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— chronology —

∼ 1800 BC Larsa, Mesopotamia
Plimpton 322 — “Pythagorean triples” cuneiform tablet

∼ 540 BC Crotone, Magna Graecia
the Pythagorean school — “theorem of Pythagoras”

∼ 825 AD Muhammad al-Khwarizmi, Baghdad
Kitab al–mukhtasar fi hisab al–jabr wa’l–muqabalah
rules of algebra; solutions of specific cubic equations

16th Century Italy – Tartaglia, Cardano, Ferrari
“solution by radicals” for cubic and quartic equations

1651–1708 Ehrenfried Walther von Tschirnhaus, Dresden
Tschirnhausen’s cubic; reduction of algebraic equations;
caustics by reflection; manufacture of hard–fired porcelain

1745–1818 Caspar Wessel, Copenhagen
Om directionens analytiske betegning — geometry of complex numbers

1805–1865 Sir William Rowan Hamilton, Dublin
algebra of quaternions; spatial rotations; origins of vector analysis
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As long as algebra and geometry were
separated, their progress was slow and their
uses limited; but once these sciences were
united, they lent each other mutual support and
advanced rapidly together towards perfection.

Joseph-Louis Lagrange (1736-1813)



Plimpton 322

origin — Larsa (Tell Senkereh) in Mesopotamia ∼ 1820–1762 BC

discovered in 1920s — bought in market by dealer Edgar A. Banks — sold
to collector George A. Plimpton for $10 — donated to Columbia University

deciphered in 1945 by Otto Neugebauer and Abraham Sachs — but
significance, meaning, or “purpose” still the subject of great controversy



sketch of Plimpton 322 by Eleanor Robson

fifteen rows of sexagecimal numbers in four columns

3, 31, 49 → 3× (60)2 + 31× 60 + 49

1; 48, 54, 1, 40 → 1 +
48
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first three columns generated by integers p, q through formulae
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with 1 < q < 60, q < p, p/q steadily decreasing



f = [ (p2 + q2)/2pq ]2 s = p2 − q2 d = p2 + q2 #

[1;59,0,]15 1,59 2,49 1
[1;56,56,]58,14,50,6,15 56,7 1,20,25 2
[1;55,7,]41,15,33,45 1,16,41 1,50,49 3
[1;]5[3,1]0,29,32,52,16 3,31,49 5,9,1 4
[1;]48,54,1,40 1,5 1,37 5
[1;]47,6,41,40 5,19 8,1 6
[1;]43,11,56,28,26,40 38,11 59,1 7
[1;]41,33,59,3,45 13,19 20,49 8
[1;]38,33,36,36 8,1 12,49 9
1;35,10,2,28,27,24,26,40 1,22,41 2,16,1 10
1;33,45 45,0 1,15,0 11
1;29,21,54,2,15 27,59 48,49 12
[1;]27,0,3,45 2,41 4,49 13
1;25,48,51,35,6,40 29,31 53,49 14
[1;]23,13,46,40 56 1,46 15

p q

12 5
1,4 27

1,15 32
2,5 54

9 4
20 9
54 25
32 15
25 12

1,2 1 40
1,0 30
48 25
15 8
50 27

9 5

Pythagorean triples of integers

s2 + l2 = d2 ⇐⇒

 s = p2 − q2

l = 2pq
d = p2 + q2

l = 2 p q

s
=

p2
–

q2 d = p 2
+ q 2

θ



significance of Plimpton 322

R. C. Buck (1980), Sherlock Holmes in Babylon, Amer. Math. Monthly 87, 335-345

• investigate in isolation as a “mathematical detective story”

• an exercise in number theory (s, l, d) = (p2 − q2, 2pq, p2 + q2) ?

• construction of a trigonometric table — sec2 θ = [(p2 + q2)/2pq] 2 ?

Eleanor Robson (2001), Neither Sherlock Holmes nor Babylon —
A Reassessment of Plimpton 322, Historia Mathematica 28, 167-206

• studied mathematics, then Akkadian and Sumerian at Oxford

• linguistic, cultural, historical context critical to a proper interpretation

• number theory & trigonometry interpretations improbable — more likely
a set of “cut–and–paste geometry” exercises for the training of scribes



“cut-and-paste geometry” problem

find regular reciprocals x,
1
x

satisfying x =
1
x

+ h for integer h

x = 1 / x + h
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scaling by 2pq yields d = p2 + q2, s = p2 − q2

f represents (unscaled) area of large square



“in praise of the scribal art”

Mesopotamian scribes were dedicated professionals
— the vanguard of human literacy and numeracy

The scribal art is the mother of orators, the father of masters,
The scribal art is delightful, it never satiates you,
The scribal art is not (easily) learned, (but) he who

has learned it need no longer be anxious about it,
Strive to master the scribal art, it will enrich you,
Be industrious in the scribal art and it will provide

you with wealth and abundance,
Do not be careless about the scribal art, do not neglect it . . .

translated by Dr. Ake W. Sjöberg
University of Pennsylvania, Museum of Archaeology and Anthropology



Pythagoras of Samos ∼ 580–500 BC

travelled to Egypt (possibly Mesopotamia), founded Pythagorean School
in Crotone, S. E. Italy — no written records, no contemporary biography

philosophy = “love of wisdom,” mathematics = “that which is learned”

secretive and elitist practices incurred suspicions —
Pythagorean school destroyed, Pythagoras killed in Metapontum

b

a
c

(i)

(iv)

(ii)

(v)

(iii)

(vi)

proof of Pythagorean theorem, a2 + b2 = c2



Pythagoras as legend

a2

b2

c2a

b

c

It is hard to let go of Pythagoras. He has meant so much to so many
for so long. I can with confidence say to readers of this essay: most
of what you believe, or think you know, about Pythagoras is fiction,
much of it deliberately contrived.

M. F. Burnyeat, London Review of Books (2007)

W. Burkert (1972), Lore and Science in Ancient Pythagoreanism,
Harvard University Press (translated by E. L. Minar, Jr.)
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a, b, c = real numbers

choose any a, b → c =
√

a2 + b2

a, b, c = integers

a
2

+ b
2

= c
2 ⇐⇒


a = (u2 − v2)w
b = 2uvw

c = (u2 + v2)w

a(t), b(t), c(t) = polynomials

a
2
(t) + b

2
(t) ≡ c

2
(t) ⇐⇒


a(t) = [ u2(t)− v2(t) ] w(t)
b(t) = 2 u(t)v(t)w(t)

c(t) = [ u2(t) + v2(t) ] w(t)

K. K. Kubota, Amer. Math. Monthly 79, 503 (1972)



hodograph = curve derivative, r′(t)

curve

velocity vectors

hodograph



Pythagorean-hodograph (PH) curves

r(t) = PH curve in Rn ⇐⇒ coordinate components of r′(t)

are elements of a “Pythagorean (n + 1)-tuple of polynomials”

PH curves exhibit special algebraic structures in their hodographs

• rational offset curves rd(t) = r(t) + dn(t)

• polynomial arc-length function s(t) =
∫ t

0

|r′(τ)| dτ

• closed-form evaluation of energy integral E =
∫ 1

0

κ2 ds

• real–time CNC interpolators, rotation-minimizing frames, etc.



exact arc lengths

S = 8

S = 22/3

uniform arc–length rendering

∆s = constant

∆t = constant



Bezier control polygons of rational offsets offsets exact at any distance



al-jabr wa’l-muqabalah

etymology of algebra and algorithm

Muhammad ibn Musa al–Khwarizmi (c. 825 AD),
Kitab al mukhtasar fi hisab al-jabr wa’l-muqabalah

al-jabr wa’l-muqabalah = “restoration and balancing”
(rearranging terms in an equation to obtain solution)

translated into Latin as Liber algebrae et almucabola
by Englishman Robert of Chester (c. 1125 AD, Segovia)

another treatise translated by Adelhard of Bath (c. 1130 AD) as
Algoritmi de numero Indorum (al–Khwarizimi on the Hindu numeral
system) — discovered in Cambridge by B. Boncompagni, 1857



Omar Khayyam (1048–1131)

— astronomer, poet, mathematician —

I say, with God’s help and good guidance, that the art of al-jabr
and al-muqabalah is a mathematical art, whose subject is pure
number and mensurable quantitites in as far as they are unknown,
added to a known thing with the help of which they may be found;
and that thing is either a quantity or a ratio, so that no other is like it,
and the thing is revealed to you by thinking about it. And what is
required in it are the coefficients which are attached to its subject
matter in the manner stated above. And the perfection of the art
is knowing the mathematical methods by which one is led to the
manner of extracting the numerical and mensurable unknowns.

Risala fi’l-barahin ‘ala masa’il al-jabr wa’l-muqabalah



Omar Khayyam’s solution of cubics

(i) x3 + a2x = a2b (ii) x3 + ax2 = b3

x

y

O

P

Q x

y

O

P

Q

(i) intersect parabola x2 = ay & circle x2 + y2 − bx = 0

(ii) intersect parabola y2 = b(x + a) & hyperbola xy = b2

in both cases, positive root = length OQ



Ruba’iyat (quatrains) of Omar Khayyam

Khayyam better known in the West as a poet: Ruba’iyat popularized
by Edward FitzGerald (1859) — also musical score by Alan Hovhaness

The moving finger writes, and, having writ,
Moves on: nor all thy piety nor wit
Shall lure it back to cancel half a line,
Nor all thy tears wash out a word of it.

Khayyam realized that some cubics have more than one real root —
sought a method for solving general cubics, but lacked knowledge of
complex numbers



Pythagorean triples of polynomials

x′2(t) + y′2(t) = σ2(t) ⇐⇒


x′(t) = u2(t)− v2(t)
y′(t) = 2 u(t)v(t)
σ(t) = u2(t) + v2(t)

K. Kubota, Pythagorean triples in unique factorization domains, Amer. Math. Monthly 79, 503–505 (1972)

R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 736–752 (1990)

R. T. Farouki, The conformal map z → z2 of the hodograph plane, Comput. Aided Geom. Design 11,
363–390 (1994)

(complex polynomial )2 → planar Pythagorean hodograph

choose complex polynomial w(t) = u(t) + i v(t)

→ planar Pythagorean hodograph r′(t) = (x′(t), y′(t)) = w2(t)



complex number model for planar PH curves

w  w2

w(t) = u(t) + i v(t) maps to r′(t) = w2(t) = u2(t)− v2(t) + i 2u(t)v(t)

rotation invariance of planar PH form: rotate by θ, r′(t) → r̃′(t)

then r̃′(t) = w̃2(t) where w̃(t) = ũ(t) + i ṽ(t) = exp(i 1
2θ)w(t)

in other words,

 ũ(t)

ṽ(t)

 =

 cos 1
2θ − sin 1

2θ

sin 1
2θ cos 1

2θ

  u(t)

v(t)





PH quintic Hermite interpolants

w(t) = w0(1− t)2 + w12(1− t)t + w2t
2

z(t) =
∫

w2(t) dt

z1 = z0 + w2
0/5 ,

z2 = z1 + w0w1/5 ,

z3 = z2 + (2w2
1 + w0w2)/15 ,

z4 = z3 + w1w2/5 ,

z5 = z4 + w2
2/5 .

problem : find complex values w0, w1, w2 given z(0), z(1) and z′(0), z′(1)

solution : nested pair of quadratic equations → four distinct interpolants!



four distinct PH quintic Hermite interpolants

+ + + –

– + – –



choosing the “good” interpolant

absolute rotation index: Rabs =
1
2π

∫
|κ| ds

w.l.o.g. take z(0) = 0 and z(1) = 1 (shift+scale of Hermite data)

z′(t) = k [ (t− a)(t− b) ]2

solve for k, a, b instead of w0, w1, w2

locations of a, b relative to [ 0, 1 ] gives Rabs :

Rabs =
∠ 0a 1 + ∠ 0b 1

π
(no inflections)

Rabs =
1
π

N∑
k=0

|∠ tk a tk+1 − ∠ tk b tk+1 |



Farouki’s Tschirnhausen’s (1690) cubic

Bezier control polygons of PH cubics (1990)

unique curve !L1

L2
L3

θ1

θ2

caustic for
reflection

by parabola

trisectrix of Catalan

l’Hospital’s cubic

cubic PH curve ⇐⇒ Bézier polygon satisfies L2 =
√

L1L3 and θ2 = θ1



Ehrenfried Walther von Tschirnhaus 1651–1708

◦ contemporary of Huygens, Leibniz, and Newton

◦ visited London and Paris after studying in Leiden

◦ investigated burning mirrors in Milan and Rome

• Tschirnhaus transform “A method for eliminating all intermediate
terms from a given equation” — Acta Eruditorum, May 1683

• empirical & analytical investigations of caustics by reflection

• Tschirnhausen’s cubic = unique cubic Pythagorean-hodograph curve

• developed manufacture of hard–fired porcelain in Dresden



Tschirnhaus transform of cubic equation

t3 + a2t
2 + a1t + a0 = 0

Descartes: t → t− 1
3a2 eliminates t2 term

Tschirnhaus considers cubics of the form t3 = q t + r

and defines transformation t → τ by t =
2qa− 3r + 3aτ

q − 3a2 − 3τ
,

where a is a root of the quadratic 3q a2 − 9r a + q2 = 0

simplification gives τ3 =
(27r2 − 4q3)(2q2 − 9ra)

27q2

Bing–Jerrard “reduced form” of quintic: t5 = q t + r



explanation of Tschirnhaus transform

a Möbius transform (or fractional linear transform) of the form

w =
a z + b
c z + d

, ad− bc 6= 0

maps three given points z1, z2, z3 to three target points w1, w2, w3

Tschirnhaus chooses the coefficients a, b, c, d so that the roots

of the transformed cubic are symmetrically located about the origin

— i.e., the transformed cubic has the “simple” form w3 = k



caustics for reflection by a circle and a parabola

left: epicycloid right: Tschirnhausen’s cubic



Tschirnhausen’s cubic = negative pedal of parabola with respect to focus

Tschirnhausen’s cubic = trisectrix of Catalan — ∠ PFQ = 1
3 ∠ OFQ

O F

P

Q



slow acceptance of complex numbers

“solution by radicals” for cubics & quartics: Niccolo Fontana (1499-1557)

Girolamo Cardano (1501-1576), and Lodovico Ferrari (1522-1565)

complex arithmetic is required in the solution procedure
— even when all the roots are real

“We have shown the symbol
√
−1 to be void of meaning, or rather

self-contradictory and absurd. Nevertheless, by means of such
symbols, a part of algebra is established which is of great utility.”

Augustus De Morgan (1806–1871)

geometrical interpretation of arithmetic operations on complex numbers
was the key to their widespread acceptance — first propounded by the

little–known Norwegian surveyor Caspar Wessel



Caspar Wessel (1745–1818)

• Norwegian surveyor gives first clear geometrical definitions
of vector addition and multiplication of complex numbers

• Om directionens analytiske betegning, et forsøg anvendt
fornemmelig til plane og sphaeriske polygoners opløsning
(On the analytical representation of direction: an attempt,
applied chiefly to solution of plane and spherical polygons)

• presented to Royal Danish Academy in 1797 by J. N. Tetens,
Professor of Mathematics and Philosophy in Copenhagen, and
published in the Mémoires for 1799

• precedes (published) work of Argand and Gauss, but remains
largely unknown for 100 years

• republished by Sophus Lie in 1895, translated to French in 1897

• first complete English translation appeared only in 1999





Wessel’s algebra of line segments

How may we represent direction analytically: that is, how shall we express right lines so
that in a single equation involving one unknown line and others known, both the length
and direction of the unknown line may be expressed?

sums of directed line segments
Two right lines are added if we unite them in such a way that the second line begins
where the first one ends, and then pass a right line from the first to the last point of the
united lines.

products of directed line segments
As regards length, the product shall be to one factor as the other factor is to the unit. As
regards direction, it shall diverge from the one factor as many degrees, and on the same
side, as the other factor diverges from the unit, so that the direction angle of the product
is the sum of the direction angles of the factors.

identification with complex numbers
Let +1 be the positive unit, and +ε a unit perpendicular to it. Then the direction angle of
+1 is 0◦, that of −1 is 180◦, that of +ε is 90◦, and that of −ε is 270◦. By the rule that
the angle of a product is the sum of the angles of the factors, we have (+1)(+1) = +1,
(+1)(−1) = −1, . . ., (+ε)(+ε) = −1, . . . From this, it is seen that ε =

√
−1.



construction of C2 PH quintic splines

“tridiagonal” system of N quadratic equations in N complex unknowns

f1(z1, . . . , zN) = 17 z2
1 + 3 z2

2 + 12 z1z2

+ 14a0z1 + 2a0z2 + 12a2
0 − 60 ∆p1 = 0 ,

fk(z1, . . . , zN) = 3 z2
k−1 + 27 z2

k + 3 z2
k+1 + 13 zk (zk−1 + zk+1)

+ zk−1zk+1 − 60 ∆pk = 0 for k = 2, . . . , N − 1 ,

fN(z1, . . . , zN) = 17 z2
N + 3 z2

N−1 + 12 zNzN−1

+ 14aNzN + 2aNzN−1 + 12a2
N − 60 ∆pN = 0 .

2N+m distinct solutions — just one “good” solution among them

m ∈ {−1, 0,+1} depends on the adopted end conditions —
cubic end spans, periodic end condition, specified end-derivatives

compute all solutions by homotopy method (slow for N ≥ 10)
use Newton-Raphson iteration for just the “good” solution (efficient)
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PH spline cubic spline



Welcome to the Spline Zoo

"There’s always more room in the Zoo"
                  . . . Tom Lyche (1989)

cardinal spline B spline
spline–in–tension conic spline

Wilson–Fowler spline Q spline
β spline γ spline
ν spline τ spline

Catmull–Rom spline rational spline
"shape–preserving" splines

ελεφαντ
spline

one "good" solution
among 2N–1 possibilities

What’s new in the Spline Zoo?

the SPAGHETTI spline!



Pythagorean quartuples of polynomials

x′2(t) + y′2(t) + z′2(t) = σ2(t) ⇐⇒


x′(t) = u2(t) + v2(t)− p2(t)− q2(t)
y′(t) = 2 [u(t)q(t) + v(t)p(t) ]
z′(t) = 2 [ v(t)q(t)− u(t)p(t) ]
σ(t) = u2(t) + v2(t) + p2(t) + q2(t)

R. Dietz, J. Hoschek, and B. Jüttler, An algebraic approach to curves and surfaces on the sphere
and on other quadrics, Computer Aided Geometric Design 10, 211–229 (1993)

H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational
parameterization of curves and surfaces, Advances in Computational Mathematics 17, 5-48 (2002)

choose quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k

→ spatial Pythagorean hodograph r′(t) = (x′(t), y′(t), z′(t)) = A(t) iA∗(t)



Sir William Rowan Hamilton (1805–1865)

• now most famous for contributions to optics & mechanics,
but devoted most of his life to developing theory of quaternions

• complex numbers = “algebraic couples” . . . no algebra of triples,
but algebra of quartuples possible with non–commutative product

• terms scalar and vector first introduced by Hamilton in
an article on quaternions (Philosophical Magazine, 1846)

• monumental works: Lectures on Quaternions (1853), Elements of
Quaternions (1866) . . . would “take any man a twelvemonth to read,
and near a lifetime to digest” (Sir John Herschel)

• Hamilton’s dream of revolutionizing mathematics & physics unrealized
E. T. Bell, Men of Mathematics — Hamilton = “An Irish Tragedy”

• M. J. Crowe, A History of Vector Analysis — prevailing ignorance
of the debt of vector analysis to quaternions is the real tragedy



fundamentals of quaternion algebra

quaternions are four-dimensional numbers of the form

A = a + ax i + ay j + az k and B = b + bx i + by j + bz k

that obey the sum and (non–commutative) product rules

A + B = (a + b) + (ax + bx) i + (ay + by) j + (az + bz)k

AB = (ab− axbx − ayby − azbz)

+ (abx + bax + aybz − azby) i

+ (aby + bay + azbx − axbz) j

+ (abz + baz + axby − aybx)k

basis elements 1, i, j, k satisfy i2 = j2 = k2 = i j k = −1

equivalently, i j = − j i = k , j k = −k j = i , k i = − i k = j



quaternions and spatial rotations

set A = (a,a) and B = (b,b) — a, b and a, b are scalar and vector parts

(a, b and a,b also called the real and imaginary parts of A,B)

A + B = ( a + b , a + b )

AB = ( ab− a · b , ab + ba + a× b)

any unit quaternion has the form U = (cos 1
2θ, sin

1
2θ n)

describes a spatial rotation by angle θ about unit vector n

for any vector v the quaternion product v′ = U vU∗

yields the vector v′ corresponding to a rotation of v by θ about n

unit quaternions = (non-commutative) group under multiplication



quaternion model for spatial PH curves

quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k

maps to r′(t) = A(t) iA∗(t) = [u2(t) + v2(t)− p2(t)− q2(t) ] i

+ 2 [ u(t)q(t) + v(t)p(t) ] j + 2 [ v(t)q(t)− u(t)p(t) ]k

rotation invariance of spatial PH form: rotate by θ about n = (nx, ny, nz)

define U = (cos 1
2θ, sin

1
2θ n) — then r′(t) → r̃′(t) = Ã(t) i Ã∗(t)

where Ã(t) = U A(t) (can interpret as rotation in R4)

spatial PH quintics can be constructed as first–order Hermite interpolants

solve using quaternion representation → 2-parameter family of solutions



Hopf map model for spatial PH curves

choose complex polynomials α(t) = u(t) + i v(t), β(t) = q(t) + i p(t)

r′(t) = (x′(t), y′(t), z′(t)) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t)))

= (u2(t) + v2(t)− p2(t)− q2(t), 2 [u(t)q(t) + v(t)p(t) ], 2 [ v(t)q(t)− u(t)p(t) ])

equivalence — identify “i” with “i” and set A(t) = α(t) + kβ(t)

Heinz Hopf (1894–1971)

for |α|2 + |β|2 = 1, defines map from 3–sphere S3 to 2–sphere S2

→ distinct circles on S3 mapped to distinct points on S2 (fiber bundle)

first example of map between spheres that is not null–homotopic



closure

• advantages of PH curves: rational offset curves, exact arc–length
computation, real-time CNC interpolators, exact rotation–minimizing
frames, bending energies, etc.

• applications of PH curves in digital motion control, path planning,
robotics, animation, computer graphics, etc.

• investigation of PH curves involves a wealth of concepts
from algebra and geometry with a long and fascinating history

• many open problems remain: optimal choice of degrees of freedom,
C2 spline formulations, control polygons for design of PH splines,
deeper geometrical insight into quaternion representation, etc.



“science and humility”

If I have seen further, it is by standing on the shoulders of giants.

Sir Isaac Newton, letter to Robert Hooke (1675)

Trace science then, with modesty thy guide;
First strip off all her equipage of pride,
Deduct what is but vanity, or dress,
Or learning’s luxury, or idleness;
Or tricks to show the stretch of human brain,
Mere curious pleasure, or ingenious pain:
Expunge the whole, or lop th’excrescent parts
Of all, our vices have created arts:
Then see how little the remaining sum,
Which served the past, and must the times to come!

Alexander Pope (1688–1744), Essay on Man


