frac{Actual \ KE}{Isentropic \ KE} = \frac{V_a^2}{V_s^2}$$

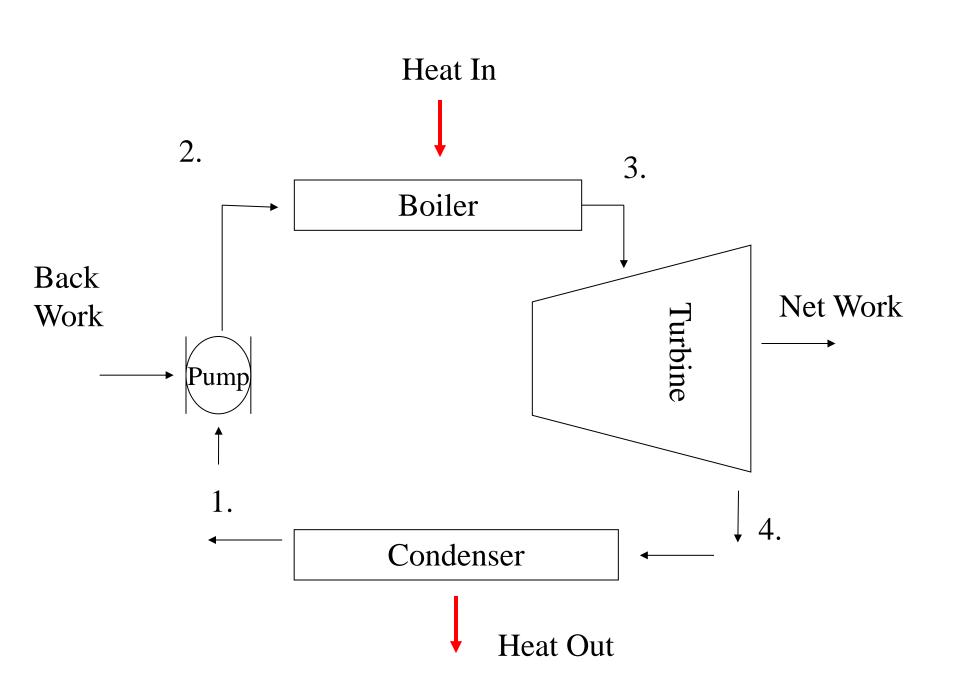
2nd Law of Thermodynamics

Kelvin-Planck: It is impossible to construct a device which will operate **in a cycle** and produce no effect other than (work) and the exchange of heat with a single reservoir.

Clausius: It is impossible to construct a device which operates **in a cycle** and produces no effect other than the transfer of heat from a cooler body to a hotter body

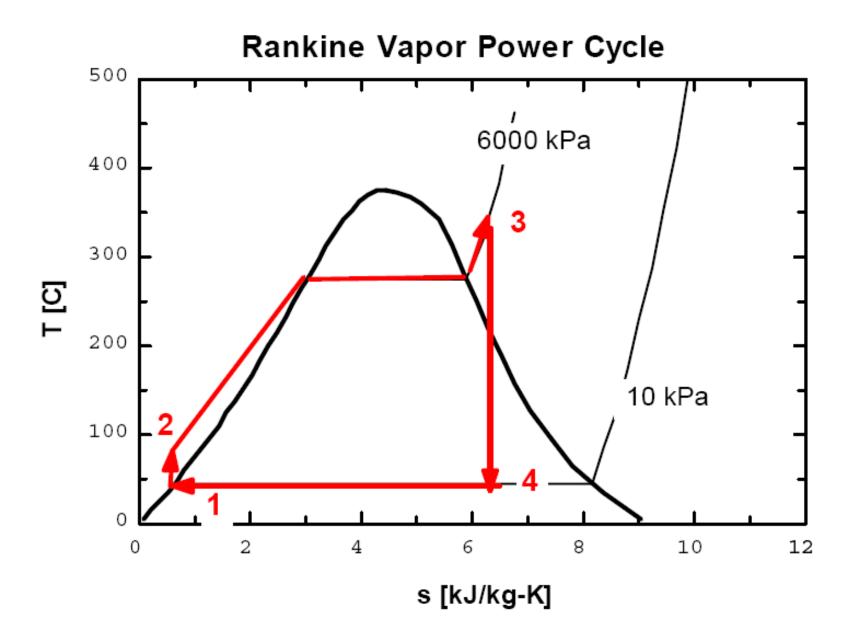
Thermodynamic Cycles




- Carnot Heat Engine
- Rankine
 - Reheat
- Air Standards Cycles
 - Otto
 - Diesel
 - Brayton
 - Regeneration
- Carnot Refrigerator and Heat Pump
- Ideal and Real Refrigeration Cycles

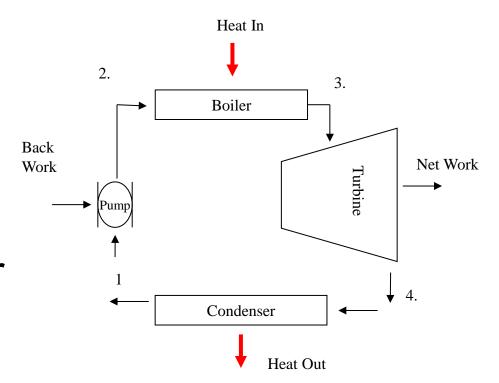
The Rankine Cycle

 The majority (75%+) of power plants are based on the Rankine Cycle



Simple Ideal Rankine

- Isentropic Compression of Liquid (Pump)
- Isobaric Heat Addition (Boiler)
- Isentropic Expansion (Turbine or Piston)
- Isobaric Heat Rejection (Condenser)


Open and Closed Cycles

Working Fluid is typically water

Simple Analysis

- State 1 must be liquid
- State 2 must be liquid
- State 3 must be superheated vapor
- State 4 must have Quality better than 0.85

Pump

Pumps Liquid not Vapor (Cavitation)

From 1st Law
$$\dot{W}_{pump} = \dot{m}(h_2 - h_1)$$

$$dh = T ds + v dP$$
 For isentropic case $dh = v dP$

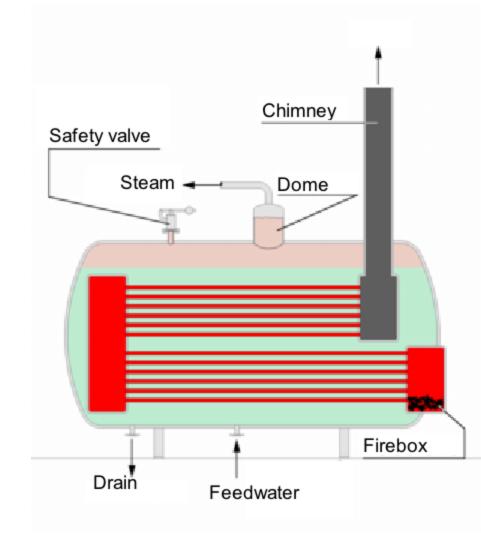
$$\Delta h = h_2 - h_1 = \int_1^2 v \, dP$$

For incompressible substances like liquids

$$v \cong v_{1} = const.$$

$$\dot{W}_{pump} = \dot{m}(h_{2} - h_{1}) \cong \dot{m}v_{1}(P_{2} - P_{1})$$

$$h_{2} - h_{1} \cong v_{1}(P_{2} - P_{1})$$


$$w_{pump} = \frac{\dot{W}_{pump}}{\dot{m}} = v_{1}(P_{2} - P_{1})$$

Boiler

Change in Enthalpy of Steam

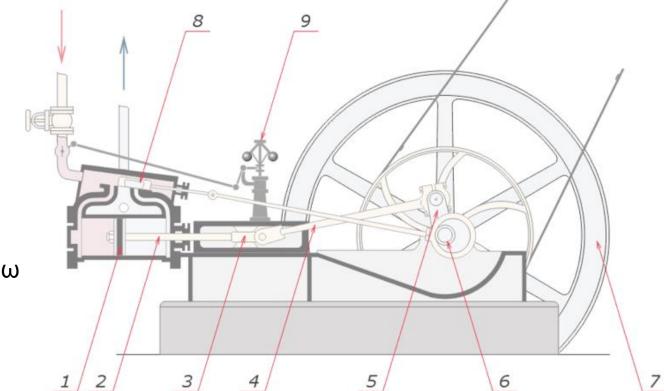
From 1st Law

$$\dot{Q}_{in} = \dot{m}(h_3 - h_2)$$

Steam Turbine

From 1st Law

$$\dot{W}_{turb} = \dot{m}(h_3 - h_4)$$

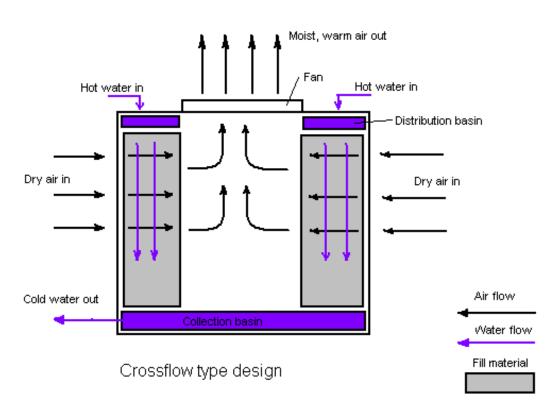

Quality of Turbine exit needs to stay above 0.85

A typical single cylinder, simple expansion, double-acting high pressure steam engine. Power takeoff from the engine is by way of a belt.

- 1 Piston
- 2 Piston rod
- 3 Crosshead bearing
- 4 Connecting rod
- 5 Crank
- 6 Eccentric valve motion
- 7 Flywheel
- 8 Sliding valve
- 9 Centrifugal governor.

Steam Piston

Shaft Power = torque x ω


Condenser

- Atmosphere
- Rivers or Oceans

From 1st Law

$$Q_{out} = \dot{m}(h_4 - h_1)$$

A Run Around the Simple Ideal Rankine Cycle

Compute the thermal efficiency of an ideal Rankine cycle for which steam leaves the boiler as superheated vapor at 6 MPa, 350°C, and is condensed at 10 kPa.

Start at Pump Inlet

$$P_{1} = 10 \text{ kPa}$$

$$\begin{cases} h_{1} = h_{f} = 191.83 \frac{kJ}{kg} \\ v_{1} = v_{f} = 0.00101 \frac{m^{3}}{kg} \end{cases}$$

$$\begin{aligned} w_{pump} &= v_1 (P_2 - P_1) \\ &= 0.00101 \frac{m^3}{kg} (6000 - 10) \ kPa \frac{kJ}{m^3 kPa} \\ &= 6.05 \frac{kJ}{kg} \end{aligned}$$

$$h_2 = w_{pump} + h_1$$

$$= 6.05 \frac{kJ}{kg} + 191.83 \frac{kJ}{kg}$$

$$= 197.88 \frac{kJ}{kg}$$

Boiler

$$P_{3} = 6000 \ kPa$$

$$T_{3} = 350^{\circ} C$$

$$\begin{cases} h_{3} = 3043.0 \frac{kJ}{kg} \\ s_{3} = 6.335 \frac{kJ}{kg \cdot K} \end{cases}$$

$$q_{in} = \frac{\dot{Q}_{in}}{\dot{m}} = h_3 - h_2$$

$$= (3040.3 - 197.88) \frac{kJ}{kg}$$

$$= 2845.2 \frac{kJ}{kg}$$

Turbine is Isentropic

$$s_4 = s_3$$

$$at \ P_4 = 10kPa: \ s_f = 0.6483 \frac{kJ}{kg \cdot K}; \ s_g = 8.1502 \frac{kJ}{kg \cdot K}$$

$$s_4 = s_f + x_4 s_{fg}$$

$$x_4 = \frac{s_4 - s_f}{s_{fg}} = \frac{6.335 - 0.6493}{7.5009} = 0.758$$

$$w_{turb} = h_3 - h_4$$

$$= (3043.0 - 2005.63) \frac{kJ}{kg}$$

$$= 191.83 \frac{kJ}{kg} + 0.758(2584.7 - 191.83) \frac{kJ}{kg}$$

$$= 1037.4 \frac{kJ}{kg}$$

$$= 2005.6 \frac{kJ}{kg}$$

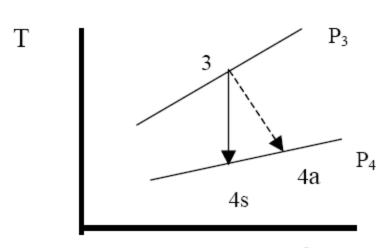
$$w_{net} = w_{turb} - w_{pump}$$

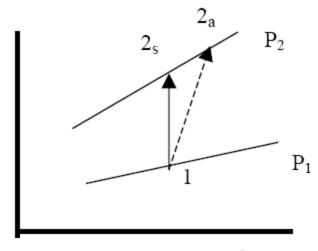
= $(1037.4 - 6.05) \frac{kJ}{kg}$
= $1031.4 \frac{kJ}{kg}$

$$\eta_{th} = \frac{w_{net}}{q_{in}}$$

$$= \frac{1031.4 \frac{kJ}{kg}}{2845.2 \frac{kJ}{kg}}$$

$$= 0.363 \text{ or } 36.3\%$$


Summary


- 1) Find enthalpy at all States
- 2) Turn the mathematical crank

Simple Real Rankine

- Piping losses--frictional effects reduce the available energy content of the steam.
- Turbine losses--turbine isentropic (or adiabatic) efficiency.
- Pump losses--pump isentropic (or adiabatic) efficiency.
- Condenser losses--relatively small losses that result from cooling the condensate below the saturation temperature in the condenser.

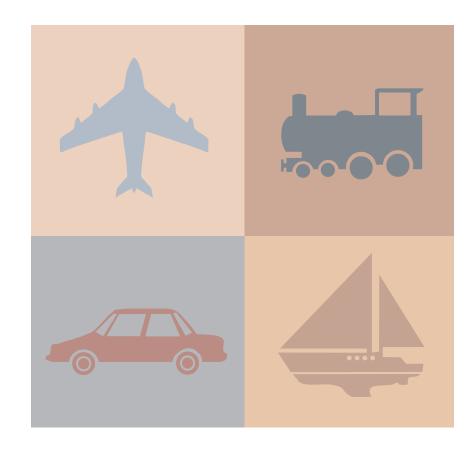
Τ

 \mathbf{S}

Real Systems

$$\eta_{turb} = \frac{w_{actual}}{w_{isentropic}} = \frac{h_3 - h_{4a}}{h_3 - h_{4s}}$$

$$\eta_{pump} = \frac{w_{isentropic}}{w_{actual}} = \frac{h_{2s} - h_1}{h_{2a} - h_1}$$

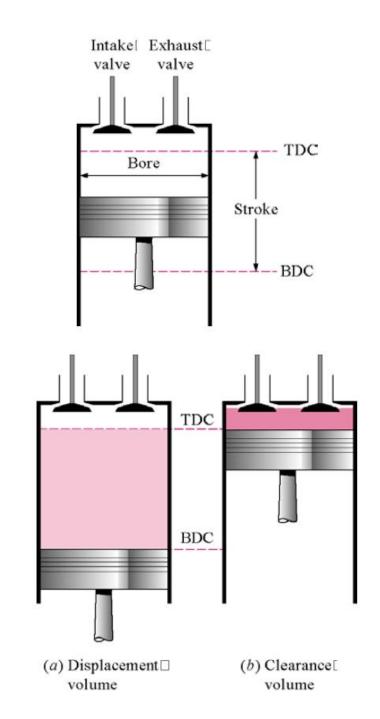

How to Increase Rankine Cycle Efficiency

- Increase Boiler Temperature and Pressure (materials constraints)
- Decrease Condenser Pressure
 - increases moisture in turbine outlet
 - Large turbines required as density of steam drops
- Reheat
- Preheat using Open and Closed Feedwater heaters

Air Standard Cycles

- Otto
- Diesel
- Brayton

Planes, Trains, and Automobiles



Air Standard Assumptions

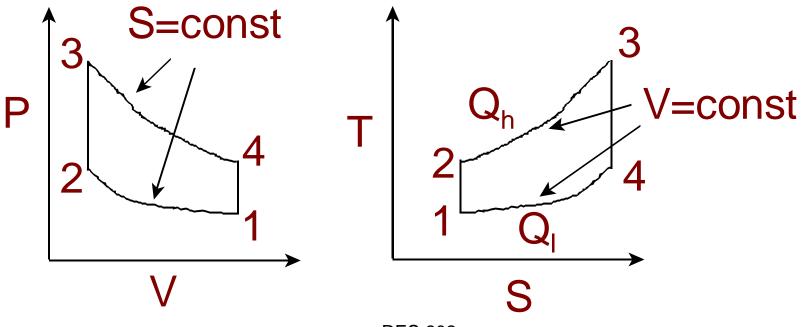
- Working fluid is air and acts as an ideal gas
- All Processes are internally reversible
- Combustion process is replaced by heat addition
- Exhaust process is replaced by heat rejection
- Cold ASA are that properties of air are constant at 25C

RES 602 55

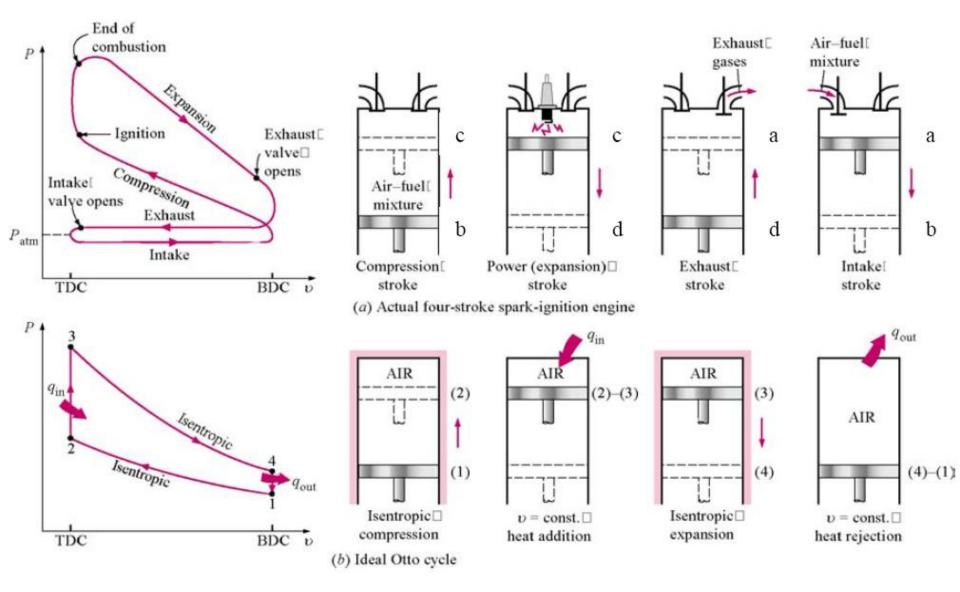
Reciprocating Internal Combustion Engines

Otto Engine Spark Ignition (SI)

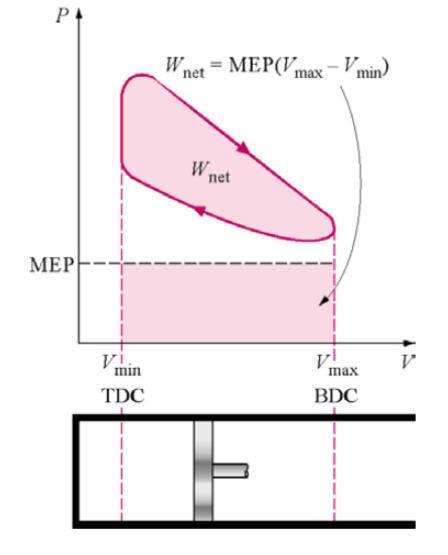
- High Power Density (aircraft, cars, etc)
- Most common power plant in US automotive industry



0.25 mile race at speeds over 300 mph (15 gallons of methanol used)



Diagrams for Ideal Otto Cycle


Isentropic compression
Isometric heat addition
Isentropic expansion
Isometric heat rejection

RES 602 58

REAL (a) IDEAL(b)

Mean Effective Pressure MEP

Fictitious pressure for cycle in terms of average pressure for a given displacement

Much lower than real pressures seen through cycle

DO NOT use MEP to calculate required strength of materials

$$MEP = \frac{W_{net}}{V_{\text{max}} - V_{\text{min}}} = \frac{w_{net}}{v_{\text{max}} - v_{\text{min}}}$$

Otto Cycle Efficiency

$$\eta_{th,Otto} = \frac{Q_h - Q_l}{Q_h} = 1 - \frac{Q_l}{Q_h} = 1 - \frac{mc_p(T_4 - T_1)}{mc_p(T_3 - T_2)} = 1 - \frac{T_1}{T_2} \left(\frac{\frac{T_4}{T_1} - 1}{\frac{T_3}{T_2} - 1}\right)$$

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{k-1}$$

$$\frac{T_3}{T_4} = \left(\frac{V_4}{V_2}\right)^{k-1}$$

$$\frac{T_3}{T_4} = \left(\frac{V_4}{V_3}\right)^{k-1}$$

$$V_4 = V_1$$

$$V_3 = V_2$$

$$\left(\frac{V_1}{V_2}\right)^{k-1} = \left(\frac{V_4}{V_3}\right)^{k-1}$$

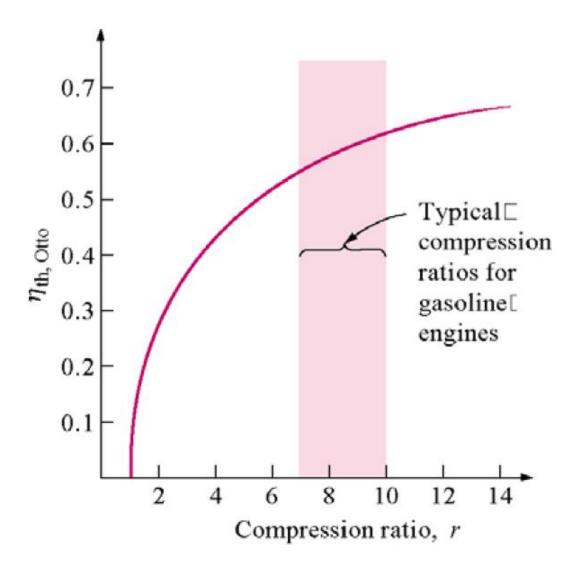
$$\therefore \frac{T_2}{T_1} = \frac{T_3}{T_4} \Rightarrow \frac{T_3}{T_2} = \frac{T_4}{T_1}$$

RES 602

Derivation continued

$$\eta_{th,Otto} = \frac{Q_h - Q_l}{Q_h} = 1 - \frac{Q_l}{Q_h} = 1 - \frac{mc_p(T_4 - T_1)}{mc_p(T_3 - T_2)} = 1 - \frac{T_1}{T_2} \left(\frac{\frac{T_4}{T_1} - 1}{\frac{T_3}{T_2} - 1} \right)$$

$$\eta_{th,Otto} = 1 - \left(\frac{T_1}{T_2}\right)$$


But remember

RES 602 62

Modeled Otto Cycle efficiency

$$\eta_{th,Otto} = 1 - \frac{1}{r^{k-1}}$$

- Increase temperature by increasing compression ratio but autoignition occurs
- Use knock inhibitors to raise Octane number (lead was used in US until 1973-1996)

A Run Around the Otto Cycle

An Otto cycle having a compression ratio of 9:1 uses air as the working fluid. Initially $P_1 = 95 \text{ kPa}$, $T_1 = 17^{\circ}\text{C}$, and $V_1 = 3.8 \text{ liters}$. During the heat addition process, 7.5 kJ of heat are added. Determine all Ts, Ps, η_{th} , the back work ratio, and the mean effective pressure.

Assume constant specific heats with $C_v = 0.718 \text{ kJ/kg} \cdot \text{K}$, k = 1.4

1 – 2 is Isentropic Compression

$$T_{2} = T_{1} \left(\frac{V_{1}}{V_{2}}\right)^{k-1} = T_{1}(r)^{k-1}$$

$$= (17 + 273)K(9)^{1.4-1}$$

$$= 6984K$$

$$P_{2} = P_{1} \left(\frac{V_{1}}{V_{2}}\right)^{k} = P_{1}(r)^{k}$$

$$= 95kPa(9)^{1.4}$$

$$= 2059kPa$$

2 – 3 Isometric or Isochoric Heat Addition

$$q_{\rm in} = Q_{\rm in}/m$$
 and $m = V_1/v_1$

$$q_{\scriptscriptstyle in} = \frac{Q_{\scriptscriptstyle in}}{m} = Q_{\scriptscriptstyle in} \, \frac{v_1}{V_1}$$

$$=7.5kJ\frac{0.875\frac{m^3}{kg}}{3.8\cdot10^{-3}m^3}$$

$$=1727\frac{kJ}{kg}$$

$$Q_{in} = mC_{v}(T_3 - T_2)$$

$$v_1 = \frac{RT_1}{P_1}$$

$$= \frac{0.287 \frac{kJ}{kg \cdot K} (290 K)}{95 \, kPa} \frac{m^3 kPa}{kJ}$$

$$=0.875 \frac{m^3}{kg}$$

$$= 698.4K + \frac{1727 \frac{kJ}{kg}}{0.718 \frac{kJ}{kg \cdot K}} \qquad P_3 = P_2 \frac{T_3}{T_2} = 9.15 MPa$$

$$P_3 = P_2 \frac{T_3}{T_2} = 9.15 \, MPa$$

$$= 3103.7 K$$

 $T_3 = T_2 + \frac{q_{in}}{C}$

3 - 4 Expansion is Isentropic

$$T_{4} = T_{3} \left(\frac{V_{3}}{V_{4}}\right)^{k-1} = T_{3} \left(\frac{1}{r}\right)^{k-1}$$

$$= (3103.7) K \left(\frac{1}{9}\right)^{1.4-1}$$

$$= 1288.8 K$$

$$P_{4} = P_{3} \left(\frac{V_{3}}{V_{4}}\right)^{k} = P_{3} \left(\frac{1}{r}\right)^{k}$$

$$= 9.15 MPa \left(\frac{1}{9}\right)^{1.4}$$

$$= 422 kPa$$

4 – 1 Heat Rejection is Isometric

$$Q_{out} = mC_{v}(T_{4} - T_{1})$$

$$q_{out} = \frac{Q_{out}}{m} = C_{v}(T_{4} - T_{1})$$

$$= 0.718 \frac{kJ}{kg \cdot K} (1288.8 - 290)K$$

$$= 717.1 \frac{kJ}{kg}$$

$$w_{net} = q_{net} = q_{in} - q_{out}$$

= $(1727 - 717.4) \frac{kJ}{kg}$
= $1009.6 \frac{kJ}{kg}$

$$\eta_{th, Otto} = \frac{w_{net}}{q_{in}} = \frac{1009.6 \frac{kJ}{kg}}{1727 \frac{kJ}{kg}}$$

$$= 0.585 \text{ or } 58.5\%$$

$$MEP = \frac{W_{net}}{V_{\text{max}} - V_{\text{min}}} = \frac{w_{net}}{v_{\text{max}} - v_{\text{min}}}$$

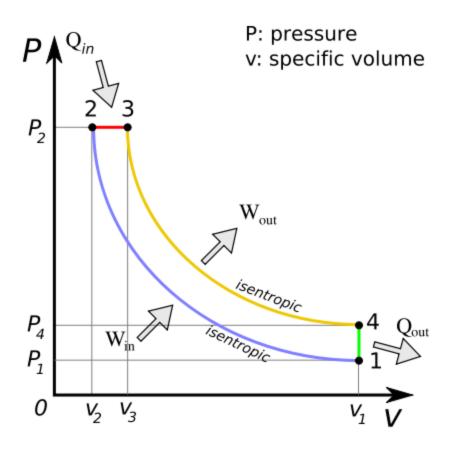
$$= \frac{w_{net}}{v_1 - v_2} = \frac{w_{net}}{v_1 (1 - v_2 / v_1)} = \frac{w_{net}}{v_1 (1 - 1 / r)}$$

$$= \frac{1009.6 \frac{kJ}{kg}}{0.875 \frac{m^3}{kg} (1 - \frac{1}{9})} \frac{m^3 kPa}{kJ} = 1298 \ kPa$$

$$BWR = \frac{w_{comp}}{w_{exp}} = \frac{\Delta u_{12}}{-\Delta u_{34}}$$

$$= \frac{C_{v}(T_{2} - T_{1})}{C_{v}(T_{3} - T_{4})} = \frac{(T_{2} - T_{1})}{(T_{3} - T_{4})}$$

$$= 0.225 \ or \ 22.5\%$$


Diesel Engines CI

- High Efficiency (trucks, buses, construction equipment, ships, etc) (cars esp europe)
- Low power density (runs fuel lean)

P-v Diagram for Diesel

Isentropic compression
Isobaric heat addition
Isentropic expansion
Isometric heat rejection

Diesel Efficiency

$$\eta_{th, Diesel} = 1 - \frac{Q_{out}}{Q_{in}}$$

$$\frac{P_3 V_3}{T_3} = \frac{P_2 V_2}{T_2} \text{ where } P_3 = P_2$$

$$= 1 - \frac{mC_v (T_4 - T_1)}{mC_p (T_3 - T_2)}$$

$$\frac{T_3}{T_2} = \frac{V_3}{V_2} = r_c$$

$$\eta_{th, Diesel} = 1 - \frac{C_v(T_4 - T_1)}{C_p(T_3 - T_2)}$$

$$= 1 - \frac{1}{k} \frac{T_1(T_4 / T_1 - 1)}{T_2(T_3 / T_2 - 1)}$$

r_c or Alpha α is the cutoff ratio corresponding to the volume change during heat addition

$$\frac{P_4 V_4}{T_4} = \frac{P_1 V_1}{T_1} \text{ where } V_4 = V_1$$

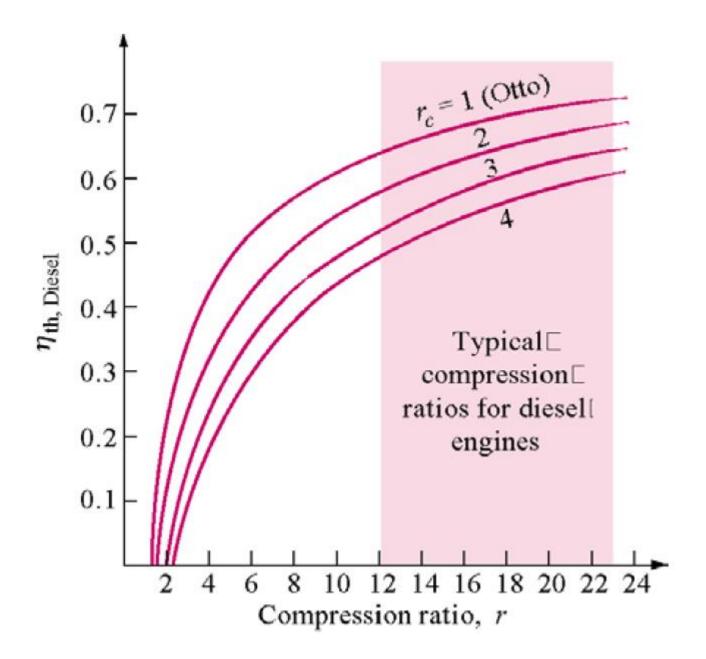
$$\frac{T_4}{T_1} = \frac{P_4}{P_1}$$

$$P_1V_1^k = P_2V_2^k$$
 and $P_4V_4^k = P_3V_3^k$
 $V_4 = V_1$ and $P_3 = P_2$,

$$\frac{P_4}{P_1} = \left(\frac{V_3}{V_2}\right)^k = r_c^k$$

$$\eta_{th, Diesel} = 1 - \frac{1}{k} \frac{T_1(T_4 / T_1 - 1)}{T_2(T_3 / T_2 - 1)}$$

$$= 1 - \frac{1}{k} \frac{T_1}{T_2} \frac{r_c^k - 1}{(r_c - 1)}$$


$$= 1 - \frac{1}{r^{k-1}} \frac{r_c^k - 1}{k(r_c - 1)}$$

Diesel efficiency

$$\eta_{h,Diesel} = 1 - \frac{1}{r^{k-1}} \left(\frac{\alpha^k - 1}{k(\alpha - 1)} \right)$$

Where α is the cutoff ratio v3/v2 corresponding to the burn duration

A Run Around the Diesel Cycle

At the beginning of the compression process of an air-standard Diesel cycle operating with a compression ratio of 18, the temperature is 300 K and the pressure is 0.1 MPa. The cutoff ratio for the cycle is 2. Determine (a) the temperature and pressure at the end of each process of the cycle, (b) the thermal efficiency, (c) the mean effective pressure, in MPa.

Values from Tables (variable specific heat)

isentropic compression process 1–2

$$p2 = 5.39 \text{ MPa}$$
 $T2 = 898.3 \text{ K and } h2 = 930.98 \text{ kJ/kg}.$

isobaric heat addition process 2–3

$$\frac{P_3 V_3}{T_3} = \frac{P_2 V_2}{T_2} \quad \text{where } P_3 = P_2$$

$$\frac{T_3}{T_2} = \frac{V_3}{V_2} = r_c$$

$$T3 = r_c T2 = 2*(898.3) = 1796.6 \text{ K}$$

$$h3 = 1999.1 \text{ kJ/kg}$$

isentropic expansion process 3-4

$$T4 = 887.7 \text{ K.}$$
 $p4 = 0.3 \text{ MPa}$
 $u4 = 664.3 \text{ kJ/kg}$

$$\eta = 1 - \frac{Q_{41}/m}{Q_{23}/m} = 1 - \frac{u_4 - u_1}{h_3 - h_2}$$
$$= 1 - \frac{664.3 - 214.07}{1999.1 - 930.98} = 0.578(57.8\%)$$

$$\frac{W_{\text{cycle}}}{m} = \frac{Q_{23}}{m} - \frac{Q_{41}}{m} = (h_3 - h_2) - (u_4 - u_1)$$

$$= (1999.1 - 930.98) - (664.3 - 214.07)$$

$$= 617.9 \text{ kJ/kg}$$

mep =
$$\frac{W_{\text{cycle}}/m}{v_1 - v_2} = \frac{W_{\text{cycle}}/m}{v_1(1 - 1/r)}$$

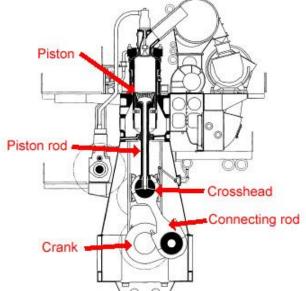
$$v_1 = \frac{(\overline{R}/M)T_1}{p_1} = \frac{\left(\frac{8314}{28.97} \frac{\text{N} \cdot \text{m}}{\text{kg} \cdot \text{K}}\right) (300 \text{ K})}{10^5 \text{ N/m}^2} = 0.861 \text{ m}^3/\text{kg}$$

$$\begin{split} \text{mep} &= \frac{617.9 \text{ kJ/kg}}{0.861(1 - 1/18) \text{m}^3/\text{kg}} \left| \frac{10^3 \text{ N} \cdot \text{m}}{1 \text{ kJ}} \right| \left| \frac{1 \text{ MPa}}{10^6 \text{ N/m}^2} \right| \\ &= 0.76 \text{ MPa} \ \triangleleft \end{split}$$

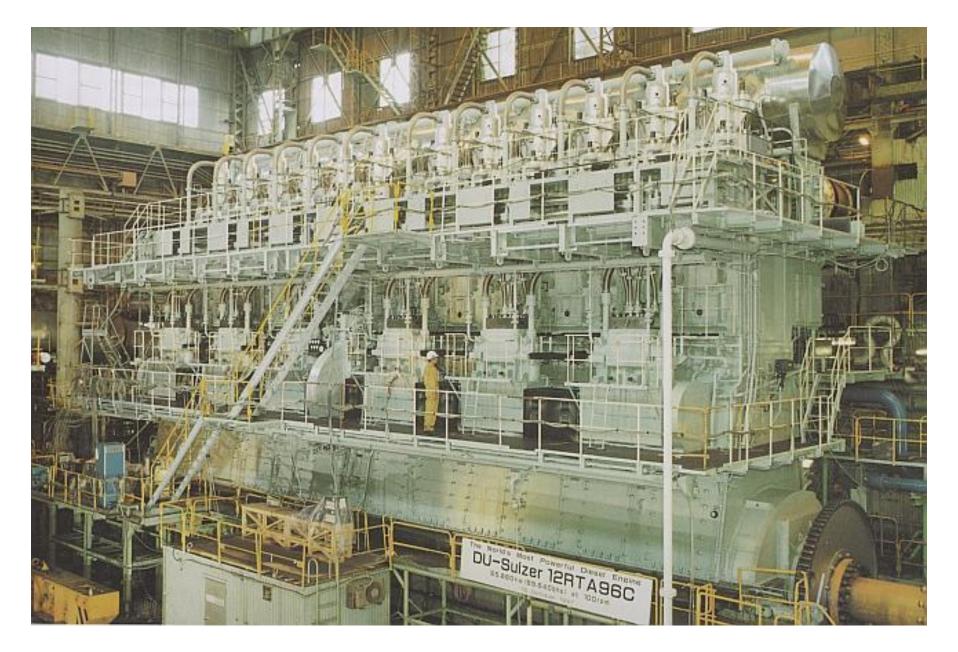
Large Diesel Engines for Ships

Wartsila-Sulzer RTA96-C turbocharged twostroke diesel engine

Total engine weight: 2300 tons (The crankshaft alone weighs 300 tons.)

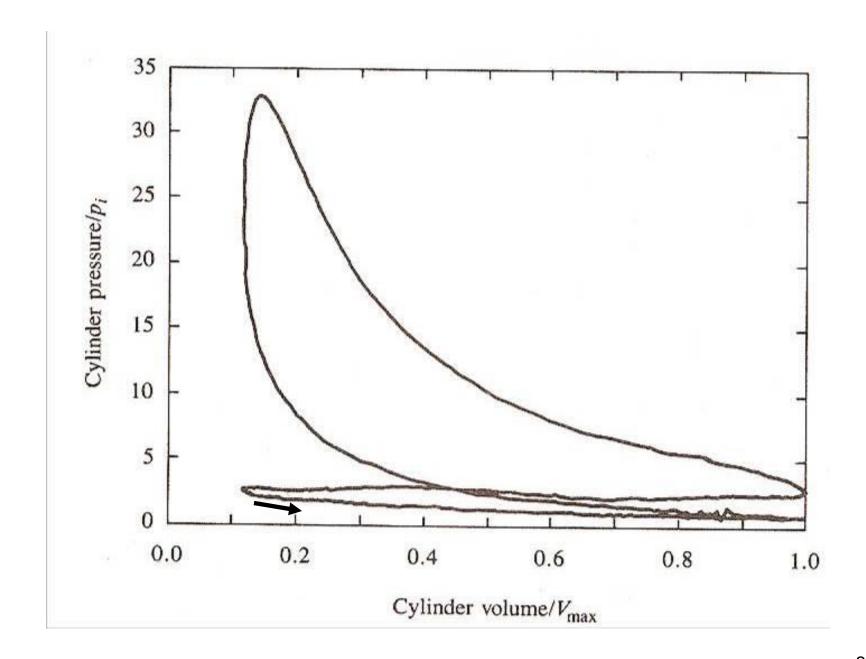

Length: 89 feet

Height: 44 feet


Maximum power: 108,920 hp at 102 rpm

Maximum torque: 5,608,312 lb/ft at 102rpm

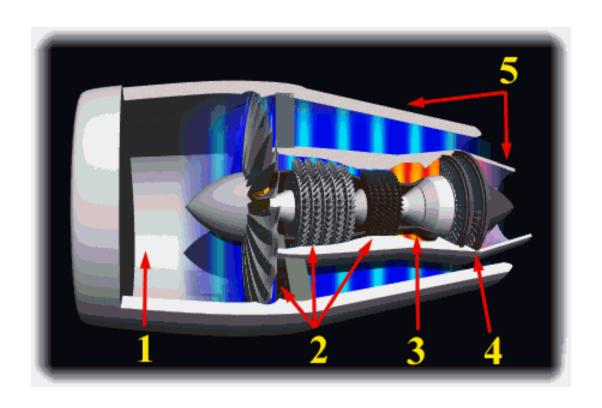
50% efficiency



Reality vs. Models

- Irreversible processes
 - Friction
 - Unrestrained Expansion
 - Heat Transfer
- Exhaust stroke
- Intake stroke
- Heat addition takes time in otto cycle and changes pressure in diesel cycle
- Throttling losses (esp at low power/idle)
- Heat losses to cylinder wall
- $k \neq 1.4$

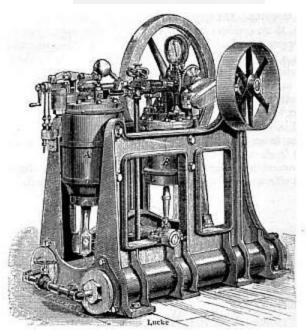
This accounts for the large differences (1/2) in modeled versus real efficiencies in the ICE

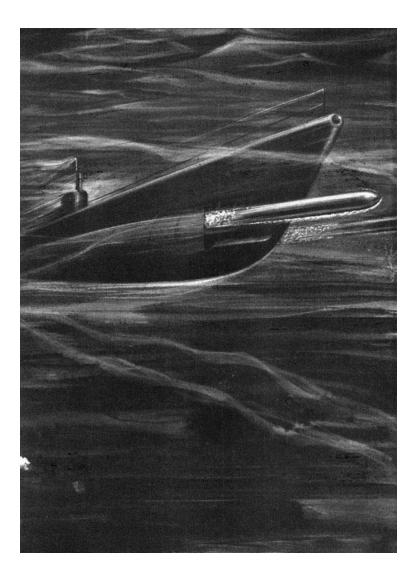

Improving Efficiency

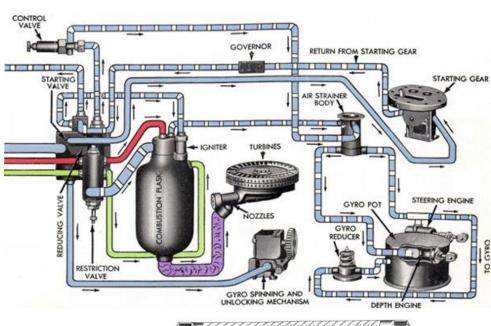
- Decrease entropy generation
 - Friction
 - Unrestrained expansion of gases
 - Heat transfer
- Increase temperature
- Shorten burn time for diesel

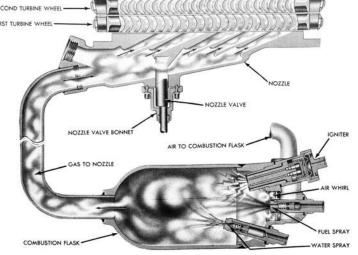
$$\eta_{th,Otto} = 1 - \frac{1}{r^{k-1}}$$

$$\eta_{th,Diesel} = 1 - \frac{1}{r^{k-1}} \left(\frac{\alpha^k - 1}{k(\alpha - 1)} \right)$$


Brayton Cycle

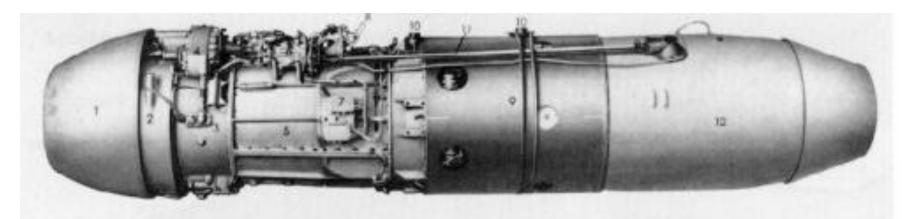

George Brayton (1830-1892)

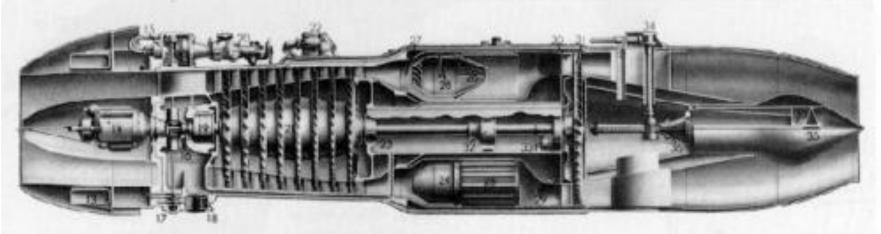

- Envisioned a continuous heat addition at constant pressure for a reciprocating engine.
- Eventually this idea morphed into a compressor, followed by burner followed by an expansion device.
- Gas turbine!



Torpedo Development (wet heater)

Gas Turbines


- Developed in WW2 independently by British and German researchers (concepts known in 1920s)
- Efficiency is lower than Otto and Diesel High backwork required
- Significantly higher power density
- ME 262 could outclimb the P-51 Mustang and fly 100 mph faster. Less efficient but roughly double the power!
- Open Brayton Cycle


In 1942 Adolf Galland—director general of fighters for the Luftwaffe, veteran of the Battle of Britain, and one of Germany's top aces—flew a prototype Messerschmitt ME 262. "For the first time, I was flying by jet propulsion and there was no torque, no thrashing sound of the propeller, and my jet shot through the air," he commented. "It was as though

angels were pushing."

Hitler delays production of ME 262 in favor of "Offensive" Aircraft and Weapons

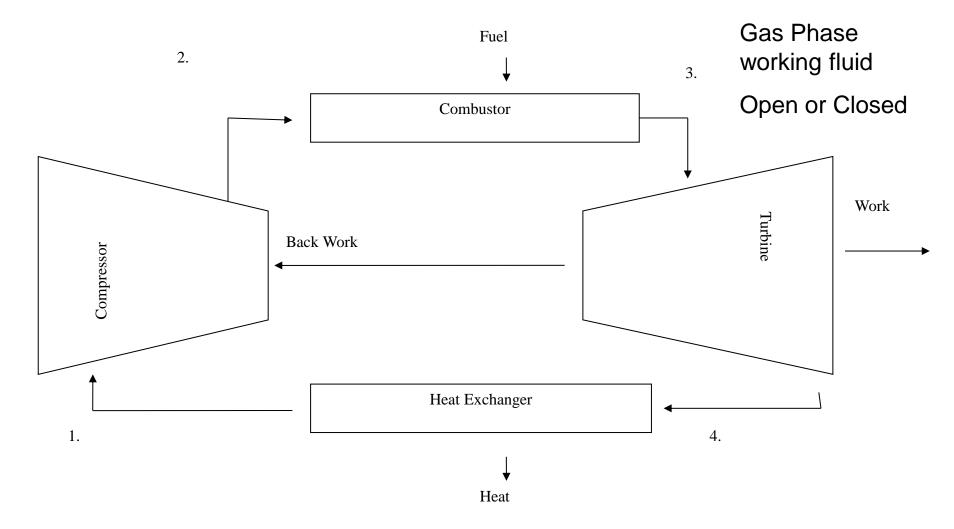
- U. Streeting
- 2 Services Realities
- 5 Strongelsteine
- 6 Spendentropet
- 5. VerdideligeNilose
- 8 Salutinegles
- F. Zintiya-bu
- 9 Builtingstüngstatief
- T. Jusquinese
- 10. Authorizing

- 11. Disservate/second-sector
- 15 Selection
- 12 Yesherfreighettiller
- Se Brame Antonia
- Th Disabetroscope
- 16 Accessingstricts
- II between Progress
- M. Soloventoffigu
- 18 Vanderes Verdichtertager

- 30. Durbrothegar
- 26 Verol, Warnington
- 27 KlabinSher
- 25. Honory Venture oper-
- 28 Name
- 25 Harphonneysham
- 26 Sectionisties
- 27. Hautorital
- 30 Emprisonal

- 39 Sanories
- W. Indicate III. Terbinseringhar
- SE: Number on Turbing changes
- III. Homeryn Tarbineologiel will Schelerstoffwartingenovepen
- 36. Disentativately, and after
- 38 Diseasement
- M. Disposolis/Ingerory

Jumo 004-B


Ansicht und Schnitt Fl. Ub. Nr. 9-062/1

Stand vom September 1944 Standard elizabeths Andronger Sandard and Spread Standard

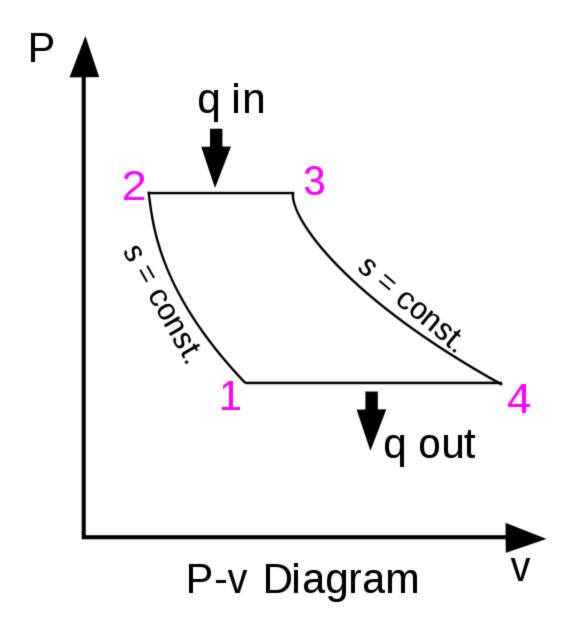
Types of turbine engines

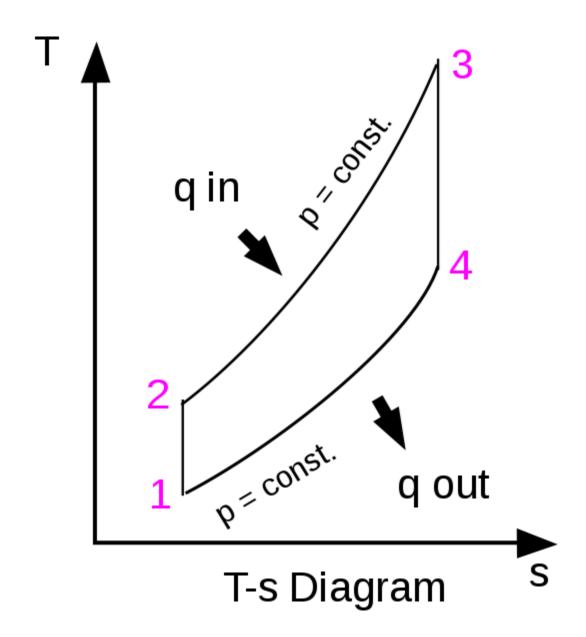
- Turbojet
- Turbofan
- Turboprop
- Turboshaft

Simple Brayton Cycle

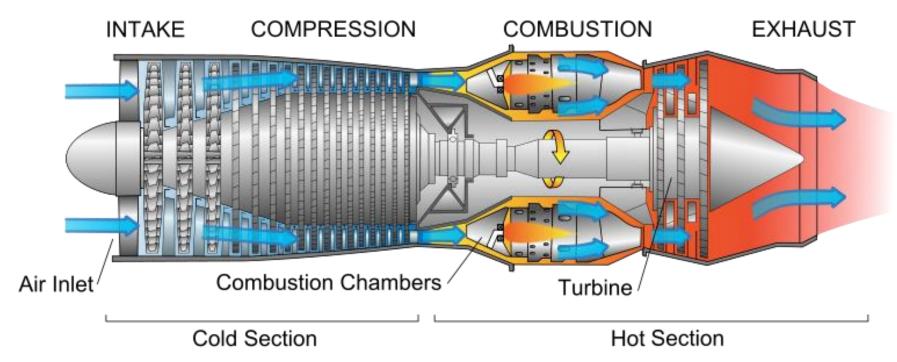
Open Brayton Cycle

Uses Atmosphere as the Heat Exchanger

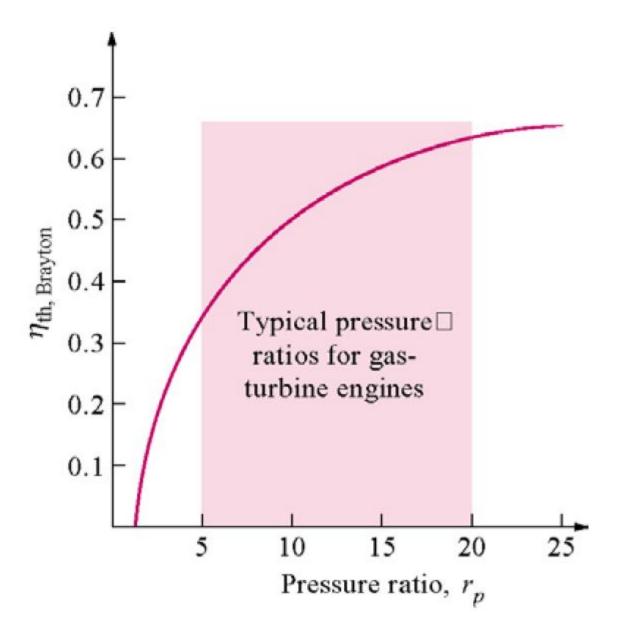



Air Standard Assumptions

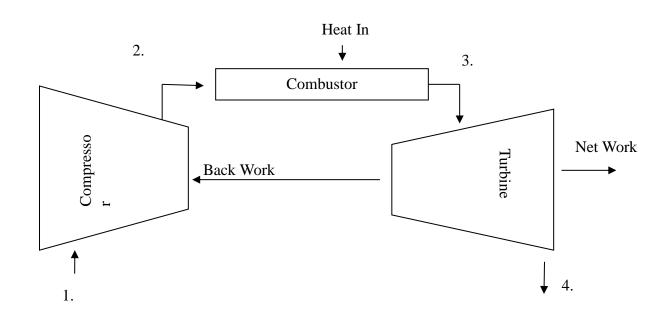
- Working fluid is air and acts as an ideal gas
- All Processes are internally reversible
- Combustion process is replaced by heat addition
- Exhaust process is replaced by heat rejection
- Cold ASA are that properties of air are constant at 25C


Ideal Brayton Cycle

- Isentropic Compression
- Isobaric Heat Addition
- Isentropic Expansion
- Isobaric Heat Rejection



Gas Turbines


Can use direct thrust from momentum (mass flow rate x Velocity = Force) or can drive a shaft (helicopters, boats, turbo propeller aircraft).

$$\eta_{th,brayton} = 1 - \frac{1}{r_p^{\left(\frac{k-1}{k}\right)}}$$

A Run around the Brayton Cycle

The ideal air-standard Brayton cycle operates with air entering the compressor at 95 kPa, 22° C. The pressure ratio r_p is 6:1 and the air leaves the heat addition process at 1100 K. Determine the compressor work and the turbine work per unit mass flow, the cycle efficiency, the back work ratio, and compare the compressor exit temperature to the turbine exit temperature. Assume constant properties.

Example of Calculations (continued)

Isentropic Compressor Work

 $=198.15\frac{kJ}{ka}$

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k} = r_p^{(k-1)/k}$$

$$T_2 = T_1 r_p^{(k-1)/k}$$

$$= (22 + 273) K(6)^{(1.4-1)/1.4}$$

$$= 492.5 K$$

$$w_{comp} = C_p (T_2 - T_1)$$

$$= 1.005 \frac{kJ}{kg \cdot K} (492.5 - 295) K$$

Isentropic Turbine Work

$$\frac{T_4}{T_3} = \left(\frac{1}{r_p}\right)^{(k-1)/k}$$

$$T_4 = T_3 \left(\frac{1}{r_p}\right)^{(k-1)/k}$$

$$= 1100K \left(\frac{1}{6}\right)^{(1.4-1)/1.4}$$

$$= 659.1K$$

$$w_{turb} = C_p(T_3 - T_4) = 1.005 \frac{kJ}{kg \cdot K} (1100 - 659.1)K$$

$$= 442.5 \frac{kJ}{kg}$$

Example of Calculations (continued)

Heat In

$$q_{in} = \frac{Q_{in}}{\dot{m}} = h_3 - h_2$$

$$= C_p (T_3 - T_2) = 1.005 \frac{kJ}{kg \cdot K} (1100 - 492.5) K$$

$$= 609.6 \frac{kJ}{kg}$$

Work Out

$$w_{net} = w_{turb} - w_{comp}$$

= $(442.5 - 198.15) \frac{kJ}{kg}$
= $244.3 \frac{kJ}{kg}$

Example of Calculations (continued)

$$\eta_{th, Brayton} = \frac{w_{net}}{q_{in}}$$

$$= \frac{244.3 \frac{kJ}{kg}}{609.6 \frac{kJ}{kg}} = 0.40 \quad or \quad \boxed{40\%}$$

$$BWR = \frac{w_{in}}{w_{out}} = \frac{w_{comp}}{w_{turb}}$$

$$= \frac{198.15 \frac{kJ}{kg}}{442.5 \frac{kJ}{kg}} = 0.448$$

Turbine exit temperature (659K) is significantly hotter than compressor exit (492K)!

Entropy


- Major Irreversibilities
 - Friction
 - Unrestrained Expansion
 - Heat Transfer

Total entropy always increases

Isentropic Efficiency

- Referenced to Isentropic Cases
- Always less than Unity.

$$\eta_{turbine} = rac{W_{out_{actual}}}{W_{out_{isentropic}}} = rac{W_a}{W_s}$$

$$oldsymbol{\eta_{compressor}} = rac{W_{in_{isentropic}}}{W_{in_{actual}}} = rac{W_{s}}{W_{a}}$$

Hot Exhaust (even without afterburners)

Hot Exhaust brings the advent of Tricycle Landing Gear

Note how field catches on fire

Early Model Taildragger ME 262

Later Model ME 262 w/ tricycle gear

Recuperation

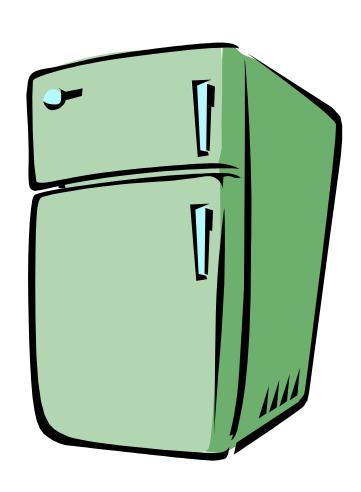
- If temperature at exit of turbine is higher than the temperature at exit of compressor one can use a recuperator to preheat air before the combustion process.
- Adds weight but increases efficiency.
- Closed heat exchanger required (the two streams are at different pressures).

$$arepsilon_{regen} = rac{q_{regen, \, act}}{q_{regen, \, max}}$$

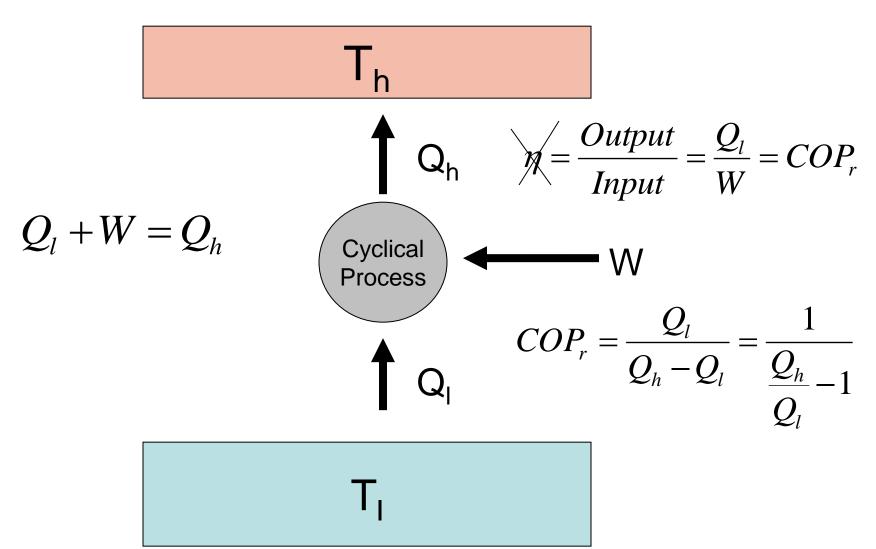
For 8:1 pressure ratio, Compressor entrance at 300K 1 bar, turbine entrance at 1200K (ideal and non ideal cases with and without regeneration)

Summary of Results

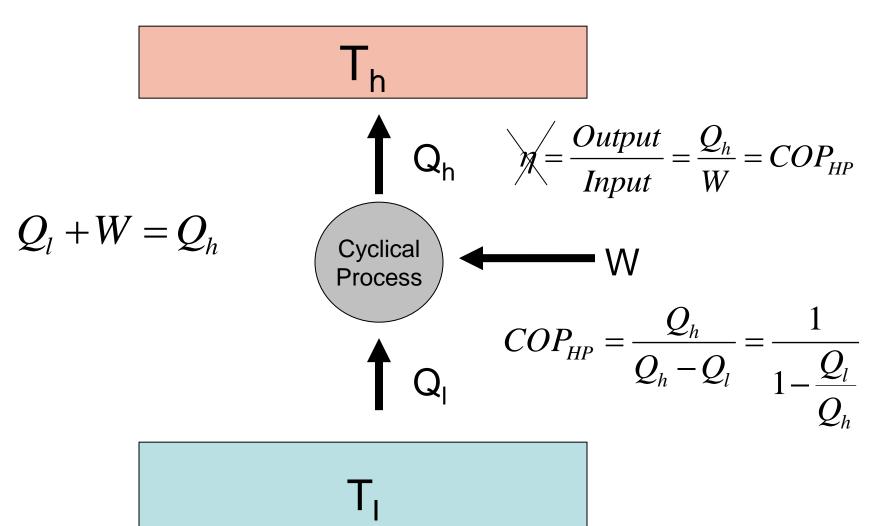
Cycle type	Actual	Actual	Actual	Ideal	Ideal	Ideal
$\epsilon_{ m regen}$	0.00	0.65	1.00	0.00	0.65	1.00
η_{comp}	0.75	0.75	0.75	1.00	1.00	1.00
η_{turb}	0.86	0.86	0.86	1.00	1.00	1.00
$q_{ m in}$ kJ/kg	578.3	504.4	464.6	659.9	582.2	540.2
w _{comp} kJ/kg	326.2	326.2	326.2	244.6	244.6	244.6
w _{turb} kJ/kg	464.6	464.6	464.6	540.2	540.2	540.2
$w_{\rm comp}/w_{\rm turb}$	0.70	0.70	0.70	0.453	0.453	0.453
$\eta_{ ext{th}}$	24.0%	27.5%	29.8%	44.8%	50.8%	54.7%

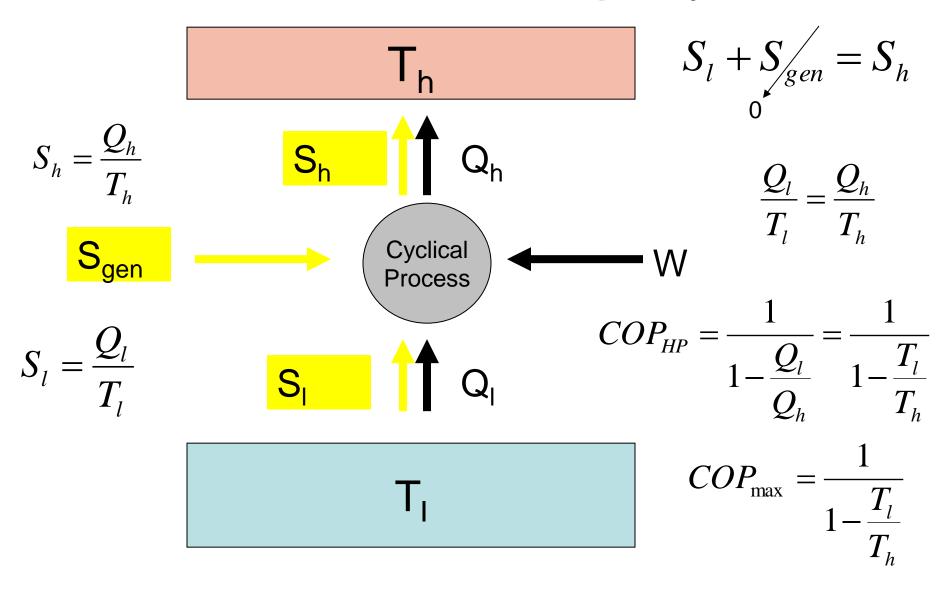

Gas Turbine Engines Brayton Cycle

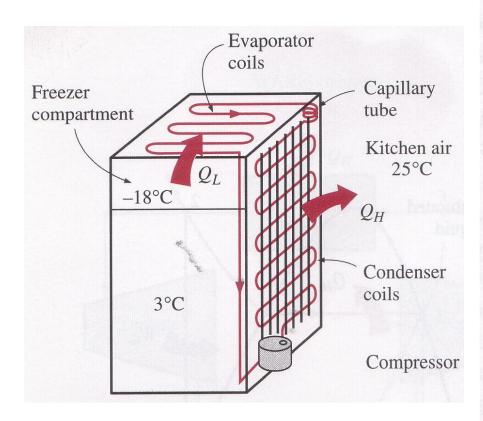
- High back work
- Need thermal recuperation for high efficiency
- High Power Density
- Smooth
- Slow Dynamic Response (turbo lag)
- Relatively Low Torque
- Scalability??

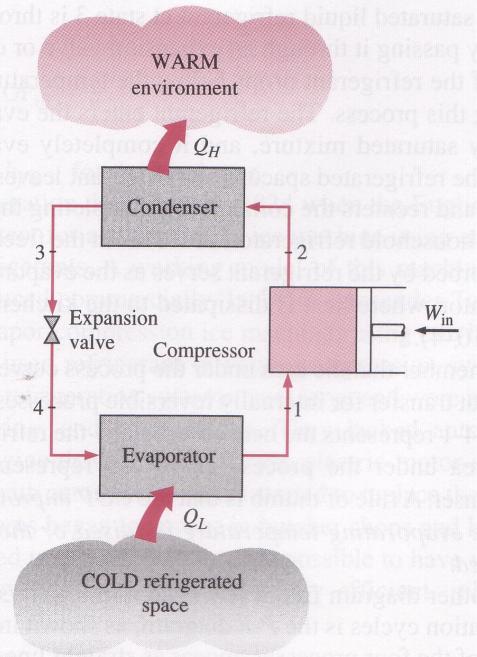

Vapor compression Refrigeration Cycle

 Can you imagine life without refrigeration?

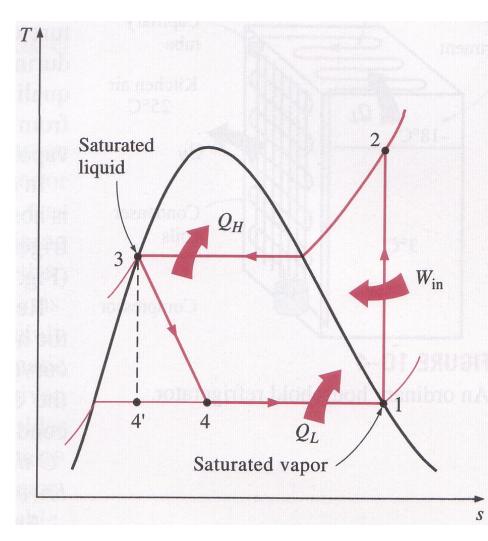

Refrigeration Cycle


Carnot Refrigeration Cycle

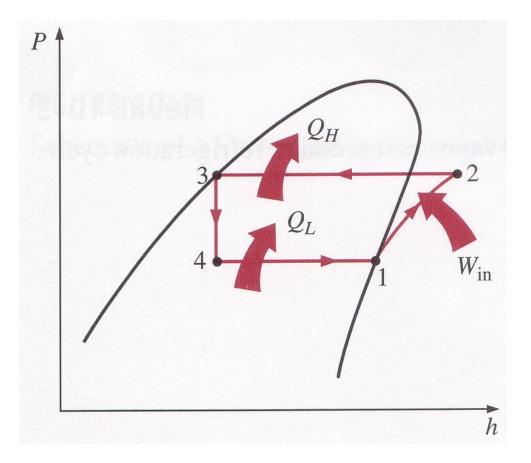

Heat Pump Cycle



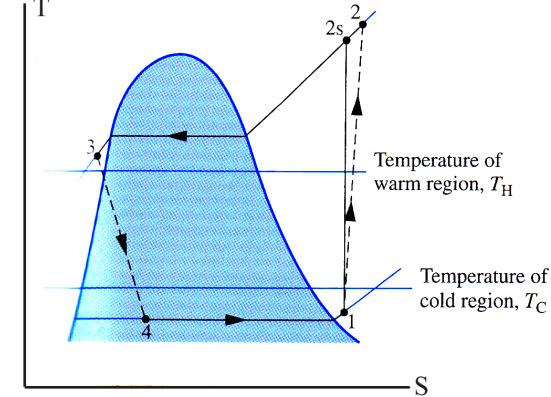
Carnot Heat Pump Cycle


The System

Thermodynamics – T-S


- 1-2 Isentropic Compression
 - Compressor
- 2-3 Isobaric heat transfer
 - Condenser
- 3-4 Throttling process
 - Expansion valve
- 4-1 Isobaric heat transfer
 - Evaporator

Thermodynamics – P-h


- Pressure Enthalpy
- 1 Saturated vapor
- 2 Superheated vapor
- 3 Saturated liquid
- 4 Vapor + liquid

 Will vary for each refrigerant gas

Actual Process – T-S

- Non-Isentropic compression
- Superheated gas at 1
- Subcooled liquid at 3
- Ambient temperatures
 - T_H<T_{CONDENSER}
 - T_C>T_{EVAPORATOR}
 - Necessary for heat transfer

You roughly need a Delta T of 10 C for efficient Heat Transfer

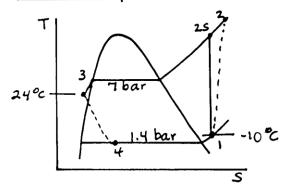
Performance

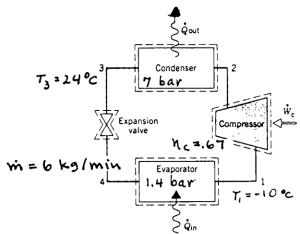
$$COP_{R} = \frac{q_{L}}{w_{net,in}} = \frac{h_{1} - h_{4}}{h_{2} - h_{1}}$$

$$q = \frac{\dot{Q}}{\bullet}, \quad w = \frac{\dot{W}}{\bullet}$$

- · Heat WILL flow from cold to hot, if work is done
- More heat flows than work is done
- Typical COP_R≈4

A Run around the Refrigeration Cycle

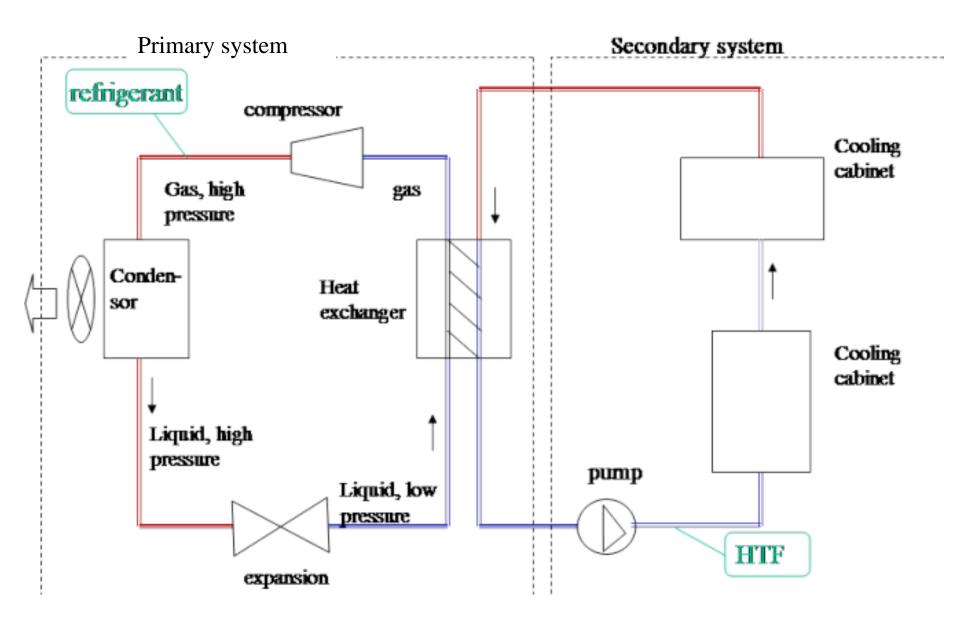

A vapor-compression refrigeration system circulates Refrigerant 134a at a rate of 6 kg/min. The refrigerant enters the compressor at 10C, 1.4 bar, and exits at 7 bar. The isentropic compressor efficiency is 67%. There are no appreciable pressure drops as the refrigerant flows through the condenser and evaporator. The refrigerant leaves the condenser at 7 bar, 24C. Ignoring heat transfer between the compressor and its surroundings, determine


- (a) the coefficient of performance.
- **(b)** the refrigerating capacity, in tons.

KNOWN: A vapor-compression refrigeration system circulates R134a with a known mass flow rate. Data are given at various locations, and the compressor efficiency is specified.

EIND: Determine (a) the coefficient of performance, and (b) the refrigerating capacity.

SCHEMATIC & GIVEN DATA:



A Run around the Refrigeration Cycle

ANALYSIS: First, fix each of the principal states. State 1 T,=-10°C, P,=1.4 bar => h,=243.40 kJ/kg, s,=:9606 kJ/kg.K State z For isentropic compression, p=7 bar, Sz=5, => hz= 278.06 kJ using the compressor efficiency $M_c = \frac{h_{2s} - h_1}{h_2 - h_1} \implies h_z = h_1 + (\frac{h_{2s} - h_1}{N_c}) = 295.13 \text{ kJ/kg·K}$ State 3 p3 = 7 bar , T= 240 => h3 = h224 = 82.90 kJ/kg, S3 = .3113 kJ/kg·K State 4 Throttling process => h4=h3=82.90 kJ/kg,84=.33011 kJ/kg.k (a) The coefficient of performance is $\beta = \frac{h_1 - h_4}{h_2 - h_1} = 3.10$ (b) The refrigerating capacity is àin = m (h,-h4)

= $\left(6 \frac{\text{kg}}{\text{min}}\right) \left(243.40 - 82.90\right) \frac{\text{kJ}}{\text{kg}} \left| \frac{1 \text{ ton}}{211 \text{ kJ/min}} \right| = 4.564 \text{ tons}$

Desirable Characteristics of Refrigerants

High H_{fg}

R-11

Low Cost

R-22

R-134a

Non-toxic

R-410

Non-Corrosive

Ammonia

- Liquid at STP
- Reasonable pressures and temperatures for application
- Environmentally "friendly" GHG, Ozone, etc

Typical Secondary Refrigeration Fluids (or heat transfer fluids)

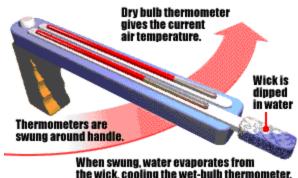
- Ethylene glycol
- Propylene glycol (In your sports drink)
- Water

- High heat capacity
- Low viscosity (pumping losses)
- Non-toxic
- Cheap

What can be done to improve system

- Decrease Entropy Generation (Friction, Unrestrained Expansion,
- Decrease Heat Gain

Remove/Reduce Transient Loads


Air / Water Mixtures

- Several tools
 - Wet / dry bulb thermometer
 - Psychrometric chart
 - Hygrometer
- Allow calculation of:
 - Humidity
 - Enthalpy
 - Saturation temperature (dew point)
 - Density

Wet / dry bulb thermometer

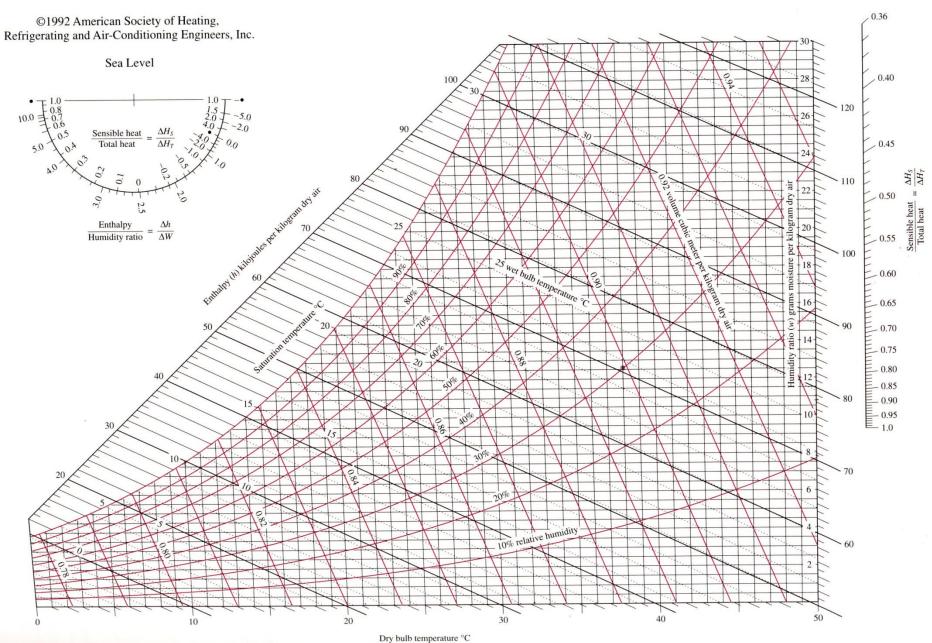
Two thermometers

- Wet bulb bulb is surrounded by moistened wick
- Dry bulb exposed "dry" bulb"
- Moisture content of air determines evaporation rate cooling effect
- 100% relative humidity wet=dry
- Low humidity = wet <<dry</p>

Humidity Measures

Absolute Humidity:

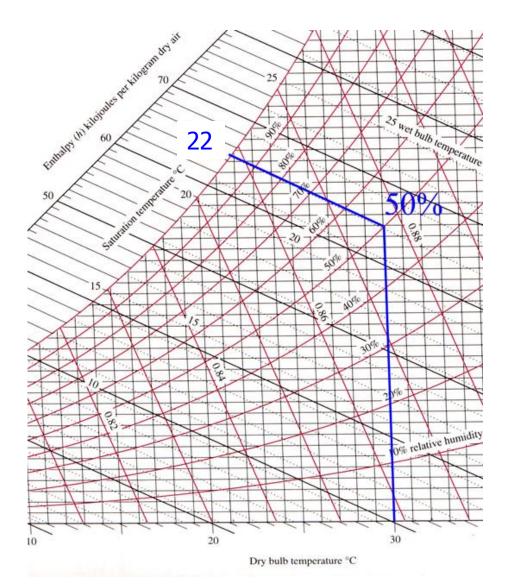
$$\gamma = \frac{m_{H_2O\ vapour}}{m_{air}} = \frac{mass of\ water\ vapor}{mass of\ dry\ air}$$


Relative Humidity:

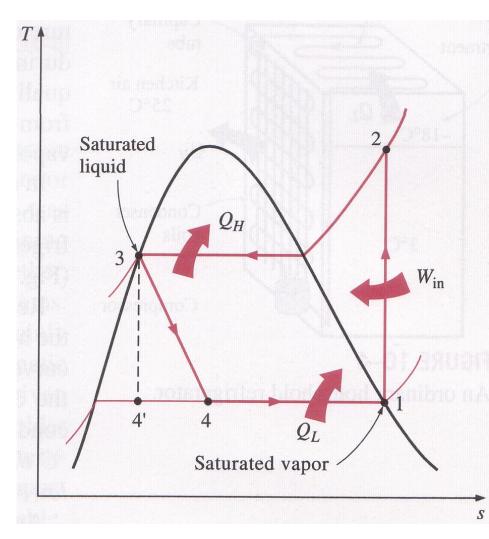
$$\phi = \frac{p_{H_2O \ vapour}}{p_{saturation}} = \frac{partial \ pressure of \ H_2O \ vapor}{saturation \ pressure at \ mixture \ temperature}$$

ASHRAE Psychrometric Chart No. 1

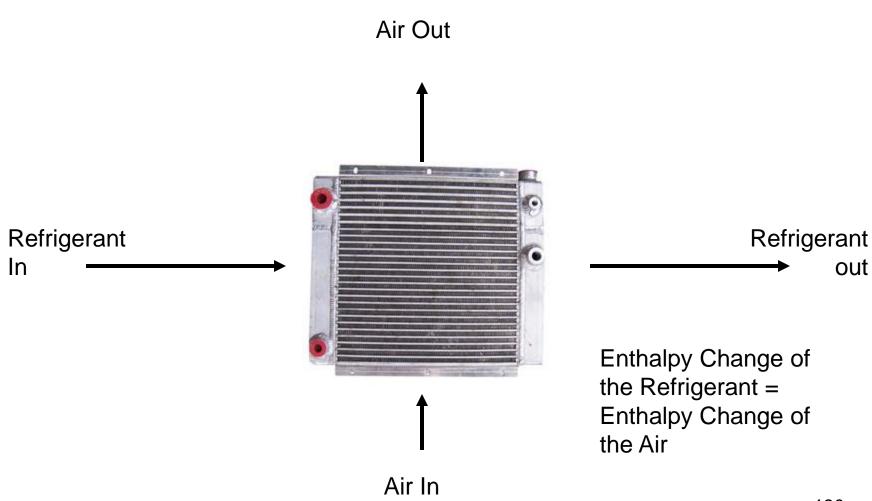
Normal Temperature Barometric Pressure: 101.325 kPa



Calculating Humidity


- Dry bulb = 30° C
- Wet bulb = 22° C

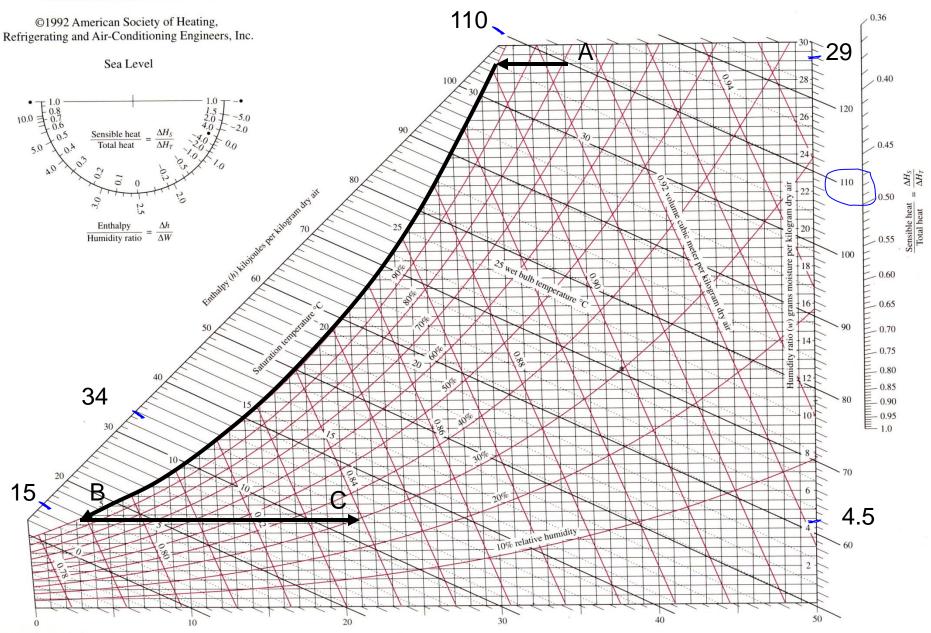
- Humidity = 50%
- Dew Point = 18.5° C



AC Thermodynamics

- 1-2 Isentropic Compression
 - Compressor
- 2-3 Isobaric heat transfer
 - Condenser
- 3-4 Throttling process
 - Expansion valve
- 4-1 Isobaric heat transfer
 - Evaporator

Evaporator Systems


AC Systems

- Outside Air is 35°C 80% relative humidity Comes across HTEX (AC system) exiting at 3°C and is injected into a 21°C Compartment
 - If Outside air is passed at 4 kg/min (assume dry air equivalence) and then exits the cabin what is the condensation removal required at the HTEX?
 - How big is the AC system in Tons?
 - What is the heat gain of the cabin?
 - If the AC system has a COP of 2.5 what is the power required in Watts?
 - What could be done to lower the power requirement and what is the minimum power requirement?

ASHRAE Psychrometric Chart No. 1

Normal Temperature Barometric Pressure: 101.325 kPa

Dry bulb temperature °C

Solutions

 Condensation Removal (Change in Absolute Humidity)

$$\dot{m}(\gamma_A - \gamma_B) = 4kg_{DryAir} / \min(29g_{H_2O} / kg_{DryAir} - 4.5g_{H_2O} / kg_{DryAir}) = 98g_{H_2O} / \min$$

 Size of the Refrigeration System (Q_I in the proper unit 211kJ/min/ton)

the proper unit 211kJ/min/ton)
$$\dot{m}(h_A - h_B) = 4kg_{DryAir} / \min(110kJ/kg_{DryAir} - 15kJ/kg_{DryAir}) = 380kJ/\min \frac{380kJ/\min}{211kJ/\min/Ton} = 1.8Ton$$

- Heat Gain (how does the air heat up?) $\dot{m}(h_c h_B) = 4kg_{DryAir} / \min(34kJ/kg_{DryAir} 15kJ/kg_{DryAir}) = 76kJ/\min$ (enthalpy change from evaporator exit to compartment exhaust)
 - Power required (Q_I/COP in proper $\dot{W} = \frac{Q_l}{COP_c} = \frac{380kJ/\min}{2.5} = 152kJ/\min = 2.53kW$
- Minimum Power (Why are we getting rid of relatively cool dry air? Recirculate!) (QI becomes heat gain and Power=Q_I/COP in proper Unit) (Note that some fresh air is required so this is overly optimistic)

$$\dot{W} = \frac{Q_l}{COP_r} = \frac{76kJ/\min}{2.5} = 30.4kJ/\min = 0.507kW$$

ASHRAE 1975 minimum value of 5 cubic feet per minute (CFM) of outdoor air per person in building design.