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Abstract

It is shown that multiple complementary tech-
niques for trading BER performance for cost reduction
in the Viterbi algorithm for multiple-input/multiple-
output joint demodulation can be merged to obtain sub-
stantial and efficient cost reduction. Quantitative re-
sults for application to the separation of GSM and IS-
136 cochannel signals are presented. It is shown that
up to sixz signals can be separated at o GSM basesta-
tion with BER of 10% before decoding gain with only
a single dual-polarized antenna and Ey/Ng = 10 dB in
real time on a Compaq 1 GHz ES-40 server, with cost
savings of up to four orders of magnitude. It is also
shown that for a specified BER and number of signals,
the cost of MIMO demodulation decreases as the num-
ber of sensors increases. Finally, it is shown that for a
fized computational cost, BER decreases by a factor of
eight, on average, for each sensor added.

1 Introduction

It is a well-known fact that a joint demodulator
for a single sensor can separate two cochannel inter-
fering (CCI) signals and sometimes more depending
on SNR, SIR, and other parameters, such as fraction
of symbols that are known at the receiver. It follows
that, more generally, a joint demodulator for multiple
sensors can separate a number of signals that exceeds
the number of sensors, and offers a distinct advantage
over the linear combining of sensor outputs followed
by demodulation. This advantage accrues primarily
from more effective utilization of the increased channel
diversity resulting from multiple sensors, but little is
known about how many signals can be separated with
a specified BER and number of sensors. The primary
reason for the lack of progress in this area of multiple-
input/multiple-output (MIMO) demodulation is com-
putational cost. Even if the optimally efficient Viterbi
algorithm is used to implement the MIMO demodu-
lator, computational cost still grows exponentially in

the number of signals. The computational cost can
be so high that even simulations present a substantial
challenge. Consequently, efficient means for trading off
BER performance for computational cost reduction are
required in order to move forward with MIMO demod-
ulation R&D.

The purpose of this paper is to report on progress
made on developing efficient techniques for trading
BER performance for cost reduction. See also [1].

2 MIMO Demodulation

The MIMO demodulator implements a joint least-
squares fit of all the interfering signals to all the in-
dividual sensor outputs. The sensor outputs are not
linearly combined. They are simply used to form the
MIMO model-fitting cost function that is minimized
by a trellis search over the multiple symbol sequences.
This trellis search is optimally implemented by the
Viterbi algorithm.

The joint demodulators described in this paper em-
ploy three distinct and complementary techniques for
decreasing BER and/or trading BER for reduced com-
putational cost, relative to the baseline Viterbi algo-
rithm. All three techniques can be used in conjunction,
simultaneously, and together they provide a powerful
means for computation reduction and/or BER reduc-
tion.

The new MIMO demodulator is a modification of
the conventional Viterbi algorithm for multi-sensor
JMLSD (joint maximum-likelihood sequence detec-
tion). The normal Viterbi algorithm [3] has two phases:
spawning and pruning. In the spawning phase, existing
joint symbol sequences are extended with permutations
of possible input symbols to create a new set of candi-
date joint sequences. In the pruning phase, this set of
candidate sequences is pruned down to a survivor set
according to dynamic programming principles and an
analysis of their sum-of-squared errors relative to the
input. The pruning process is optimum in the sense
that it is guaranteed not to remove any candidate se-



quence that lies along the maximally likely symbol se-
quence path through the trellis. The survivors of the
pruning are then spawned again and pruned again with
the next symbol’s worth of samples of the input signal,
and the algorithm repeats through its phases.

The first modification used in our MIMO demodula-
tor applies constraints in the spawning phase. Known
symbol values in the signals (due to header sequences,
midambles, etc.) are taken into account to prevent
the spawning of candidate sequences that will violate
the signal format. Constrained spawning can improve
the BER performance of the Viterbi algorithm because
it exploits some of the non-random nature of commu-
nications signals. It yields the true MLSE solution
for the more accurate model that recognizes the ex-
istence of known symbols. This non-statistical con-
strained spawning produces both a decrease in compu-
tational cost and an improvement in BER performance
by eliminating candidate sequences that are known to
be invalid. The degree of improvement depends on the
amount of known structure in the signals being demod-
ulated. As an example, approximately 20% of the sym-
bols are known in GSM signals, and somewhat fewer
(closer to 10%) are known in IS-136 signals.

The second and more important modification used
in our MIMO demodulator adds a third phase to the
conventional two-phase (spawning/pruning) Viterbi al-
gorithm. In this third phase, many sequences that
survived the pruning phase are removed with selection
based on an analysis of the distribution of changes in
sum-of-squared-error values. For the objective of trad-
ing off BER for computational cost in the most effi-
cient manner possible, this statistical thinning (ST) al-
gorithm reported on here has several advantages over
all prior approaches that we have been able to find in
the literature, including well-known reduced-state se-
quence estimation (RSSE) methods, the M-algorithm,
and the T-algorithm, as explained in [1].

Typically, RSSE techniques reduce computation by
grouping the trellis states into a smaller number of
state classes, and allowing only one survivor sequence
in each class. The partitioning algorithm used to con-
struct these state classes is, in effect, changing the
structure of the trellis. This change can greatly re-
duce computation, but must be planned carefully to
maintain BER performance. There does not seem to
be any work on class definition that is directly relevant
to joint demodulation with general channels, although
the approach described in [4] might be applicable here.

The third modification used in our MIMO demodu-
lator introduces per-survivor decision feedback [5]. In
the conventional Viterbi algorithm, the length of the
pulse model P, is K + 1, where K is the number of

symbols of channel memory. (The additional symbol
is the current one.) By making the model parameter
P independent of the algorithm parameter K, we can
reduce K while still accurately modeling the channel
pulse. This is equivalent to feeding tentatively decided
symbol values (those decisions within survivors) back
into the pulse model. For any given values of K and P,
we have P — K — 1 feedback symbols. Because the size
of the candidate set is an exponential function of K +1,
a reduction in K produces a great reduction in compu-
tational cost; moreover, the BER performance of the
demodulator can often be preserved by keeping P large
enough. Likewise, increasing P can sometimes improve
the BER performance of a joint demodulator without
significantly increasing the algorithm’s computational
cost. In addition to the per-survivor decision feedback,
the MIMO demodulators evaluated in this paper also
use path truncation at 5P symbols.

3 Simulations

Experiment 1: One and Two Sensors.

The GSM signal environments used in this study
were constructed using cochannel combinations of six
signals, all of which were beacon channels, fully loaded
(no dummy bursts), with pseudorandom bits filling the
data fields of each normal burst, carrier frequency off-
sets ranging from 5 Hz to 20 Hz, and timing offsets
ranging from 1 symbol to 738.46 symbols. These sig-
nals were combined with powers in 0 dB and 3 dB steps
to form co-channel interference test environments. The
GSM signal generator uses the known approximation
of GMSK by complex PAM. The error of this model
is about -22 dB. Test cases where this modeling error
may be significant are noted. The middle symbol of
the GSM pulse contains only about 50% of the pulse
energy. The middle three symbols contain over 95%
of the energy. Most test cases were run with P = 4
to ensure a full pulse support and to allow for timing
offsets among CCI signals of up to £0.5 symbol. All
of the GSM test environments were generated with a
sample rate of four times the GSM symbol rate, and
with additive white Gaussian noise extending over the
full sampled bandwidth.

For all tests, the noise power was set at 10 dB below
the strongest signal in the environment. TSNR fig-
ures indicate the ratio of total signal power to in-band
noise power, where the GSM bandwidth is assumed
to be the same as the symbol rate. The relationship
between TSNR and primary-signal Ep /Ny depends on
the number of CCI and their relative powers. For 0 dB
SIR among all CCI, individual SNRs are 4.8 dB, 6 dB,
7 dB, and 7.8 dB below TSNR for 3, 4, 5, and 6 CCI,



respectively.

All GSM tests were run for 54,166 symbol periods
(0.2 sec). This test length was chosen because it al-
lowed an integer number of cycles for all of the fre-
quency offsets chosen for these test. The T-algorithm o ! ! ; : :
performance curves are not included in this paper be- T T L R AR . ;ﬁﬂ%&,ﬁ,g ?E dB-
cause of their similarity to those for the ST algorithm R f : . P=4,K=1
in the environments studied here where the only non- - : : ' Smgle Sensor
stationarity is due to differential Doppler shifts.

Bit-errors were detected by comparing the joint de-
modulator output against the modulator input bits.
This comparison was performed for the data fields only.
Fixed bit sequences defined by the GSM standard (and Y. . . . . .
exploited by the constrained Viterbi algorithm) are not L VA R L s N
included in BER calculations. '

Because of the similarity of the algorithms under N ' ' ' '
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candidate set scaled by the number of sensors, M. This : e
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1. Running time is proportional to the number of
candidates, N, in software implementations. (In Figure 1. Results for 3-CCl @ 3 dB Spacing, K = 2,
practice, running time is dominated by a term lin- Single Sensor.
ear in N.)

2. For a given number of sensors, the per-candidate
processing cost is about the same for all of these
algorithms.

3. Computational cost rises linearly with the number e S
of sensors, M. (In practice, running time rises sub- I

linearly in M.) TSNR 16.6 dB

prlm Eb/No 10dB

Some of the results are presented in Figures 1, 2
and 3 as graphs that plot average BER against aver-
age number of candidates. The “sweet spot” of such
a plot is at the origin — 0 BER for 0 cost. The effec-
tiveness of a survivor-reduced joint demodulator can
be judged by how close its performance curve comes
to this point. Where applicable, each graph is also
marked with a horizontal dashed line that shows the
approximate BER limit for good voice copy; and a ver-
tical dashed line that shows the computational limit for
real-time joint demodulation on a Compaq 1 GHz ES-
40 server. The following abbreviations are used to la- . : :
bel curves on the graphs: VA is the Viterbi algorithm, RTINS

% BER

0.5 A
. . : : : 3 10 20 30 40 50
C-VA is the constrained Viterbi algorithm, M is the Candidates per Symbol Period

M-algorithm, and ST is the statistical thinning algo-
rithm. Although not explicitly denoted in these labels, Figure 2: Results for 4-CCl @ 0 dB Spacing, K = 2, Dual-
per-survivor feedback is used whenever K < P — 1. Pol
For 3-CCI, 4-CCI, and 5-CCI GSM with K = 2, the
cost of the Viterbi algorithm is 512, 4096, and 32,768
candidates per symbol period, respectively. Running
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Figure 3: Results for 6-CClI @ 0 dB Spacing, K = 2,
Dual-Pol

# of | SIR | Prim.

TSNR | Min. | Avg. | Max.

CCI | Step | E»/No BER | BER | BER
(dB) | (dB) (dB) % % %
4.2 9 15.1 15.7 | 16.2

7.2 12 7.71 | 8.68 9.32

10.2 15 3.28 | 4.51 5.21

13.2 18 * 1.24 | 247 | 3.12

6.6 9 7.56 | 14.5 21.0

9.6 12 3.39 7.0 10.1

12.6 15 0.96 | 2.33 3.37

15.6 18 0.23 | 0.73 1.04

6.0 12 17.2 | 18.8 19.5

9.0 15 9.04 | 11.7 | 12.7

12.0 18 * 431 | 7.20 | 8.32
15.0 21 * 1.87 | 483 | 6.06

9.3 12 7.11 17.2 27.6
12.3 15 3.90 10.0 16.4
15.3 18 1.57 | 4.52 7.49
18.3 21 * 0.46 1.76 3.06
6.0 12 17.2 18.8 19.5
9.0 15 9.04 | 11.7 12.7

12.0 18 * 431 | 7.20 | 8.32
15.0 21 * 1.87 | 483 | 6.06
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6.6 9 7.56 | 14.5 21.0
9.6 12 3.39 7.0 10.1
12.6 15 0.96 | 2.33 3.37
15.6 18 0.23 | 0.73 1.04

Table 1: BER performance baselines for 3-CCl, 4-CCl, and
5-CCl GSM environments. * indicates those test cases
where PAM approximation error for GSM may be compa-
rable to the noise level, thus causing an inflation of BER.
BER expressed in percentages.

| P] L] M| Cost | Savings |
1 3 1 6.5 9.8
1 3 2 6.0 11
2 3 1 13 39
2 3 2 6.5 79
1|4 1 30 8.5
1 4 2 10 * 26
2 4 1 50 82
2 4 2 14 290
1 5 2 19 * 54
2 5 2 30 1,100
1 6 2 25 * 160
2161 2| 60 | 4400

Table 2: Computational cost of demodulation with the
ST-augmented constrained Viterbi algorithm. In each
case, primary signal E;/Ng is 10 dB with equal-power
signals. Target BER is 10%. * indicates cases were ac-
tual BER was less than 10%. Cost is in candidates per
symbol period. Savings is cost relative to cost of con-
ventional Viterbi algorithm with the same P, L, and M.
Cost values are rounded to 2 significant digits.

the Viterbi algorithm for a single sensor, without con-
straints, decision feedback, or survivor reduction, we
get the BER performance figures shown in Table 3.

From this table, we can see that 4-CCI GSM envi-
ronments are only marginally copyable (BER < 10%)
with a single sensor at 10 dB Ej /Ny, and 5-CCI GSM
environments are not copyable at all with a single sen-
sor at 10 dB Ey/Ny. For the 6-CCI cases, the cumu-
lative error in the GSM PAM approximation can be
as large as -14 dB relative to the total signal power.
At the same time, 6-CCI joint demodulation requires
a TSNR on the order of 18 dB. It is difficult to find
6-CCI GSM environments that can produce less than
10% BER from a single sensor, regardless of Ej/Ng
and TSNR. For this reason, single sensor 6-CCI test
cases and baselines are omitted from this paper. On
the other hand, dual-pol processing makes 6-CCI en-
vironments copyable, although the computational re-
quirements are high enough to make this copy only
marginally feasible with present-day hardware.

For comparison, Table 2 shows computational costs
for the ST-augmented constrained Viterbi algorithm,
operating at a primary signal Ep/Ny of 10 dB and
a fixed target BER of 10%. The right-most columns
of this table shows that cost savings of this modi-
fied Viterbi demodulator relative to the conventional
Viterbi algorithm. The savings factors range from 5.3
to 4,400.

Dual-Polarization: The most striking effect of dual-
pol joint demodulation is the improvement in BER. In



the 4-CCI cases, environments that were marginal at
best with single sensors yielded BERs < 2% when dual-
pol processing was applied. In the 5-CCI and 6-CCI
cases, dual polarization processing turned impossible
environments into copyable ones with reasonably low
BER.

For single and dual-pol processing of environments
with 3 to 5 equal-power CCI GSM signals, we find that
the BER improvements from dual-pol joint demodula-
tion are equivalent to a 6 dB to 12 dB improvement
in Ey/No. This is considerably better than the 3 dB
improvement one might expect from linear combining
of two sensors by simple addition.

Another effect of dual-pol processing is that it allows
survivor reduction to operate more efficiently, yielding
smaller candidate sets. This happens because the addi-
tional channel capacity makes minimum-cost sequences
more distinct, reducing the difficulty of the joint de-
modulation problem. Because the candidate sets can
shrink by more than half, the total cost of dual-pol
demodulation can be lower than that of single-sensor
demodulation, even though the per-candidate cost may
be twice as high.

Per-Survivor Decision Feedback: Changing K from
2 to 1 degraded single-sensor BER by roughly 1% in
copyable environments. For dual-pol environments,
BER losses were < 1%. For the full VA, going from
K =2 to K = 1 speeds the algorithm by a factor of
2L When used in conjunction with survivor reduction,
we observed speedups, due to reduction of K by one,
by roughly a factor of 2.

Survivor Reduction: In all cases, statistical thin-
ning matched or exceeded the performance of the M-
algorithm in terms of computational efficiency. The
difference was especially pronounced when survivor re-
duction was used in conjunction with significant deci-
sion feedback (K = 1) or dual-pol processing.

Experiment 2: More Than Two Sensors

As illustrated here, somewhat surprisingly, the com-
putational cost increments associated with adding
more sensors are often more than offset by the re-
sultant more-effective survivor reduction. The use of
additional sensors can often decrease the total cost of
demodulating a particular environment at a specified
target BER. This result is demonstrated in the follow-
ing simulations with M = 2 to M = 5 sensors and 2 to
6 CCL

The simulated sensor arrays had the following char-
acteristics: Sensors were arranged in symmetric circu-
lar arrays of M = 2, 3, 4, and 5 elements, each with a
diameter of 2 wavelengths. Both isotropic and cardioid
sensor patterns were simulated. Cardioid sensors were
arranged with lobes facing away from the center of the

array. Each cardioid sensor was modeled as having a
gain of +3 dB in the direction its lobe.

Each array configuration was tested in environments
with the following properties: GSM beacon signals
with nominal 960 MHz carriers were used for all en-
vironments. Environments contained 2 to 6 cochannel
emitters, each having random carrier phase and car-
rier offset in the range of -40 Hz to +40 Hz (normal
distribution). Emitters were placed in a plane, dis-
tributed uniformly, at distances of 30.5 meters (100
wavelengths) to 6.9 kilometers (6.25 symbol periods)
from the center of the sensor array. Power control was
simulated so that all signals arrived at the center of the
array have received powers within 3 dB of a reference
level. In each environment, multipath interference was
simulated by placing one image of each emitter in the
above specified planar region. Each emitter’s multi-
path image had an effective radiated power of 0 dB to
-10 dB relative to its source and a distance from the
array of 1 to 4 times that of its source. Image dis-
tance and power were selected randomly from uniform
distributions. In each environment, noise was added
at a test-specified level relative to the power control
reference level.

For these joint demodulation simulations, we used
the constrained Viterbi-augmented ST algorithm with
per-survivor decision feedback, with the degree of thin-
ning adapted to provide a constant average BER of
10%, and with a pulse model length of P = 4 symbol
periods and a channel memory of K = 1.

Both the TSNR and the number of sensors were var-
ied, and the computational cost of achieving the target
10% BER was observed. For brevity, only the 6-CCI
cardioid cases are presented here, in Figure 4, although
other test cases were similar [1] and are discussed in
Section 4. For each curve, the candidate counts are
scaled up by the number of sensors to obtain the com-
putational cost in equivalent single-sensor candidate
counts. Each curve is defined over only a limited range
of TSNR. Below this range, a 10% BER is not possible
at any cost. Above this range, the demodulator pro-
duces a BER of less than 10%, even when operating at
the minimum cost of one survivor per symbol period.
Many of these curves have overlapping ranges, and in
these overlapping ranges it is plain to see that in each
case the receiver with a larger number of sensors has
a lower cost. As examples, for omnidirectional anten-
nas, going from 2 sensors to 3 sensors enables SNR to
drop by 5 dB (from 10 dB to 5 dB) with no change in
cost; going from 3 sensors to 4 sensors enables cost to
be cut in half while reducing SNR required by about
1 dB. (Recall that the average SNR for each signal in
these six-signal environments is about 7.8 dB below the
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Figure 4: Computational Cost for 6 CCl Environment at
10% BER, Using Cardioid Sensors in a Circular Array.
Different curves show cost-vs.-SNR for different numbers
of sensors. Bold curve along bottom shows minimum-
cost operation with a variable array size. Small oval below
curve indicates approximate performance region for a null-
steering receiver with a 6-element array.

TSNRs shown in Figure 4.)

If the demodulator is allowed to add or remove sen-
sors as the environment changes, it can do so to mini-
mize computational cost for a given BER target. In
Figure 4, a heavy curve has been traced out along
the base of the figure to show the approximate cost
of a demodulator that is allowed to adjust the num-
ber of sensors it uses as TSNR changes. An oval near
the bottom of the graph shows the approximate cost-
TSNR operating region for a conventional null-steering
receiver yielding a BER of 10% and using 6 antenna, el-
ements. This figure shows that joint demodulation may
be preferable to null-steering when noise levels are high,
or when the number of antenna elements is less than
the number of signals. The null-steering receiver has
a lower computational cost, but a much more limited
range of operating conditions.

It is also useful to consider BER as a function of
number of sensors, with computational cost and Ej /Ny
fixed. Data for the omnidirectional simulations are
shown in Figure 5. Each curve shows BER vs. num-
ber of sensors for fixed computational cost and a fixed
Ey/No of 10 dB for the primary signal. Individual
curves are not labeled, because this plot is intended
to give a general sense of the results, not provide a

102
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Number of Sensors

Figure 5: BER vs. Number of Sensors. With omnidirec-
tional circular arrays, 2 to 6 CCI.

| P L] M] Cost | Savings |
1 2 1 17 15
2 2 1 210 20
2 2 2 120 34
1 3 2 60 68
2 3 2 700 370

Table 3: Summary of Results from 1S-136 Simulations.
In each case, primary signal Ey/Ny is 10 dB with equal-
power signals. Target BER is 10%. Cost is in candidates
per symbol period. Savings is cost relative to cost of
conventional Viterbi algorithm with the same P, L, and
M. Cost values are rounded to 2 significant digits.

comparison of specific test cases. A bold line has been
added to the graph to show average slope of all of the
linear-log plots. This slope corresponds to a factor-of-8
reduction in BER each time a sensor is added.

Experiment 3: Larger Alphabet.

The third series of simulations was similar to Exper-
iment 1, but with IS-136 $-DQPSK symbols instead of
binary GSM. Unlike GSM, an IS-136 signal lacks sig-
nificant intersymbol interference (ISI). In the absence
of CCI and severe multipath distortion, there is little
advantage to using the Viterbi algorithm — a memory-
less forced decision performs nearly as well. However,
in a CCI environment, the symbol offsets between sig-
nals can still produce a joint channel with considerable
ISI, so the Viterbi algorithm becomes necessary again.
Table 3 summarizes the results of these simulations.



4 Conclusions

The results of the simulations performed support the

following conclusions:

e Statistical thinning and the T-algorithm offer a
better BER~cost tradeoff than the AM-algorithm
under the following conditions:

— Smaller alphabet — Performance differences
were greater for GSM than for IS-136.

— Smaller signal spacing — Performance dif-
ferences were usually greatest for equal-
power environments. Both equal-power and
1 db-spaced (not shown) environments gener-
ally produced greater performance differences
than 3 dB or 5 dB-spaced (not shown) envi-
ronments.

— Decision feedback — Performance differences
were greater for the K = 1 (more feedback)
cases than for the K = 2 (less feedback)
cases. This can be seen in Table 2.

— Dual-pol — Performance differences were
greater for dual-pol reception than for single-
sensor reception.

The conclusions are born out in Figures 1, 2, and 3.
In some cases, the limitation of the M-algorithm’s
trade-off parameter to integer values put it at a
severe disadvantage to other algorithms, as is ob-
vious in Figure 2.

e Dual-pol joint demodulation produces BER per-
formance, for the GSM environments in this study,
that is equivalent to an Ej/Ny improvement of 8
to 12 dB relative to single-sensor.

e With survivor reduction, the total cost of multi-
sensor joint demodulation can actually be lower

than that of single-sensor processing (at the same
BER).

e With survivor reduction, the use of per-survivor
decision feedback roughly halves the computa-
tional cost of joint demodulation for GSM, regard-
less of the number of CCI. The BER loss is typi-
cally about 1%

e A BER of 10% for GSM should be attainable for
up to 6-CCI with dual-pol reception (at 10 dB
Ey/Ny) and current-generation computers.

e Non-isotropic antennas enable more efficient
BER/cost tradeoff than do isotropic antennas,
presumably due to increased channel diversity.

e Required SNR as well as computational cost to

meet a specified BER target can both be decreased
by increasing the number of antennas.

Although exact channel estimates were used in all
simulations reported here, other simulations per-
formed show that accurate estimates of all channel
parameters needed by the MIMO demodulator can
be obtained in the presence of ten or more CCI by

properly exploiting all the known bit sequences in
GSM [2].
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