• page 21, third list item: “logarithmic terms” → “logarithmic term”

• page 38, the equation after “either of the complex values defined by” should be

\[s^2 = a_3^2 + 4a_4^2z - 4a_2a_4 \]

• page 63, second paragraph: “(who discovered of the planet Uranus)” → “(who discovered the planet Uranus)”

• page 66, replace first un-numbered equation by

\[A^{-1} = \frac{A^*}{|A|^2} \]

• page 107, replace equation (7.39) by

\[
d = \int_{t_1}^{t_2} \sqrt{\mathbf{r}_\zeta \cdot \mathbf{r}_\zeta \zeta'^2 + 2 \mathbf{r}_\eta \cdot \mathbf{r}_\zeta \zeta' + \mathbf{r}_\eta \cdot \mathbf{r}_\eta \eta'^2} \, dt,
\]

• page 126, foonote: “This should not be confused this” → “This should not be confused”

• page 260: below equation (11.23) “\(\Delta c_k - \Delta c_{k-1} \)” → “\(\Delta c_{k+1} - \Delta c_k \)” and “\(c_{k+2} - 2c_{k+1} - c_k \)” → “\(c_{k+2} - 2c_{k+1} + c_k \)”

• page 310: replace first un-numbered equation by

\[
a = (y_0 - y_2)^2 - 4w_1^2(y_2 - y_1)(y_1 - y_0), \\
b = (x_0 - x_2)^2 - 4w_1^2(x_2 - x_1)(x_1 - x_0), \\
c = (x_2y_0 - x_0y_2)^2 - 4w_1^2(x_1y_2 - x_2y_1)(x_0y_1 - x_1y_0), \\
f = 2w_1^2[(y_1 - y_0)(x_1y_2 - x_2y_1) + (y_2 - y_1)(x_0y_1 - x_1y_0)] \\
\quad - (y_0 - y_2)(x_2y_0 - x_0y_2), \\
g = (x_0 - x_2)(x_2y_0 - x_0y_2) \\
\quad - 2w_1^2[(x_1 - x_0)(x_1y_2 - x_2y_1) + (x_2 - x_1)(x_0y_1 - x_1y_0)], \\
h = 2w_1^2[(x_2 - x_1)(y_1 - y_0) + (x_1 - x_0)(y_2 - y_1)] - (x_0 - x_2)(y_0 - y_2).
\]

• page 310: replace second un-numbered equation by

\[
ab - h^2 = 4w_1^2(1 - w_1^2) (x_0y_1 - x_1y_0 + x_1y_2 - x_2y_1 + x_2y_0 - x_0y_2)^2.
\]
• page 330: under the heading **quadratic end spans** replace “\(p_0'''(\tau) \equiv 0\) and \(p_N'''(\tau) \equiv 0\)” by “\(p_1'''(\tau) \equiv 0\) and \(p_N'''(\tau) \equiv 0\)”

• page 439: replace third un-numbered equation by

\[
s = h + \frac{a^2 + b^2}{2(a'b - ab')} H' + \text{constant}.
\]

• page 451, second line below equation (20.35) “theta” → “\(\theta\)”

• page 479, replace displayed equation in middle of page by

\[
\tilde{u} = \frac{u - q}{\sqrt{2}}, \quad \tilde{v} = \frac{v - p}{\sqrt{2}}, \quad \tilde{p} = \frac{v + p}{\sqrt{2}}, \quad \tilde{q} = \frac{u + q}{\sqrt{2}}.
\]

• page 603, replace displayed equation in middle of page by

\[
S = \frac{1}{120} \left[(3A_0 + 4A_1 + 3A_2)(3A_0 + 4A_1 + 3A_2)^* + 15(A_0A_0^* + A_2A_2^*) - 5(A_0A_2^* + A_2A_0^*) \right].
\]

• page 698, references [35] and [36]: “courbes at surfaces” → “courbes et surfaces”