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— synopsis —

• real–time CNC interpolators — PH curves vs. G codes

• variable feedrates for constant material removal rate

• inverse dynamics problem for minimization of path error

• high-speed cornering under axis acceleration bounds

• exact contour error computation for cross-coupled control

• optimal orientations for contour machining of surfaces



3-axis “open architecture” CNC mill

• MHO Series 18 Compact Mill

• 18”×18”×12” work volume

• Yaskawa brushless DC motors

• zero-backlash precision ball screws

• linear encoders, ± 0.001” accuracy

• MDSI OpenCNC control software

• custom real-time interpolators
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G codes – traditional tool path specification

approximate general curved paths by many short linear/circular moves

G01 = linear move, G02/G03 = clockwise/anti-clockwise circular move

X,Y = target point, I,J = offsets from current location to circle center

N01 G01 X0 Y0 F37200
N02 G01 X-41 Y87
N03 G01 X-62 Y189
N04 G02 X-23 Y478 I654 J0
N05 G01 X474 Y1015

. . . etc.

• accurate path specification =⇒ voluminous part programs

• block look-ahead problem for acceleration/deceleration management

• aliasing effects in HSM, when G code length comparable to V ∆t



real-time CNC interpolators

• computer numerical control (CNC) machine: digital control system

• within each sampling interval (∆t ∼ 10−3 sec) of servo system,
compares actual position (measured by encoders on machine axes)
with reference point (computed by real-time interpolator)

• real-time CNC interpolator algorithm — given parametric curve r(ξ)
and speed (feedrate) function V , compute reference-point parameter
values ξ1, ξ2, . . . in real time:∫ ξk

0

|r′(ξ)|dξ

V
= k∆t , k = 1, 2, . . .

• general parametric curve — compute ξk by Taylor series expansion

• Pythagorean-hodograph (PH) curves — analytic reduction of
“interpolation integral” ⇒ accurate & efficient real-time interpolator



Taylor series expansions

Suppose ξ(t) specifies time variation of the parameter along r(ξ) when
traversed with (constant or variable) feedrate V .

Reference–point parameter value ξk+1 obtained from preceding value ξk

by Taylor–series expansion

ξk+1 = ξk + ξ̇(tk)∆t + 1
2 ξ̈(tk) (∆t)2 + · · ·

of ξ(t) about t = tk = k∆t, where dots denote time derivatives
=⇒ need expressions for time derivatives ξ̇(t), ξ̈(t), . . . of ξ(t).

For a given curve r(ξ), the parametric speed σ and feedrate V are
defined in terms of cumulative arc length s along r(ξ) by

σ = |r′(ξ)| =
ds

dξ
, V =

ds

dt



Time derivatives can be converted to parametric derivatives using

d
dt

=
ds

dt

dξ

ds

d
dξ

=
V

σ

d
dξ

Successive applications of d/dt give

ξ̇ =
V

σ
, ξ̈ =

σV ′ − σ′V

σ2
ξ̇ ,

...
ξ =

σV ′ − 3σ′V

σ2
ξ̈ +

σV ′′ − σ′′V

σ2
ξ̇2 , etc. ,

where primes indicate derivatives with respect to ξ. Derivatives of the
parametric speed can be expressed recursively as

σ′ =
r′ · r′′

σ
, σ′′ =

r′ · r′′′ + |r′′|2 − σ′2

σ
, etc.



For variable feedrate, must express V ′, V ′′, . . . in terms of derivatives
with respect to variable that V is specified as a function of

time-dependent feedrate: V (t) — acceleration/deceleration rates

V ′ =
σ

V

dV

dt
, V ′′ =

σ′

V

dV

dt
− σ2

V 3

(
dV

dt

)2

+
σ2

V 2

d2V

dt2

arc-length-dependent feedrate: V (s) — distance along trajectory

V ′ = σ
dV

ds
, V ′′ = σ′ dV

ds
+ σ2 d2V

ds2

curvature-dependent feedrate: V (κ) — control material removal rate

V ′ = σ
dκ

ds

dV

dκ
, V ′′ =

(
σ′ dκ

ds
+ σ2 d2κ

ds2

)
dV

dκ
+

(
σ

dκ

ds

)2 d2V

dκ2



V (κ) case requires arc–length derivatives of curvature:

κ =
(r′ × r′′) · z

σ3
,

dκ

ds
=

(r′ × r′′′) · z − 3σ2σ′κ

σ4
,

d2κ

ds2
=

(r′′ × r′′′ + r′ × r′′′′) · z − 3σ(2σ′2 + σσ′′)κ − 7σ3σ′(dκ/ds)
σ5

.

problems with Taylor series interpolators

• finite # of terms in Taylor series =⇒ unknown truncation error

• coefficients of higher–order terms very complicated & costly to
compute =⇒ incompatible with real–time computing

• several papers give erroneous coefficients for Taylor interpolators



Pythagorean-hodograph (PH) curves

r(ξ) = PH curve in Rn ⇐⇒ components of hodograph r′(ξ)

are elements of a Pythagorean (n + 1)–tuple of polynomials

PH curves incorporate special algebraic structures in their hodographs

• rational offset curves rd(ξ) = r(ξ) + dn(ξ)

• polynomial parametric speed σ(ξ) = |r′(ξ)| =
ds

dξ

• polynomial arc-length function s(ξ) =
∫ ξ

0

|r′(ξ)| dξ

• energy integral E =
∫ 1

0

κ2 ds has closed-form evaluation

• real-time CNC interpolators, rotation-minimizing frames, etc.



Planar & spatial Pythagorean-hodograph curves

x′2(t) + y′2(t) = σ2(t) ⇐⇒


x′(t) = u2(t) − v2(t)
y′(t) = 2 u(t)v(t)
σ(t) = u2(t) + v2(t)

choose complex polynomial w(t) = u(t) + i v(t)

planar Pythagorean hodograph — r′(t) = (x′(t), y′(t)) = w2(t)

x′2(t) + y′2(t) + z′2(t) = σ2(t) ⇐⇒


x′(t) = u2(t) + v2(t) − p2(t) − q2(t)
y′(t) = 2 [u(t)q(t) + v(t)p(t) ]
z′(t) = 2 [ v(t)q(t) − u(t)p(t) ]
σ(t) = u2(t) + v2(t) + p2(t) + q2(t)

choose quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k

spatial Pythagorean hodograph — r′(t) = (x′(t), y′(t), z′(t)) = A(t) iA∗(t)



real-time CNC interpolators
for Pythagorean-hodograph (PH) curves
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Left: analytic tool path description (quintic PH curve). Right: approximation
of path to various prescribed tolerances using piecewise-linear G codes.



comparative feedrate performance: 100 & 200 ipm
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The G code and PH curve interpolators both give excellent performance
(red) at 100 and 200 ipm. The “staircase” nature of the x and y feedrate
components (blue and green) for the G codes indicate faithful reproduction
of the piecewise-linear path, while the PH curve yields smooth variations.



comparative feedrate performance: 400 & 800 ipm
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At 400 & 800 ipm, the PH curve interpolator continues to yield impeccable
performance – but the performance of the G code interpolator is severely
degraded by “aliasing” effects, incurred by the finite sampling frequency
and discrete nature of the piecewise-linear path description.



repertoire of feedrate variations for PH curves

real-time CNC interpolator: given parametric curve r(ξ) and feedrate
variation V , compute reference-point parameter values ξ1, ξ2, . . . from∫ ξk

0

|r′(ξ)|dξ

V
= k∆t

instead of Taylor series expansion, PH curves admit analytic reduction of
the interpolation integral, for many feedrate variations of practical interest:

◦ constant V, linear or quadratic dependence V (s) on arc length s

◦ time-dependent feedrate, for any easily integrable function V (t)
— useful for acceleration and deceleration management

◦ curvature-dependent feedrate for constant material removal rate
(MRR) at fixed depth of cut δ — V (κ) = V0 [ 1 + κ(d − 1

2δ) ]−1



material removal rate (MRR) as function of curvature

r r

δ
δ

δ

linear, κ = 0 anticlockwise, κ = 1 / rclockwise, κ = –1 / r

V0

V0

V0

Volume removed (yellow area) by a cylindrical tool of radius d moving with
feedrate V0 through depth of cut δ for: a clockwise circular path of radius r
(left); a linear path (center); and an anti–clockwise circular path of radius r
(right). In each case, the MRR can be expressed in terms of the curvature
as V0 δ [ 1 + κ(d− 1

2δ) ]. Hence, to maintain constant MRR, one should use
the curvature–dependent feedrate

V (ξ) =
V0

1 + κ(ξ) (d − 1
2δ)

.



curvature-dependent feedrate for constant MRR
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G codes for PH curve tool paths

G05 = quintic PH curve, A,B,C,P,Q,R = coefficients of u(t), v(t)

X,Y = target point, F & U,V,W = variable feedrate type & parameters

N05 G05 H5 F0 U37200
N10 G05 X1092 Y-294 A-31.026 B-38.537 C-31.481 P16.934 Q-16.436 R13.062
N15 G05 X1470 Y-1386 A-31.481 B-24.426 C-28.476 P13.062 Q42.560 R2.794
N20 G05 X2226 Y-294 A-28.476 B-32.526 C-36.896 P2.794 Q-36.972 R-14.887
N25 G05 X3444 Y504 A-36.896 B-41.267 C-32.579 P-14.887 Q7.197 R-25.365
N30 G05 X2226 Y1722 A-32.579 B-23.892 C8.378 P-25.365 Q-57.927 R-36.389
N35 G05 X2100 Y504 A8.378 B40.647 C21.987 P-36.389 Q-14.851 R-28.356
N40 G05 X1134 Y252 A21.987 B3.326 C-13.761 P-28.356 Q-41.861 R-28.525
N45 G05 X756 Y1050 A-13.761 B-30.849 C-3.668 P-28.525 Q-15.189 R-32.746
N50 G05 X0 Y0 A-3.668 B23.514 C31.026 P-32.746 Q-50.304 R-16.934

R. T. Farouki, J. Manjunathaiah, G–F. Yuan, G codes for the specification of Pythagorean–hodograph
tool paths and associated feedrate functions on open–architecture CNC machines, International Journal
of Machine Tools & Manufacture 39, 123–142 (1999)

allows combination of traditional (linear/circular) G codes and PH quintics,
with variable feedrates — dependent on time, arc length, or curvature



inverse dynamics problem for path error minimization

C. A. Ernesto & R. T. Farouki (2010), Solution of inverse dynamics problems for contour error minimization
in CNC machines, International Journal of Advanced Manufacturing Technology 49, 589–604

inertia (resistance to motion) and damping (frictional energy dissipation)
of CNC machine axes prevent exact execution of commanded motion

develop dynamic model of machine/controller system, expressed in terms
of linear ordinary differential equations

transform independent variable from the time t to the curve parameter ξ :
constant coefficients → polynomial coefficients

revert differential equations: swap input & output dependent variables

solve reverted differential equations for modified input path that, subject
to machine dynamics, exactly yields desired output path

for brevity, consider only x–axis motion (same principles for y, z axes)



block diagram of CNC machine x–axis drive with PID controller

ka kt

i
1 / (Js+B)

T
1 / s

ω
rg

θ xX e
rgkp + ki / s + kd s

u+
 –

X = commanded position from real–time interpolator
x = actual position as measured by position encoders
e = X − x = instantaneous x–axis position error
kp, ki, kd = proportional, integral, derivative gains
u = output voltage from controller
i = current from current amplifier
T = torque from DC electric motor
J , B = x–axis inertia and damping
ω, θ = motor shaft angular speed & position
rg = transmission ratio (angular → linear conversion)



machine/controller dynamics

CNC machine executes actual path (x(t), y(t)) determined from
commanded path (X(t), Y (t)) by differential equations of the form

ax
...
x + bx ẍ + cx ẋ + x = dx Ẍ + ex Ẋ + X ,

ay
...
y + by ÿ + cy ẏ + y = dy Ÿ + ey Ẏ + Y ,

where dots indicate time derivatives, constant coefficients ax, bx, . . .
depend on the machine/controller physical parameters.

But commanded path (X(ξ), Y (ξ)) specified by general parameter ξ,
rather than time t.

Transform independent variable: time t → curve parameter ξ

d
dt

=
ds

dt

dξ

ds

d
dξ

=
V

σ

d
dξ

,

where σ = ds/dξ = parametric speed, and V = ds/dt = feedrate.



If ξ(t) specifies time variation of parameter when (X(ξ), Y (ξ)) is traversed
with (constant or variable) feedrate V , its time derivatives are

ξ̇ =
V

σ
, ξ̈ =

σV ′ − σ′V

σ2
ξ̇ ,

...
ξ =

σV ′ − 3σ′V

σ2
ξ̈ +

σV ′′ − σ′′V

σ2
ξ̇2 , etc.

and we have

d
dt

= ξ̇
d
dξ

,
d2

dt2
= ξ̇2 d2

dξ2
+ ξ̈

d
dξ

,
d3

dt3
= ξ̇3 d3

dξ3
+3 ξ̇ ξ̈

d2

dξ2
+

...
ξ

d
dξ

, etc.

Hence transformed differential equations become

αx(ξ) x′′′ + βx(ξ) x′′ + γx(ξ) x′ + δx(ξ) x = λx(ξ) X ′′ + µx(ξ) X ′ + νx(ξ) X ,

αy(ξ) y′′′ + βy(ξ) y′′ + γy(ξ) y′ + δy(ξ) y = λy(ξ) Y ′′ + µy(ξ) Y ′ + νy(ξ) Y ,

where primes denote derivatives with respect to ξ, and αx(ξ), βx(ξ), . . .
are polynomials in ξ if (X(ξ), Y (ξ)) is a PH curve.



Now revert the differential equations — solve “backwards” to find input
required to produce desired output.

Input = modified path (X̂(ξ), Ŷ (ξ)), output = desired path (X(ξ), Y (ξ))

λx(ξ)X̂ ′′ + µx(ξ)X̂ ′ + νx(ξ)X̂ = αx(ξ)X ′′′ + βx(ξ)X ′′ + γx(ξ)X ′ + δx(ξ)X,

λy(ξ)Ŷ ′′ + µy(ξ)Ŷ ′ + νy(ξ)Ŷ = αy(ξ)Y ′′′ + βy(ξ)Y ′′ + γy(ξ)Y ′ + δy(ξ)Y.

Must solve initial value problem for linear ODEs in X̂(ξ), Ŷ (ξ) with known
polynomials in ξ as coefficients and right–hand sides.

Simplest case: P controller with ki = kd = 0 ⇒ λx(ξ) = µx(ξ) ≡ 0 and
λy(ξ) = µy(ξ) ≡ 0. Can solve exactly for X̂, Ŷ as

X̂ =
bxσV 2X ′′ + V [ bx(σV ′ − σ′V ) + cxσ2 ]X ′ + σ3X

σ3
,

Ŷ =
byσV 2Y ′′ + V [ by(σV ′ − σ′V ) + cyσ

2 ]Y ′ + σ3Y

σ3
.

Modified path exactly determined as higher–order rational Bézier curve!



example: quintic PH curve and P controller

 original curve  modified curve

Left: quintic PH curve defining desired path (X(ξ), Y (ξ)). Right: modified
path (X̂(ξ), Ŷ (ξ)) that compensates for the machine/controller dynamics,
for a P controller with gain kp = 10 and constant feedrate V = 0.12 m/s.
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comparison of output for original and modified paths

P controller with gain kp = 10 and constant feedrate V = 0.12 m/s

executedcommanded

 original path

executedcommanded

 modified path

Comparison of commanded and executed motions for original (left) and
modified (right) paths. In the former case, the executed motion deviates
significantly from the desired path. In the latter case, the executed motion
is essentially indistinguishable from the original commanded path.



axis accelerations for original and modified paths
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Comparison of x and y axis accelerations for original and modified paths.
The modified path incurs greater peak accelerations, requiring a higher
motor torque capacity.



efficient high-speed cornering

C. A. Ernesto & R. T. Farouki (2011), High-speed cornering by CNC machines under prescribed bounds
on axis accelerations and toolpath contour error, International Journal of Advanced Manufacturing
Technology, to appear

• exact traversal of sharp corner in toolpath requires zero feedrate —
high deceleration & acceleration rates increase execution time, may
incur large contour errors

• round corner with G1 Bézier conic “splice” segment with deviation
satisfying prescribed geometrical tolerance ε

• specify square of feedrate on conic segment as a Bernstein-form
polynomial, to be determined optimization problem with point-wise
constraints arising from machine axis acceleration bounds

• applying constraints to Bernstein coefficients, optimization problem
can be solved to any desired accuracy by a monotonically convergent
sequence of linear programming problems, using subdivision methods



tolerance-based conic splice segments

standard-form rational quadratic Bézier curve

r(ξ) =
p0 (1 − ξ)2 + w1p1 2(1 − ξ)ξ + p2 ξ2

(1 − ξ)2 + w1 2(1 − ξ)ξ + ξ2

left: ellipse (w1 < 1); center: parabola (w1 = 1); right: hyperbola (w1 > 1)

monotone relationship between weight w1 and geometrical tolerance ε



given r(ξ) = (x(ξ), y(ξ)) minimize T =
∫ 1

0

|r′(ξ)|
V (ξ)

dξ

with respect to coefficients c0, . . . , cn of squared feedrate

V 2(ξ) =
n∑

k=0

ck

(
n

k

)
(1 − ξ)n−kξk

subject to point-wise Ax, Ay axis acceleration constraints

(x′2 + y′2)(x′′V 2 + x′V V ′) − (x′x′′ + y′y′′)x′V 2 − Ax(x′2 + y′2)2 ≤ 0 ,

(x′2 + y′2)(x′′V 2 + x′V V ′) − (x′x′′ + y′y′′)x′V 2 + Ax(x′2 + y′2)2 ≤ 0 ,

(x′2 + y′2)(y′′V 2 + y′V V ′) − (x′x′′ + y′y′′)y′V 2 − Ay(x′2 + y′2)2 ≤ 0 ,

(x′2 + y′2)(y′′V 2 + y′V V ′) − (x′x′′ + y′y′′)y′V 2 + Ay(x′2 + y′2)2 ≤ 0 .

by subdivision → convergent sequence of linear programming problems



high-speed cornering: computed example

tolerance: ε = 0.015 mm, acceleration bounds: Ax = Ay = 2000 mm/s2
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left: smoothed corner; center: feedrate function; right: acceleration plot

achieves ∼ 30% reduction in overall cornering time



cross-coupled control of CNC machines

CNC machines have traditionally used independent axis controllers.
Contouring accuracy can be improved with cross–coupled controllers
(communicate information about path deviation between axis controllers)

At time tk = k∆t, let

p = actual machine position (measured by encoders)
r(ξk) = reference point (commanded position) on curve
e = (ex, ey) = r(ξk) − p = position error vector
r(ξ∗) = footpoint (closest point) to p on r(ξ)
ε = (εx, εy) = r(ξ∗) − p = contour error vector
ε = |ε| = contour error of p with respect to r(ξ)

write e = e‖ + e⊥ where “normal deviation” e⊥ = ε = contour error
(limits accuracy of the machined part), while “tangential deviation”
e‖ = e − e⊥ = feed error (only affects the overall machining time)



p

e
ε

r(ξk)r(ξ*)

r(ξ)

r(ξk) = reference point (commanded position) and p = actual position
(measured by encoders) at tk = k ∆t. Then position error e = r(ξk) − p
and contour error ε = r(ξ∗) − p, where r(ξ∗) is the footpoint of p on r(ξ).



cross-coupled controller block diagram

He(s)

Hε(s)

Σ
ux

G(s) xp

Σ
xr ex

εx

–

+ +

+

actuating signal for the x–axis is a combination of the position error ex

and contour error εx components, as modulated by individual (e.g., PID)
controller transfer functions He(s) and Hε(s)

need accurate & efficient algorithms for real–time computation of contour
error ε w. r. t. curved path r(ξ) at ∼ 1–10 kHz servo sampling frequencies



contour error estimation using osculating circle
Y. Koren and C. C., Lo (1991), Variable–gain cross–coupling for contouring, CIRP Annals 40, 371–374.

c

p

R

ex

ey
ε

θ
r(ξk)

r(ξ)

osculating circle

quasi–linear contour error estimate ε ≈ −Cxex + Cyey by approximation
of the curve with circle of curvature at r(ξk) — where the “variable gains”

Cx = sign(ρ)
[

sin θ − ex

2ρ

]
, Cy = sign(ρ)

[
cos θ +

ey

2ρ

]
depend on tangent angle θ and (signed) radius of curvature ρ (R = |ρ|)



accuracy of osculating-circle approximation

Taylor series expansion of r(ξ) for arc–length increment ∆s

∆r = ∆s t + 1
2(∆s)2 κn + 1

6(∆s)3 (κ̇n − κ2t) + · · ·

osculating circle = first two terms, deviation = cubic and higher terms

| 1
6(∆s)3 (κ̇n − κ2t) |

|∆s t + 1
2(∆s)2 κn |

= 1
6(κ∆s)2

√
1 + κ̇2/κ4

1 + 1
4(κ∆s)2

osculating circle is poor approximation of r(ξ) if above ratio not � 1
— occurs when curvature has large magnitude or varies rapidly

more importantly, ∆s ≈ | r(ξk) − p | may be relatively large if
controller tolerates significant steady–state error (e.g., P controller)

— method uses “wrong” circle of curvature if κ varies rapidly



exact contour error measurement
J. R. Conway, C. A. Ernesto, R. T. Farouki, and M. Zhang (2011), Performance analysis of cross–
coupled controllers for CNC machines based upon precise real–time contour error measurement,
International Journal of Machine Tools and Manufacture, to appear

p = (xp, yp) and degree n polynomial curve r(ξ) = (x(ξ), y(ξ)), ξ ∈ [ 0, 1 ]

ε = min
ξ ∈ [ 0,1 ]

|p − r(ξ) | = min
0≤i≤N+1

|p − r(ξi) |

ξ0 = 0, ξN+1 = 1 and ξ1, . . . , ξN are odd–multiplicity roots on (0, 1) of

F (xp, yp, ξ) = [xp − x(ξ) ]x′(ξ) + [ yp − y(ξ) ] y′(ξ)

F (xp, yp, ξ) is of odd degree 2n − 1 in ξ, so it has at least one real root

r(ξm) is called a footpoint of p on r(ξ) if |p − r(ξi) | is minimum for i = m

if footpoint is unique, analytic continuation (e.g., predictor–corrector)
method can be used to update it as p moves in small increments ∆p

not possible for locations of p with multiple footpoints, namely, p lies on
evolute or self–bisector of r(ξ) — change in “identity” of footpoint occurs



locations of p with multiple footpoints

evolute (left) & self–bisector (right) for the cubic r(ξ) = (ξ, ξ3)

no analytic continuation of footpoint as p crosses these loci

no simple closed–form equation for the self–bisector of r(ξ)



tracking all roots of F (xp, yp, ξ) = 0

simpler to track all (real & complex) roots as p moves,
and select the real root ξm that minimizes |p − r(ξk) |

compute roots for initial location p = (x0, y0) then update
by cubically–convergent Laguerre iteration as p → p + ∆p

ξ(r+1) = ξ(r) − mf(ξ(r))

f ′(ξ(r)) ±
√

g(ξ(r))

where f(ξ) = F (xp, yp, ξ) and

g(ξ) = (m − 1)[ (m − 1)f ′2(ξ) − mf(ξ)f ′′(ξ) ]

for degree 5 curve, runs in real time on 300 MHz processor



real-time contour error computation by Laguerre iteration
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left: quintic curve r(ξ) = (x(ξ), y(ξ)) with discrete sampling of machine
positions p = (xp, yp); center: contour error of machine positions p with
respect to r(ξ); right: variation of roots of the polynomial F (xp, yp, ξ) = 0
in the complex plane as p moves.

cross-coupled controller implemented using Hε(s) = kcc He(s), where
He(s) is a standard P or PI type controller



test curve for cross-coupled controller
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left: PH quintic test curve used in cross–coupled controller experiments;
right: curvature profile — showing sharp curvature “spike” — of test curve
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measured contour errors using exact computation (upper) and osculating
circle approximation (lower) with cross–coupling gains kcc = 0, 1, 2, 4, 8.
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measured feedrate (for a 500 in/min command rate) with cross-coupled
P (left) and PI (right) controllers, using exact contour error computation



conclusions for cross-coupled control

• feasibility of exact real-time contour error computation
with modest (300 MHz) cpu & 1 kHz sampling frequency

• for P controller, exact computation gives systematic
reduction of contour error relative to osculating-circle
approximation, as relative gain kcc is increased

• improvement for PI controller is less significant, since
steady-state position error is largely suppressed, but
feedrate fluctuations are much larger

• improvement in tracking accuracy most pronounced for
paths with large curvature and rapid curvature variation



contour machining of free-form surfaces

Given parametric surface r(u, v) for (u, v) ∈ [ 0, 1 ] × [ 0, 1 ] and set Π of
parallel planes with normal N and equidistant spacing ∆, planar sections
of r(u, v) by planes of Π are the surface contours.

In contour machining, these surface contours define the contact curves
of a spherical cutter with r(u, v). Spacing between adjacent contours is
` ≈ ∆/

√
1 − (N · n)2, where surface normal n is defined by

n =
ru × rv

|ru × rv|
, (u, v) ∈ [ 0, 1 ] × [ 0, 1 ] .

For “best quality” contours — that minimize scallop height of machined
surface between adjacent tool paths — we need to find orientation N of
the planes Π that minimizes N · n for (u, v) ∈ [ 0, 1 ] × [ 0, 1 ].

In other words, N should be “as far as possible” from the set {n } of all
normals to the surface r(u, v).



optimal section-plane orientation



strategy for optimal orientation N of section planes

• set of normals {n} = Gauss map of surface, on unit sphere S2

• Gauss map boundary = subset of images of the parabolic lines
(zero Guassian curvature) and patch boundaries on S2

• symmetrize Gauss map by identifying opposed normals n, −n

• perform stereographic projection of Gauss map from S2 to R2

• compute medial axis transform on complement of Gauss map

• center of largest circle in medial axis transform identifies vector
N furthest from all normals n to r(u, v)

• also applies to rapid prototyping / layered manufacturing processes

T. S. Smith, R. T. Farouki, M. al–Kandari, and H. Pottmann, Optimal slicing of free–form surfaces,
Computer Aided Geometric Design 19, 43–64 (2002)



parabolic lines on free-form surfaces



Gauss map computation for free-form surfaces



medial axis transform for complement of Gauss map



closure

• most CNC machines significantly under-perform in practice
— control software, not hardware, is usually the limiting factor

• Pythagorean-hodograph curves ideally suited to CNC machining
with feedrates dependent upon time, arc length, or curvature —
analytic curve interpolators offer smoother and more accurate
realization of high feedrates and acceleration rates than G codes

• high–speed cornering subject to axis acceleration bounds

• PH curves amenable to solution of inverse dynamics problems
to compensate for inertia & damping of machine axes

• cross–coupled control based on exact real–time contour error
computation improves tracking accuracy with P controller

• optimal orientation for contour machining of free–form surfaces


