The Bernstein polynomial basis: a centennial retrospective

a "sociological study" in the evolution of mathematical ideas

Rida T. Farouki

Department of Mechanical \& Aerospace Engineering,
University of California, Davis

— synopsis -

- 1912: Sergei Natanovich Bernstein constructive proof of Weierstrass approximation theorem
- 1960s: Paul de Faget de Casteljau, Pierre Étienne Bézier and the origins of computer-aided geometric design
- elucidation of Bernstein basis properties and algorithms
- 1980s: intrinsic numerical stability of the Bernstein form
- algorithms \& representations for computer-aided design
- diversification of applications in scientific computing

Weierstrass approximation theorem

Given any continuous function $f(x)$ on an interval $[a, b]$ and a tolerance $\epsilon>0$, a polynomial $p_{n}(x)$ of sufficiently high degree n exists, such that

$$
\left|f(x)-p_{n}(x)\right| \leq \epsilon \quad \text { for } x \in[a, b] .
$$

Polynomials can uniformly approximate any continuous $f(x), x \in[a, b]$.

Original (1885) proof by Weierstrass is "existential" in nature - begins by expressing $f(x)$ as a convolution

$$
f(x)=\lim _{k \rightarrow 0} \frac{1}{\sqrt{\pi} k} \int_{-\infty}^{+\infty} f(t) \exp \left[-\frac{(t-x)^{2}}{k^{2}}\right] \mathrm{d} t
$$

with a Dirac delta function, and relies heavily on analytic limit arguments.

Sergei Natanovich Bernstein (1880-1968)

(photo: Russian Academy of Sciences)

academic career of S. N. Bernstein

- 1904: Sorbonne PhD thesis, on analytic nature of PDE solutions (worked with Hilbert at Göttingen during 1902-03 academic year)
- 1913: Kharkov PhD thesis (polynomial approximation of functions)
- 1912: Comm. Math. Soc. Kharkov paper (2 pages): constructive proof of Weierstrass theorem - introduction of Bernstein basis
- 1920-32: Professor in Kharkov \& Director of Mathematical Institute political purge: moved to USSR Academy of Sciences (Leningrad)
- 1941-44: escapes to Kazakhstan during the siege of Leningrad
- 1944-57: Steklov Math. Institute, Russian Academy of Sciences, Moscow - edited complete works of Chebyshev (died 1968)
- collected works of Bernstein published in 4 volumes, 1952-64

Bernstein's proof of Weierstrass theorem

Russian school of approximation theory, founded by Chebyshev, favors constructive approximation methods over "existential" proofs
given $f(t)$ continuous on $t \in[0,1]$ define

$$
p_{n}(t)=\sum_{k=0}^{n} f(k / n) b_{k}^{n}(t), \quad b_{k}^{n}(t)=\binom{n}{k}(1-t)^{n-k} t^{k}
$$

$p_{n}(t)=$ convex combination of sampled values $f(0), f\left(\frac{1}{n}\right), \ldots, f(1)$

$$
\begin{aligned}
& \left|f(t)-p_{n}(t)\right|=O\left(\frac{1}{n}\right) \quad \text { for } t \in[0,1] \\
\Longrightarrow & p_{n}(t) \text { converges uniformly to } f(t) \text { as } n \rightarrow \infty
\end{aligned}
$$

derivatives of $p_{n}(t)$ also converge to those of $f(t)$ as $n \rightarrow \infty$

Démonstration du théorème de Weierstrass fondée sur le caleul des probabilités.

Je me propose d'indiquer une démonstration fort simple du théorème suivant de Weierstrass:

Si $F(x)$ est une fonction continue quelconque dans l'intervalle 01, il est toujours possible, quel que petit que soit ε, de déterminer un polynome $E_{n}(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ de degré n asses élevé, tel qu' on ait

$$
\left|F(x)-E_{n}(x)\right|<\varepsilon
$$

en tout point de l'intervalle considéré.
A cet effet, je considère un évenement A, dont la probabilité est égale à x. Supposons qu'on effectue n expériences et que l'on convienne de payer à un joueur la somme $F\left(\frac{m}{n}\right)$, si l'évenement A se produit m fois. Dans cas conditions, l'espérance mathématique E_{n}^{*} du joueur aura pour valeur

$$
\begin{equation*}
E_{n}=\sum_{m=0}^{m=n} F\left(\frac{m}{n}\right) \cdot C_{n}^{m} x^{m} \cdot(1-x)^{n-m} \tag{1}
\end{equation*}
$$

Or, il résulte de la continuité de la fonction $F(x)$ qu'il est possible de fixer un nombre δ, tel que l'inégalité
entraine

$$
\left|x-x_{0}\right| \leqq \delta
$$

$$
\left|F(x)-F\left(x_{0}\right)\right|<\frac{\varepsilon}{2}
$$

de sorte que, si $\bar{F}(x)$ désigne le maximum et $\underline{F}(x)$ le minimum de $F(x)$ dans l'intervalle $(x-\delta, x+\delta)$, on a

$$
\begin{equation*}
\bar{F}(x)-F(x)<\frac{\varepsilon}{2}, F(x)-F(x)<\frac{\varepsilon}{2} . \tag{2}
\end{equation*}
$$

S. N. Bernstein, Comm. Kharkov Math. Soc. (1912)

connection with probability theory

$$
\text { basis function } \quad b_{k}^{n}(t)=\binom{n}{k}(1-t)^{n-k} t^{k}
$$

probability of k successes in n trials of random process
with individual probability of success t in each trial
\rightarrow binomial probability distribution
non-negativity \& partition-of-unity properties of $b_{k}^{n}(t)$

slow convergence of Bernstein approximations

Bernstein polynomial approximations of degree $n=10,30,100,300,1000$ to a "triangular wave"

This fact seems to have precluded any numerical application of Bernstein polynomials from having been made. Perhaps they will find application when the properties of the approximant in the large are of more importance than the closeness of the approximation.

Philip J. Davis, Interpolation and Approximation (1963)

Paul de Casteljau \& Pierre Bézier (1960s) an emerging application - computer-aided design

- Paul de Faget de Casteljau - theory of "courbes et surfaces à pôles" developed at André Citroën, SA in the early 1960s
- de Casteljau's work unpublised (regarded as proprietary by Citroën) — revealed to outside world by Wolfgang Böhm in mid-1980s
- Pierre Étienne Bézier - implemented methods for computer-aided design and manufacturing at Renault during 1960s and 1970s
- Bézier published numerous articles and books describing his ideas
- basic problem: provide intuitive \& interactive means for design and manipulation of "free-form" curves and surfaces by computer, in the automotive, aerospace, and related industries
- identification of de Casteljau's and Bézier's ideas with Bernstein form of polynomials came later, through work of Forrest, Riesenfeld, et al.

de Casteljau "Courbes et surfaces à pôles" (Société Anonyme André Citroën, 1963)

1.5.- Soun-Pôles d'uno oourbe

pôles $=$ "pilot points" (interpolation of polynomials with polar forms)

de Casteljau - barycentric coordinates

de Casteljau's λ and $\mu=$ interval barycentric coordinates, with $\lambda+\mu=1$
example - for $t \in[0,1]$ take $\lambda=1-t$ and $\mu=t$, and expand $(\lambda+\mu)^{n}$

$$
1=[(1-t)+t]^{n}=\sum_{k=0}^{n}\binom{n}{k}(1-t)^{n-k} t^{k}=\sum_{k=0}^{n} b_{k}^{n}(t)
$$

\Rightarrow Bernstein basis $\left\{b_{k}^{n}(t)\right\}$ is non-negative and forms a partition of unity
de Casteljau also considers extension to barycentric coordinates and multivariate polynomial bases on triangular and simplex domains

computer-aided design in the early 60s

... the designers were astonished and scandalized. Was it some kind of joke? It was considered nonsense to represent a car body mathematically. It was enough to please the eye, the word accuracy had no meaning ...
reaction at Citroën to de Casteljau's ideas
Citroën's first attempts at digital shape representation used a Burroughs E101 computer featuring 128 program steps, a 220 -word memory, and a 5 kW power consumption!

De Casteljau's "insane" persistence led to an increased adoption of computer-aided design methods in Citroën from 1963 onwards.

My stay at Citroën was not only an adventure for me, but also an adventure for Citroën!
P. de Casteljau

correspondence with de Casteljau (1991)

devisy le 6 September 199

Cher Monsieur Farouki

L'Ophique féomérrique fournit, à teu pres, les seuls ere mples de Geiome'trie métrique, grace au principe de Fermat, et vest pourquai de f'aime :Aussi je vous nemercie de rotere envoi, auquel fosi accardé le maximum d'attention. Il est regrettable qu'entre nous, il y ait cette barriére de langue et je suis infiniment désolé de ne pas pacuois correspandé en any/ais. J'esfere aursi owroir doane satispaction àvotre collejue, J.e chashang, bien gue ge sois haut le contraire d'un not de bibliothéque.

Dans so lettre, votre colleque Mr Chastany sumble seutement s'inte'resser aur problémes fisibis's à un seul point saurce. Personnellement jaurais une prefférence four th doublet su mieus an potit cercle axial.

Voici un magnifique eremple, que j'afpele le Ricochet de cequel'on preul faire ave deux doublets, ou mieur deux oercles d'Airy. On obtientainsi une folution d'equalions aux diffirences finies, incroyablement preicise: Par renoois successifs, on generere deul surfaces conjugquès d'um systime aplanétique. Te serais prêt à croire que cette solution "approche" est meilleure que la solution" exacto" dans le eas fimite de la tache de diffraction d'firing, fuisque prècisèment calar pie pour cela. (Voir à a sujel, aussi, la Rema rque dela pafe 118 de man lisie "Lissare")

Je posside tout un dossier suer la question : Reiffecion, Réfraction, lourbe algëbrigue d'interplation entre deux poinhs, et encore propriit' de l'intersection des tongenkes en A_{n} et B_{n} des courbes conjuquies (noints correspondants) qui jouesuen noेle vis à vis des centres de courbure

On peut opproser cette recurrence à celle de lo. the'orie des frachales: if faut en effer iechercher la shabitite des longueurs oectorielles $\vec{B}_{2 n+1} \vec{B}_{2 n+1}$ ous $\vec{A}_{\text {an }} \vec{A}_{2 n n}$, en evitant touk convergence (ou à lenvers la divergence). Comroe contre exemple, le princife d'Herschell appliquese à odes segments axiouer M'M"et $P^{\prime} \rho^{\prime \prime}$ ondurità une rafide divergence

La forme marhématique est plus e'tendue que la partie exploitable physiquement. Les combinasions de type grejory, divergentes doment des pormes infiniment plus "oblies" Les combinausons de type gregory, divergentes donnent ded pimes infiniment phus golies de degre' éleoel' (Ω). On peul, poursuitre la recurrence au dela de Ω, mais elle ne signifio phat

Dans mon liste "liss age de donne d'outres esemples, non hirés de l optique, de la Generation par difficences finies, mais ifs restent naves.
Il fauchail aussi montrer comment un cercle de grand rayon, wanne que sur une serite pontion doit iesprimer sous la fre'sentation surface d'onde locale, qui puncit perte pution doct sexprimer sous la présentation surface of onde locale, qui puncit un ea'cul approcho" bien plus xijoureur que la solution exacte" "Le passage de point

Il existe un autre problème, tirie de l'ophique qui uhilise ce genre de principe. On supposeame lentille spherigue, iéalisee en wuches successives à la manieite des peaur d'un oignon. An improse une tache focale de rayon donnee r, assez pelike vue du centre o de la boule sous un angle ε
 ouche fiste seusincidence tasante va le venwoyer on-r. ce qui impose
$\frac{n_{i+1}}{n_{i}}=\frac{1}{\cos \frac{\varepsilon}{2}}=e^{\text {te }}$
puisque la nuwolle couche re ètre aboibtic au nivean
de l'anglo limite.
ceci impose the progrestion giomatrique des indices $n i=n_{0}\left(\frac{1}{\cos t}\right)^{2}$
La suite n'est plus qu'une question be calculs, pour de'kerminer de proche
en proche les rayons successifs dec couches
Là encore it suffer de limiter r, oe ε à la hache of 'Aicy.
Evidemment le sysrème obeït à la lai de Banguer nr sini = ete le long d'un rayon. ace propos aug vour remarqui que $\sin i=1 \quad n r=c^{l e}$. Si cette condxion at reelince dans un milieu a symetrie cylindrigue le rayon derient circulaire. lef sur faces dondet

done $n=c^{r}$, dans un milien d'indico constant est circulairo!!
Si vous effectriez des développements sur f'une de ces queshons, cela m'interecterait d'être tenu an courant.

Je wous prie d'agreer, cher Monsieur Farouki l'expression de mes meilleurs sentiments

Bézier's "point-vector" form of a polynomial curve

specify degree- n curve by initial point \mathbf{p}_{0} and n vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$

$$
\mathbf{r}(t)=\mathbf{p}_{0}+\sum_{k=1}^{n} \mathbf{a}_{k} f_{k}^{n}(t), \quad f_{k}^{n}(t)=\frac{(-1)^{k}}{(k-1)!} t^{k} \frac{\mathrm{~d}^{k-1}}{\mathrm{~d} t^{k-1}} \frac{(1-t)^{n}-1}{t}
$$

Left: Bézier point-vector specification of a cubic curve. Right: cubic basis functions $f_{1}^{3}(t), f_{2}^{3}(t), f_{3}^{3}(t)$ associated with the vectors $\mathbf{a}_{1} \mathbf{a}_{2}, \mathbf{a}_{3}$.
mischievous Bézier - $f_{1}^{n}(t), \ldots, f_{n}^{n}(t)=$ basis of Onésime Durand!

control-point form of a Bézier curve

Forrest (1972) : $\quad f_{i}^{n}(t)=\sum_{k=i}^{n} b_{k}^{n}(t), \quad b_{k}^{n}(t)=\binom{n}{k}(1-t)^{n-k} t^{k}$

re-write as $\quad \mathbf{r}(t)=\sum_{k=0}^{n} \mathbf{p}_{k} b_{k}^{n}(t), \quad \mathbf{p}_{k}=\mathbf{p}_{k-1}+\mathbf{a}_{k}$ manipulate cure shape by moving control points $\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}$

convex-hull, variation-diminishing, degree-elevation properties of the Bézier form

$$
\mathbf{r}(t)=\sum_{k=0}^{n} \mathbf{p}_{k} b_{k}^{n}(t), \quad \text { control points } \quad \mathbf{p}_{0}, \ldots, \mathbf{p}_{n}
$$

de Casteljau algorithm - evaluates \& subdivides $\mathbf{r}(t)$

$$
\begin{aligned}
& \text { initialize - set } t=\tau \text { and } \mathbf{p}_{k}^{0}=\mathbf{p}_{k} \text { for } k=0, \ldots, n \\
& \text { for } r=1, \ldots, n \\
& \text { for } j=r, \ldots, n \\
& \left\{\mathbf{p}_{j}^{r}=(1-\tau) \mathbf{p}_{j-1}^{r-1}+\tau \mathbf{p}_{j}^{r-1}\right\} \\
& \text { generates a triangular array of points }\left\{\mathbf{p}_{j}^{r}\right\} \\
& \mathbf{p}_{0}^{0} \quad \mathbf{p}_{1}^{0} \quad \mathbf{p}_{2}^{0} \quad . \quad . \quad \mathbf{p}_{n}^{0} \\
& \mathbf{p}_{1}^{1} \quad \mathbf{p}_{2}^{1} \quad . \quad . \quad \mathbf{p}_{n}^{1} \\
& \mathbf{p}_{2}^{2} \\
& \mathbf{p}_{n}^{2} \\
& \mathbf{p}_{n}^{n}
\end{aligned}
$$

$$
\mathbf{p}_{n}^{n}=\text { evaluated point } \mathbf{r}(\tau) \text { on curve }
$$

$\mathbf{p}_{0}^{0}, \mathbf{p}_{1}^{1}, \ldots, \mathbf{p}_{n-1}^{n-1}, \mathbf{p}_{n}^{n}=$ control points for subsegment $t \in[0, \tau]$ of $\mathbf{r}(t)$ $\mathbf{p}_{n}^{n}, \mathbf{p}_{n}^{n-1}, \ldots, \mathbf{p}_{n}^{1}, \mathbf{p}_{n}^{0}=$ control points for subsegment $t \in[\tau, 1]$ of $\mathbf{r}(t)$

interlude ... "lost in translation"

warning sign on bathroom door in Beijing hotel

"English on vacation"

in a Bucharest hotel lobby -
The elevator is being fixed for the next day.
During that time we regret that you will be unbearable.
in a Paris hotel elevator -
Please leave your values at the front desk.
in a Zurich hotel -
Because of the impropriety of entertaining guests of the opposite sex in your bedroom, it is suggested that the lobby be used for this purpose.
in an Acapulco restaurant -
The manager has personally passed all the water served here.
in Germany's Schwarzwald -
It is strictly forbidden on our Black Forest camping site that people of different sex - for instance, men and women - live together in one tent unless they are married with each other for that purpose.
in an Athens hotel -
Guests are expected to complain at the office between 9 and 11 am daily.
instructions for AC in Japanese hotel -
If you want just condition of warm in your room, please control yourself.
in a Yugoslav hotel -
The flattening of underwear with pleasure is the job of the chambermaid.
in a Japanese hotel -
You are invited to take advantage of the chambermaid.
on the menu of a Swiss restaurant -
Our wines leave you nothing to hope for.
in a Bangkok dry cleaners -
Drop your trousers here for best results.
Japanese rental car instructions -
When passenger of foot heave in sight, tootle the horn.
Trumpet him melodiously at first, but if he still obstacles
your passage, then tootle him with vigor.

Bernstein basis functions

roots of multiplicity k and $n-k$ at $t=0$ and $t=1$

properties of the Bernstein basis

$$
b_{k}^{n}(t)=\binom{n}{k}(1-t)^{n-k} t^{k}, \quad k=0, \ldots, n
$$

- partition of unity : $\sum_{k=0}^{n} b_{k}^{n}(t) \equiv 1$
- non-negativity : $b_{k}^{n}(t) \geq 0$ for $t \in[0,1]$
- symmetry: $b_{k}^{n}(t)=b_{n-k}^{n}(1-t)$
- recursion : $b_{k}^{n+1}(t)=t b_{k-1}^{n}(t)+(1-t) b_{k}^{n}(t)$
- unimodality : $b_{k}^{n}(t)$ has maximum at $t=k / n$
properties of Bernstein form, $\quad p(t)=\sum_{k=0}^{n} c_{k} b_{k}^{n}(t)$
- end-point values : $p(0)=c_{0}$ and $p(1)=c_{n}$
- lower \& upper bounds : $\min _{k} c_{k} \leq p(t) \leq \max _{k} c_{k}$
- variation diminishing : \# roots $=\operatorname{signvar}\left(c_{0}, \ldots, c_{n}\right)-2 m$
- derivatives \& integrals : coefficients of $p^{\prime}(t) \& \int p(t) \mathrm{d} t=$ differences \& partial sums of c_{0}, \ldots, c_{n}
- recursive algorithms for subdivision, degree elevation, arithmetic operations, composition, resultants, etc.
- root isolation (subdivision \& variation-diminishing property)

the plague of numerical instability

... or, the temptation to "kick the computer"

NUMERICAL METHODS WHAT

Forman S. Acton

Do you ever want to kick the computer? Does it iterate endlessly on your newest algorithm that should have converged in three iterations? And does it finally come to a crashing halt with the insulting message that you divided by zero? These minor trauma are, in fact, the ways the computer manages to kick you and, unfortunately, you almost always deserve it! For it is a sad fact that most of us can more readily compute than think...

numerical stability of polynomials

$p(t)$ has coefficients c_{0}, \ldots, c_{n} in basis $\Phi=\left\{\phi_{0}(t), \ldots, \phi_{n}(t)\right\}$

$$
p(t)=\sum_{k=0}^{n} c_{k} \phi_{k}(t)
$$

how sensitive is a value or root of $p(t)$ to perturbations of maximum relative magnitude ϵ in the coefficients c_{0}, \ldots, c_{n} ?
condition number for value of $p(t)$:

$$
|\delta p(t)| \leq C_{\Phi}(p(t)) \epsilon, \quad C_{\Phi}(p(t))=\sum_{k=0}^{n}\left|c_{k} \phi_{k}(t)\right|
$$

condition number for root τ of $p(t)$:

$$
|\delta \tau| \leq C_{\Phi}(\tau) \epsilon, \quad C_{\Phi}(\tau)=\frac{1}{\left|p^{\prime}(\tau)\right|} \sum_{k=0}^{n}\left|c_{k} \phi_{k}(t)\right|
$$

condition numbers for power and Bernstein forms

$$
\begin{gathered}
p(t)=\sum_{k=0}^{n} a_{k} t^{k}=\sum_{k=0}^{n} c_{k} b_{k}^{n}(t) \\
c_{j}=\sum_{k=0}^{j} \frac{\binom{j}{k}}{\binom{n}{k}} a_{k}, \quad t^{k}=\sum_{j=k}^{n} \frac{\binom{j}{k}}{\binom{n}{k}} b_{j}^{n}(t)
\end{gathered}
$$

Theorem. $C_{B}(p(t)) \leq C_{P}(p(t))$ for any polynomial $p(t)$ and all $t \in[0,1]$.

Proof (triangle inequality).

$$
\begin{aligned}
C_{B}(p(t)) & =\sum_{j=0}^{n}\left|c_{j} b_{j}^{n}(t)\right|=\sum_{j=0}^{n}\left|\sum_{k=0}^{j} \frac{\binom{j}{k}}{\binom{n}{k}} a_{k}\right| b_{j}^{n}(t) \\
& \leq \sum_{k=0}^{n}\left|a_{k}\right| \sum_{j=k}^{n} \frac{\binom{j}{k}}{\binom{n}{k}} b_{j}^{n}(t)=\sum_{k=0}^{n}\left|a_{k} t^{k}\right|=C_{P}(p(t)) .
\end{aligned}
$$

Wilkinson's "perfidious" polynomial

problem: compute the roots of the degree 20 polynomial

$$
p(t)=(t-1)(t-2) \cdots(t-20)=\sum_{k=0}^{20} a_{k} t^{k}
$$

using (software) floating-point arithmetic
J. H. Wilkinson (1959), The evaluation of the zeros of ill-conditioned polynomials, Parts I \& II, Numerische Mathematik 1, 150-166 \& 167-180.
"The cosy relationship that mathematicians enjoyed with polynomials suffered a severe setback in the early fifties when electronic computers came into general use. Speaking for myself, I regard it as the most traumatic experience in my career as a numerical analyst."
J. H. Wilkinson, The Perfidious Polynomial, in Studies in Numerical Analysis (1984)
root condition numbers for Wilkinson polynomial

root	power basis	Bernstein basis
0.05	2.10×10^{1}	3.41×10^{0}
0.10	4.39×10^{3}	1.45×10^{2}
0.15	3.03×10^{5}	2.34×10^{3}
0.20	1.03×10^{7}	2.03×10^{4}
0.25	2.06×10^{8}	1.11×10^{5}
0.30	2.68×10^{9}	4.15×10^{5}
0.35	2.41×10^{10}	1.12×10^{6}
0.40	1.57×10^{11}	2.22×10^{6}
0.45	7.57×10^{11}	3.32×10^{6}
0.50	2.78×10^{12}	3.80×10^{6}
0.55	7.82×10^{12}	3.32×10^{6}
0.60	1.71×10^{13}	2.22×10^{6}
0.65	2.89×10^{13}	1.12×10^{6}
0.70	3.78×10^{13}	4.15×10^{5}
0.75	3.78×10^{13}	1.11×10^{5}
0.80	2.83×10^{13}	2.03×10^{4}
0.85	1.54×10^{13}	2.34×10^{3}
0.90	5.74×10^{12}	1.45×10^{2}
0.95	1.31×10^{12}	3.41×10^{0}
1.00	1.38×10^{11}	0.00×10^{0}

perturbed roots of Wilkinson polynomial $-\epsilon=5 \times 10^{-10}$
$\begin{array}{|c|c|c|}\hline \text { root } & \text { power basis } & \text { Bernstein basis } \\ \hline \hline 0.05 & 0.05000000 & 0.0500000000 \\ \hline 0.10 & 0.10000000 & 0.1000000000 \\ \hline 0.15 & 0.15000000 & 0.1500000000 \\ \hline 0.20 & 0.20000000 & 0.2000000000 \\ \hline 0.25 & 0.25000000 & 0.2500000000 \\ \hline 0.30 & 0.30000035 & 0.3000000000 \\ \hline 0.35 & 0.34998486 & 0.3500000000 \\ \hline 0.40 & 0.40036338 & 0.4000000000 \\ \hline 0.45 & 0.44586251 & 0.4500000000 \\ \hline 0.50 & 0.50476331 \pm & 0.5000000000 \\$\cline { 1 - 1 } \cline { 1 - 1 } \& 0.55 \& 0.03217504 i\end{array}$) 0.5499999997 \mid$.

evaluating Wilkinson's polynomial @ $t=0.525$

$$
\begin{aligned}
a_{0} & =+0.000000023201961595 \\
a_{1} t & =-0.000000876483482227 \\
a_{2} t^{2} & =+0.000014513630989446 \\
a_{3} t^{3} & =-0.000142094724489860 \\
a_{4} t^{4} & =+0.000931740809130569 \\
a_{5} t^{5} & =-0.004381740078100366 \\
a_{6} t^{6} & =+0.015421137443693244 \\
a_{7} t^{7} & =-0.041778345191908158 \\
a_{8} t^{8} & =+0.088811127150105239 \\
a_{9} t^{9} & =-0.150051459849195639 \\
a_{10} t^{10} & =+0.203117060946715796 \\
a_{11} t^{11} & =-0.221153902712311843 \\
a_{12} t^{12} & =+0.193706822311568532 \\
a_{13} t^{13} & =-0.135971108107894016 \\
a_{14} t^{14} & =+0.075852737479877575 \\
a_{15} t^{15} & =-0.033154980855819210 \\
a_{16} t^{16} & =+0.011101552789116296 \\
a_{17} t^{17} & =-0.002747271750190952 \\
a_{18} t^{18} & =+0.000473141245866219 \\
a_{19} t^{19} & =-0.000050607637503518 \\
a_{20} t^{20} & =+0.000002530381875176 \\
\hline p(t) & =0.000000000000003899
\end{aligned}
$$

perturbation regions for $p(t)=\left(t-\frac{1}{6}\right) \cdots(t-1)$

perturbed Bernstein form

optimal stability of Bernstein basis

$$
\Psi=\left\{\psi_{0}(t), \ldots, \psi_{n}(t)\right\} \text { and } \Phi=\left\{\phi_{0}(t), \ldots, \phi_{n}(t)\right\} \text { non-negative on }[a, b]
$$

Theorem.

$$
\text { If } \quad \psi_{j}(t)=\sum_{k=0}^{n} M_{j k} \phi_{k}(t) \quad \text { with } \quad M_{j k} \geq 0
$$

then the condition numbers for the value of any degree n polynomial $p(t)$ at any point $t \in[a, b]$ in the bases Φ and Ψ satisfy

$$
C_{\Phi}(p(t)) \leq C_{\Psi}(p(t)) .
$$

We say that the Φ basis is systematically more stable than the Ψ basis.

Example: $\Phi=\left\{b_{0}^{n}(t), \ldots, b_{n}^{n}(t)\right\}$ and $\Psi=\left\{1, t, \ldots, t^{n}\right\}$ — in fact, the Bernstein basis is optimally stable (it is impossible to construct a basis on $[0,1]$ that is systematically more stable).

optimal stability (sketch)

$\mathcal{P}_{n}=$ set of all non-negative bases for degree- n polynomials on $[a, b]$.
For $\Phi, \Psi \in \mathcal{P}_{n}$ we write $\Phi \prec \Psi$ if $\Psi=\mathbf{M} \Phi$ for a non-negative matrix \mathbf{M}.
The relation \prec is a partial ordering of the set of non-negative bases \mathcal{P}_{n}.
Theorem. $\Phi \prec \Psi \Longleftrightarrow C_{\Phi}(p(t)) \leq C_{\Psi}(p(t))$ for all $p(t) \in \mathcal{P}_{n}$ and $t \in[a, b]$.
Definition. Φ is a minimal basis in \mathcal{P}_{n} if no Ψ exists, such that $\Psi \prec \Phi$.
A minimal basis in \mathcal{P}_{n} is optimally stable - it is impossible to construct a non-negative basis on $[a, b]$ that is systematically more stable.

Theorem. The Bernstein basis is minimal in \mathcal{P}_{n}, and is optimally stable. It is the only minimal basis whose basis functions have no roots in (a, b).

ON THE OPTIMAL STABILITY OF THE BERNSTEIN BASIS

> R. T. FAROUKI AND T. N. T. GOODMAN

Abstract. We show that the Bernstein polynomial basis on a given interval is "optimally stable," in the sense that no other nonnegative basis yields systematically smaller condition numbers for the values or roots of arbitrary polynomials on that interval. This result follows from a partial ordering of the set of all nonnegative bases that is induced by nonnegative basis transformations. We further show, by means of some low-degree examples, that the Bernstein form is not uniquely optimal in this respect. However, it is the only optimally stable basis whose elements have no roots on the interior of the chosen interval. These ideas are illustrated by comparing the stability properties of the power, Bernstein, and generalized Ball bases.

1. Introduction

To represent a polynomial p in a digital computer, we store in memory its coefficients c_{0}, \ldots, c_{n} in a suitable basis. These coefficients, together with a value t of the independent variable, serve as input to an evaluation algorithm that furnishes the polynomial value $p(t)$ as output.
less stable than the power form. Incidentally, it is interesting to note that the Chebyshev basis on $t \in[0,1]$ also gives a very unstable representation of this polynomial; see Example 4.2^{\prime} in [6]. Some of the root condition numbers are as large as 10^{55} ! (that's an exclamation mark, not a factorial - 10^{55} is surely a sufficiently impressive number in its own right).

least-squares polynomial approximation

$$
\begin{gathered}
\text { minimize } \int_{0}^{1}\left[f(t)-p_{n}(t)\right]^{2} \mathrm{~d} t, \quad p_{n}(t)=\sum_{k=0}^{n} a_{k} \phi_{k}(t) \\
\text { orthogonal basis } \int_{0}^{1} \phi_{j}(t) \phi_{k}(t) \mathrm{d} t=\left\{\begin{array}{cc}
\beta_{k} & j=k \\
0 & j \neq k
\end{array}\right. \\
\Longrightarrow \quad a_{k}=\frac{1}{\beta_{k}} \int_{0}^{1} f(t) \phi_{k}(t) \mathrm{d} t
\end{gathered}
$$

permanence of coefficients: a_{0}, \ldots, a_{n} unchanged when $n \rightarrow n+1$
orthogonality impossible for non-negative bases, but Bernstein basis is intimately related to Legendre basis

Legendre and Bernstein bases on $t \in[0,1]$

recurrence relation $L_{0}(t)=1, L_{1}(t)=2 t-1$

$$
(k+1) L_{k+1}(t)=(2 k+1)(2 t-1) L_{k}(t)-k L_{k-1}(t)
$$

Rodrigues' formula $L_{k}(t)=\frac{(-1)^{k}}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}}[(1-t) t]^{k}$
Bernstein form $\quad L_{k}(t)=\sum_{i=0}^{k}(-1)^{k+i}\binom{k}{i} b_{i}^{k}(t)$

Pascal's triangle with alternating signs !!

Bernstein form of the Legendre polynomials

$$
\begin{aligned}
& L_{0}(t)=1 b_{0}^{0}(t), \\
& L_{1}(t)=-1 b_{0}^{1}(t)+1 b_{1}^{1}(t), \\
& L_{2}(t)=1 b_{0}^{2}(t)-2 b_{1}^{2}(t)+1 b_{2}^{2}(t), \\
& L_{3}(t)=-1 b_{0}^{3}(t)+3 b_{1}^{3}(t)-3 b_{2}^{3}(t)+1 b_{3}^{3}(t), \\
& L_{4}(t)=1 b_{0}^{4}(t)-4 b_{1}^{4}(t)+6 b_{2}^{4}(t)-4 b_{3}^{4}(t)+1 b_{4}^{4}(t), \\
& L_{5}(t)=-1 b_{0}^{5}(t)+5 b_{1}^{5}(t)-10 b_{2}^{5}(t)+10 b_{3}^{5}(t)-5 b_{4}^{5}(t)+1 b_{5}^{5}(t),
\end{aligned}
$$

Bernstein form of Legendre polynomial derivatives - e.g., $L_{4}(t)$

$$
\begin{aligned}
L_{4}(t) & =1 b_{0}^{4}(t)-4 b_{1}^{4}(t)+6 b_{2}^{4}(t)-4 b_{3}^{4}(t)+1 b_{4}^{4}(t), \\
\frac{1}{2} L_{4}^{\prime}(t) & =5 b_{0}^{3}(t)-10 b_{1}^{3}(t)+10 b_{2}^{3}(t)-5 b_{3}^{3}(t), \\
\frac{1}{3} L_{4}^{\prime \prime}(t) & =15 b_{0}^{2}(t)-20 b_{1}^{2}(t)+15 b_{2}^{2}(t), \\
\frac{1}{3} L_{4}^{\prime \prime \prime}(t) & =35 b_{0}^{1}(t)-35 b_{1}^{1}(t), \\
\frac{1}{5} L_{4}^{\prime \prime \prime \prime}(t) & =70 b_{0}^{0}(t),
\end{aligned}
$$

Legendre-Bernstein basis transformations

$$
\begin{gathered}
p(t)=\sum_{k=0}^{n} a_{k} L_{k}(t)=\sum_{k=0}^{n} c_{k} b_{k}^{n}(t) \\
c_{j}=\sum_{k=0}^{n} M_{j k} a_{k}, \quad a_{j}=\sum_{k=0}^{n} M_{j k}^{-1} c_{k} \\
M_{j k}=\frac{1}{\binom{n}{k}} \sum_{i=\max (0, j+k-n)}^{\min (j, k)}(-1)^{k+i}\binom{j}{i}\binom{k}{i}\binom{n-k}{j-i} \\
M_{j k}^{-1}=\frac{2 j+1}{n+j+1}\binom{n}{k} \sum_{i=0}^{j}(-1)^{j+i} \frac{\binom{j}{i}\binom{j}{i}}{\binom{n+j}{k+i}}
\end{gathered}
$$

condition number $C_{p}(\mathbf{M})=\|\mathbf{M}\|_{p}\left\|\mathbf{M}^{-1}\right\|_{p}, \quad C_{1}(\mathbf{M})=2^{n}>C_{\infty}(\mathbf{M})$

condition numbers for basis transformations

extension to rational forms

rational Bézier curve $\mathbf{r}(t)=\frac{\sum_{k=0}^{n} w_{k} \mathbf{p}_{k} b_{k}^{n}(t)}{\sum_{k=0}^{n} w_{k} b_{k}^{n}(t)}$ defined by control points $\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}$ and scalar weights w_{0}, \ldots, w_{n} set of rational curves is closed under projective transformations conic segments as rational quadratic Bézier curves $\left(w_{0}=w_{2}=1\right)$

$\mathrm{w}_{1}<1$ (ellipse)

$\mathrm{w}_{1}=1$ (parabola)

$\mathrm{w}_{1}>1$ (hyperbola)

bivariate \& multivariate generalizations

barycentric coordinates: $\quad(u, v, w)=\frac{\left(\operatorname{area}\left(T_{1}\right), \operatorname{area}\left(T_{2}\right), \operatorname{area}\left(T_{3}\right)\right)}{\operatorname{area}(T)}$
$1=(u+v+w)^{n}=\sum_{i+j+k=n} b_{i j k}^{n}(u, v, w), \quad b_{i j k}^{n}(u, v, w)=\frac{n!}{i!j!k!} u^{i} v^{j} w^{k}$
triangular surface patch: $\quad \mathbf{r}(u, v, w)=\sum_{i+j+k=n} \mathbf{p}_{i j k} b_{i j k}^{n}(u, v, w)$

bivariate de Casteljau algorithm

generates tetrahedral array - evaluates and subdivides $\mathbf{r}(u, v, w)$

generalization to B-spline basis

continuous domain $[0,1] \rightarrow$ partitioned domain $\left[t_{0}, t_{1}, \ldots, t_{N+n+1}\right]$

retain partition-of-unity, non-negativity, recursion properties + compact support \& control over continuity (multiple knots)

local shape modification

C^{2} embedded linear segment

scientific computing applications

- real solutions of systems of algebraic equations; identifying extrema or bounds on constrained or unconstrained polynomial functions in one or several variables (optimization) using Bernstein basis properties
- robust stability of dynamic systems with uncertain physical parameters (Kharitonov generalization of Routh-Hurwitz criterion)
- definition of barycentric coordinates and "partition-of-unity" polynomial basis functions over general polygon or polytope domains for use in the finite-element and meshless analysis methods
- modelling of inter-molecular potential energy surfaces; design of filters for signal processing applications; inputs to neurofuzzy networks modelling non-linear dynamical systems; reconstruction of 3D models and calibration of optical range sensors

closure

- 100 years have elapsed since introduction of Bernstein basis
- Bernstein form was limited to theory, rather than practice,* of polynomial approximation for ~ 50 years after its introduction
- applications in design, rather than approximation, pioneered ~ 50 years ago by de Casteljau and Bézier
- now universally adopted as a fundamental representation for computer-aided geometric design applications
- "optimally stable" basis for polynomials defined over finite domains
- Bernstein basis intimately related to Legendre orthogonal basis
- increasing adoption in diverse scientific computing applications

