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Abstract 
It is shown that multiple complementary 
techniques for trading BER performance for cost 
reduction in the Viterbi algorithm for multiple-
input/multiple-output joint demodulation can be 
merged to obtain substantial and efficient cost 
reduction.   Quantitative results for application to 
the separation of GSM cochannel signals are 
presented.  It is shown that up to six signals can 
be separated at a GSM basestation with BER of 
10% before decoding gain with only a single 
dual-polarized antenna and Eb/No = 10dB in real 
time on a Compaq 1GHz ES-40 server, with cost 
savings factors up to 8700.  It is also shown that 
for a specified BER and number of signals, the 
cost of MIMO demodulation decreases as the 
number of sensors increases. 

1. Introduction 
It is a well-known fact that a joint demodulator 
for a single sensor can separate two cochannel 
interfering (CCI) signals and sometimes more 
depending on SNR, SIR, and other parameters, 
such as fraction of symbols that are known at the 
receiver.  It follows that, more generally, a joint 
demodulator for multiple sensors can separate a 
number of signals that exceeds the number of 
sensors, and offers a distinct advantage over linear 
combining sensor outputs followed by  
demodulation.  This advantage accrues primarily 
from more effective utilization of the increased 
channel diversity resulting from multiple sensors, 
but little is known about how many signals can be 
separated with a specified BER and number of 
sensors.  The primary reason for the lack of 
progress in this area of multiple-input/multiple-
output (MIMO) demodulation is computational 
cost.  Even if the optimally efficient Viterbi 
algorithm is used to implement the MIMO 
demodulator, computational cost still grows 
exponentially in the number of signals.  The 
computational cost can be so high that even 
simulations present a substantial challenge.  
Consequently, efficient means for trading off 

BER performance for computational cost 
reduction are required in order to move forward 
with MIMO demodulation R&D. 

The purpose of this paper is to report on progress 
made on developing efficient techniques for 
trading BER performance for cost reduction. 

2. MIMO Demodulation 
In the conventional application of antenna arrays 
to the extraction of digital messages from 
cochannel interfering signals, the received 
multichannel data is linearly combined to 
effectively steer beams and nulls in the 
synthesized antenna pattern.  Then the output of 
each particular linear combiner is fed into a 
conventional (non-joint) demodulator for the 
particular signal targeted by the particular linear 
combiner.  The maximum-likelihood demodulator 
(for the simplified AWGN channel model and IID 
equally-likely-symbol sequence) implements a 
least-squares fit of the modulated digital-symbol 
sequence to the linear combiner output. 

In contrast to this, the MIMO demodulator 
implements a joint least-squares fit of all the 
interfering signals to all the individual sensor 
outputs.  The sensor outputs are not linearly 
combined; they are not really nonlinearly 
combined either.  They are simply used to form 
the MIMO model-fitting cost function that is 
minimized by a trellis search over the multiple 
symbol sequences.  This trellis search is optimally 
implemented by the Viterbi algorithm.  
Nevertheless, we shall, to contrast this with linear 
combining, sometimes refer to it loosely as 
“nonlinear combining”. 

The joint demodulators described in this paper 
employ three distinct and complementary 
techniques for decreasing BER and/or trading 
BER for reduced computational cost, relative to 
the baseline Viterbi algorithm.  All three 
techniques can be used in conjunction, 
simultaneously, and together they provide a 
powerful means for computation reduction and/or 
BER reduction. 



The new MIMO demodulator is a modification of 
the conventional Viterbi algorithm for multi-
sensor JMLSD (joint maximum-likelihood 
sequence detection).  The normal Viterbi 
algorithm [1] has two phases: spawning and 
pruning.  In the spawning phase, existing joint 
symbol sequences are extended with permutations 
of possible input symbols to create a new set of 
candidate joint sequences.  In the pruning phase, 
this set of candidate sequences is pruned down to 
a survivor set according to dynamic programming 
principles and an analysis of their sum-of-squared 
errors relative to the input.  The pruning process 
is optimum in the sense that it is guaranteed not to 
remove any candidate sequence that lies along the 
maximally likely symbol sequence path through 
the trellis.  The survivors of the pruning are then 
spawned again and pruned again with the next 
symbol's worth of samples of the input signal, and 
the algorithm repeats through its phases.   

The Viterbi algorithm offers optimal BER 
performance for IID equally-likely-symbol 
sequences, but is prohibitively costly for most 
joint demodulation applications.  The number of 
candidate sequences reaches a size of B, raised to 
the power L(K+1), where B is the alphabet size, L 
is the number of signals, and K is the number of 
symbols in the state associated with each signal 
(the channel memory).   Example values for some 
existing systems are as follows: numbers of 
candidates range from 4 to 262,144 for BPSK 
with K going from 1 to 2 and L from 1 to 6; from 
8 to 262,144 for QPSK with K going from 1 to 2 
and L from 1 to 3; and from 64 to 134,217,728 for 
8PSK with K going from 1 to 2 and L from 1 to 3.  
Because of its optimal BER performance, we use 
the Viterbi algorithm to provide a baseline for 
BER measurements in those cases where it can be 
computed at reasonable cost (L ≤ 5). 

The first modification used in our MIMO 
demodulator applies constraints in the spawning 
phase.  Known symbol values in the signals (due 
to header sequences, midambles, etc.) are taken 
into account to prevent the spawning of candidate 
sequences that will violate the signal format.  In 
selecting survivor sequences for joint 
demodulation, a bit-error in one sequence tends to 
induce bit-errors in the other sequences.  This 
happens because the change in the sum-of-
squared-model-fitting-errors (SSE) cost due to a 
bit-error in one sequence can (depending on the 
channel parameters) be partially compensated for 

by changing a bit value in another sequence.  The 
result is that the SSE cost of a joint sequence with 
multiple errors can be lower than that of a joint 
sequence with a single error.  Constrained 
spawning can improve the BER performance of 
the Viterbi algorithm because it exploits some of 
the non-random nature of communications 
signals.  It yields the true MLSE solution for the 
more accurate model that recognizes the existence 
of known symbols. This non-statistical 
constrained spawning produces both a decrease in 
computational cost and an improvement in BER 
performance by eliminating candidate sequences 
that are known to be invalid.  The degree of 
improvement depends on the amount of known 
structure in the signals being demodulated. As an 
example, approximately 20% of the symbols are 
known in GSM signals, and somewhat fewer 
(closer to 10%) are known in IS-136 signals. 
 
The second and more important modification used 
in our MIMO demodulator adds a third phase to 
the conventional two-phase (spawning/pruning) 
Viterbi algorithm.  In this third phase, many 
sequences that survived the pruning phase are 
removed with selection based on an analysis of 
the distribution of changes in sum-of-squared-
error values.  Unlike the pruning phase, this phase 
of sequence removal is non-optimum, in the sense 
that sequences along the maximally likely path 
might be deleted accidentally.  However, the 
probability of such an accidental deletion is 
controlled and can be adjusted to trade BER 
performance for computational cost.  
Furthermore, this statistical thinning can be 
generalized to accomplish even more aggressive 
survivor reduction in applications where it is 
desired to extract only a subset of the interfering 
signals.  In such a case, higher BER in the joint 
demodulator can be tolerated for signals not to be 
extracted, thereby enabling further survivor 
reduction.  For the objective of trading off BER 
for computational cost in the most efficient 
manner possible, this statistical thinning (ST) 
algorithm introduced here has several advantages 
over all prior approaches that we have been able 
to find in the literature, including well-known 
reduced-state sequence estimation (RSSE) 
methods [7] - [11], the M-algorithm [2] - [5], and 
the T-algorithm [6].   
 
Typically, RSSE techniques reduce computation 
by grouping the trellis states into a smaller 



number of state classes, and allowing only one 
survivor sequence in each class.  The partitioning 
algorithm used to construct these state classes is, 
in effect, changing the structure of the trellis.  
This change can greatly reduce computation, but 
must be planned carefully to maintain BER 
performance.  There does not seem to be any 
work on class definition that is directly relevant to 
joint demodulation with general channels, 
although the approach described in [11] might be 
applicable here. 
 
In contrast to RSSE, the M, T, and ST algorithms 
do not alter the trellis -- they remove individual 
survivor sequences that are unlikely to form 
viable paths.  This reduces the number of states 
that are visited by the algorithm at any given time.  
The M and T algorithms do this in a deterministic 
manner, whereas the ST algorithm does it non-
deterministically.  The M-algorithm is probably 
the best-known survivor reduction algorithm.  The 
survivor selection function for the M-algorithm 
keeps the M lowest-cost candidate sequences.  
The T-algorithm is a lesser-known survivor 
reduction algorithm.  It allows the survival of 
candidate sequences whose costs fall below a 
certain threshold, relative to the current minimum 
cost sequence.  The ST algorithm is essentially a 
variation on the T-algorithm in which the 
threshold changes with the distribution of 
candidate costs according to a specific adaptation 
procedure.   
 
Simply replacing the survivor selection function 
in the conventional Viterbi algorithm with the 
new survivor reduction function for either the M-
algorithm or T-algorithm did not yield an efficient 
tradeoff of BER for cost.  We found that both cost 
and BER performance could be improved 
considerably with hybrid algorithms, in which the 
optimal pruning of the Viterbi algorithm is 
followed by a survivor reduction phase.  At any 
given BER, the added cost of the Viterbi pruning 
function is more than compensated for by its 
reduction of the candidate set.   
 
However, it is reported in [6] that, for trellis 
decoding applications (which are distinct from the 
CCI separation applications addressed herein), a 
more efficient BER/cost tradeoff is obtained by 
using the T-algorithm without Viterbi pruning but 
with aggressive path truncation (forced decisions).  
A comparison of this approach to the Viterbi-

augmented T-algorithm reported on herein has not 
been made for the applications of interest here. 
 
The M, T, and ST algorithms are more effective 
for the applications of interest here than are the 
RSSE techniques.  Our investigation has revealed 
that the Viterbi-augmented T algorithm and the 
ST algorithm typically provide more efficient 
tradeoffs than does the Viterbi-augmented M 
algorithm; and the ST algorithm has the 
advantage of using an adaptive threshold within 
the thinning criterion that has the potential to 
better accommodate severely nonstationary 
channels, including fading and fluctuating 
numbers of interfering signals.  
 
The third modification used in our MIMO 
demodulator introduces per-survivor decision 
feedback [12].  In the conventional Viterbi 
algorithm, the length of the pulse model P, is K + 
1, where K is the number of symbols of channel 
memory.  (The additional symbol is the current 
one.)  By making the model parameter P 
independent of the algorithm parameter K, we can 
reduce K while still accurately modeling the 
channel pulse.  This is equivalent to feeding 
tentatively decided symbol values (those 
decisions within survivors) back into the pulse 
model.  For any given values of K and P, we have 
P – K - 1 feedback symbols.  Because the size of 
the candidate set is an exponential function of K + 
1, a reduction in K produces a great reduction in 
computational cost; moreover, the BER 
performance of the demodulator can often be 
preserved by keeping P large enough.  Likewise, 
increasing P can sometimes improve the BER 
performance of a joint demodulator without 
significantly increasing the algorithm's 
computational cost.  In addition to the per-
survivor decision feedback, the MIMO 
demodulators evaluated in this paper also use path 
truncation at 5P symbols.  
The advantage of linear combining 
(beamforming) over non-linear combining 
(MIMO demodulation) is that it offers a lower 
per-candidate processing cost, but this 
computational savings brings a BER penalty 
because so much information about the joint 
channel is discarded.  This loss results from the 
fact that linear combining does not use the 
increased channel capacity resulting from the 
channel diversity due to multiple sensors in an 
effective manner.  This loss is especially 



significant if the sensors provide independent 
views of the environment, as is the case with 
orthogonally polarized sensors in an environment 
with a wide range of signal polarizations.  By 
utilizing all available channel information, dual-
pol joint demodulation can provide a substantial 
BER performance improvement.  When combined 
with survivor reduction, the total cost of dual-pol 
joint demodulation can be lower than that of 
linear combining for a given BER.  As the number 
of sensors increases, the channel capacity 
increases due to increased spatial diversity.  This 
increased capacity enables more aggressive 
survivor reduction for a specified BER.  The 
enhanced survivor reduction can result in a 
decrease in computational cost that more than 
offsets the increase in cost due to the increase in 
the number of sensors. 

3. Simulations 
Experiment 1: One and Two Sensors.  

The GSM signal environments used in this study 
were constructed using cochannel combinations 
of six signals, all of which were beacon channels, 
fully loaded (no dummy bursts), with 
pseudorandom bits filling the data fields of each 
normal burst, carrier frequency offsets ranging 
from 5Hz to 20Hz, and timing offsets ranging 
from 1 symbol to 738.46 symbols.  These signals 
were combined with powers in 0 dB and 3dB 
steps to form co-channel interference test 
environments.  The GSM signal generator uses 
the known approximation of GMSK by complex 
PAM.  The error of this model is about –22dB.  
Test cases where this modeling error may be 
significant are noted.  The middle symbol of the 
GSM pulse contains only about 50% of the pulse 
energy.  The middle three symbols contain over 
95% of the energy.  Most test cases were run with 
P = 4 to ensure a full pulse support and to allow 
for timing offsets among CCI signals of up to 
±0.5 symbol.  All of the GSM test environments 
were generated with a sample rate of four times 
the GSM symbol rate, and with additive white 
Gaussian noise extending over the full sampled 
bandwidth. 

For all tests, the noise power was set at 10 dB 
below the strongest signal in the environment.  
TSNR figures indicate the ratio of total signal 
power to in-band noise power, where the GSM 
bandwidth is assumed to be the same as the 
symbol rate.  The relationship between TSNR and 

primary-signal Eb/N0 depends on the number of 
CCI and their relative powers.  For 0dB SIR 
among all CCI, individual SNRs are 4.8dB, 6dB, 
7dB, and 7.8dB below TSNR for 3,4,5, and 6 
CCI, respectively.   

All GSM tests were run for 54,166 symbol 
periods (0.2 sec).  This test length was chosen 
because it allowed an integer number of cycles for 
all of the frequency offsets chosen for these test.   

The T-algorithm performance curves are not 
included in this paper because of their similarity 
to those for the ST algorithm in the environments 
studied here where the only nonstationarity is due 
to differential Doppler shifts. 

Bit-errors were detected by comparing the joint 
demodulator output against the modulator input 
bits.  This comparison was performed for the data 
fields only.  Fixed bit sequences defined by the 
GSM standard (and exploited by the constrained 
Viterbi algorithm) are not included in BER 
calculations. 

Because of the similarity of the algorithms under 
consideration, we can justify expressing and 
comparing their computational costs in terms of 
the size of each candidate set scaled by the 
number of sensors.  This policy is based on three 
assumptions: (1) Running time is proportional to 
the number of candidates, N, in software 
implementations. (In practice, running time is 
dominated by a term linear in N.)  (2) For a given 
number of sensors, the per-candidate processing 
cost is about the same for all of these algorithms. 
(3) Computational cost rises linearly with the 
number of sensors, M. (In practice, running time 
rises sub-linearly in M.)   

The results are presented in Figures 1 to 20 as 
graphs that plot average BER against average 
number of candidates.  The “sweet spot” of such a 
plot is at the origin – 0 BER for 0 cost.  The 
effectiveness of a survivor-reduced joint 
demodulator can be judged by how close its 
performance curve comes to this point.  Where 
applicable, each graph is also marked with a 
horizontal dashed line that shows the approximate 
BER limit for good voice copy; a horizontal solid 
line that shows the baseline BER for the Viterbi 
algorithm with K = 2 (when available); and a 
vertical dashed line that shows the computational 
limit for real-time joint demodulation on a 
Compaq 1GHz ES-40 server.   



 
# 

Of 
CCI 

Signal 
Spacing 

Primar
y Eb/N0 

TSNR MIN 
BER 

AV
EBE

R  

MAX 
BER  

3 0 dB 4.2 dB 9 dB 15.1 15.7 16.2 

3 0 dB 7.2 dB 12 dB 7.71 8.68 9.32 

3 0 dB 10.2 
dB 

15 dB 3.28 4.51 5.21 

3 0 dB 13.2 
dB 

18 dB* 1.24 2.47 3.12 

3 3 dB 6.6 dB 9 dB 7.56 14.5 21.0 

3 3 dB 9.6 dB 12 dB 3.39 7.0 10.1 

3 3 dB 12.6 
dB 

15 dB 0.96 2.33 3.37 

3 3 dB 15.6 
dB 

18 dB 0.23 .73 1.04 

4 0 dB 6.0 dB 12 dB 17.2 18.8 19.5 

4 0 dB 9.0 dB 15 dB 9.04 11.7 12.7 

4 0 dB 12.0 
dB 

18 dB* 4.31 7.20 8.32 

4 0 dB 15.0 
dB 

21 dB* 1.87 4.83 6.06 

4 3 dB 9.3 dB 12 dB 7.11 17.2 27.6 

4 3 dB 12.3 
dB 

15 dB 3.90 10.0 16.4 

4 3 dB 15.3 
dB 

18 dB 1.57 4.52 7.49 

4 3 dB 18.3 
dB 

21 dB* 0.46 1.76 3.06 

5 0 dB 8.0 dB 15 dB* 18.3 20.8 21.9 

5 0 dB 11.0 
dB 

18 dB* 10.6 14.1 15.4 

5 0 dB 14.0 
dB 

21 dB* 5.68 9.74 11.2 

5 0 dB 17.0 
dB 

24 dB* 3.13 7.15 8.59 

5 3 dB 12.3 
dB 

15 dB 6.58 20.0 32.9 

5 3 dB 15.3 
dB 

18 dB 4.18 13.9 23.5 

5 3 dB 18.3 
dB 

21 dB* 2.26 8.75 15.0 

5 3 dB 21.3 
dB 

24 dB* 1.14 5.45 9.48 

Table 1:  BER performance baselines for 3-CCI, 4-
CCI, and 5-CCI GSM environments. * indicates those 
test cases where PAM approximation error for GSM 
may be comparable to the noise level, thus causing an 
inflation of BER.   BER expressed in percentages. 

 

The following abbreviations are used to label 
curves on the graphs:  VA is the Viterbi 
algorithm, C-VA is the constrained Viterbi 
algorithm, M is the M-algorithm, and ST is the 
statistical thinning algorithm.   Although not 
explicitly denoted in these labels, per-survivor 
feedback is used whenever K < P - 1. 

For 3-CCI, 4-CCI, and 5-CCI GSM with K =2, 
the cost of the Viterbi algorithm is 512, 4096, and 
32,768 candidates per symbol period, 
respectively.   Running the Viterbi algorithm for a 
single sensor, without constraints, decision 
feedback, or survivor reduction, we get the BER 
performance figures shown in Table 1. 

From this table, we can see that 4-CCI GSM 
environments are only marginally copyable (BER 
≤ 10%) with a single sensor at 10dB Eb/N0, and 5-
CCI GSM environments are not copyable at all 
with a single sensor at 10dB Eb/N0.  For the 6-CCI 
cases, the cumulative error in the GSM PAM 
approximation can be as large as –14dB relative 
to the total signal power.  At the same time, 6-CCI 
joint demodulation requires a TSNR on the order 
of 18dB.   It is difficult to find 6-CCI GSM 
environments that can produce less than 10% 
BER from a single sensor, regardless of Eb/N0 and 
TSNR.  For this reason, single sensor 6-CCI test 
cases and baselines are omitted from this paper.  
On the other hand, dual-pol processing makes 6-
CCI environments copyable, although the 
computational requirements are high enough to 
make this copy only marginally feasible with 
present-day hardware.   

Dual-Polarization: The most striking effect of 
dual-pol joint demodulation is the improvement in 
BER. In the 4-CCI cases, environments that were 
marginal at best with single sensors yielded BERs 
< 2% when dual-pol processing was applied.  In 
the 5-CCI and 6-CCI cases, dual polarization 
processing turned impossible environments into 
copyable ones with reasonably low BER.   

For single and dual-pol processing of 
environments with 3 to 5 equal-power CCI GSM 
signals, we find that the BER improvements from 
dual-pol joint demodulation are equivalent to a 6 
dB to 12 dB improvement in Eb/N0.  This is 
considerably better than the 3 dB improvement 
one might expect from linear combining of two 
sensors by simple addition. 

Another effect of dual-pol processing is that it 
allows survivor reduction to operate more 



efficiently, yielding smaller candidate sets.  This 
happens because the additional channel capacity 
makes minimum-cost sequences more distinct, 
reducing the difficulty of the joint demodulation 
problem.  Because the candidate sets can shrink 
by more than half, the total cost of dual-pol 
demodulation can be lower than that of single-
sensor demodulation, even though the per-
candidate cost may be twice as high. 

Per-Survivor Decision Feedback:  Changing K 
from 2 to 1 degraded single-sensor BER by 
roughly 1% in copyable environments.  For dual-
pol environments, BER losses were less than 1%.  
For the full VA, going from K = 2 to K = 1 speeds 
the algorithm by a factor of 2L.  When used in 
conjunction with survivor reduction, we observed 
speedups, due to reduction of K by one, by 
roughly a factor of 2. 

Survivor Reduction:  In all cases, statistical 
thinning matched or exceeded the performance of 
the M-algorithm in terms of computational 
efficiency.  The difference was especially 
pronounced when survivor reduction was used in 
conjunction with significant decision feedback 
(K=1) or dual-pol processing. 

Experiment 2:  More Than Two Sensors  

As illustrated here, somewhat surprisingly, the 
computational cost increments associated with 
adding more sensors are often more than offset by 
the resultant more-effective survivor reduction.  
The use of additional sensors can often decrease 
the total cost of demodulating a particular 
environment at a specified target BER.  This 
result is demonstrated in the following 
simulations with 2 to 5 sensors and 2 to 6 CCI. 

The simulated sensor arrays had the following 
characteristics: Sensors were arranged in 
symmetric circular arrays of 2, 3, 4, and 5 
elements, each with a diameter of 2 wavelengths.  
Both isotropic and cartioid sensor patterns were 
simulated.  Cartioid sensors were arranged with 
lobes facing away from the center of the array.  
Each cartioid sensor was modeled as having a 
gain of +3dB in the direction its lobe. 

Each array configuration was tested in 
environments with the following properties:  
GSM beacon signals with nominal 960 MHz 
carriers were used for all environments.  
Environments contained 2 to 6 cochannel 
emitters, each having random carrier phase and 

carrier offset in the range of -40 Hz to +40 Hz 
(normal distribution).  Emitters were placed in a 
plane, distributed uniformly, at distances of 30.5 
meters (100 wavelengths) to 6.9 kilometers (6.25 
symbol periods) from the center of the sensor 
array.  Power control was simulated so that all 
signals arrived at the center of the array have 
received powers within 3dB of a reference level.  
In each environment, multipath interference was 
simulated by placing one image of each emitter in 
the above specified planar region.  Each emitter's 
multipath image had an effective radiated power 
of 0 dB to -10 dB relative to its source and a 
distance from the array of 1 to 4 times that of its 
source.  Image distance and power were selected 
randomly from uniform distributions.  In each 
environment, noise was added at a test-specified 
level relative to the power control reference level. 

The geometry of the environment used for this 
test is shown in Figure 21.  (For environments of 
n < 6 CCI, the first n signals are used.) In Figure 
21, filled circles represent transmitters and open 
circles represent multipath images.  The receiving 
array is at the origin. 

For these joint demodulation simulations, we used  
the constrained Viterbi-augmented ST algorithm 
with per-survivor decision feedback, with the 
degree of thinning adapted to provide a constant 
average BER of 10%, and with a pulse model 
length of P = 4 symbol periods and a channel 
memory of K = 1. Both the TSNR and the number 
of sensors were varied, and the computational cost 
of achieving the target 10% BER was observed.  
For brevity, only the 6-CCI test cases are 
presented here.  There are two such test cases: one 
for isotropic sensors and one for cartioid sensors. 

The results of the 6-CCI tests are shown in 
Figures 22 and 23.  For each curve the candidate 
counts are scaled up by the number of sensors to 
obtain the computational cost in equivalent signle-
sensor candidate counts.  Each curve is defined 
over only a limited range of TSNR.  Below this 
range, a 10% BER is not possible at any cost.  
Above this range, the demodulator produces a 
BER of less than 10%, even when operating at the 
minimum cost of one survivor per symbol period.  
Many of these curves have overlapping ranges, 
and in these overlapping ranges it is plain to see 
that in each case the receiver with a larger number 
of sensors has a lower cost.  As examples, for 
omnidirectional antennas, going from 2 sensors to 
3 sensors enables SNR to drop by 3dB (from 



12dB to 9dB) with no change in cost; going from 
3 sensors to 4 sensors enables cost to be cut in 
half while reducing SNR required by about 1dB. 
(Recall that the average SNR for each signal in 
these six-signal environments is about 7.8dB 
below the TSNRs shown in Figures 22 and 23.)  

We also found that the use of cartioid field 
patterns provided a computational cost reduction 
roughly equivalent to 3dB TSNR improvement, 
which can be seen when comparing the two 6-CCI 
curve sets in Figures 22 and 23.  This 
performance improvement is presumably due to 
the increased channel diversity afforded by the 
non-isotropic sensors. 

4. Conclusions 
The results of the simulations performed support 
the following conclusions: 

• Statistical thinning and the T-algorithm offer 
a better BER-cost tradeoff than the M-
algorithm under the following conditions:  

o Smaller alphabet – Performance 
differences were greater for GSM than for 
IS-136. (IS-136 results not shown) 

o Smaller signal spacing – Performance 
differences were usually greatest for 
equal-power environments.  Both equal-
power and 1dB-spaced (not shown) 
environments generally produced greater 
performance differences than 3dB or 
5dB-spaced (not shown) environments. 

o Decision feedback – Performance 
differences were greater for the K = 1 
cases than for the K = 2 cases. 

o Dual-pol – Performance differences were 
greater for dual-pol reception than for 
single-sensor reception. 

• Dual-pol joint demodulation produces BER 
performance, for the GSM environments in 
this study, that is equivalent to an Eb/N0 
improvement of 8 to 12dB relative to single-
sensor. 

• With survivor reduction, the total cost of 
dual-pol joint demodulation can actually be 
lower than that of single-sensor processing (at 
the same BER). 

• With survivor reduction, the use of per-
survivor decision feedback roughly halves the 

computational cost of joint demodulation for 
GSM, regardless of the number of CCI.  The 
BER loss is typically about 1% 

• GSM should be copyable (BER ≤ 10%)for up 
to 6-CCI with dual-pol reception (at 10dB 
EbN0) and current-generation computers. 

• Non-isotropic antennas enable more efficient 
BER/cost tradeoff than do isotropic antennas, 
presumably due to increased channel 
diversity. 

• Required SNR as well as computational cost 
to meet a specified BER target can both be 
decreased by increasing the number of 
antennas 

• Cost reduction factors achieved range from 2 
to 4 orders of magnitude.  The cost reduction 
factors realized by the ST C-VA algorithm 
with per-survivor decision feedback (P=4, 
K=1), relative to the baseline VA (P=3, K=2) 
are 6557 for 6 CCI and 1725 for 5 CCI, both 
at 5% BER, 407 for 4 CCI at BER = 2%, and 
85 for 3 CCI at BER = 1%, all for dual-pol 
reception and 0 dB signal spacing. 

• Although exact channel estimates were used 
in all simulations reported here, other 
simulations performed show that accurate 
estimates of all channel parameters needed by 
the MIMO demodulator can be obtained in 
the presence of ten or more CCI by properly 
exploiting all the known bit sequences in 
GSM. 
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7. Figure Captions 
Figure 1.  Results for 3-CCI @ 0dB Spacing,  
K = 1, Single Sensor 
Figure 2.  Results for 3-CCI @ 0dB Spacing,  
K = 2, Single Sensor. 
Figure 3.  Results for 3-CCI @ 3dB Spacing,  
K = 1, Single Sensor. 
Figure 4.  Results for 3-CCI @ 3dB Spacing,  

K = 2, Single Sensor. 
Figure 5.  Results for 3-CCI @ 0dB Spacing,  
K = 1, Dual-Pol 
Figure 6.  Results for 3-CCI @ 0dB Spacing,  
K = 2, Dual-Pol 
Figure 7.  Results for 3-CCI @ 3dB Spacing,  
K = 1, Dual-Pol 
Figure 8.  Results for 3-CCI @ 3dB Spacing,  
K = 2, Dual-Pol 
Figure 9.  Results for 4-CCI @ 0dB Spacing,  
K = 1, Dual-Pol 
Figure 10.  Results for 4-CCI @ 0dB Spacing,  
K = 2, Dual-Pol 
Figure 11.  Results for 4-CCI @ 3dB Spacing, 
 K = 1, Dual-Pol 
Figure 12.  Results for 4-CCI @ 3dB Spacing,  
K = 2, Dual-Pol 
Figure 13.  Results for 5-CCI @ 0dB Spacing,  
K = 1, Dual-Pol 
Figure 14.  Results for 5-CCI @ 0dB Spacing,  
K = 2, Dual-Pol 
Figure 15.  Results for 5-CCI @ 3dB Spacing,  
K = 1, Dual-Pol 
Figure 16.  Results for 5-CCI @ 3dB Spacing,  
K = 2, Dual-Pol 
Figure 17.  Results for 6-CCI @ 0dB Spacing,  
K = 1, Dual-Pol 
Figure 18.  Results for 6-CCI @ 0dB Spacing,  
K = 2, Dual-Pol 
Figure 19.  Results for 6-CCI @ 3dB Spacing, 
K = 1, Dual-Pol 
Figure 20.  Results for 6-CCI @ 3dB Spacing,  
K = 2, Dual-Pol 
Figure 21. Emitter and reflector placement 
Figure 22.  Computational cost of joint 
demodulation for 10% BER vs total SNR for 
various numbers of isotropic antennas in an 
environment with 6 GSM CCI. 
Figure 23.  Computational cost of joint 
demodulation for 10% BER vs total SNR for 
various numbers of cartioid antennas in an 
environment with 6 GSM CCI. 
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