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— synopsis —

• rotation-minimizing frames (RMFs) on space curves

• “defects” of the Frenet frame — applications of RMFs

• RMFs for spatial Pythagorean–hodograph (PH) curves

• characterization of PH curves with exact rational RMFs

• design of rational rotation–minimizing rigid body motions

• directed frames — camera orientation control
computation of rotation-minimizing directed frames

• polar differential geometry — anti-hodograph,
Frenet directed frame, polar curvature and torsion



aircraft attitude — pitch, yaw, roll

“rotation–minimizing” motion =⇒ ωroll ≡ 0



rotation-minimizing frames on space curves

• an adapted frame (e1, e2, e3) on a space curve r(ξ) is a system of
three orthonormal vectors, such that e1 = r′/|r′| is the curve tangent
and (e2, e3) span the curve normal plane at each point

• on any given space curve, there are infinitely many adapted frames
— the Frenet frame is perhaps the most familiar
R. L. Bishop (1975), There is more than one way to frame a curve, Amer. Math. Monthly 82, 246–251

• for an adapted rotation–minimizing frame (RMF), the normal–plane
vectors (e2, e3) exhibit no instantaneous rotation about e1

F. Klok (1986), Two moving coordinate frames for sweeping along a 3D trajectory,
Comput. Aided Geom. Design 3, 217–229

• angular orientation of RMF relative to Frenet frame = integral of
curve torsion w.r.t. arc length (⇒ one–parameter family of RMFs)
H. Guggenheimer (1989), Computing frames along a trajectory,
Comput. Aided Geom. Design 6, 77–78



• spatial PH curves admit exact evaluation of torsion integral,
but expression for RMF contains transcendental terms
R. T. Farouki (2002), Exact rotation–minimizing frames for spatial Pythagorean–hodograph curves,
Graphical Models 64, 382–395

• piecewise–rational RMF approximation on polynomial & rational curves
B. Jüttler and C. Mäurer (1999), Rational approximation of rotation minimizing frames using
Pythagorean–hodograph cubics, J. Geom. Graphics 3, 141–159

R. T. Farouki and C. Y. Han (2003), Rational approximation schemes for rotation–minimizing frames
on Pythagorean–hodograph curves, Comput. Aided Geom. Design 20, 435–454

• Euler–Rodrigues frame (ERF) is better reference than Frenet frame
for identifying curves with rational RMFs (RRMF curves)
H. I. Choi and C. Y. Han (2002), Euler–Rodrigues frames on spatial Pythagorean–hodograph curves,
Comput. Aided Geom. Design 19, 603–620

ERF = rational adapted frame defined on spatial PH curves that is
non–singular at inflection points



• “implicit” algebraic condition for rational RMFs on spatial PH curves
— no rational RMFs for non–degenerate cubics
C. Y. Han (2008), Nonexistence of rational rotation–minimizing frames on cubic curves,
Comput. Aided Geom. Design 25, 298–304

• sufficient–and–necessary conditions on Hopf map coefficients of
spatial PH quintics for rational RMF
R. T. Farouki, C. Giannelli, C. Manni, A. Sestini (2009), Quintic space curves with rational
rotation–minimizing frames, Comput. Aided Geom. Design 26, 580–592

• directed rotation–minimizing frames (camera orientation control)
R. T. Farouki and C. Giannelli (2009), Spatial camera orientation control by rotation–minimizing
directed frames, Comput. Anim. Virtual Worlds 20, 457–472

• simplified (quadratic) RRMF conditions for quaternion & Hopf map
representations of spatial PH quintics
R. T. Farouki (2010), Quaternion and Hopf map characterizations for the existence of rational
rotation–minimizing frames on quintic space curves, Adv. Comp. Math. 33, 331–348



• general RRMF conditions for spatial PH curves of any degree
R. T. Farouki and T. Sakkalis (2010), Rational rotation–minimizing frames on polynomial
space curves of arbitrary degree, J. Symb. Comp. 45, 844–856

• spatial motion design by RRMF quintic Hermite interpolation
R. T. Farouki, C. Giannelli, C. Manni, A. Sestini (2011), Design of rational rotation–minimizing
rigid body motions by Hermite interpolation, Math. Comp., to appear

• design of interpolatory rotation–minimizing camera motions
R. T. Farouki, C. Giannelli, A. Sestini (2011), An interpolation scheme for designing rational
rotation–minimizing camera motions, Adv. Comp. Math., to appear

• several different classes of RRMF curves of given degree
R. T. Farouki and T. Sakkalis (2011), A complete classification of quintic space curves with
rational rotation–minimizing frames J. Symb. Comp., to appear



differential geometry of space curves

Frenet frame (t(ξ),n(ξ),b(ξ)) on space curve r(ξ) defined by

t =
r′

|r′|
, n =

r′ × r′′

|r′ × r′′|
× t , b =

r′ × r′′

|r′ × r′′|

x y

z

t defines instantaneous direction of motion along curve;
n points toward center of curvature; b = t× n completes frame



variation of frame (t(ξ),n(ξ),b(ξ)) along curve r(ξ)
specified in terms of parametric speed, curvature, torsion functions

σ = |r′| , κ =
| r′ × r′′|
|r′|3

, τ =
(r′ × r′′) · r′′′

| r′ × r′′|2

by Frenet–Serret equations

 t′

n′

b′

 = σ

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b



• (t,n) span osculating plane (second–order contact at each point)

• (n,b) span normal plane (cuts curve orthogonally at each point)

• (b, t) span rectifying plane (envelope of these planes defines
rectifying developable, allows curve to be flattened onto a plane)



“defects” of Frenet frame on space curves

• (t,n,b) do not depend rationally on curve parameter ξ

• normal–plane vectors (n,b) become indeterminate and
can suddenly “flip” at inflection points of curve, where κ = 0

• exhibits “unnecessary rotation” in the curve normal plane

dt
ds

= d× t ,
dn
ds

= d× n ,
db
ds

= d× b

Darboux vector d = κb + τ t = Frenet frame rotation rate

component τ t describes instantaneous rotation in normal plane
(unnecessary for “smoothly varying” adapted orthonormal frame)



total curvature |d| =
√
κ2 + τ2 = angular velocity of Frenet frame

rotation–minimizing adapted frame (t,u,v) satisfying

dt
ds

= ω × t ,
du
ds

= ω × u ,
dv
ds

= ω × v

RMF characteristic property — angular velocity ω satisfies ω · t ≡ 0

no instantaneous rotation of normal–plane vectors (u,v) about tangent t

→ rotation–minimizing frame much better than Frenet frame for
applications in animation, path planning, swept surface constructions, etc.

among all adapted frames on a space curve, the RMF identifies
least elastic energy associated with twisting (as distinct from bending)



Frenet frame (center) & rotation-minimizing frame (right) on space curve

motion of an ellipsoid oriented by Frenet & rotation-minimizing frames



Frenet ERF RMF

sudden reversal of Frenet frame through an inflection point

surface constructed by sweeping an ellipse along a space curve
using Frenet frame (center) & rotation-minimizing frame (right)



Pythagorean-hodograph (PH) curves

r(ξ) = PH curve in Rn ⇐⇒ coordinate components of r′(ξ)

elements of “Pythagorean (n+ 1)-tuple of polynomials”

PH curves incorporate special algebraic structures in their hodographs

(complex number & quaternion models for planar & spatial PH curves)

• rational offset curves rd(ξ) = r(ξ) + dn(ξ)

• polynomial arc-length function s(ξ) =
∫ ξ

0

|r′(ξ)| dξ

• closed-form evaluation of energy integral E =
∫ 1

0

κ2 ds

• real-time CNC interpolators, rotation-minimizing frames, etc.



Pythagorean quartuples of polynomials

x′2(t) + y′2(t) + z′2(t) = σ2(t) ⇐⇒


x′(t) = u2(t) + v2(t)− p2(t)− q2(t)
y′(t) = 2 [u(t)q(t) + v(t)p(t) ]
z′(t) = 2 [ v(t)q(t)− u(t)p(t) ]
σ(t) = u2(t) + v2(t) + p2(t) + q2(t)

H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational
parameterization of curves and surfaces, Advances in Computational Mathematics 17, 5-48 (2002)

quaternion representation A(t) = u(t) + v(t) i + p(t) j + q(t)k

→ spatial Pythagorean hodograph r′(t) = (x′(t), y′(t), z′(t)) = A(t) iA∗(t)

Hopf map representation α(t) = u(t) + i v(t), β(t) = q(t) + i p(t)

→ (x′(t), y′(t), z′(t)) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t)))

equivalence — identify “i” with “i” and set A(t) = α(t) + kβ(t)
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geometry and computing

As long as algebra and geometry were separated, their progress
was slow and their uses limited; but once these sciences were
united, they lent each other mutual support and advanced rapidly
together towards perfection.

Joseph-Louis Lagrange (1736-1813)



rotation-minimizing frames on spatial PH curves

new basis in normal plane
[

u
v

]
=

[
cos θ sin θ

− sin θ cos θ

] [
n
b

]

where θ = −
∫
τ ds : cancels “unnecessary rotation” in normal plane

free integration constant =⇒ ∃ one–parameter family of RMFs

options for construction of RMF (t,u,v) on spatial PH quintics:

• analytic reduction — involves rational function integration,
logarithmic dependence on curve parameter

• rational approximation — use Padé (rational Hermite) approach:
simple algorithm & rapid convergence

• exact rational RMFs — identify sufficient and necessary conditions
for rational RMFs on spatial PH curves



comparison of Frenet & rotation-minimizing frames

spatial PH quintic Frenet frame rotation–minimizing frame



rotation rates — RMF vs Frenet frame
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compared with the rotation-minimizing frame (t,u,v), the Frenet frame
(t,n,b) exhibits a lot of “unnecessary” rotation (in the curve normal plane)



rational RMFs on spatial PH curves

any space curve with a rational RMF must be a PH curve
(since only PH curves have rational unit tangents)

Choi & Han (2002): for PH curve with hodograph r′(ξ) = A(ξ) iA∗(ξ)

e1(ξ) =
A(ξ) iA∗(ξ)
|A(ξ)|2

, e2(ξ) =
A(ξ) jA∗(ξ)
|A(ξ)|2

, e3(ξ) =
A(ξ)kA∗(ξ)
|A(ξ)|2

defines Euler–Rodrigues frame (ERF) — e1 is curve tangent,
while (e2, e3) span the normal plane at each curve point

ERF (e1, e2, e3) is a better “reference” than Frenet frame
(t,n,b) for seeking rational RMFs (f1, f2, f3) on spatial PH curves

ERF is not intrinsic: depends on chosen basis (i, j,k) for R3

— but is inherently rational and non–singular at inflection points



seek rational rotation ERF → RMF

Han (2008) — RMF vectors (f2, f3) must be obtainable from
ERF vectors (e2, e3) by rational rotation in curve normal plane
at each point of r(ξ), specified by two polynomials a(ξ), b(ξ) :

f2(ξ) =
a2(ξ)− b2(ξ)
a2(ξ) + b2(ξ)

e2(ξ) −
2 a(ξ)b(ξ)

a2(ξ) + b2(ξ)
e3(ξ) ,

f3(ξ) =
2 a(ξ)b(ξ)

a2(ξ) + b2(ξ)
e2(ξ) +

a2(ξ)− b2(ξ)
a2(ξ) + b2(ξ)

e3(ξ) .

if such polynomials a(ξ), b(ξ) exist, we have an RRMF curve
— i.e., a PH curve with a rational rotation–minimizing frame



ERF angular velocity

e′1 = ω × e1 , e′2 = ω × e2 , e′3 = ω × e3

express ERF angular velocity ω in basis (e1, e2, e3) as

ω = ω1e1 + ω2e2 + ω3e3

ω1 = e3 · e′2 = − e2 · e′3 =
2(uv′ − u′v − pq′ + p′q)

u2 + v2 + p2 + q2
,

ω2 = e1 · e′3 = − e3 · e′1 =
2(up′ − u′p+ vq′ − v′q)

u2 + v2 + p2 + q2
,

ω3 = e2 · e′1 = − e1 · e′2 =
2(uq′ − u′q − vp′ + v′p)

u2 + v2 + p2 + q2
.

=⇒ find a(ξ), b(ξ) so ω1 is cancelled by ω =
2(ab′ − a′b)
a2 + b2



“implicit” algebraic condition for RRMF curves

Han (2008): PH curve defined by A(ξ) = u(ξ) + v(ξ) i + p(ξ) j + q(ξ)k
is an RRMF curve if and only if polynomials a(ξ), b(ξ) exist such that

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=
ab′ − a′b

a2 + b2

Hopf map representation with α(ξ) = u(ξ) + i v(ξ), β(ξ) = q(ξ) + i p(ξ)
requires existence of complex polynomial w(ξ) = a(ξ) + i b(ξ) such that

Im(αα′ + ββ′)
|α|2 + |β|2

=
Im(ww′)
|w|2

Han (2008): no RRMF cubics exist, except degenerate (planar) curves



characterization of RRMF quintics

Farouki, Giannelli, Manni, Sestini (2009): use Hopf map form with

α(t) = α0 (1− t)2 + α1 2(1− t)t+ α2 t
2 ,

β(t) = β0 (1− t)2 + β1 2(1− t)t+ β2 t
2 .

defines RRMF quintic ⇐⇒ w0,w1,w2 ∈ C, γ ∈ R exist such that

|α0|2 + |β0|2 = γ |w0|2 ,
α0α1 + β0β1 = γw0w1 ,

α0α2 + β0β2 + 2 (|α1|2 + |β1|2) = γ (w0w2 + 2 |w1|2) ,
α1α2 + β1β2 = γw1w2 ,

|α2|2 + |β2|2 = γ |w2|2 .

NOTE: can take w0 = 1 without loss of generality



sufficient–and–necessary conditions

Proposition 1. A PH quintic has a rational rotation–minimizing frame if
and only if the coefficients α0,α1,α2 and β0,β1,β2 of the two quadratic
complex polynomials α(t) and β(t) satisfy the constraints

(|α0|2 + |β0|2) |α1α2 + β1β2|2 = (|α2|2 + |β2|2) |α0α1 + β0β1|2 ,

(|α0|2 + |β0|2) (α0β2 −α2β0) = 2 (α0α1 + β0β1)(α0β1 −α1β0) .

one real + one complex constraint on α0,α1,α2 and β0,β1,β2

⇒ RRMF quintics have three less freedoms than general PH quintics

Algorithm to construct RRMF quintics: freely choose α0,α2 and β0,β2

& obtain α1,β1 in terms of one free parameter, from RRMF constraints



example RRMF quintic construction

choose α0 = 1 + 2 i , β0 = −2 + i , α2 = 2− i , β2 = −1 + 2 i

=⇒ α1 =
1 + i√

2
, β1 =

−3 + i√
2

and (w0,w1,w2) =
(

1,
1√
2
,
3− 4 i

5

)

Frenet

ERF

RMF



polynomials defining RMF vectors (u,v) in terms of ERF vectors (p,q)

a(t) = (1− t)2 +
1√
2

2(1− t)t+
3
5
t2 , b(t) = − 4

5
t2 .
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comparison of angular speeds for ERF and RMF



“lingering doubts” about RRMF quintic conditions

• constraints are of rather high degree — 4 and 6

• not invariant when “0” and “2” subscripts swapped
(corresponds to the re–parameterization t→ 1− t)

• do not easily translate to quaternion representation

problem revisited in Farouki (2010), Adv. Comp. Math. 33, 331–348

• to avoid asymmetry, do not assume w0 = 1

• consider PH quintics in canonical form with r′(0) = (1, 0, 0)

• strategic switching between quaternion & Hopf map forms



improved sufficient–and–necessary conditions

Proposition 2. A spatial PH quintic defined by the quaternion polynomial
A0(1− ξ)2 +A12(1− ξ)ξ +A2 ξ

2 has a rational RMF if and only if

A0 iA∗
2 + A2 iA∗

0 = 2A1 iA∗
1 .

Proposition 3. A spatial PH quintic defined by the complex polynomials
α0(1− ξ)2 + α12(1− ξ)ξ + α2 ξ

2 and β0(1− ξ)2 + β12(1− ξ)ξ + β2 ξ
2 has

a rational RMF if and only if

Re(α0α2 − β0β2) = |α1|2 − |β1|2 , α0β2 + α2β0 = 2 α1β1 .

• new conditions are only quadratic in coefficients

• easy transformation quaternion � Hopf map forms

• obvious invariance on swapping “0” and “2” subscripts



RRMF quintics constructed from new conditions

Frenet

ERF

RMF

Frenet

ERF

RMF



rational RMFs on space curves of any degree

R. T. Farouki and T. Sakkalis (2010), Rational rotation–minimizing frames on polynomial space curves
of arbitrary degree, Journal of Symbolic Computation 45, 844–856

Proposition 4. For A(t) = u(t) + v(t) i + p(t) j + q(t)k, the condition

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=
ab′ − a′b

a2 + b2

can be satisfied if and only if a polynomial h(t) exists, such that

(uv′ − u′v − pq′ + p′q)2 + (uq′ − u′q − vp′ + v′p)2 = h(u2 + v2 + p2 + q2) .

Polynomial ρ = (uv′ − u′v − pq′ + p′q)2 + (uq′ − u′q − vp′ + v′p)2 plays a
key role in the theory of double PH curves, with |r′(t)| and |r′(t)× r′′(t)|
both polynomials in t — rational Frenet frames and rational curvatures.



Hermite interpolation by quintic RRMF curves

R. T. Farouki, C. Giannelli, C. Manni, A. Sestini (2011), Design of rational rotation–minimizing rigid body
motions by Hermite interpolation, Mathematics of Computation, to appear

given initial, final positions & frames pi & (ti,ui,vi) and pf & (tf ,uf ,vf)

compute RRMF quintic r(ξ) & frame (t(ξ),u(ξ),v(ξ)) interpolating data

two distinct rational rotation–minimizing motions interpolating given data



RRMF Hermite interpolation problem decomposable into four phases

(1) interpolation of the end tangents ti and tf

(2) satisfaction of RRMF constraints on the coefficients

(3) interpolation of normal–plane vectors (ui,vi) and (uf ,vf)

(4) interpolation of end–point displacement ∆p = pf − pi

phases (1)–(3) possess closed–form algebraic solutions

unique solutions for interpolation of (ti,ui,vi) and (tf ,uf ,vf)

interpolation of ∆p = pf − pi requires a certain degree 6 polynomial
to have a positive real root (not always true), but solutions always exist
for data sampled asymptotically from a smooth analytic curve

since (1)–(3) are independent of (4), new freedoms (e.g., multiplying r′(ξ)
by scalar polynomial) can be introduced to facilitate existence of solutions



distinct classes of RRMF curves

R. T. Farouki and T. Sakkalis (2011), A complete classification of quintic space curves with rational
rotation–minimizing frames J. Symb. Comp., to appear

so far deg(a, b) = deg(u, v, p, q) assumed in satisfying RRMF condition

uv′ − u′v − pq′ + p′q

u2 + v2 + p2 + q2
=
ab′ − a′b

a2 + b2

• deg(a, b) = deg(u, v, p, q) defines Class 1 RRMF curves

• RRMF condition can also be satisfied with deg(a, b) < deg(u, v, p, q)

• deg(a, b) = deg(u, v, p, q)− k + 1 defines Class k RRMF curves

• Class 2 RRMF quintics exist as true space curves (same d.o.f. as
Class 1 quintics, but more complicated algebraic characterization)

• Class 3 RRMF curves of degree 7 exist as true space curves
— for these curves, the ERF is rotation–minimizing (ab′ − a′b ≡ 0)



adapted & directed frames on space curve r(ξ)

• adapted frame (e1, e2, e3) ⇒ e1 is the unit curve tangent, t = r′/|r′|

• infinitely many choices of normal plane vectors e2, e3 orthogonal to t

• angular velocity ω of rotation-minimizing adapted frame (e1, e2, e3)
is characterized by ω · t ≡ 0

• directed frame (e1, e2, e3) ⇒ e1 is the unit polar vector, o = r/|r|

• infinitely many choices of image plane vectors e2, e3 orthogonal to o

• angular velocity ω of rotation-minimizing directed frame (e1, e2, e3)
is characterized by ω · o ≡ 0



rotation-minimizing directed frames — applications

R. T. Farouki and C. Giannelli (2009), Spatial camera orientation control by rotation–minimizing directed
frames, Computer Animation and Virtual Worlds 20, 457–472

• camera orientation planning for cinematography,
video inspection, computer games, virtual reality, etc.

• minimize surgeon disorientation in endoscopic surgery

• related problem: field de-rotator for altazimuth telescope

• maintenance for aircraft engines, gas turbines, pipes, etc.

• for many applications, RMDF image orientation can be
achieved through software transformations



camera orientation frame along space curve r(ξ)

• assume target object fixed at origin (for moving target,
consider only relative motion between camera & target)

• unit polar vector o(ξ) =
r(ξ)
|r(ξ)|

defines camera optical axis

• let camera image plane, orthogonal to o(ξ), be spanned
by unit vectors u(ξ) and v(ξ)

• if r(ξ), r′(ξ) linearly independent, set v(ξ) =
r(ξ)× r′(ξ)
|r(ξ)× r′(ξ)|

• set u(ξ) = v(ξ)× o(ξ) — (o(ξ),u(ξ),v(ξ)) defines
a right-handed orthonormal directed frame along r(ξ)



compare directed frame defined above

o =
r
| r |

, u =
r× r′

| r× r′ |
× o , v =

r× r′

| r× r′ |
(1)

with Frenet frame from differential geometry

t =
r′

| r′ |
, n =

r′ × r′′

| r′ × r′′ |
× t , b =

r′ × r′′

| r′ × r′′ |
(2)

note that (t,n,b) → (o,u,v) under map (r′, r′′) → (r, r′)

call (1) the Frenet directed frame, (2) the Frenet adapted frame

define anti-hodograph (indefinite integral) s(ξ) =
∫

r(ξ) dξ

⇒ Frenet directed frame of a curve r(ξ)
= Frenet adapted frame of its anti-hodograph, s(ξ)



properties of “anti-hodograph” — s(ξ) =
∫

r(ξ) dξ

• curve hodographs (derivatives) r′(ξ) are widely used in CAGD

• anti-derivative of function f(ξ) is indefinite integral, s(ξ) =
∫
f(ξ) dξ

• infinitely many anti-hodographs — just translates of each other

• s(ξ∗) is a cusp of anti-hodograph ⇒ r(ξ) traverses origin at ξ = ξ∗

• s(ξ∗) is an inflection of anti-hodograph ⇒ tangent line to r(ξ)
goes through origin for ξ = ξ∗

• polynomial curve ⇐⇒ polynomial anti-hodograph, but this
correspondence does not extend to rational anti-hodographs
(integral of rational function may incur transcendental terms)



polar differential geometry of space curve r(ξ)

ρ = | r | , λ =
| r× r′ |
| r |3

, υ =
(r× r′) · r′′

| r× r′ |2

polar distance, polar curvature, polar torsion of r(ξ)
= parametric speed, curvature, torsion of anti-hodograph, s(ξ) =

∫
r(ξ)

• polar curvature λ(ξ) ≡ 0 ⇐⇒ r(ξ) = line through origin

• polar torsion υ(ξ) ≡ 0 ⇐⇒ r(ξ) = in plane through origin

• hence, λ(ξ) ≡ 0 ⇒ κ(ξ) ≡ 0 and υ(ξ) ≡ 0 ⇒ τ(ξ) ≡ 0

• λ = 0 identifies polar inflection — r and r′ linearly dependent

• polar helix
λ(ξ)
υ(ξ)

= constant ⇐⇒ r(ξ) = on cone with apex at origin



Frenet-Serret equations for directed frame (o,u,v)

 o′

u′

v′

 = ρ

 0 λ 0
−λ 0 υ
0 −υ 0

 o
u
v


polar distance, polar curvature, polar torsion of r(ξ)

ρ = | r | , λ =
| r× r′ |
| r |3

, υ =
(r× r′) · r′′

| r× r′ |2

arc-length derivatives of (o,u,v)

do
ds

= e× o ,
du
ds

= e× u ,
dv
ds

= e× v .

polar Darboux vector e =
ρ

σ
(λv + υ o)

angular velocity of directed frame ω = | e | =
ρ

σ

√
λ2 + υ2



corresponding properties of the Frenet
adapted and directed frames on space curves

Frenet adapted frame Frenet directed frame

tangent vector t polar vector o
principal normal n principal axis u
binormal vector b bi-axis vector v
normal plane = span(n,b) image plane = span(u,v)
osculating plane = span(t,n) motion plane = span(o,u)
rectifying plane = span(b, t) orthogonal plane = span(v,o)
parametric speed σ polar distance ρ
curvature κ polar curvature λ
torsion τ polar torsion υ

each property of the Frenet directed frame of r(ξ) coincides
with the corresponding property of the Frenet adapted frame

of its anti-hodograph, s(ξ) =
∫

r(ξ) dξ



connection between Frenet adapted & directed frames

(t,n,b) and (o,u,v) are both orthonormal frames for R3

 o
u
v

 =

 o · t o · n o · b
u · t u · n u · b
v · t v · n v · b

 t
n
b



elements of matrix M ∈ SO(3) in terms of r, r′, r′′, ρ = |r|, σ = |r′| :

o · t =
r · r′

ρ σ
, o · n = −

(r × r′) · (r′ × r′′)
ρ σ | r′ × r′′ |

, o · b =
(r × r′) · r′′

ρ | r′ × r′′ |
,

u · t =
| r × r′ |

ρ σ
, u · n =

r · r′

ρ σ

(r × r′) · (r′ × r′′)
| r × r′ | | r′ × r′′ |

, u · b = −
(r · r′) (r × r′) · r′′

ρ | r × r′ | | r′ × r′′ |
,

v · t = 0 , v · n =
σ (r × r′) · r′′

| r × r′ | | r′ × r′′ |
, v · b =

(r × r′) · (r′ × r′′)
| r × r′ | | r′ × r′′ |

.



computation of rotation-minimizing directed frames

let (o,p,q) be rotation-minimizing directed frame on r(ξ)

obtain (p,q) from (u,v) by rotation in image plane[
p
q

]
=

[
cosψ sinψ

− sinψ cosψ

] [
u
v

]
using anti-hodograph transformation, ψ = −

∫
υ ρdξ

(i.e., integral of polar torsion w.r.t. anti-hodograph arc length)

• RMDF angular velocity ω omits υ o term from polar Darboux vector

• infinitely many directed RMFs, corresponding to different integration
constants (maintain fixed angles relative to each other)

• angle function ψ(ξ) can be determined exactly for spatial P curves
by rational function integration



example: circular camera path r(θ) = (r cos θ, r sin θ, h)

o =
(r cos θ, r sin θ, h)√

r2 + h2
, u = (− sin θ, cos θ, 0) , v =

(−h cos θ,−h sin θ, r)√
r2 + h2

.

note — principal axis vector u coincides with curve tangent t

ρ = r
√
r2 + h2 , λ =

r

r2 + h2
, υ =

h

r2 + h2
.

polar distance, polar curvature, polar torsion — all constant

ψ = − θ√
1 + (r/h)2

.

RMDF orientation relative to Frenet directed frame — linear in θ



directed frames on circular path, r(θ) = (r cos θ, r sin θ, h)

Left: polar vectors. Center: image-plane vectors for directed Frenet frame.
Right: image-plane vectors for the rotation-minimizing directed frame.



views of ellipsoid with camera image plane
oriented using Frenet directed frame (upper)

and rotation-minimizing directed frame (lower)



closure

• theory, algorithms, applications for rotation-minimizing frames

• RRMF curve = PH curve with rational rotation–minimizing frame

• quaternion and Hopf map characterizations of RRMF quintics

• divisibility characterization for RRMF curves of any degree

• distinct classes of RRMF curves of any given degree

• rotation-minimizing directed frames in camera orientation control

• anti-hodograph and polar differential geometry of space curves


