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— synopsis —

• introduction: properties of Pythagorean-hodograph curves

• computing rotation-minimizing frames on spatial PH curves

• helical polynomial space curves — are always PH curves

• standard quaternion representation for spatial PH curves

• “double” Pythagorean hodograph structure — requires
both |r′(t)| and |r′(t)× r′′(t)| to be polynomials in t

• Hermite interpolation problem: selection of free parameters



Pythagorean-hodograph (PH) curves

r(ξ) = PH curve ⇐⇒ coordinate components of r′(ξ)

comprise a “Pythagorean n-tuple of polynomials” in Rn

PH curves incorporate special algebraic structures in their hodographs

(complex number & quaternion models for planar & spatial PH curves)

• rational offset curves rd(ξ) = r(ξ) + dn(ξ)

• polynomial arc-length function s(ξ) =
∫ ξ

0

|r′(ξ)| dξ

• closed-form evaluation of energy integral E =
∫ 1

0

κ2 ds

• real-time CNC interpolators, rotation-minimizing frames, etc.



helical polynomial space curves

several equivalent characterizations of helical curves

• tangent t maintains constant inclination ψ with fixed vector a

• a · t = cosψ, where ψ = pitch angle and a = axis vector of helix

• fixed curvature/torsion ratio, κ/τ = tanψ (Theorem of Lancret)

• curve has a circular tangent indicatrix on the unit sphere
(small circle for space curve, great circle for planar curve)

• (r(2) × r(3)) · r(4) ≡ 0 — where r(k) = kth arc–length derivative

• circular helix (κ & τ individually constant) is transcendental curve



all helical polynomial space curves are PH curves

constant inclination ⇒ a · r′(t) ≡ cosψ |r′(t)|

a · r′(t) = polynomial in t for any polynomial curve r(t)

cosψ |r′(t)| = polynomial in t only if r(t) is a PH curve

all spatial PH cubics, but not all spatial PH quintics, are helical

problem : distinguish between helical & non–helical spatial PH curves



characterization of spatial PH cubics

A cubic with Bézier control–polygon legs L0,L1,L2 has a Pythagorean
hodograph if and only if L0 and L2 lie on a right–circular cone of some
half–angle ϑ about L1 as axis, and their azimuthal separation ϕ on this
cone is given in terms of the lengths L0, L1, L2 by cosϕ = 1− 2L2

1/L0L2

(generalizes constraints for Tschirnhaus cubic in planar case)
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can specify pitch angle and helix axis in terms of L0, L1, L2, ϑ, ϕ



Pythagorean quartuples of polynomials

x′2(t) + y′2(t) + z′2(t) = σ2(t) ⇐⇒


x′(t) = u2(t) + v2(t)− p2(t)− q2(t)
y′(t) = 2 [u(t)q(t) + v(t)p(t) ]
z′(t) = 2 [ v(t)q(t)− u(t)p(t) ]
σ(t) = u2(t) + v2(t) + p2(t) + q2(t)

R. Dietz, J. Hoschek, and B. Jüttler, An algebraic approach to curves and surfaces on the sphere
and on other quadrics, Computer Aided Geometric Design 10, 211–229 (1993)

H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational
parameterization of curves and surfaces, Advances in Computational Mathematics 17, 5-48 (2002)

choose quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k

→ spatial Pythagorean hodograph r′(t) = (x′(t), y′(t), z′(t)) = A(t) iA∗(t)



fundamentals of quaternion algebra

quaternions are four-dimensional numbers of the form

A = a+ ax i + ay j + az k and B = b+ bx i + by j + bz k

that obey the sum and (non-commutative) product rules

A + B = (a+ b) + (ax + bx) i + (ay + by) j + (az + bz)k

AB = (ab− axbx − ayby − azbz)

+ (abx + bax + aybz − azby) i

+ (aby + bay + azbx − axbz) j

+ (abz + baz + axby − aybx)k

basis elements 1, i, j, k satisfy i2 = j2 = k2 = i j k = −1

equivalently, i j = − j i = k , j k = −k j = i , k i = − i k = j



scalar-vector form of quaternions

set A = (a,a) and B = (b,b) — a, b and a, b are scalar and vector parts

(a, b and a,b also called the real and imaginary parts of A,B)

A + B = ( a+ b , a + b )

AB = ( ab− a · b , ab + ba + a× b)

(historical note: Hamilton’s quaternions preceded, but were eventually
supplanted by, the 3-dimensional vector analysis of Gibbs and Heaviside)

A∗ = (a,−a) is the conjugate of A

modulus : |A|2 = A∗A = AA∗ = a2 + |a|2

note that |AB | = |A| |B| and (AB)∗ = B∗A∗



unit quaternions & spatial rotations

any unit quaternion has the form U = (cos 1
2θ, sin

1
2θ n)

describes a spatial rotation by angle θ about unit vector n

for any vector v the quaternion product

v′ = U vU∗

yields the vector v′ corresponding to a rotation of v by θ about n

here v is short-hand for a “pure vector” quaternion V = (0,v)

unit quaternions U form a (non-commutative) group under multiplication



concatenation of spatial rotations

rotate θ1 about n1 then θ2 about n2 → equivalent rotation θ about n

θ = ± 2 cos−1(cos 1
2θ1 cos 1

2θ2 − n1 · n2 sin 1
2θ1 sin 1

2θ2)

n = ±
sin 1

2θ1 cos 1
2θ2 n1 + cos 1

2θ1 sin 1
2θ2 n2 − sin 1

2θ1 sin 1
2θ2 n1 × n2√

1 − (cos 1
2θ1 cos 1

2θ2 − n1 · n2 sin 1
2θ1 sin 1

2θ2)
2

sign ambiguity: equivalence of − θ about −n and θ about n

formulae discovered by Olinde Rodrigues (1794-1851)

set U1 = (cos 1
2θ1, sin

1
2θ1n1) and U2 = (cos 1

2θ2, sin
1
2θ2n2)

U = U2 U1 = (cos 1
2θ, sin

1
2θn) defines angle, axis of compound rotation



spatial rotations do not commute

x
y

z

x
y

z

α

β

α

β

blue vector is obtained from red vector by the concatenation of two spatial
rotations — left: Ry(α)Rz(β), right: Rz(β)Ry(α) — the end results differ

define U1 = (cos 1
2α, sin

1
2α j), U2 = (cos 1

2β, sin
1
2β k) — U1 U2 6= U2 U1



quaternion model for spatial PH curves

quaternion polynomial A(t) = u(t) + v(t) i + p(t) j + q(t)k

maps to r′(t) = A(t) iA∗(t) = [u2(t) + v2(t)− p2(t)− q2(t) ] i

+ 2 [u(t)q(t) + v(t)p(t) ] j + 2 [ v(t)q(t)− u(t)p(t) ]k

rotation invariance of spatial PH form: rotate by θ about n = (nx, ny, nz)

define U = (cos 1
2θ, sin

1
2θ n) — then r′(t) → r̃′(t) = Ã(t) i Ã∗(t)

where Ã(t) = U A(t) (can interpret as rotation in R4)



matrix form of Ã(t) = U A(t)


ũ

ṽ

p̃

q̃

 =


cos 1

2θ −nx sin 1
2θ −ny sin 1

2θ −nz sin 1
2θ

nx sin 1
2θ cos 1

2θ −nz sin 1
2θ ny sin 1

2θ

ny sin 1
2θ nz sin 1

2θ cos 1
2θ −nx sin 1

2θ

nz sin 1
2θ −ny sin 1

2θ nx sin 1
2θ cos 1

2θ




u

v

p

q



matrix ∈ SO(4)

in general, points have non-closed orbits under rotations in R4



degenerate forms of spatial PH curves

Lemma 1. For any quaternion A 6= 0, the quaternions A, A i, A j, Ak
— interpreted as vectors in R4 — define an orthogonal basis, in terms of
which any quaternion can be represented by four real values α, β, γ, δ
as the linear combination

αA + βA i + γA j + δAk = A (α+ β i + γ j + δ k) .

if A = u+ v i + p j + q k, components of A, A i, A j, Ak
define columns of an orthogonal 4× 4 matrix

u −v −p −q
v u −q p
p q u −v
q −p v u


if |A| = 1, specifies a rotation (1, i, j,k) → (A,A i,A j,Ak) in R4



degenerate spatial PH cubics

spatial PH cubics : r′(t) = A(t) iA∗(t) with A(t) = A0(1− t) +A1t

writing A1 = A0 (α1 + β1 i + γ1 j + δ1 k) we have:

r(t) = straight line ⇐⇒ (γ1, δ1) = (0, 0)

r(t) = plane curve ⇐⇒ β1 = 0 and (γ1, δ1) 6= (0, 0)

NOTE: all spatial PH cubics are helical curves



degenerate spatial PH quintics

spatial PH quintics : use A(t) = A0(1− t)2 +A12(1− t)t+A2t
2

writing Ar = A0 (αr + βr i + γr j + δr k) for r = 1, 2 we have:

r(t) = straight line ⇐⇒ (γ1, δ1) = (γ2, δ2) = (0, 0)

r(t) = plane curve ⇐⇒ β1 = β2 = 0 and γ1δ2 − γ2δ1 = 0

with (γ1, δ1) 6= (0, 0) and (γ2, δ2) 6= (0, 0)

conditions for plane curve equivalent to linear dependence of A0,A1,A2



morphology of helical PH quintics

gcd(u, v, p, q) = constant 6⇒ gcd(x′, y′, z′) = constant

specifically, gcd(x′, y′, z′) = gcd(u+ i v, p− i q) · gcd(u− i v, p+ i q)

• monotone-helical PH quintics — gcd(x′, y′, z′) is quadratic

tangent indicatrix is singly-traced circle (curve tangent
maintains a consistent sense of rotation about helix axis)

• general helical PH quintics — gcd(x′, y′, z′) is a constant

tangent indicatrix is doubly-traced circle (curve tangent
may exhibit reversals in sense of rotation about helix axis)



examples of monotone-helical (left) and general helical (right) PH quintics



r′(t) = A(t) iA∗(t) with A(t) = A0(1− t)2 +A12(1− t)t+A2t
2

set Ar = A0 (αr + βr i + γr j + δr k) for r = 1, 2

r(t) = general helical PH quintic

⇐⇒ γ1 : γ2 = δ1 : δ2 and β1 : β2 = (γ2
1 + δ21) : (γ1γ2 + δ1δ2)

r(t) = monotone-helical PH quintic

⇐⇒ α2 =
rα1 + sβ1

γ2
1 + δ21

+
s2 − r2

4(γ2
1 + δ21)2

, β2 =
rβ1 − sα1

γ2
1 + δ21

+
2rs

4(γ2
1 + δ21)2

where r = γ1γ2 + δ1δ2 and s = γ1δ2 − γ2δ1



for a helical PH space curve with σ(t) = |r′(t)| we have

κ

τ
= tanψ ⇒ |r′ × r′′|3 = tanψ σ3 (r′ × r′′) · r′′′

using also the property |r′ × r′′|2 = σ2ρ of all PH space curves gives

ρ3/2 = tanψ (r′ × r′′) · r′′′

Lemma. A necessary condition for a spatial PH curve to be helical is
that the polynomial ρ(t) be a perfect square — i.e., the curve must be a
double PH curve.

trivially satisfied for all PH cubics, since (r′ × r′′) · r′′′ = constant

deg((r′ × r′′) · r′′′) = 6 for PH quintics, so we must have ρ(t) = ω2(t)
for a quadratic polynomial ω(t) if r(t) is a helical PH quintic



“double” Pythagorean-hodograph structure

|r′(t)| and |r′(t)× r′′(t)| are both polynomials in curve parameter t

x′2 + y′2 + z′2 ≡ σ2 ,

(y′z′′ − y′′z′)2 + (z′x′′ − z′′x′)2 + (x′y′′ − x′′y′)2 ≡ (σω)2 .

Frenet frame, curvature, torsion are all rational functions of t

t =
r′

|r′|
, n =

r′ × r′′

|r′ × r′′|
× t , b =

r′ × r′′

|r′ × r′′|
,

κ =
|r′ × r′′|
|r′|3

, τ =
(r′ × r′′) · r′′′

|r′ × r′′|2

Beltran & Monterde (2007) have called them “2-PH curves”



every spatial PH curve satisfies | r′(t)× r′′(t) |2 = σ2(t)ρ(t)

the polynomial ρ(t) can be defined in terms of u(t), v(t), p(t), q(t)
and u′(t), v′(t), p′(t), q′(t) in several different ways :

ρ = 4 [ (up′ − u′p)2 + (uq′ − u′q)2 + (vp′ − v′p)2 + (vq′ − v′q)2

+ 2(uv′ − u′v)(pq′ − p′q) ] (1)

ρ = 4 [ (uv′ − u′v + pq′ − p′q)2 + (up′ − u′p− vq′ + v′q)2

+ (uq′ − u′q + vp′ − v′p)2 − (uv′ − u′v − pq′ + p′q)2 ] (2)

ρ = 4 [ (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q − vp′ + v′p)2 ] (3)



“double” PH structure — triples and quartuples

for a double PH curve, ρ(t) = ω2(t) for some polynomial ω(t)

form (3) of ρ(t) ⇒ 2(up′ − u′p+ vq′ − v′q), 2(uq′ − u′q − vp′ + v′p), ω
must comprise a Pythagorean triple of polynomials

2(up′ − u′p+ vq′ − v′q) = k(a2 − b2)

2(uq′ − u′q − vp′ + v′p) = 2 k a b

ω = k(a2 + b2)

for polynomials k(t), a(t), b(t) with gcd(a(t), b(t)) = constant

hence, double PH curves involve both Pythagorean triples
and Pythagorean quartuples of polynomials !



helical PH quintics as “double” PH curves

2(up′ − u′p+ vq′ − v′q), 2(uq′ − u′q − vp′ + v′p), ω are quadratic

to satisfy second Pythagorean condition, we must have either

(1) deg(a(t), b(t)) = 1 and k(t) = constant

(2) a(t), b(t) = constants and deg(k(t)) = 2

cases (1) & (2) identify monotone-helical and general helical PH quintics

⇒ all double PH quintics are helical curves



there exist non-helical double PH curves

Beltran & Monterde (2007): all double PH cubics and quintics are helical
— but there exist double PH curves of degree 7 that are not helical

x(t) =
1
21
t7 +

1
5
t5 + t3 − 3 t , y(t) = − 1

2
t4 + 3 t2 , z(t) = − 2 t3

|r′(t)| =
t6 + 3 t4 + 9 t2 + 9

3
, |r′(t)×r′′(t)| = 2(t2 +1)(t6 +3 t4 +9 t2 +9)

κ(t)
τ(t)

= − 9 (t2 + 1)2

2 t6 + 9 t4 − 9
6= constant

In general, the curvature/torsion ratio for a double PH curve is

κ(t)
τ(t)

=
ω3(t)

[ r′(t)× r′′(t) ] · r′′′(t)



Hopf map model for spatial PH curves

Choi et al. (2002) — alternative to the quaternion representation

Hopf map C×C = R4 → R3 generates Pythagorean hodographs in R3

from two complex polynomials α(t) = u(t) + i v(t), β(t) = q(t) + i p(t) :

r′(t) = H(α(t),β(t)) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t)))

= (u2(t) + v2(t)− p2(t)− q2(t) ,

2(u(t)q(t) + v(t)p(t)) , 2(v(t)q(t)− u(t)p(t)) )

identify imaginary unit i with quaternion basis element i — quaternion
polynomial A(t) is related to the complex polynomials α(t) and β(t) by

A(t) = u(t) + v(t) i + p(t) j + q(t)k = α(t) + kβ(t)



polynomial ρ(t) has simpler formulation in Hopf map model

αβ′ −α′β = (uq′ − u′q − vp′ + v′p) + i (up′ − u′p+ vq′ − v′q)

⇒ ρ(t) = 4 |α(t)β′(t)−α′(t)β(t) |2

restricting H(α,β) to complex numbers satisfying |α|2 + |β|2 = 1,
it defines a map between the “3–sphere” S3 : u2 + v2 + p2 + q2 = 1
in the space R4 spanned by coordinates (u, v, p, q) and the familiar

“2–sphere” S2 : x2 + y2 + z2 = 1 in R3 with coordinates (x, y, z)

great circles of S3 are mapped to points of S2 by H(α,β)

first known map between higher and lower dimension spheres
that is not null homotopic (applications to quantum computing)



spatial PH quintic Hermite interpolants

spatial PH quintic interpolating end points pi, pf & derivatives di, df

r′(t) = A(t) iA∗(t)

where A(t) = A0(1− t)2 + A12(1− t)t + A2t
2

three equations in three quaternion unknowns A0, A1, A2

r′(0) = A0 iA∗0 = di and r′(1) = A2 iA∗2 = df∫ 1

0

A(t) iA∗(t) dt = 1
5A0 iA∗0 + 1

10(A0 iA∗1 +A1 iA∗0)

+ 1
30(A0 iA∗2 + 4A1 iA∗1 +A2 iA∗0)

+ 1
10(A1 iA∗2 +A2 iA∗1) + 1

5A2 iA∗2 = pf − pi



solution of fundamental equation

given vector c = |c|(λ, µ, ν) find quaternion A such that

A iA∗ = c

one–parameter family of solutions

A(φ) =
√

1
2(1 + λ)|c|

(
− sinφ + cosφ i

+
µ cosφ+ ν sinφ

1 + λ
j +

ν cosφ− µ sinφ
1 + λ

k
)

in R3 there is a continuous family of rotations
mapping the vector i into a given vector (λ, µ, ν)



families of spatial rotations

find U = (cos 1
2θ, sin

1
2θ n) that rotates i = (1, 0, 0) → v = (λ, µ, ν)

n2
x(1− cos θ) + cos θ = λ ,

nxny(1− cos θ) + nz sin θ = µ ,

nznx(1− cos θ)− ny sin θ = ν .

nx =
±

√
cos2 1

2α− cos
2 1

2θ

sin 1
2θ

,

ny =
±µ

√
cos2 1

2α− cos
2 1

2θ − ν cos 1
2θ

(1 + λ) sin 1
2θ

,

nz =
± ν

√
cos2 1

2α− cos
2 1

2θ + µ cos 1
2θ

(1 + λ) sin 1
2θ

.

general solution, where α = cos−1 λ and α ≤ θ ≤ 2π − α



(a) (b)

(c) (d)

e0

e⊥

i

v

i

e⊥ v

n

n

Spatial rotations of unit vectors i → v. (a) Vectors e⊥ (orthogonal to i, v)
and e0 (bisector of i,v) — the plane Π of e⊥ and e0 is orthogonal to that of
i and v. (b) For any rotation angle θ ∈ (α, 2π − α), where α = cos−1(i · v),
there are two possible rotations, with axes n inclined equally to e⊥ in the
plane Π. (c) Sampling of the family of spatial rotations i → v, shown as

loci on the unit sphere. (d) Axes n for these rotations, lying in the plane Π.



construction of Hermite interpolants

derivative conditions have form of fundamental equation
— can be solved directly for A0 and A2

end-point condition can then be cast in fundamental form as

(3A0 + 4A1 + 3A2) i (3A0 + 4A1 + 3A2)∗

= 120(pf − pi) − 15(di + df) + 5(A0 iA∗2 +A2 iA∗0)

— solve for A1, since A0 and A2 known

solution contains three free parameters φ0, φ1, φ2

but shape of interpolants depends only on their differences

=⇒ ∃ two-parameter family of spatial PH quintic interpolants
to given Hermite data pi, di and pf , df



spatial PH quintic Hermite interpolants

pi = (0, 0, 0) and pf = (1, 1, 1) for both curves

di = (−0.8, 0.3, 1.2) and df = (0.5,−1.3,−1.0) for curve on left,

di = (0.4,−1.5,−1.2) and df = (−1.2,−0.6,−1.2) for curve on right



open problem: find “optimal” φ0, φ2 values

shape of interpolants depends strongly on free parameters

• minimize a shape-measure integral, e.g., E =
∫
κ2 ds

(but highly non-linear in the free parameters)

• impose additional conditions (restrict solution space)
— e.g., helicity condition κ/τ = constant

• study geometry of quaternion curve A(t)
— need better insight on geometry of quaternion space H

• extension to spatial C2 PH quintic splines



two-parameter family of Hermite interpolants

nominal parameters: φ0, φ2 — arc length of interpolants depends only on
difference φ2−φ0, shape of interpolants depends only on mean 1

2(φ0 +φ2)

sampling of the one-parameter families of spatial PH quintic interpolants,
of identical arc length, to given first-order Hermite data — defined by

holding φ2 − φ0 constant, and varying only 1
2(φ0 + φ2)



recent results on Hermite interpolants

(Farouki, Giannelli, Manni, Sestini, 2007)

• dependence of total arc length S exhibits a single minimum and a
single maximum with respect to the variable φ2 − φ0

• these extremal arc length interpolants correspond to helical PH quintics

• ⇒ helical PH quintic interpolants exist for any first-order Hermite data

• three “practical” criteria for identifying interpolants with near-optimal
shape properties (all reproduce cubic PH interpolants when they exist)

• give values of the energy integral close to the absolute minimum,
at modest computational cost



closure

• spatial PH curves ideally suited to computing rotation-minimizing
frames (symbolic integration or rational approximation)

• helical polynomial space curves are always PH curves
— two quintic types (monotone and general helical PH quintics)

• double PH curves have rational Frenet frames, curvature, torsion
— all helical PH curves are necessarily double PH curves

• properties of solutions to first-order Hermite interpolation problem

• don’t believe a Russian who tells you he has stopped drinking


