Helical polynomial curves and "double" Pythagorean-hodograph curves

Rida T. Farouki

Department of Mechanical \& Aeronautical Engineering, University of California, Davis

- synopsis -

- introduction: properties of Pythagorean-hodograph curves
- computing rotation-minimizing frames on spatial PH curves
- helical polynomial space curves - are always PH curves
- standard quaternion representation for spatial PH curves
- "double" Pythagorean hodograph structure - requires both $\left|\mathbf{r}^{\prime}(t)\right|$ and $\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|$ to be polynomials in t
- Hermite interpolation problem: selection of free parameters

Pythagorean-hodograph (PH) curves

$$
\begin{aligned}
& \mathbf{r}(\xi)=\mathrm{PH} \text { curve } \Longleftrightarrow \text { coordinate components of } \mathbf{r}^{\prime}(\xi) \\
& \text { comprise a "Pythagorean } n \text {-tuple of polynomials" in } \mathbb{R}^{n}
\end{aligned}
$$

PH curves incorporate special algebraic structures in their hodographs (complex number \& quaternion models for planar \& spatial PH curves)

- rational offset curves $\mathbf{r}_{d}(\xi)=\mathbf{r}(\xi)+d \mathbf{n}(\xi)$
- polynomial arc-length function $s(\xi)=\int_{0}^{\xi}\left|\mathbf{r}^{\prime}(\xi)\right| \mathrm{d} \xi$
- closed-form evaluation of energy integral $E=\int_{0}^{1} \kappa^{2} \mathrm{~d} s$
- real-time CNC interpolators, rotation-minimizing frames, etc.

helical polynomial space curves

several equivalent characterizations of helical curves

- tangent t maintains constant inclination ψ with fixed vector a
- $\mathbf{a} \cdot \mathbf{t}=\cos \psi$, where $\psi=$ pitch angle and $\mathbf{a}=$ axis vector of helix
- fixed curvature/torsion ratio, $\kappa / \tau=\tan \psi$ (Theorem of Lancret)
- curve has a circular tangent indicatrix on the unit sphere (small circle for space curve, great circle for planar curve)
- $\left(\mathbf{r}^{(2)} \times \mathbf{r}^{(3)}\right) \cdot \mathbf{r}^{(4)} \equiv 0$ - where $\mathbf{r}^{(k)}=k^{\text {th }}$ arc-length derivative
- circular helix (κ \& τ individually constant) is transcendental curve

all helical polynomial space curves are PH curves

$$
\begin{gathered}
\text { constant inclination } \Rightarrow \mathbf{a} \cdot \mathbf{r}^{\prime}(t) \equiv \cos \psi\left|\mathbf{r}^{\prime}(t)\right| \\
\mathbf{a} \cdot \mathbf{r}^{\prime}(t)=\text { polynomial in } t \text { for any polynomial curve } \mathbf{r}(t) \\
\cos \psi\left|\mathbf{r}^{\prime}(t)\right|=\text { polynomial in } t \text { only if } \mathbf{r}(t) \text { is a PH curve }
\end{gathered}
$$

characterization of spatial PH cubics

A cubic with Bézier control-polygon legs $\mathbf{L}_{0}, \mathbf{L}_{1}, \mathbf{L}_{2}$ has a Pythagorean hodograph if and only if \mathbf{L}_{0} and \mathbf{L}_{2} lie on a right-circular cone of some half-angle ϑ about \mathbf{L}_{1} as axis, and their azimuthal separation φ on this cone is given in terms of the lengths L_{0}, L_{1}, L_{2} by $\cos \varphi=1-2 L_{1}^{2} / L_{0} L_{2}$
(generalizes constraints for Tschirnhaus cubic in planar case)

can specify pitch angle and helix axis in terms of $L_{0}, L_{1}, L_{2}, \vartheta, \varphi$

Pythagorean quartuples of polynomials

$$
x^{\prime 2}(t)+y^{\prime 2}(t)+z^{\prime 2}(t)=\sigma^{2}(t) \Longleftrightarrow\left\{\begin{array}{l}
x^{\prime}(t)=u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t) \\
y^{\prime}(t)=2[u(t) q(t)+v(t) p(t)] \\
z^{\prime}(t)=2[v(t) q(t)-u(t) p(t)] \\
\sigma(t)=u^{2}(t)+v^{2}(t)+p^{2}(t)+q^{2}(t)
\end{array}\right.
$$

R. Dietz, J. Hoschek, and B. Jüttler, An algebraic approach to curves and surfaces on the sphere and on other quadrics, Computer Aided Geometric Design 10, 211-229 (1993)
H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational parameterization of curves and surfaces, Advances in Computational Mathematics 17, 5-48 (2002)
choose quaternion polynomial

$$
\mathcal{A}(t)=u(t)+v(t) \mathbf{i}+p(t) \mathbf{j}+q(t) \mathbf{k}
$$

\rightarrow spatial Pythagorean hodograph $\quad \mathbf{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t)$

fundamentals of quaternion algebra

quaternions are four-dimensional numbers of the form

$$
\mathcal{A}=a+a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \quad \text { and } \quad \mathcal{B}=b+b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k}
$$

that obey the sum and (non-commutative) product rules

$$
\begin{aligned}
\mathcal{A}+\mathcal{B}=(a+b) & +\left(a_{x}+b_{x}\right) \mathbf{i}+\left(a_{y}+b_{y}\right) \mathbf{j}+\left(a_{z}+b_{z}\right) \mathbf{k} \\
\mathcal{A B}= & \left(a b-a_{x} b_{x}-a_{y} b_{y}-a_{z} b_{z}\right) \\
& +\left(a b_{x}+b a_{x}+a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i} \\
& +\left(a b_{y}+b a_{y}+a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j} \\
& +\left(a b_{z}+b a_{z}+a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k}
\end{aligned}
$$

basis elements $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ satisfy $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1$
equivalently, $\mathbf{i j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \quad \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}, \quad \mathbf{k i}=-\mathbf{i} \mathbf{k}=\mathbf{j}$

scalar-vector form of quaternions

set $\mathcal{A}=(a, \mathbf{a})$ and $\mathcal{B}=(b, \mathbf{b})-a, b$ and \mathbf{a}, \mathbf{b} are scalar and vector parts
$(a, b$ and \mathbf{a}, \mathbf{b} also called the real and imaginary parts of \mathcal{A}, \mathcal{B})

$$
\begin{gathered}
\mathcal{A}+\mathcal{B}=(a+b, \mathbf{a}+\mathbf{b}) \\
\mathcal{A B}=(a b-\mathbf{a} \cdot \mathbf{b}, a \mathbf{b}+b \mathbf{a}+\mathbf{a} \times \mathbf{b})
\end{gathered}
$$

(historical note: Hamilton's quaternions preceded, but were eventually supplanted by, the 3-dimensional vector analysis of Gibbs and Heaviside)

$$
\mathcal{A}^{*}=(a,-\mathbf{a}) \text { is the conjugate of } \mathcal{A}
$$

modulus: $|\mathcal{A}|^{2}=\mathcal{A}^{*} \mathcal{A}=\mathcal{A A}^{*}=a^{2}+|\mathbf{a}|^{2}$
note that $\quad|\mathcal{A B}|=|\mathcal{A}||\mathcal{B}| \quad$ and $\quad(\mathcal{A B})^{*}=\mathcal{B}^{*} \mathcal{A}^{*}$

unit quaternions \& spatial rotations

any unit quaternion has the form $\mathcal{U}=\left(\cos \frac{1}{2} \theta, \sin \frac{1}{2} \theta \mathbf{n}\right)$ describes a spatial rotation by angle θ about unit vector \mathbf{n}
for any vector \mathbf{v} the quaternion product

$$
\mathbf{v}^{\prime}=\mathcal{U} \mathbf{v} \mathcal{U}^{*}
$$

yields the vector \mathbf{v}^{\prime} corresponding to a rotation of \mathbf{v} by θ about \mathbf{n}
here \mathbf{v} is short-hand for a "pure vector" quaternion $\mathcal{V}=(0, \mathbf{v})$
unit quaternions \mathcal{U} form a (non-commutative) group under multiplication

concatenation of spatial rotations

rotate θ_{1} about \mathbf{n}_{1} then θ_{2} about $\mathbf{n}_{2} \rightarrow$ equivalent rotation θ about \mathbf{n}

$$
\begin{gathered}
\theta= \pm 2 \cos ^{-1}\left(\cos \frac{1}{2} \theta_{1} \cos \frac{1}{2} \theta_{2}-\mathbf{n}_{1} \cdot \mathbf{n}_{2} \sin \frac{1}{2} \theta_{1} \sin \frac{1}{2} \theta_{2}\right) \\
\mathbf{n}= \pm \frac{\sin \frac{1}{2} \theta_{1} \cos \frac{1}{2} \theta_{2} \mathbf{n}_{1}+\cos \frac{1}{2} \theta_{1} \sin \frac{1}{2} \theta_{2} \mathbf{n}_{2}-\sin \frac{1}{2} \theta_{1} \sin \frac{1}{2} \theta_{2} \mathbf{n}_{1} \times \mathbf{n}_{2}}{\sqrt{1-\left(\cos \frac{1}{2} \theta_{1} \cos \frac{1}{2} \theta_{2}-\mathbf{n}_{1} \cdot \mathbf{n}_{2} \sin \frac{1}{2} \theta_{1} \sin \frac{1}{2} \theta_{2}\right)^{2}}}
\end{gathered}
$$

sign ambiguity: equivalence of $-\theta$ about $-\mathbf{n}$ and θ about \mathbf{n}
formulae discovered by Olinde Rodrigues (1794-1851)

$$
\text { set } \mathcal{U}_{1}=\left(\cos \frac{1}{2} \theta_{1}, \sin \frac{1}{2} \theta_{1} \mathbf{n}_{1}\right) \text { and } \mathcal{U}_{2}=\left(\cos \frac{1}{2} \theta_{2}, \sin \frac{1}{2} \theta_{2} \mathbf{n}_{2}\right)
$$

$\mathcal{U}=\mathcal{U}_{2} \mathcal{U}_{1}=\left(\cos \frac{1}{2} \theta, \sin \frac{1}{2} \theta \mathbf{n}\right)$ defines angle, axis of compound rotation

spatial rotations do not commute

blue vector is obtained from red vector by the concatenation of two spatial rotations - left: $R_{y}(\alpha) R_{z}(\beta)$, right: $R_{z}(\beta) R_{y}(\alpha)$ - the end results differ define $\mathcal{U}_{1}=\left(\cos \frac{1}{2} \alpha, \sin \frac{1}{2} \alpha \mathbf{j}\right), \mathcal{U}_{2}=\left(\cos \frac{1}{2} \beta, \sin \frac{1}{2} \beta \mathbf{k}\right)-\mathcal{U}_{1} \mathcal{U}_{2} \neq \mathcal{U}_{2} \mathcal{U}_{1}$

quaternion model for spatial PH curves

quaternion polynomial $\mathcal{A}(t)=u(t)+v(t) \mathbf{i}+p(t) \mathbf{j}+q(t) \mathbf{k}$
maps to $\quad \mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t)=\left[u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t)\right] \mathbf{i}$

$$
+2[u(t) q(t)+v(t) p(t)] \mathbf{j}+2[v(t) q(t)-u(t) p(t)] \mathbf{k}
$$

rotation invariance of spatial PH form: rotate by θ about $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$
define $\mathcal{U}=\left(\cos \frac{1}{2} \theta, \sin \frac{1}{2} \theta \mathbf{n}\right)$ - then $\mathbf{r}^{\prime}(t) \rightarrow \tilde{\mathbf{r}}^{\prime}(t)=\tilde{\mathcal{A}}(t) \mathbf{i} \tilde{\mathcal{A}}^{*}(t)$
where $\quad \tilde{\mathcal{A}}(t)=\mathcal{U} \mathcal{A}(t) \quad$ (can interpret as rotation in $\left.\mathbb{R}^{4}\right)$

matrix form of $\quad \tilde{\mathcal{A}}(t)=\mathcal{U} \mathcal{A}(t)$

$$
\left[\begin{array}{c}
\tilde{u} \\
\tilde{v} \\
\tilde{p} \\
\tilde{q}
\end{array}\right]=\left[\begin{array}{rrrr}
\cos \frac{1}{2} \theta & -n_{x} \sin \frac{1}{2} \theta & -n_{y} \sin \frac{1}{2} \theta & -n_{z} \sin \frac{1}{2} \theta \\
n_{x} \sin \frac{1}{2} \theta & \cos \frac{1}{2} \theta & -n_{z} \sin \frac{1}{2} \theta & n_{y} \sin \frac{1}{2} \theta \\
n_{y} \sin \frac{1}{2} \theta & n_{z} \sin \frac{1}{2} \theta & \cos \frac{1}{2} \theta & -n_{x} \sin \frac{1}{2} \theta \\
n_{z} \sin \frac{1}{2} \theta & -n_{y} \sin \frac{1}{2} \theta & n_{x} \sin \frac{1}{2} \theta & \cos \frac{1}{2} \theta
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
p \\
q
\end{array}\right]
$$

matrix $\in \operatorname{SO}(4)$
in general, points have non-closed orbits under rotations in \mathbb{R}^{4}

degenerate forms of spatial PH curves

Lemma 1. For any quaternion $\mathcal{A} \neq 0$, the quaternions $\mathcal{A}, \mathcal{A} \mathbf{i}, \mathcal{A} \mathbf{j}, \mathcal{A} \mathbf{k}$ - interpreted as vectors in \mathbb{R}^{4} - define an orthogonal basis, in terms of which any quaternion can be represented by four real values $\alpha, \beta, \gamma, \delta$ as the linear combination

$$
\alpha \mathcal{A}+\beta \mathcal{A} \mathbf{i}+\gamma \mathcal{A} \mathbf{j}+\delta \mathcal{A} \mathbf{k}=\mathcal{A}(\alpha+\beta \mathbf{i}+\gamma \mathbf{j}+\delta \mathbf{k}) .
$$

if $\mathcal{A}=u+v \mathbf{i}+p \mathbf{j}+q \mathbf{k}$, components of $\mathcal{A}, \mathcal{A} \mathbf{i}, \mathcal{A} \mathbf{j}, \mathcal{A} \mathbf{k}$ define columns of an orthogonal 4×4 matrix

$$
\left[\begin{array}{cccc}
u & -v & -p & -q \\
v & u & -q & p \\
p & q & u & -v \\
q & -p & v & u
\end{array}\right]
$$

if $|\mathcal{A}|=1$, specifies a rotation $(1, \mathbf{i}, \mathbf{j}, \mathbf{k}) \rightarrow(\mathcal{A}, \mathcal{A} \mathbf{i}, \mathcal{A} \mathbf{j}, \mathcal{A} \mathbf{k})$ in \mathbb{R}^{4}

degenerate spatial PH cubics

spatial PH cubics : $\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t)$ with $\mathcal{A}(t)=\mathcal{A}_{0}(1-t)+\mathcal{A}_{1} t$
writing $\mathcal{A}_{1}=\mathcal{A}_{0}\left(\alpha_{1}+\beta_{1} \mathbf{i}+\gamma_{1} \mathbf{j}+\delta_{1} \mathbf{k}\right)$ we have:

$$
\begin{aligned}
\mathbf{r}(t)=\text { straight line } & \Longleftrightarrow \quad\left(\gamma_{1}, \delta_{1}\right)=(0,0) \\
\mathbf{r}(t)=\text { plane curve } & \Longleftrightarrow \quad \beta_{1}=0 \text { and }\left(\gamma_{1}, \delta_{1}\right) \neq(0,0)
\end{aligned}
$$

NOTE: all spatial PH cubics are helical curves

degenerate spatial PH quintics

spatial PH quintics : use $\mathcal{A}(t)=\mathcal{A}_{0}(1-t)^{2}+\mathcal{A}_{1} 2(1-t) t+\mathcal{A}_{2} t^{2}$
writing $\mathcal{A}_{r}=\mathcal{A}_{0}\left(\alpha_{r}+\beta_{r} \mathbf{i}+\gamma_{r} \mathbf{j}+\delta_{r} \mathbf{k}\right)$ for $r=1,2$ we have:

$$
\begin{aligned}
& \mathbf{r}(t)=\text { straight line } \quad \Longleftrightarrow \quad\left(\gamma_{1}, \delta_{1}\right)=\left(\gamma_{2}, \delta_{2}\right)=(0,0) \\
& \mathbf{r}(t)=\text { plane curve } \quad \Longleftrightarrow \quad \beta_{1}=\beta_{2}=0 \text { and } \gamma_{1} \delta_{2}-\gamma_{2} \delta_{1}=0 \\
& \text { with }\left(\gamma_{1}, \delta_{1}\right) \neq(0,0) \text { and }\left(\gamma_{2}, \delta_{2}\right) \neq(0,0)
\end{aligned}
$$

conditions for plane curve equivalent to linear dependence of $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}$

morphology of helical PH quintics

$$
\operatorname{gcd}(u, v, p, q)=\text { constant } \nRightarrow \operatorname{gcd}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\text { constant }
$$

specifically, $\operatorname{gcd}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\operatorname{gcd}(u+\mathrm{i} v, p-\mathrm{i} q) \cdot \operatorname{gcd}(u-\mathrm{i} v, p+\mathrm{i} q)$

- monotone-helical PH quintics - $\operatorname{gcd}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is quadratic tangent indicatrix is singly-traced circle (curve tangent maintains a consistent sense of rotation about helix axis)
- general helical PH quintics - $\operatorname{gcd}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is a constant tangent indicatrix is doubly-traced circle (curve tangent may exhibit reversals in sense of rotation about helix axis)

examples of monotone-helical (left) and general helical (right) PH quintics

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) \text { with } \mathcal{A}(t)=\mathcal{A}_{0}(1-t)^{2}+\mathcal{A}_{1} 2(1-t) t+\mathcal{A}_{2} t^{2} \\
\text { set } \mathcal{A}_{r}=\mathcal{A}_{0}\left(\alpha_{r}+\beta_{r} \mathbf{i}+\gamma_{r} \mathbf{j}+\delta_{r} \mathbf{k}\right) \text { for } r=1,2 \\
\mathbf{r}(t)=\text { general helical PH quintic } \\
\Longleftrightarrow \quad \gamma_{1}: \gamma_{2}=\delta_{1}: \delta_{2} \quad \text { and } \beta_{1}: \beta_{2}=\left(\gamma_{1}^{2}+\delta_{1}^{2}\right):\left(\gamma_{1} \gamma_{2}+\delta_{1} \delta_{2}\right) \\
\mathbf{r}(t)=\text { monotone-helical PH quintic } \\
\Longleftrightarrow \quad \alpha_{2}=\frac{r \alpha_{1}+s \beta_{1}}{\gamma_{1}^{2}+\delta_{1}^{2}}+\frac{s^{2}-r^{2}}{4\left(\gamma_{1}^{2}+\delta_{1}^{2}\right)^{2}}, \quad \beta_{2}=\frac{r \beta_{1}-s \alpha_{1}}{\gamma_{1}^{2}+\delta_{1}^{2}}+\frac{2 r s}{4\left(\gamma_{1}^{2}+\delta_{1}^{2}\right)^{2}} \\
\text { where } r=\gamma_{1} \gamma_{2}+\delta_{1} \delta_{2} \text { and } s=\gamma_{1} \delta_{2}-\gamma_{2} \delta_{1}
\end{gathered}
$$

for a helical PH space curve with $\sigma(t)=\left|\mathbf{r}^{\prime}(t)\right|$ we have

$$
\frac{\kappa}{\tau}=\tan \psi \Rightarrow\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|^{3}=\tan \psi \sigma^{3}\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right) \cdot \mathbf{r}^{\prime \prime \prime}
$$

using also the property $\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|^{2}=\sigma^{2} \rho$ of all PH space curves gives

$$
\rho^{3 / 2}=\tan \psi\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right) \cdot \mathbf{r}^{\prime \prime \prime}
$$

Lemma. A necessary condition for a spatial PH curve to be helical is that the polynomial $\rho(t)$ be a perfect square - i.e., the curve must be a double PH curve.
trivially satisfied for all PH cubics, since $\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right) \cdot \mathbf{r}^{\prime \prime \prime}=$ constant
$\operatorname{deg}\left(\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right) \cdot \mathbf{r}^{\prime \prime \prime}\right)=6$ for PH quintics, so we must have $\rho(t)=\omega^{2}(t)$ for a quadratic polynomial $\omega(t)$ if $\mathbf{r}(t)$ is a helical PH quintic

"double" Pythagorean-hodograph structure

$\left|\mathbf{r}^{\prime}(t)\right|$ and $\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|$ are both polynomials in curve parameter t

$$
\begin{gathered}
x^{\prime 2}+y^{\prime 2}+z^{\prime 2} \equiv \sigma^{2} \\
\left(y^{\prime} z^{\prime \prime}-y^{\prime \prime} z^{\prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-z^{\prime \prime} x^{\prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)^{2} \equiv(\sigma \omega)^{2} .
\end{gathered}
$$

Frenet frame, curvature, torsion are all rational functions of t

$$
\begin{gathered}
\mathbf{t}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}, \quad \mathbf{n}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|} \times \mathbf{t}, \quad \mathbf{b}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}, \\
\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}, \quad \tau=\frac{\left(\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right) \cdot \mathbf{r}^{\prime \prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|^{2}}
\end{gathered}
$$

Beltran \& Monterde (2007) have called them "2-PH curves"

every spatial PH curve satisfies $\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|^{2}=\sigma^{2}(t) \rho(t)$

the polynomial $\rho(t)$ can be defined in terms of $u(t), v(t), p(t), q(t)$ and $u^{\prime}(t), v^{\prime}(t), p^{\prime}(t), q^{\prime}(t)$ in several different ways :

$$
\begin{align*}
& \rho=4 {\left[\left(u p^{\prime}-u^{\prime} p\right)^{2}+\left(u q^{\prime}-u^{\prime} q\right)^{2}+\left(v p^{\prime}-v^{\prime} p\right)^{2}+\left(v q^{\prime}-v^{\prime} q\right)^{2}\right.} \\
&\left.+2\left(u v^{\prime}-u^{\prime} v\right)\left(p q^{\prime}-p^{\prime} q\right)\right] \tag{1}\\
& \rho= 4\left[\left(u v^{\prime}-u^{\prime} v+p q^{\prime}-p^{\prime} q\right)^{2}+\left(u p^{\prime}-u^{\prime} p-v q^{\prime}+v^{\prime} q\right)^{2}\right. \\
&\left.+\left(u q^{\prime}-u^{\prime} q+v p^{\prime}-v^{\prime} p\right)^{2}-\left(u v^{\prime}-u^{\prime} v-p q^{\prime}+p^{\prime} q\right)^{2}\right] \tag{2}\\
& \tag{3}\\
& \rho=4\left[\left(u p^{\prime}-u^{\prime} p+v q^{\prime}-v^{\prime} q\right)^{2}+\left(u q^{\prime}-u^{\prime} q-v p^{\prime}+v^{\prime} p\right)^{2}\right]
\end{align*}
$$

"double" PH structure - triples and quartuples

for a double PH curve, $\rho(t)=\omega^{2}(t)$ for some polynomial $\omega(t)$
form (3) of $\rho(t) \Rightarrow 2\left(u p^{\prime}-u^{\prime} p+v q^{\prime}-v^{\prime} q\right), 2\left(u q^{\prime}-u^{\prime} q-v p^{\prime}+v^{\prime} p\right), \omega$ must comprise a Pythagorean triple of polynomials

$$
\begin{aligned}
2\left(u p^{\prime}-u^{\prime} p+v q^{\prime}-v^{\prime} q\right) & =k\left(a^{2}-b^{2}\right) \\
2\left(u q^{\prime}-u^{\prime} q-v p^{\prime}+v^{\prime} p\right) & =2 k a b \\
\omega & =k\left(a^{2}+b^{2}\right)
\end{aligned}
$$

for polynomials $k(t), a(t), b(t)$ with $\operatorname{gcd}(a(t), b(t))=$ constant
hence, double PH curves involve both Pythagorean triples and Pythagorean quartuples of polynomials !

helical PH quintics as "double" PH curves

$$
2\left(u p^{\prime}-u^{\prime} p+v q^{\prime}-v^{\prime} q\right), 2\left(u q^{\prime}-u^{\prime} q-v p^{\prime}+v^{\prime} p\right), \omega \text { are quadratic }
$$

to satisfy second Pythagorean condition, we must have either
(1) $\operatorname{deg}(a(t), b(t))=1$ and $k(t)=$ constant
(2) $a(t), b(t)=$ constants and $\operatorname{deg}(k(t))=2$
cases (1) \& (2) identify monotone-helical and general helical PH quintics
\Rightarrow all double PH quintics are helical curves

there exist non-helical double PH curves

Beltran \& Monterde (2007): all double PH cubics and quintics are helical - but there exist double PH curves of degree 7 that are not helical

$$
\begin{gathered}
x(t)=\frac{1}{21} t^{7}+\frac{1}{5} t^{5}+t^{3}-3 t, \quad y(t)=-\frac{1}{2} t^{4}+3 t^{2}, \quad z(t)=-2 t^{3} \\
\left|\mathbf{r}^{\prime}(t)\right|=\frac{t^{6}+3 t^{4}+9 t^{2}+9}{3}, \quad\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|=2\left(t^{2}+1\right)\left(t^{6}+3 t^{4}+9 t^{2}+9\right) \\
\frac{\kappa(t)}{\tau(t)}=-\frac{9\left(t^{2}+1\right)^{2}}{2 t^{6}+9 t^{4}-9} \neq \text { constant }
\end{gathered}
$$

In general, the curvature/torsion ratio for a double PH curve is

$$
\frac{\kappa(t)}{\tau(t)}=\frac{\omega^{3}(t)}{\left[\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right] \cdot \mathbf{r}^{\prime \prime \prime}(t)}
$$

Hopf map model for spatial PH curves

Choi et al. (2002) - alternative to the quaternion representation

Hopf map $\mathbb{C} \times \mathbb{C}=\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ generates Pythagorean hodographs in \mathbb{R}^{3} from two complex polynomials $\boldsymbol{\alpha}(t)=u(t)+\mathrm{i} v(t), \boldsymbol{\beta}(t)=q(t)+\mathrm{i} p(t)$:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t)=H(\boldsymbol{\alpha}(t), \boldsymbol{\beta}(t))= & \left(|\boldsymbol{\alpha}(t)|^{2}-|\boldsymbol{\beta}(t)|^{2}, 2 \operatorname{Re}(\boldsymbol{\alpha}(t) \overline{\boldsymbol{\beta}}(t)), 2 \operatorname{Im}(\boldsymbol{\alpha}(t) \overline{\boldsymbol{\beta}}(t))\right) \\
= & \left(u^{2}(t)+v^{2}(t)-p^{2}(t)-q^{2}(t),\right. \\
& 2(u(t) q(t)+v(t) p(t)), 2(v(t) q(t)-u(t) p(t)))
\end{aligned}
$$

identify imaginary unit i with quaternion basis element \mathbf{i} - quaternion polynomial $\mathcal{A}(t)$ is related to the complex polynomials $\boldsymbol{\alpha}(t)$ and $\boldsymbol{\beta}(t)$ by

$$
\mathcal{A}(t)=u(t)+v(t) \mathbf{i}+p(t) \mathbf{j}+q(t) \mathbf{k}=\boldsymbol{\alpha}(t)+\mathbf{k} \boldsymbol{\beta}(t)
$$

polynomial $\rho(t)$ has simpler formulation in Hopf map model

$$
\begin{aligned}
\boldsymbol{\alpha} \boldsymbol{\beta}^{\prime}-\boldsymbol{\alpha}^{\prime} \boldsymbol{\beta} & =\left(u q^{\prime}-u^{\prime} q-v p^{\prime}+v^{\prime} p\right)+\mathrm{i}\left(u p^{\prime}-u^{\prime} p+v q^{\prime}-v^{\prime} q\right) \\
& \Rightarrow \quad \rho(t)=4\left|\boldsymbol{\alpha}(t) \boldsymbol{\beta}^{\prime}(t)-\boldsymbol{\alpha}^{\prime}(t) \boldsymbol{\beta}(t)\right|^{2}
\end{aligned}
$$

restricting $H(\boldsymbol{\alpha}, \boldsymbol{\beta})$ to complex numbers satisfying $|\boldsymbol{\alpha}|^{2}+|\boldsymbol{\beta}|^{2}=1$, it defines a map between the " 3 -sphere" $S^{3}: u^{2}+v^{2}+p^{2}+q^{2}=1$ in the space \mathbb{R}^{4} spanned by coordinates (u, v, p, q) and the familiar "2-sphere" $S^{2}: x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3} with coordinates (x, y, z) great circles of S^{3} are mapped to points of S^{2} by $H(\boldsymbol{\alpha}, \boldsymbol{\beta})$
first known map between higher and lower dimension spheres that is not null homotopic (applications to quantum computing)

spatial PH quintic Hermite interpolants

spatial PH quintic interpolating end points $\mathbf{p}_{i}, \mathbf{p}_{f} \&$ derivatives $\mathbf{d}_{i}, \mathbf{d}_{f}$

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) \\
\text { where } \mathcal{A}(t)=\mathcal{A}_{0}(1-t)^{2}+\mathcal{A}_{1} 2(1-t) t+\mathcal{A}_{2} t^{2}
\end{gathered}
$$

three equations in three quaternion unknowns $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}$

$$
\begin{aligned}
& \mathbf{r}^{\prime}(0)=\mathcal{A}_{0} \mathbf{i} \mathcal{A}_{0}^{*}=\mathbf{d}_{i} \quad \text { and } \quad \mathbf{r}^{\prime}(1)=\mathcal{A}_{2} \mathbf{i} \mathcal{A}_{2}^{*}=\mathbf{d}_{f} \\
& \int_{0}^{1} \mathcal{A}(t) \mathbf{i} \mathcal{A}^{*}(t) \mathrm{d} t=\frac{1}{5} \mathcal{A}_{0} \mathbf{i} \mathcal{A}_{0}^{*}+\frac{1}{10}\left(\mathcal{A}_{0} \mathbf{i} \mathcal{A}_{1}^{*}+\mathcal{A}_{1} \mathbf{i} \mathcal{A}_{0}^{*}\right) \\
&+\frac{1}{30}\left(\mathcal{A}_{0} \mathbf{i} \mathcal{A}_{2}^{*}+4 \mathcal{A}_{1} \mathbf{i} \mathcal{A}_{1}^{*}+\mathcal{A}_{2} \mathbf{i} \mathcal{A}_{0}^{*}\right) \\
&+\frac{1}{10}\left(\mathcal{A}_{1} \mathbf{i} \mathcal{A}_{2}^{*}+\mathcal{A}_{2} \mathbf{i} \mathcal{A}_{1}^{*}\right)+\frac{1}{5} \mathcal{A}_{2} \mathbf{i} \mathcal{A}_{2}^{*}=\mathbf{p}_{f}-\mathbf{p}_{i}
\end{aligned}
$$

solution of fundamental equation

given vector $\mathbf{c}=|\mathbf{c}|(\lambda, \mu, \nu)$ find quaternion \mathcal{A} such that

$$
\mathcal{A} \mathbf{i} \mathcal{A}^{*}=\mathbf{c}
$$

one-parameter family of solutions

$$
\begin{aligned}
\mathcal{A}(\phi)=\sqrt{\frac{1}{2}(1+\lambda)|\mathbf{c}|}(- & \sin \phi+\cos \phi \mathbf{i} \\
& \left.+\frac{\mu \cos \phi+\nu \sin \phi}{1+\lambda} \mathbf{j}+\frac{\nu \cos \phi-\mu \sin \phi}{1+\lambda} \mathbf{k}\right)
\end{aligned}
$$

in \mathbb{R}^{3} there is a continuous family of rotations mapping the vector \mathbf{i} into a given vector (λ, μ, ν)

families of spatial rotations

find $\mathcal{U}=\left(\cos \frac{1}{2} \theta, \sin \frac{1}{2} \theta \mathbf{n}\right)$ that rotates $\mathbf{i}=(1,0,0) \rightarrow \mathbf{v}=(\lambda, \mu, \nu)$

$$
\begin{gathered}
n_{x}^{2}(1-\cos \theta)+\cos \theta=\lambda \\
n_{x} n_{y}(1-\cos \theta)+n_{z} \sin \theta=\mu \\
n_{z} n_{x}(1-\cos \theta)-n_{y} \sin \theta=\nu \\
n_{x}=\frac{ \pm \sqrt{\cos ^{2} \frac{1}{2} \alpha-\cos ^{2} \frac{1}{2} \theta}}{\sin \frac{1}{2} \theta} \\
n_{y}=\frac{ \pm \mu \sqrt{\cos ^{2} \frac{1}{2} \alpha-\cos ^{2} \frac{1}{2} \theta}-\nu \cos \frac{1}{2} \theta}{(1+\lambda) \sin ^{\frac{1}{2} \theta}} \\
n_{z}=\frac{ \pm \nu \sqrt{\cos ^{2} \frac{1}{2} \alpha-\cos ^{2} \frac{1}{2} \theta}+\mu \cos \frac{1}{2} \theta}{(1+\lambda) \sin \frac{1}{2} \theta}
\end{gathered}
$$

general solution, where $\alpha=\cos ^{-1} \lambda$ and $\alpha \leq \theta \leq 2 \pi-\alpha$

Spatial rotations of unit vectors $\mathbf{i} \rightarrow \mathbf{v}$. (a) Vectors \mathbf{e}_{\perp} (orthogonal to \mathbf{i}, \mathbf{v}) and e_{0} (bisector of \mathbf{i}, \mathbf{v}) - the plane Π of e_{\perp} and e_{0} is orthogonal to that of \mathbf{i} and \mathbf{v}. (b) For any rotation angle $\theta \in(\alpha, 2 \pi-\alpha)$, where $\alpha=\cos ^{-1}(\mathbf{i} \cdot \mathbf{v})$, there are two possible rotations, with axes \mathbf{n} inclined equally to \mathbf{e}_{\perp} in the plane Π. (c) Sampling of the family of spatial rotations $\mathbf{i} \rightarrow \mathbf{v}$, shown as loci on the unit sphere. (d) Axes n for these rotations, lying in the plane Π.

construction of Hermite interpolants

derivative conditions have form of fundamental equation

- can be solved directly for \mathcal{A}_{0} and \mathcal{A}_{2}
end-point condition can then be cast in fundamental form as

$$
\begin{aligned}
& \left(3 \mathcal{A}_{0}+4 \mathcal{A}_{1}+3 \mathcal{A}_{2}\right) \mathbf{i}\left(3 \mathcal{A}_{0}+4 \mathcal{A}_{1}+3 \mathcal{A}_{2}\right)^{*} \\
& \quad=120\left(\mathbf{p}_{f}-\mathbf{p}_{i}\right)-15\left(\mathbf{d}_{i}+\mathbf{d}_{f}\right)+5\left(\mathcal{A}_{0} \mathbf{i} \mathcal{A}_{2}^{*}+\mathcal{A}_{2} \mathbf{i} \mathcal{A}_{0}^{*}\right)
\end{aligned}
$$

- solve for \mathcal{A}_{1}, since \mathcal{A}_{0} and \mathcal{A}_{2} known
solution contains three free parameters $\phi_{0}, \phi_{1}, \phi_{2}$ but shape of interpolants depends only on their differences
$\Longrightarrow \exists$ two-parameter family of spatial PH quintic interpolants to given Hermite data $\mathbf{p}_{i}, \mathbf{d}_{i}$ and $\mathbf{p}_{f}, \mathbf{d}_{f}$

spatial PH quintic Hermite interpolants

$\mathbf{p}_{i}=(0,0,0)$ and $\mathbf{p}_{f}=(1,1,1)$ for both curves
$\mathbf{d}_{i}=(-0.8,0.3,1.2)$ and $\mathbf{d}_{f}=(0.5,-1.3,-1.0)$ for curve on left, $\mathbf{d}_{i}=(0.4,-1.5,-1.2)$ and $\mathbf{d}_{f}=(-1.2,-0.6,-1.2)$ for curve on right

open problem: find "optimal" ϕ_{0}, ϕ_{2} values

shape of interpolants depends strongly on free parameters

- minimize a shape-measure integral, e.g., $E=\int \kappa^{2} \mathrm{~d} s$ (but highly non-linear in the free parameters)
- impose additional conditions (restrict solution space)
- e.g., helicity condition $\kappa / \tau=$ constant
- study geometry of quaternion curve $\mathcal{A}(t)$
- need better insight on geometry of quaternion space \mathbb{H}
- extension to spatial $C^{2} \mathrm{PH}$ quintic splines

two-parameter family of Hermite interpolants

nominal parameters: ϕ_{0}, ϕ_{2} - arc length of interpolants depends only on difference $\phi_{2}-\phi_{0}$, shape of interpolants depends only on mean $\frac{1}{2}\left(\phi_{0}+\phi_{2}\right)$

sampling of the one-parameter families of spatial PH quintic interpolants, of identical arc length, to given first-order Hermite data - defined by holding $\phi_{2}-\phi_{0}$ constant, and varying only $\frac{1}{2}\left(\phi_{0}+\phi_{2}\right)$

recent results on Hermite interpolants

(Farouki, Giannelli, Manni, Sestini, 2007)

- dependence of total arc length S exhibits a single minimum and a single maximum with respect to the variable $\phi_{2}-\phi_{0}$
- these extremal arc length interpolants correspond to helical PH quintics
- \Rightarrow helical PH quintic interpolants exist for any first-order Hermite data
- three "practical" criteria for identifying interpolants with near-optimal shape properties (all reproduce cubic PH interpolants when they exist)
- give values of the energy integral close to the absolute minimum, at modest computational cost

closure

- spatial PH curves ideally suited to computing rotation-minimizing frames (symbolic integration or rational approximation)
- helical polynomial space curves are always PH curves - two quintic types (monotone and general helical PH quintics)
- double PH curves have rational Frenet frames, curvature, torsion - all helical PH curves are necessarily double PH curves
- properties of solutions to first-order Hermite interpolation problem
- don't believe a Russian who tells you he has stopped drinking

