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synopsis

• introduction, motivation, historical background

• Minkowski sums, products, roots, implicitly-defined sets

• connections 1. complex interval arithmetic, planar shape operators

• bipolar coordinates and geometry of Cartesian ovals

• connections 2. anticaustics in geometrical optics

• Minkowski products — logarithmic Gauss map, curvature, convexity

• implicitly-defined sets (inclusion relations) & solution of equations

• connections 3. stability of linear dynamic systems —
Hurwitz & Kharitonov theorems, Γ-stability



geometric algebras in RN

algebras of points

• N = 1 : real numbers N = 2 : complex numbers

• N ≥ 4 : quaternions, octonions, Grassmann & Clifford algebras

• elements are finitely-describable, closed under arithmetic operations

algebras of point sets

• real interval arithmetic (finite descriptions, exhibit closure)

• Minkowski algebra of complex sets (closure impossible for any
family of finitely-describable sets)

• must relinquish distributive law for algebra of sets
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selection of PH quintic Hermite interpolants
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D = { z | Re(z) > |Im(z)| & |z| <
√

3 }

show that D©f D = { f(z0, z2) | z0, z2 ∈ D } ⊂ D

where f(z0, z2) = 1
4

[
z0 − 3 z2 +

√
120− 15(z2

0 + z2
2) + 10 z0z2

]



Caspar Wessel 1745-1818, Norwegian surveyor



Wessel’s algebra of line segments

sums of directed line segments

Two right lines are added if we unite them in such a way that the second
line begins where the first one ends, and then pass a right line from the
first to the last point of the united lines.

products of directed line segments

As regards length, the product shall be to one factor as the other factor is
to the unit. As regards direction, it shall diverge from the one factor as
many degrees, and on the same side, as the other factor diverges from
the unit, so that the direction angle of the product is the sum of the
direction angles of the factors.



identification with complex numbers

Let +1 be the positive unit, and +ε a unit perpendicular to it. Then the
direction angle of +1 is 0◦, that of −1 is 180◦, that of +ε is 90◦, and that of
−ε is 270◦. By the rule that the angle of a product is the sum of the angles
of the factors, we have

(+1)(+1) = +1 , (+1)(−1) = −1 , · · · (+ε)(+ε) = −1 , · · ·

From this, it is seen that ε is equal to
√
−1.

extension to other geometric algebras

There are other quantities besides right lines among which such relations
exist . . . But I have accepted the advice of men of judgement, that in this
paper both the nature of the contents and the plainness of exposition
demand that the reader be not burdened with concepts so abstract.



sad fate of Caspar Wessel, Norwegian surveyor

moral #1: don’t expect mathematicians to pay any attention
to your work if you’re just a humble surveyor

moral #2: don’t expect anyone to read your scientific papers
if you publish in Norwegian (Danish, actually)



basic operations

a, b = reals a,b = complex numbers A,B = subsets of C

Minkowski sum : A⊕ B = {a + b | a ∈ A and b ∈ B }
Minkowski product : A⊗ B = {a× b | a ∈ A and b ∈ B }

subdistributive law : (A⊕ B)⊗ C ⊂ (A⊗ C)⊕ (B ⊗ C)

negation and reciprocal of a set:

−B = {−b | b ∈ B } , B−1 = {b−1 | b ∈ B }

Minkowski difference and division:

A	 B = A⊕ (−B) , A� B = A⊗ B−1

⊕,	 and ⊗,� not inverses — (A⊕ B)	 B 6= A , (A⊗ B)� B 6= A



“implicitly-defined” complex sets

A©f B = { f(a,b) | a ∈ A, b ∈ B }

A ⊕ B =
⋃
a∈A

translations of B by a

A⊗ B =
⋃
a∈A

scalings/rotations of B by a

A©f B =
⋃
a∈A

conformal mappings of B by f(a, ·)

A©f B can be difficult to evaluate — sometimes use
bounding Minkowski combination, e.g., for f(a,b) = a2 + ab

A©f B ⊂ A⊗ (A⊕ B) ⊂ (A⊗A)⊕ (A⊗ B)



Minkowski powers and roots

⊗ commutative, associative ⇒ define Minkowski power by

⊗nA =

n times︷ ︸︸ ︷
A⊗A⊗ · · · ⊗ A

= { z1z2 · · · zn | zi ∈ A for i = 1, . . . , n }

correspondingly, define Minkowski root by ⊗n(⊗1/nA) = A

{ z1z2 · · · zn | zi ∈ ⊗1/nA for i = 1, . . . , n } = A

do not confuse with “ordinary” powers & roots

An = { zn | z ∈ A} , A1/n = { z | zn ∈ A}

inclusion relations: An ⊆ ⊗nA , ⊗1/nA ⊆ A1/n
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Nickel (1980): no closure under both + and × for sets specified by finite number of parameters
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complex interval arithmetic

[ a, b ] + [ c, d ] = [ a+ c, b+ d ]

[ a, b ]− [ c, d ] = [ a− d, b− c ]

[ a, b ]× [ c, d ] = [ min(ac, ad, bc, bd),max(ac, ad, bc, bd) ]

[ a, b ]÷ [ c, d ] = [ a, b ]× [ 1/d, 1/c ]

extend to “complex intervals” (rectangles, disks, . . .)

disk⊗ disk 6= disk → (c1, R1) ⊗ (c2, R2) “=” ( c1c2 , |c1|R2 + |c2|R1 +R1R2 )

exact complex interval arithmetic ≡ Minkowski geometric algbera



geometrical applications: 2D shape operators

Sd = complex disk of radius d

offset at distance d > 0 of planar domain A: Ad = A⊕ Sd

for negative offset, use set complementation: A−d = (Ac ⊕ Sd)c

dilation & erosion operators in mathematical morphology (image processing)

scaled Minkowski sum (f = real function on A):

A⊕f B = {a + f(a)b | a ∈ A, b ∈ B }

recover domain D from medial-axis transform:

D = M⊕r S1 = {m + r(m)s |m ∈M, s ∈ S1 }

M = medial axis, r = radius function on M



offset curves & medial axis transform



Monte Carlo experiment – product of two circles
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Im



bipolar coordinates

p1p2

r1
r2

x

y

r1

r2

2

2

(r1,r2)

ellipse & hyperbola : r1 ± r2 = k

the ovals of Cassini : r1r2 = k

the Cartesian oval(s) : mr1 ± nr2 = ±1

generalize to (redundant) multipolar coordinates



Cartesian oval C1 ⊗ C2

C1, C2 have center (1,0) and radii R1, R2

poles (0, 0), (a1, 0), (a2, 0) where a1 = 1−R2
1 , a2 = 1−R2

2

(a1, a2 = images of 0 under inversion in C1, C2)

three different representations in bipolar coordinates:

R1ρ0 ± ρ1 = ± a1R2

R2ρ0 ± ρ2 = ± a2R1

R2ρ1 ± R1ρ2 = ± (a2 − a1)

degenerate cases — limacon of Pascal & cardioid

Cartesian oval is an anallagmatic curve
(maps into itself under inversion in a circle)



Cartesian oval: R1 ≠ 1 ≠ R2 limacon of Pascal: R1 = 1 ≠ R2 cardioid: R1 = 1 = R2



Cartesian ovals

“L’enveloppe d’un cercle variable dont le centre parcourt la
circonférence d’un autre cercle donné et dont le rayon varie
proportionnellement à la distance de son centre à un point
fixe est un couple d’ovales de Descartes.”

F. Gomes Teixiera (1905)
Traité des Courbes Spéciales Remarquables Planes et Gauches

Im

Re

R1

R2

ρ

ρR1

Cartesian oval = boundary of Minkowski product of two circles



anticaustic — Jakob Bernoulli (1692)

index p index q

time = 0 time = t
propagate

"backward"

all index q

  time = 0

"anticaustic"

anticaustic = involute of caustic (zero optical path length)



reflection/refraction of spherical waves

Farouki & Chastang, Exact equations of
"simple" wavefronts, Optik 91, 109 (1992)

surface mode anticaustic wavefront

plane

plane

sphere

sphere

reflect

refract

reflect

refract

point

ellipse/hyperbola

limacon of Pascal

Cartesian oval

degree 2

degree 8

degree 10

degree 14



geometrical optics

“operator language” for optical constructions

0 = light source, A = smooth refracting surface, k = refractive index ratio

⇒ anticaustic S for refraction of spherical waves = ∂(A⊗ C)

where C = circle with center 1 & radius k−1

0 = light source, L = line with Re(z) = 1, S = desired anticaustic

⇒ mirror M yielding anticaustic S by reflection = 1
2 ∂(S ⊗ L)



simple Minkowski product examples

line ⊗ circle — ellipse or hyperbola

circle ⊗ circle — Cartesian oval (R1, R2 6= 1 here)



Minkowski roots – ovals of Cassini

R < 1 R = 1 R > 1

“ordinary”: r1r2 = R or r4 − 2r2 cos θ + 1 = R2

n = 3

n = 6

n = 9

nth order: r1 · · · rn = R or r2n − 2rn cosnθ + 1 = R2



⊗1/2 circle

R > 1

R = 1

R < 1

circle containing origin is not logarithmically convex
— require composite curve as Minkowski root



catalog of Minkowski operations

set operation set boundary

line ⊗ line parabola

line ⊗ circle ellipse or hyperbola

circle ⊗ circle Cartesian oval

⊗1/2 disk ovals of Cassini

⊗1/n disk nth order ovals of Cassini

line ⊗ curve negative pedal of curve wrt origin

circle ⊗ curve anticaustic for refraction by curve

circle ⊗ · · · ⊗ circle generalized Cartesian oval

disk ⊗ A = disk ∂A = inner loop of Cartesian oval



. . . the three Russian brothers . . .

. . . Following the collapse of the former Soviet Union, the
economy in Russia hit hard times, and jobs were difficult to
find. Dmitry, Ivan, and Alexey — the Brothers Karamazov —
therefore decided to seek their fortunes by emigrating to
America, England, Australia . . .



Minkowski product algorithm

z → log z : Minkowski product → Minkowski sum

for curves γ(t), δ(u) write γ(t)⊗ δ(u) = exp ( log γ(t)⊕ log δ(u) )

and then invoke Minkowski sum algorithm

problems ⇒ work directly with γ(t) and δ(u)

1. log(z) defined on multi-sheet Riemann surface

2. exp(z) exaggerates any approximation errors

3. log γ(t) & log δ(u) are transcendental curves

logarithmic curvature theory: for curve γ(t) define κlog(t)
= ordinary curvature of image, log γ(t), under z→ log z

hence . . . logarithmic lines, inflections, convexity, Gauss map, etc.



ordinary & logarithmic curvature of γ(t)

r(t) = |γ(t)|, θ(t) = arg γ(t), ψ(t) = arg γ′(t)

κ =
dψ
ds

invariant under translation, but not scaling

κlog = r
d
ds

(ψ − θ) invariant under scaling , but not translation

1. compute logarithmic Gauss maps of γ(t) & δ(u)

2. subdivide γ(t) & δ(u) into corresponding log-convex segments

3. simultaneously trace corresponding segments and generate candidate
edges for Minkowski product boundary

4. test edges for status (interior/boundary) w.r.t. Minkowski product

5. establish orientation & ordering of retained boundary edges



Minkowski product example

left: quintic Bézier curve operands; center: products of one operand with
points of other; right: untrimmed & trimmed Minkowski product boundary



Minkowski product of N circles

match logarithmic Gauss maps :
sin θ1

R1 + cos θ1
= · · · =

sin θN

RN + cos θN

geometrical interpretation: intersections of operands
with circles of coaxal system (common points 0 & 1)

proof — inversion in operand circles

∂(C1 ⊗ · · · ⊗ CN) = “N th order Cartesian oval”

multipolar representation with respect to poles at 0, a1, a2, . . . , aN ?



implicitly-defined complex sets

A©f B = { f(a,b) | a ∈ A, b ∈ B }

example: f(a,b) = ab + b2 and A, B = disks |z| ≤ 1, |z− 1| ≤ 1

subdistributivity ⇒ A©f B ⊆ (A⊕ B)⊗ B ⊆ (A⊗ B)⊕ (B ⊗ B)

set a(λ) = eiλ and b(t) = 1 + eit for 0 ≤ λ, t ≤ 2π in f(a,b)

→ family of limacons r(λ, t) = ei2t + ei(t+λ) + 2eit + eiλ + 1

generalize Minkowski sum & product algorithms to A©f B :

matching condition arg
da
dλ

− arg
db
dt

= kπ + arg
(

db
da

)
f=const.



limacon of Pascal

implicitly–defined set bounded by Minkowski combinations

offset to cardioid



implicitly–defined set as one–parameter family of limacons

(a): acnodal  (b): crunodal  (c): cuspidal

(a)

(b)

(c)



singular curve of surface r(λ,t) generated by implicitly–defined set

λ = 0

λ = π

λ = π – cos–11/4



solution of linear equation A⊗X = B

A, B = circular disks with radii a, b

solution exists ⇐⇒ a ≤ b

−1 0 1 2 3

−2

−1

0

1

2

−1 0 1 2 3

−2

−1

0

1

2

solution = region within inner loop of a Cartesian oval !

generalization to polynomial equations, linear systems?



stability of linear dynamic system

Laplace transform of linear nth order system:

an
dny

dtn
+ · · · + a1

dy
dt

+ a0y = 0

characteristic polynomial p(s) = ansn + · · · + a1s + a0

stability ⇐⇒ roots z1, . . . , zn satisfy Re(zk) < 0

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 a7 a9 · · ·
a0 a2 a4 a6 a8 · · ·
0 a1 a3 a5 a7 · · ·
0 a0 a2 a4 a6 · · ·
0 0 a1 a3 a5 · · ·
0 0 a0 a2 a4 · · ·
· · · · · · · ·
· · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
classical Routh-Hurwitz criterion: ∆n,∆n−1, . . . ,∆1 > 0

(can generalize to complex coefficients a0, . . . ,an)



Kharitonov conditions

desire “robust stability” of system with uncertain parameters

p(s) = ansn + · · · + a1s + a0 where ak ∈ [ ak, ak ]

p1(s) = a0 + a1s + a2s2 + a3s3 + · · ·
p2(s) = a0 + a1s + a2s2 + a3s

3 + · · ·
p3(s) = a0 + a1s + a2s

2 + a3s3 + · · ·
p4(s) = a0 + a1s + a2s

2 + a3s
3 + · · ·

Kharitonov polynomials p1(s), . . . ,p4(s) stable ⇐⇒ p(s) “robustly stable”

Kharitonov, Differential’nye Uraveniya 14, 1483 (1978)

value set : V(p(s)) = values assumed by p(s) at fixed s as coeffs
ak vary over intervals [ ak, ak ] = rectangle with corners p1(s), . . . ,p4(s)

(complex coeffs — eight Kharitonov polynomials)



Γ-stability of system

roots z1, . . . , zn of characteristic polynomial with coeffs ak ∈ Ak

p(s) = ansn + · · · + a1s + a0

Hurwitz stability Re(zk) < 0 may be inadequate;
also desire good damping and fast response

for any subset Γ of left half-plane, p(s) is Γ-stable if z1, . . . , zn ∈ Γ

Im

Re

Im

Re

p(s) “robustly” Γ-stable ⇐⇒ one case Γ-stable, and value set
satisfies 0 6∈ V(p(s)) for all s ∈ ∂Γ (zero exclusion principle)



variation of value–set along the imaginary axis
for a cubic polynomial with interval coefficients

Re

Im



example problem

consider Γ-stability of quadratic p(s) = a2s2 + a1s + a0

coefficients disks A2,A1,A0 have centers c2 = 1,
c1 = p+ q, c0 = pq and radii R2 = R1 = R0 = 0.25

stability region Γ boundary: γ(t) = (− cosh t, sinh t), −∞ < t < +∞

value set V(t) for p(s) along boundary γ(t)
= family of disks with center curve & radius function

c(t) = 1 + pq − (p+ q) cosh t + i [ (p+ q)− 2 cosh t ] sinh t

R(t) = R0(1 +
√

cosh 2t+ cosh 2t)

stability condition: 0 6∈ V(t) for −∞ < t < +∞
⇐⇒ 2 real polynomials have no real roots

(true for any “complex disk polynomial”)



p = 3.0  q = 0.2

p = 3.0  q = 1.0

p = 3.0  q = 2.0



closure

• basic functions: Minkowski sums, products, roots,
implicitly-defined complex sets, solution of equations

• lack of closure for finitely-describable sets
→ rich geometrical structures & applications

• 2D shape generation and analysis operators

• generalization of interval arithmetic to complex sets

• curves in bipolar & multipolar coordinates —
generalize classical Cassini and Cartesian ovals

• operator language for direct & inverse
problems of wavefront reflection & refraction

• robust stability of dynamic/control systems —
extend Routh-Hurwitz & Kharitonov conditions


