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FOREWORD

A good deal of our statistical theory, although it is mathematical in nature,
originated not in mathematics but in problems of astronomy, geomagnetism and
meteorology: examples of fruitful problems in these subjects have included the
clustering of stars, also galaxies, on the celestial sphere, tidal analysis, the
correlation of fluctuations of the Earth’s magnetic field with other solar-terrestrial
effects, and the determination of seasonal variations and climatic trends from
weather data. All three of these fields are observational. Great figures of the
past, such as C. F. Gauss (1777-1855) (who worked with both astronomical and
geomagnetic data, and discovered the method of least square fitting of data, the
normal error distribution, and the Fast Fourier Transform algorithm), have worked
on observational data analysis and have contributed much to our body of knowledge
on time series and randomness.

Much other theory has come from gambling, gunnery, and agricultural
research, fields that are experimental. Measurements of the fall of shot on a
firing range will reveal a pattern that can be regarded as a sample from a normal
distribution in two dimensions, together with whatever bias is imposed by pointing
and aiming, the wind, air temperature, atmospheric pressure and Earth rotation.
The deterministic part of any one of these influences may be characterized with
further precision by further firing tests. In the experimental sciences, as well as
in the observational, great names associated with the foundations of statistics
and probability also come to mind.

Experimental subjects are traditionally distinguished from observational
ones by the property that conditions are under the control of the experimenter.
The design of experiments leads the experimenter to the idea of an ensemble,
or random process, an abstract probabilistic creation illustrated by the bottomless
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barrel of well-mixed marbles that is introduced in elementary probability courses.
A characteristic feature of the contents of such a barrel is that we know in
advance how many marbles there are of each color, because it is we who put
them in; thus, a sample set that is withdrawn after stirring must be compatible
with the known mix.

The observational situation is quite unlike this. Our knowledge of what is
in the barrel, or of what Nature has in store for us, is to be deduced from what
has been observed to come out of the barrel, to date. The probability distribution,
rather than being a given, is in fact to be intuited from experience. The vital
stage of connecting the world of experience to the different world of conventional
probability theory may be glossed over when foreknowledge of the barrel and
its contents—a probabilistic model—are posited as a point of departure. Many
experimental situations are like this observational one.

The theory of signal processing, as it has developed in electrical and electronics
engineering, leans heavily toward the random process, defined in terms of probability
distributions applicable to ensembles of sample signal waveforms. But many
students who are adept at the useful mathematical techniques of the probabilistic
approach and quite at home with joint probability distributions are unable to
make even a rough drawing of the underlying sample waveforms. The idea that
the sample waveforms are the deterministic quantities being modeled somehow
seems to get lost.

When we examine the pattern of fall of shot from a gun, or the pattern of
bullet holes in a target made by firing from a rifle clamped in a vise, the distribution
can be characterized by its measurable centroid and second moments or other
spread parameters. While such a pattern is necessarily discrete, and never much
like a normal distribution, we have been taught to picture the pattern as a sample
from an infinite ensemble of such patterns; from this point of view the pattern
will of course be compatible with the adopted parent population, as with the
marbles. In this probabilistic approach, to simplify mathematical discussion, one
begins with a model, or specification of the continuous probability distribution
from which each sample is supposed to be drawn. Although this probability
distribution is not known, one is comforted by the assurance that it is potentially
approachable by expenditure of more ammunition. But in fact it is not.

The assumption of randomness is an expression of ignorance. Progress
means the identification of systematic effects which, taken as a whole, may
initially give the appearance of randomness or unpredictability. Continuing to
fire at the target on a rifle range will not refine the probability distribution
currently in use but will reveal, to a sufficiently astute planner of experiments,
that air temperature, for example, has a determinate effect which was always
present but was previously accepted as stochastic. After measurement, to ap-
propriate precision, temperature may be allowed for. Then a new probability
model may be constructed to cover the effects that remain unpredictable.

Many authors have been troubled by the standard information theory approach
via the random process or probability distribution because it seems to put the
cart before the horse. Some sample parameters such as mean amplitudes or
powers, mean durations and variances may be known, to precision of measurement,
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but if we are to go beyond pure mathematical deduction and make advances in
the realm of phenomena, theory should start from the data. To do otherwise
risks failure to discover that which is not built into the model. Estimating the
magnitude of an earthquake from seismograms, assessing a stress-test cardiogram,
or the pollutant in a stormwater drain, are typical exercises where noise, systematic
or random, is to be fought against. Problems on the forefront of development
are often ones where the probability distributions of neither signal nor noise is
known; and such distributions may be essentially unknowable because repetition
is impossible. Thus, any account of measurement, data processing, and inter-
pretation of data that is restricted to probabilistic models leaves something to
be desired.

The techniques used in actual research with real data do not loom large in
courses in probability. Professor Gardner’s book demonstrates a consistent approach
from data, those things which in fact are given, and shows that analysis need
not proceed from assumed probability distributions or random processes. This
is a healthy approach and one that can be recommended to any reader.

Ronald N. Bracewell
Stanford, California

Foreword Xv






PREFACE

This book grew out of an enlightening discovery I made a few years ago, as a
result of a long-term attempt to strengthen the tenuous conceptual link between
the abstract probabilistic theory of cyclostationary stochastic processes and em-
pirical methods of signal processing that accommodate or exploit periodicity in
random data. After a period of unsatisfactory progress toward using the concept
of ergodicity' to strengthen this link, it occurred to me (perhaps wishfully) that
the abstraction of the probabilistic framework of the theory might not be necessary.
As a first step in pursuing this idea, I set out to clarify for myself the extent to
which the probabilistic framework is needed to explain various well-known concepts
and methods in the theory of stationary stochastic processes, especially spectral
analysis theory. To my surprise, I discovered that all the concepts and methods
of empirical spectral analysis can be explained in a more straightforward fashion
in terms of a deterministic theory, that is, a theory based on time-averages of
a single time-series rather than ensemble-averages of hypothetical random samples
from an abstract probabilistic model. To be more specific, I found that the
fundamental concepts and methods of empirical spectral analysis can be explained
without use of probability calculus or the concept of probability and that probability
calculus, which is indeed useful for quantification of the notion of degree of
randomness or variability, can be based on time-averages of a single time-series
without any use of the concept or theory of a stochastic process defined on an
abstract probability space. This seemed to be of such fundamental importance
for practicing engineers and scientists and so intuitively satisfying that I felt it
must already be in the literature.

To put my discovery in perspective, I became a student of the history of
the subject. I found that the apparent present-day complacence with the abstraction
of the probabilistic theory of stochastic processes, introduced by A. N. Kolmogorov
in 1941, has been the trend for about 40 years. Nevertheless, I found also that

! Ergodicity is the property of a mathematical model for an infinite set of time-series that
guarantees that an ensemble average over the infinite set will equal an infinite time average over
one member of the set.
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many probabilists throughout this period, including Kolmogorov himself, have
felt that the concept of randomness should be defined as directly as possible,
and that from this standpoint it seems artificial to conceive of a time-series as
a sample of a stochastic process. (The first notable attempt to set up the probability
calculus more directly was the theory of Collectives introduced by Von Mises
in 1919; the mathematical development of such alternative approaches is traced
by P. R. Masani [Masani 1979].) In the engineering literature, I found that in
the early 1960s two writers, D. G. Brennan [Brennan 1961] and E. M. Hofstetter
[Hofstetter 1964], had made notable efforts to explain that much of the theory
of stationary time-series need not be based on the abstract probabilistic theory
of stochastic processes and then linked with empirical method only through the
abstract concept of ergodicity, but rather that a probabilistic theory based directly
on time-averages will suffice; however, they did not pursue the idea that a theory
of empirical spectral analysis can be developed without any use of probability.
Similarly, the more recent book by D. R. Brillinger on time-series [Brillinger
1975] briefly explains precisely how the probabilistic theory of stationary time-
series can be based on time-averages, but it develops the theory of empirical
spectral analysis entirely within the probabilistic framework. Likewise, the early
engineering book by R. B. Blackman and J. W. Tukey [Blackman and Tukey
1958] on spectral analysis defines an idealized spectrum in terms of time-averages
but then carries out all analysis of measurement techniques within the probabilistic
framework of stochastic processes. In the face of this 40-year trend, 1 was
perplexed to find that the one most profound and influential work in the entire
history of the subject of empirical spectral analysis, Norbert Wiener’s Generalized
Harmonic Analysis, written in 1930 [Wiener 1930], was entirely devoid of probability
theory; and yet I found only one book written since then for engineers or scientists
that provides more than a brief mention of Wiener’s deterministic theory. All
other such books that I found emphasize the probabilistic theory of A. N.
Kolmogorov usually to the complete exclusion of Wiener’s deterministic theory.
This one book was written by a close friend and colleague of Wiener’s, Y. W.
Lee, in 1960 [Lee 1960]. Some explanation of this apparent historical anomaly
is given by P. R. Masani in his recent commentary on Wiener’s Generalized
Harmonic Analysis [Masani 1979]: ‘“The quick appearance of the Birkhoff ergodic
theorem and the Kolmogorov theory of stochastic processes after the publication
of Wiener’s Generalized Harmonic Analysis created an intellectual climate favoring
stochastic analysis rather than generalized harmonic analysis.’” But Masani goes
on to explain that the current opinion, that Wiener’s 1930 memoir [Wiener 1930]
marks the culmination of generalized harmonic analysis and its supercession by
the more advanced theories of stochastic processes, is questionable on several
counts, and he states that the *‘integrity and wisdom’’ in the attitude expressed
in the early 1960s by Kolmogorov suggesting a possible return to the ideas of
Von Mises ‘. . . should point the way toward the future. Side by side with the
vigorous pursuit of the theory of stochastic processes, must coexist a more direct
process-free [deterministic] inquiry of randomness of different classes of functions.’’
In an even stronger stance, T. L. Fine in the concluding section of his book
Theories of Probability [Fine, 1973] states ‘‘Judging from the present confused
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status of probability theory, the time is at hand for those concerned about the
characterization of chance and uncertainty and the design of inference and decision-
making systems to reconsider their long-standing dependence on the traditional
statistical and probabilistic methodology. . . . Why not ignore the complicated
and hard to justify probability-statistics structure and proceed ‘directly’ to those,
perhaps qualitative, assumptions that characterize our source of random phenomena,
the means at our disposal, and our task?”’

As a result of my discovery and my newly gained historical perspective,
I felt compelled to write a book that would have the same goals, in principle,
as many existing books on spectral analysis—to present a general theory and
methodology for empirical spectral analysis—but that would present a more
relevant and palatable (for many applications) deterministic theory following
Wiener’s original approach rather than the conventional probabilistic theory. As
the book developed, I continued to wonder about the apparent fact that no one
in the 50 years since Wiener’s memoir had considered such a project worthy
enough to pursue. However, as I continued to search the literature, I found that
one writer, J. Kampé de Fériet, did make some progress along these lines in a
tutorial paper [Kampé de Fériet 1954], and other authors have contributed to
development of deterministic theories of related subjects in time-series analysis,
such as linear prediction and extrapolation [Wold 1948], [Finch 1969], [Fine
1970]. Furthermore, as the book progressed and I observed the favorable reactions
of my students and colleagues, my conviction grew to the point that I am now
convinced that it is generally beneficial for students of the subject of empirical
spectral analysis to study the deterministic theory before studying the more
abstract probabilistic theory.

When I had completed most of the development for a book on a deterministic
theory of empirical spectral analysis of stationary time-series, I was then able
to return to the original project of presenting the results of my research work
on cyclostationary time-series but within a nonprobabilistic framework. Once I
started, it quickly became apparent that I was able to conceptualize intuitions,
hunches, conjectures, and so forth far more clearly than before when I was
laboring within the probabilistic framework. The original relatively fragmented
research results on cyclostationary stochastic processes rapidly grew into a com-
prehensive theory of random time-series from periodic phenomena that is every
bit as satisfying as the theory of random time-series from constant phenomena
(stationary time-series). This theory, which brings to light the fundamental role
played by spectral correlation in the study of periodic phenomena, is presented
in Part II.

Part I of this book is intended to serve as both a graduate-level textbook
and a technical reference. The only prerequisite is an introductory course on
Fourier analysis. However, some prior exposure to probability would be helpful
for Section B in Chapter 5 and Section A in Chapter 15. The body of the text
in Part I presents a thorough development of fundamental concepts and results
in the theory of statistical spectral analysis of empirical time-series from constant
phenomena, and a brief overview is given at the end of Chapter 1. Various
supplements that expand on topics that are in themselves important or at least
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illustrative but that are not essential to the foundation and framework of the
theory, are included in appendices and exercises at the ends of chapters.

Part II of this book, like Part I, is intended to serve as both textbook and
reference, and the same unifying philosophical framework developed in Part I
is used in Part II. However, unlike Part I, the majority of concepts and results
presented in Part II are new. Because of the novelty of this material, a brief
preview is given in the Introduction to Part II. The only prerequisite for Part 1T
is Part 1.

The focus in this book is on fundamental concepts, analytical techniques,
and basic empirical methods. In order to maintain a smooth flow of thought in
the development and presentation of concepts that steadily build on one another,
various derivations and proofs are omitted from the text proper, and are put
into the exercises, which include detailed hints and outlines of solution approaches.
Depending on the students’ background, the instructor can either assign these
as homework exercises, or present them in the lectures. Because the treatment
of experimental design and applications is brief and is also relegated to the
exercises and concise appendices, some readers might desire supplements on
these topics.

REFERENCES

Brackman, R. B. and J. W. Tukey. 1958. The Measurement of Power Spectra. New
York: American Telephone and Telegraph Co.

Brennan, D. G. 1961. Probability theory in communication system engineering. Chapter
2 in Communication System Theory. Ed. E. J. Baghdady, New York: McGraw-Hill.

BrILLINGER, D. R. 1975. Time Series. New York: Holt, Rinehart and Winston.

Finch, P. D. 1969. Linear least squares prediction in non-stochastic time-series. Advances
in Applied Prob. 1:111-22.

Fmvg, T. L. 1970. Extrapolation when very little is known about the source. Information
and Control. 16:331-359.

Fing, T. L. 1973. Theories of Probability: An Examination of Foundations. New York:
Academic Press.

HorsTETTER, E. M. 1964. Random processes. Chapter 3 in The Mathematics of Physics
and Chemistry, vol. II. Ed. H. Margenau and G. M. Murphy. Princeton, N.J.: D. Van
Nostrand Co.

KampE pE FERIET, J. 1954. Introduction to the statistical theory of turbulence, I and II.
J. Soc. Indust. Appl. Math. 2, Nos. 1 and 3:1-9 and 143-74.

Leg, Y. W. 1960. Statistical Theory of Communication. New York: John Wiley & Sons.

Masani, P. R. 1979. ‘““Commentary on the memoir on generalized harmonic analysis.’’
pp. 333-379 in Norbert Wiener: Collected Works, Volume II. Cambridge, Mass.: Mas-
sachusetts Institute of Technology.

WIENER, N. 1930. Generalized harmonic analysis. Acta Mathematika. 55:117-258.

WoLp, H. O. A. 1948. On prediction in stationary time-series. Annals of Math Stat.
19:558-67.

William A. Gardner

XX Preface



ACKNOWLEDGMENTS

I would like to express my gratitude to Mr. William A. Brown for his important
technical and moral support in the early stages of this project, and to Professors
Enders A. Robinson, Ronald N. Bracewell, and James L. Massey for their
enthusiastic encouragement. I also would like to express my appreciation to
Professor Thomas Kailath for bringing to my attention several early fundamental
papers on nonprobabilistic statistical theory. In addition, I would like to thank
Professor Herschel H. Loomis and Dr. Crawford W. Scott for their interest in
applications of the theory in Part II, and the resultant financial support, and
Messrs. Brian G. Agee, William A. Brown, and Chihkang Chen for their par-
ticipation in applying the theory of Part II. Credit is due Messrs. Brown and
Chen for their contributions to some of the technical material in Chapter 12, and
also special credit is due Mr. Brown for his major contribution to Chapter 15,
especially section B. Further credit is due Messrs. Chen and Brown for their
substantial joint effort to produce the many excellent computer-generated graphs.
It is a pleasure to express my appreciation to Mrs. Patty A. Gemulla and Mrs.
Marion T. Franke for their excellent job of typing the manuscript, Dr. Sheldon
N. Salinger for critically reading the manuscript, Mr. Randy S. Roberts and
Messrs. Brown and Chen for their substantial proofreading efforts, and many
other past and present students for their feedback and assistance. My deepest
gratitude is expressed to my wife, Nancy, for her patience, understanding, and
support throughout this demanding project and the years of work leading up
to it.

William A. Gardner

xxi






GLOSSARIES

GLOSSARY OF NOTATIONS AND TERMINOLOGY FOR WINDOW

FUNCTIONS

ar()

Ayr(f)
E(f)
gAt(!)

Gi/a(f)
hl/Af(T)

Hys(f)

ur(t)
vr(0)
wr(1)
z7(0)

General data-tapering window of unity height and approximate
width 7.

Fourier transform of a(¢).

Effective spectral smoothing window.

General time-smoothing window of unity area and approximate
width Atr.

Fourier transform of g,/(1).

General autocorrelation-tapering window of unity height and
approximate width 1/Af.

General spectral smoothing window of unity area and approximate
width Af; Fourier transform of A;,,s(7).

Rectangle window of unity area and width T.

Triangle window of unity area and base width 27.

Sinc window of unity area and null-to-null width 27.

Squared sinc window of unity area and null-to-null width 27.

GLOSSARY OF NOTATIONS AND TERMINOLOGY FOR
CORRELATIONS AND SPECTRA IN PART I'

ra(7) Finite autocorrelation of h: (36), Chapter 2.
Fu(T) Finite autocorrelation of discrete-time h: (86), Chapter 3.

' Some notation that is used only within a single chapter is not included in this glossary.
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Time-variant correlogram (time-variant finite-time
autocorrelation) of segment of x of duration T: (19),
Chapter 2; for tapered data, (20), Chapter 2.

Time-variant correlogram (time-variant finite-time
autocorrelation) of segment of discrete-time x of duration
T: (67), Chapter 2, (44), Chapter 6.

Time-variant finite-average autocorrelation of x: (21),
Chapter 2.

Limit autocorrelation of x: (6), Chapter 1; see also (31),
Chapter 2.

Limit autocorrelation of discrete-time x: (79), Chapter 3.

Probabilistic instantaneous autocorrelation of x: (7), Chapter 8.

Time-variant periodogram (time-variant finite-time spectrum)
of segment of x of duration T: (1), (2), Chapter 2; for
tapered data, (1), (11), Chapter 2; Fourier transform of
R. (7).

Time-variant periodogram (time-variant finite-time spectrum)
of segment of discrete-time x of duration T: (69b), Chapter
3, (30), Chapter 6; Fourier series transform of R, (t, 7).

Expected time-variant periodogram (expected time-variant
finite-time spectrum) of segment of x of duration T: (3),
Chapter 8.

Time-variant pseudospectrum of x: (22), Chapter 2; Fourier
transform of R (¢, 7).

Temporally smoothed spectrum of tapered x: (11), Chapter 3,
(1), Chapter 4.

Temporally smoothed spectrum of tapered discrete-time x:
(29), Chapter 6.

Spectrally smoothed spectrum of x: (16)-(17), Chapter 3, (2)
and (21), Chapter 4.

Spectrally smoothed spectrum of discrete-time x: (36) and
(43), Chapter 6.

Temporally smoothed pseudospectrum of x: (3), Chapter 4.

Spectrally smoothed pseudospectrum of x: (4) and (22),
Chapter 4.

Lirgit spectrum of x: (26), Chapter 3; Fourier transform of
R.(7).

Limit spectrum of discrete-time x: (69a), Chapter 3.

Probabilistic instantaneous spectrum of x: (6), Chapter 8.

Time-variant finite-time complex spectrum of segment of x of
duration T: (2), (11), Chapter 2; complex demodulate, (44)—
(45), Chapter 4.

Normalized time-variant finite-time complex spectrum of
segment of x of duration T (27), Chapter 5.
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Xt f) Time-variant finite-time complex spectrum of segment of
discrete-time x of length N = 1 + T/T,: (53), Chapter 2,
(28), Chapter 6.

x7(t, ) Local sine wave component of x: (44), Chapter 4.

Xt f) Local sine wave component of discrete-time x: (26), Chapter
6; for tapered data, (31), Chapter 6.

GLOSSARY OF NOTATIONS AND TERMINOLOGY FOR CROSS
CORRELATIONS AND CROSS SPECTRA IN PART |

C’Xy( ia) Complex coherence function of x and y: (32), Chapter 7.
R, (t, 7) Time-variant cross correlogram (time-variant finite-time
cross correlation) of segments of x and y of duration 7
(5), Chapter 7.
R, (t, T)r Time-variant finite-average cross correlation of x and y: (13),

Chapter 7.
R (7) Limit cross correlation of x and y: (18), (20), Chapter 7.
St f) Time-variant cross periodogram (time-variant finite-time

cross spectrum) of segments of x and y of duration 7: (3),
Chapter 7; Fourier transform of R, (¢, 7).
St Or Time-variant pseudo—cross spectrum of x and y: (12),
Chapter 7; Fourier transform of R,,(¢, 7)7.
Sovas & Far Temporally smoothed cross spectrum of x and y: (9),
Chapter 7.
Soults Far Spectrally smoothed cross spectrum of x and y: (8), Chapter 7.
St hyag, ar Temporally smoothed pseudo—cross spectrum of x and y:
(11), Chapter 7.
Solt, Fa, ar Spectrally smoothed pseudo—cross spectrum of x and y: (10),
Chapter 7.
S‘xy( f) Limit cross spectrum of x and y: (17), Chapter 7; Fourier
transform of IAQXY(T).

GLOSSARY OF NOTATIONS AND TERMINOLOGY FOR CYCLIC
CORRELATIONS AND CYCLIC SPECTRA IN PART Il

) Spectral autocoherence of x: (35), Chapter 10.
C’ﬁy( ia) Cyclic cross coherence of x and y, (45b), Chapter 14.
rR(1) Finite cyclic autocorrelation of h: (137b), Chapter 11.

RE (¢, 7) Time-variant cyclic cross correlogram of segment of x of
duration T: (12), Chapter 11.
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Time-variant finite-average cyclic autocorrelation of x: (14),
Chapter 11.

Time-variant cyclic cross correlogram of segments of x and y
of duration T: (67), Chapter 11.

Limit cyclic autocorrelation of x: (25), Chapter 10; (13), (15),
Chapter 11.

Limit cyclic autocorrelation of discrete-time x: (109), (111),
Chapter 11.

Limit cyclic cross correlation of x and y: (69), Chapter 11.

Limit periodic autocorrelation of x (period = Tg): (99), (102),
Chapter 10.

Limit almost periodic autocorrelation of x with multiple
periodicity: (100), (103), Chapter 10; or limit periodic
autocorrelation of x with single periodicity: (23), (24),
Chapter 10.

Time-variant cyclic periodogram of segment of x of duration
T: (8), (11), Chapter 11.

Time-variant cyclic cross periodogram of segments of x and y
of duration T: (65), (66), Chapter 11.

Temporally smoothed cyclic spectrum of x: (1), Chapter 11,
(4a), Chapter 13.

Temporally smoothed cyclic spectrum of discrete-time x: (6),
Chapter 13.

Spectrally smoothed cyclic spectrum of x: (4b), Chapter 13.

Spectrally smoothed cyclic spectrum of discrete-time x: (5),
Chapter 13.

Limit cyclic spectrum of x: (30), Chapter 10, (43), Chapter 11.

Limit cyclic spectrum of discrete-time x: (110), (112), Chapter 11.

Limit cyclic cross spectrum of x and y: (63), (68), Chapter 11.

Limit periodic spectrum of x (period = T,); Fourier transform
of R(t, 7; Ty).

Limit almost periodic spectrum of x with multiple periodicity:
(106), (107), Chapter 10; or limit periodic spectrum of x with
single periodicity: (58), Chapter 10.
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CONSTANT
PHENOMENA

INTRODUCTION

The subject of Part I is the statistical spectral analysis of empirical time-series.
The term empirical indicates that the time-series represents data from a physical
phenomenon; the term spectral analysis denotes decomposition of the time-series
into sine wave components; and the term statistical indicates that the squared
magnitude of each measured or computed sine wave component, or the product
of pairs of such components, is averaged to reduce random effects in the data
that mask the spectral characteristics of the phenomenon under study. The
purpose of Part I is to present a comprehensive deterministic theory of statistical
spectral analysis and thereby to show that contrary to popular belief, the theoretical
foundations of this subject need not be based on probabilistic concepts. The
motivation for Part I is that for many applications the conceptual gap between
practice and the deterministic theory presented herein is narrower and thus easier
to bridge than is the conceptual gap between practice and the more abstract
probabilistic theory. Nevertheless, probabilistic concepts are not ignored. A
means for obtaining probabilistic interpretations of the deterministic theory is
developed in terms of fraction-of-time distributions, and ensemble averages are
occasionally discussed.

A few words about the terminology used are in order. Although the terms
statistical and probabilistic are used by many as if they were synonymous, their
meanings are quite distinct. According to the Oxford English Dictionary, statistical
means nothing more than ‘‘consisting of or founded on collections of numerical
facts’. Therefore, an average of a collection of spectra is a statistical spectrum.



And this has nothing to do with probability. Thus, there is nothing contradictory
in the notion of a deterministic or nonprobabilistic theory of statistical spectral
analysis. (An interesting discussion of variations in usage of the term statistical
is given in Comparative Statistical Inference by V. Barnett [Barnett 1973]). The
term deterministic is used here as it is commonly used, as a synonym for non-
probabilistic. Nevertheless, the reader should be forewarned that the elements
of the nonprobabilistic theory presented herein are defined by infinite limits of
time averages and are therefore no more deterministic in practice than are the
elements of the probabilistic theory. (In mathematics, the deterministic and
probabilistic theories referred to herein are sometimes called the functional and
stochastic theories, respectively.) The term random is often taken as an implication
of an underlying probabilistic model. But in this book, the term is used in its
broader sense to denote nothing more than the vague notion of erratic unpredictable
behavior.
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INTRODUCTION TO SPECTRAL
ANALYSIS

This introductory chapter sets the stage for the in-depth study of spectral analysis
taken up in the following chapters by explaining objectives and motives, answering
some basic questions about the nature and uses of spectral analysis, and establishing
a historical perspective on the subject.

A. OBJECTIVES AND MOTIVES

A premise of this book is that the way engineers and scientists are commonly
taught to think about empirical statistical spectral analysis of time-series data is
fundamentally inappropriate for many applications. The subject is not really as
abstruse as it appears to be from the conventional point of view. The problem
is that the subject has been imbedded in the abstract probabilistic framework of
stochastic processes, and this abstraction impedes conceptualization of the fun-
damental principles of empirical statistical spectral analysis. Hence, the probabilistic
theory of statistical spectral analysis should be taught to engineers and scientists
only after they have learned the fundamental deterministic principles—both
qualitative and quantitative. For example, one should first learn 1) when and
why sine wave analysis of time-series is appropriate, 2) how and why temporal
and spectral resolution interact, 3) why statistical (averaged) spectra are of
interest, and 4) what the various methods for measuring and computing statistical
spectra are and how they are related. One should also learn how simultaneously
to control the spectral and temporal resolution and the degree of randomness
(reliability) of a statistical spectrum. All this can be accomplished in a nonsuperficial
way without reference to the probabilistic theory of stochastic processes.



The concept of a deterministic theory of statistical spectral analysis is not
new. Much deterministic theory was developed prior to and after the infusion,
beginning in the 1930s, of probabilistic concepts into the field of time-series
analysis. The most fundamental concept underlying present-day theory of statistical
spectral analysis is the concept of an ideal spectrum, and the primary objective
of statistical spectral analysis is to estimate the ideal spectrum using a finite
amount of data. The first theory to introduce the concept of an ideal spectrum
is Norbert Wiener’s theory of generalized harmonic analysis [Wiener 1930], and
this theory is deterministic. Later, Joseph Kampé de Fériet presented a deter-
ministic theory of statistical spectral analysis that ties Wiener’s theory more
closely to the empirical reality of finite-length time-series [Kampé de Fériet 1954].
But the very great majority of treatments in the ensuing 30 years consider only
a probabilistic theory of statistical spectral analysis, although a few authors do
briefly mention the dual deterministic theory (e.g., [Koopmans 1974; Brillinger
1976)).

The primary objective of Part I of this book is to adopt the deterministic
viewpoint of Wiener and Kampé de Fériet and show that a comprehensive
deterministic theory of statistical spectral analysis, which for many applications
relates more directly to empirical reality than does its more popular probabilistic
counterpart, can be developed. A secondary objective of Part I is to adopt the
empirical viewpoint of Donald G. Brennan [Brennan 1961] and Edward M. Hof-
stetter [Hofstetter 1964], from which they develop an objective probabilistic
theory of stationary random processes based on fraction-of-time distributions
and show that probability theory can be applied to the deterministic theory of
statistical spectral analysis without introducing a more abstract mathematical
model of empirical reality based on the axiomatic or subjective probabilistic
theory of stochastic processes. This can be interpreted as an exploitation of
Herman O. A. Wold’s isomorphism between an empirical time-series and a
probabilistic model of a stationary stochastic process. This isomorphism is re-
sponsible for the duality between probabilistic (ensemble-average) and deterministic
(time-average) theories of time-series [Wold 1948] [Gardner 1985].

There are two motives for Part I of this book. The first is to stimulate a
reassessment of the way engineers and scientists are often taught to think about
statistical spectral analysis by showing that probability theory need not play a
primary role. The second motive is to pave the way for introducing a new theory
and methodology for statistical spectral analysis of random data from periodically
time-variant phenomena, which is presented in Part II. The fact that this new
theory and methodology, which unifies various emerging—as well as long-
established—time-series analysis concepts and techniques, is most transparent
when built on the foundation of the deterministic theory developed in Part I is
additional testimony that probability theory need not play a primary role in
statistical spectral analysis.

The book, although concise, is tutorial and is intended to be comprehensible
by graduate students and professionals in engineering, science, mathematics, and
statistics. The accomplishments of the book should be appreciated most by
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those who have studied statistical spectral analysis in terms of the popular
probabilistic theory and have struggled to bridge the conceptual gaps between
this abstract theory and empirical reality.

B. ORIENTATION
1. What Is Spectral Analysis?

Spectral analysis of functions is used for solving a wide variety of practical
problems encountered by engineers and scientists in nearly every field of engineering
and science. The functions of primary interest in most fields are temporal or
spatial waveforms or discrete data. The most basic purpose of spectral analysis
is to represent a function by a sum of weighted sinusoidal functions called spectral
components; that is, the purpose is to decompose (analyze) a function into these
spectral components. The weighting function in the decomposition is a density
of spectral components. This spectral density is also called a spectrum.' The
reason for representing a function by its spectrum is that the spectrum can be
an efficient, convenient, and often revealing description of the function.

As an example of the use of spectral representation of temporal waveforms
in the field of signal processing, consider the signal extraction problem of extracting
an information-bearing signal from corrupted (noisy) measurements. In many
situations, the spectrum of the signal differs substantially from the spectrum of
the noise. For example, the noise might have more high-frequency content;
hence, the technique of spectral filtering can be used to attenuate the noise while
leaving the signal intact. Another example is the data-compression problem of
using coding to compress the amount of data used to represent information for
the purpose of efficient storage or transmission. In many situations, the information
contained in a complex temporal waveform (e.g., a speech segment) can be
coded more efficiently in terms of the spectrum.

There are two types of spectral representations. The more elementary of
the two shall be referred to as simply the spectrum, and the other shall be
referred to as the statistical spectrum. The term statistical indicates that averaging
or smoothing is used to reduce random effects in the data that mask the spectral
characteristics of the phenomenon under study. For time-functions, the spectrum
is obtained from an invertible transformation from a time-domain description of
a function, x(#), to a frequency-domain description, or more generally to a joint
time- and frequency-domain description. The (complex) spectrum of a segment
of data of length T centered at time ¢ and evaluated at frequency f is

t+T/2
&mﬁéf

x(u)e ™ dy, (1)
t—T/2

for which { = Y/ —1. Because of the invertibility of this transformation, a

' The term spectrum, which derives from the Latin for image, was originally introduced by
Sir Isaac Newton (see [Robinson 1982]).
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function can be recovered from its spectrum,
x(u) = f_ X, (¢, e df, u€E[t—1/2,t+T/2]. )

In contrast to this, a statistical spectrum involves an averaging or smoothing
operation that is not invertible. For example, the statistical spectrum

A 1 t+At/2
SxT(t5 f)A! = Ef SXT(U’ f) dU, (3)

t—Ar/2

for which §, (¢, f) is the normalized squared magnitude spectrum
1
8.6, ) = 2| Xe(t, P, @

is obtained from a temporal smoothing operation. Thus, a statistical spectrum
is a summary description of a function from which the function x(¢#) cannot be
recovered. Therefore, although the spectrum is useful for both signal extraction
and data compression, the statistical spectrum is not directly useful for either.
It is, however, quite useful indirectly for analysis, design, and adaptation of
schemes for signal extraction and data compression. It is also useful for forecasting
or prediction and more directly for other signal-processing tasks such as 1) the
modeling and system-identification problems of determining the characteristics
of a system from measurements on it, such as its response to excitation, and
2) decision problems, such as the signal-detection problem of detecting the
presence of a signal buried in noise. As a matter of fact, the problem of detecting
hidden periodicities in random data motivated the earliest work in the development
of spectral analysis, as discussed in Section D.

Statistical spectral analysis has diverse applications in areas such as mechanical
vibrations, acoustics, speech, communications, radar, sonar, ultrasonics, optics,
astronomy, meteorology, oceanography, geophysics, economics, biomedicine,
and many other areas. To be more specific, let us briefly consider a few applications.
Spectral analysis is used to characterize various signal sources. For example,
the spectral purity of a sine wave source (oscillator) is determined by measuring
the amounts of harmonics from distortion due, for example, to nonlinear effects
in the oscillator and also by measuring the spectral content close in to the
fundamental frequency of the oscillator, which is due to random phase noise.
Also, the study of modulation and coding of sine wave carrier signals and pulse-
train signals for communications, telemetry, radar, and sonar employs spectral
analysis as a fundamental tool, as do surveillance systems that must detect and
identify modulated and coded signals in a noisy environment. Spectral analysis
of the response of electrical networks and components such as amplifiers to both
sine wave and random-noise excitation is used to measure various properties
such as nonlinear distortion, rejection of unwanted components, such as power-
supply components and common-mode components at the inputs of differential
amplifiers, and the characteristics of filters, such as center frequencies, bandwidths,
pass-band ripple, and stop-band rejection. Similarly, spectral analysis is used
to study the magnitude and phase characteristics of the transfer functions as
well as nonlinear distortion of various electrical, mechanical, and other systems,
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including loudspeakers, communication channels and modems (modulator-
demodulators), and magnetic tape recorders in which variations in tape motion
introduce signal distortions. In the monitoring and diagnosis of rotating machinery,
spectral analysis is used to characterize random vibration patterns that result
from wear and damage that cause imbalances. Also, structural analysis of physical
systems such as aircraft and other vehicles employs spectral analysis of vibrational
response to random excitation to identify natural modes of vibration (resonances).
In the study of natural phenomena such as weather and the behavior of wildlife
and fisheries populations, the problem of identifying cause-effect relationships
is attacked using techniques of spectral analysis. Various physical theories are
developed with the assistance of spectral analysis, for example, in studies of
atmospheric turbulence and undersea acoustical propagation. In various fields
of endeavor involving large, complex systems such as economics, spectral analysis
is used in fitting models to time-series for several purposes, such as simulation
and forecasting. As might be surmised from this sampling of applications, the
techniques of spectral analysis permeate nearly every field of science and
engineering.

Spectral analysis applies to both continuous-time functions, called waveforms,
and discrete-time functions, called sampled data. Other terms are commonly
used also; for example, the terms data and time-series are each used for both
continuous-time and discrete-time functions. Since the great majority of data
sources are continuous-time phenomena, continuous-time data are focused on
in this book, because an important objective is to maintain a close tie between
theory and empirical reality. Furthermore, since optical technology has emerged
as a new frontier in signal processing and optical quantities vary continuously
in time and space, this focus on continuous time data is well suited to upcoming.
technological developments. Nevertheless, since some of the most economical
implementations of spectrum analyzers and many of the newly emerging parametric
methods of spectral analysis operate with discrete time and discrete frequency
and since some data are available only in discrete form, discrete-time and discrete-
frequency methods also are described.

2. Why Analyze Waveforms Into Sine Wave
Components??

The primary reason why sine waves are especially appropriate components with
which to analyze waveforms is our preoccupation with linear time-invariant (L'TI)
transformations, which we often call filters. A secondary reason why statistical
(time-averaged) analysis into sine wave components is especially appropriate is
our preoccupation with time-invariant phenomena (data sources). To be specific,
a transformation of a waveform x(¢) into another waveform, say y(¢), is an LTI
transformation if and only if there exists a weighting function A(f) (here assumed

2 Readers in need of a brief remedial review of the prerequisite topic of linear time-invariant
transformations and the Fourier transform should consult Appendix I.
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to be absolutely integrable in the generalized sense, which accommodates Dirac
deltas) such that y(7) is the convolution (denoted by (X)) of x with A:

y(@) = x(t) ® k(1) = f_w h(t — w)x(u) du (5a)

= fw h(v)x(t — v) dv. (5b)

The time-invariance property of a transformation is, more precisely, a translation-
invariance property that guarantees that a translation, by w, of x(f) to x(¢ + w)
has no effect on y(z) other than a corresponding translation to y(t + w) (exercise
1). A phenomenon is said to be time-invariant only if it is persistent in the
sense that it is appropriate to conceive of a mathematical model of x(¢) for which
the following limit time-average exists for each value of 7 and is not identically
zero,’

~ Ay 1 f 172 T T d 6

Ritx) = o T ) x(t * 2)x(t B 2) & ©)
This function is called the limit autocorrelation function® for x(¢t). For r = 0,
(6) is simply the time-averaged value of the instantaneous power.’

Sine wave analysis is especially appropriate for studying a convolution
because the principal components (eigenfunctions) of the convolution operator
are the complex sine wave functions, ¢?™ for all real values of £. This follows
from the facts that (1) the convolution operation produces a continuous linear
combination of time-translates, that is, y(¢) is a weighted sum (over v) of x(¢ — v),
and (2) the complex sine wave is the only bounded function whose form is
invariant (except for a scale factor) to time-translation, that is, a bounded function
x(2) satisfies

x(t — v) = cx(?) 7
for all ¢ if and only if
x(®) = Xe'*™" 8)

for some real values of X and f (exercise 3). As a consequence, the form of a
bounded function x(¢) is invariant to convolution if and only if x(f) = Xe”™, in

*In Part II, it is explained that periodic and almost periodic phenomena as well as constant
(time-invariant) phenomena satisfy (6). For x(¢) to be from a constant phenomenon, it must satisfy

1
not only (6) but also lim }ff/%/z x(t + 7/2x(t — 7/2e " dt=0foralla # 0.
T

*In some treatments of time-series analysis (see [Jenkins and Watts 1968]), the function (6)

modified by subtraction of the mean
A 1 T/2
M, = lim = x(1) dt
Too T J-172 ()

from x(7), is called the autocovariance function, and when normalized by R.(0) it is called the
autocorrelation function.

* If x(2) is the voltage (in volts) across a one-ohm resistance, then x*(7) is the power dissipation
(in watts).
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which case (5) yields
y(0) = H(f)x(1), &)
for which

H(f) = f : h(te > dt. (10)

This fact can be exploited in the study of convolution by decomposing a waveform
x(7) into a continuous linear combination of sine waves,®

sy = | x(he ay (an
with weighting function
X(f) = f  x(De” ™ dt, (12)
because then substitution of (11) into (5) yields
(1) = fﬁ Y(f)e*™ df, (13)
for which
Y(f) = H(HX(S). (14)
Thus, any particular sine wave component in y(¢), say
YD) 2 Y(f)e™™, (15)

can be determined solely from the corresponding sine wave component in x(¢),
since (14) and (15) yield

y(t) = H(f)x (). (16)
The scale factor H(f) is the eigenvalue associated with the eigenfunction e
of the convolution operator. Transformations (11) and (12) are the Fourier transform
and its inverse, abbreviated by

X(¢) = F{x(}
x() = F7Y{X()}

Statistical (time-averaged) analysis of waveforms into sine wave components
is especially appropriate for time-invariant phenomena because an ideal statistical
spectrum, in which all random effects have been averaged out, exists if and only
if the limit autocorrelation (6) exists. Specifically, it is shown in Chapter 3 that
the ideal statistical spectrum obtained from (3) by smoothing over all time,

lim S, (1, f),,

At—oo
exists if and only if the limit autocorrelation R () exists. Moreover, this ideal
® If x(¢) is absolutely integrable, then (11) and (12) are the usual Fourier transform pair, but
if x(#) is a persistent waveform (which does not die out as |¢| — <) from a time-invariant phenomenon,

then (11) and (12) must be replaced with the generalized (integrated) Fourier transform [Wiener
1930], in which case (14) becomes the Stieltjes integral Y(f) = [* _H(v) dX(v) [Gardner 1985].
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statistical spectrum can be characterized in terms of the Fourier transform of
I'éx(ﬂr), denoted by

5./ = f_wiex(f)e-"z“f* dr. (17)
Specifically,
AliH}w St N = f_jx(f = 2@ dv = 5,(f) ® 21,4(f), (18)

for which z,,,(f) is the unit-area sinc-squared function with width parameter
1/T,

1 [sin(m 2
2y7(f) = T [(ﬂ—fm] . (19)
As the time-interval of spectral analysis is made large, we obtain (in the limit)
lim lim S, (¢, f), = S{f), (20)
T—oo At—oo
because the limit of z;,7(f) is the Dirac delta
}im zyr(f) = 8(f), (1)

and convolution of a function with the Dirac delta as in (18) leaves the function
unaltered (exercise 2). The ideal statistical spectrum S.(f) defined by (20) is
called the limit spectrum.

Before leaving this topic of justifying the focus on sine wave components
for time-series analysis, it is instructive (especially for the reader with a background
in stochastic processes) to consider how the justification must be modified if we
are interested in probabilistic (ensemble-averaged) statistical spectra rather than
deterministic (time-averaged) statistical spectra. Let us therefore consider an
ensemble of random samples of waveforms {x(¢, s)}, indexed by s; for convenience
in the ensuing heuristic argument, let us assume that the ensemble is a continuous
ordered set for which the ensemble index, s, can be any real number. For each
member x(¢, s) of the ensemble, we can obtain an analysis into principal components
(sine wave components). A characteristic property of a set of principal components
is that they are mutually uncorrelated’ in the sense that

) 1 T/2
(xfs xv)t é hm J—T/Z xf(t’ S).X:((t, S) dt = 0’ f 74 v, (22)

roco I

where * denotes complex conjugation (exercise 5). But in the probabilistic theory,

7 For a persistent waveform (which does not die out as |f| — oo) from a time-invariant phenomenon,
the property of sine wave components being mutually uncorrelated is deeper than suggested by (22).
In particular, the envelopes (from (1)), X;(z, f) and X.(¢, v), of the local sine wave components (cf.
Chapter 4, Section E) become uncorrelated in the limit T — oo for all f # v as explained in Chapter
7, Section C.
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it is required that the principal components be uncorrelated over the ensemble®
S/2

Ay 1 * =
(xf7 xv>s - ;I_I)I:o S —S/2xf(t’ s)xv (t’ S) dS - 0, f # v (23)

as well as uncorrelated over time in order to obtain the desired simplicity in the
study of time-series subjected to LTI transformations. If we proceed formally
by substitution of the principal component,

x:(t, 5) L X(f, )™ = f_ x(u, )e” 2™ dy ¥, (24)

into (23), we obtain’ (after reversing the order of the limit operation and the two
integration operations)

Ccr, X0 = lf' fﬁ R, (t, v)e V) dr dul, (25)
for which the function R, is the probabilistic autocorrelation defined by
52
R.(t, v) £ lim 1 f x(t, $)x(v, s) ds. (26)
S—oe S J =572

It can be shown (exercise 6) that (23) vanishes for all f # v, as desired, if and
only if
R, v)=R(@t +w, v+ w) (27)
for all translations w, in which case %, depends on only the difference of its
two arguments,
R (t,v) = R,(t — v). (28)
Consequently principal-component methods of study of an LTI transformation
of an ensemble of waveforms are applicable if and only if the correlation of the
ensemble is translation invariant. Such an ensemble of random samples of wave-
forms is commonly said to have arisen from a wide-sense stationary stochastic
process.'® But we must ask if ensembles with translation-invariant correlations
are of interest in practice. As a matter of fact, they are for precisely the same
reason that translation-invariant linear transformations are of practical interest.
The reason is a preoccupation with time-invariance. That is, the ensemble of
waveforms generated by some phenomenon will exhibit a translation-invariant
correlation if and only if the data-generating mechanism of the phenomenon
exhibits appropriate time-invariance. Such time-invariance typically results from
a stable system being in a steady-state mode of operation—a statistical equilibrium.

# The limit averaging operation in (23) can be interpreted (via the law of large numbers) as
the probabilistic expectation operation.

® To make the formal manipulation used to obtain (25) rigorous, X(f, s) must be replaced with
the envelope of the local sine wave component, which is obtained from (1) with x(u) replaced by
x(u, 5); then the limit, T — oo, must be taken. An in-depth treatment of this topic of spectral
correlation is introduced in Chapter 7, Section C, and is the major focus of Part II.

1 The term stochastic comes from the Greek to aim (guess) at.
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The ultimate in time-invariance of a data-generating mechanism is characterized
by a translation-invariant ensemble, which is an ensemble {x(¢, s)} for which the
identity

x(t + w, s) = x(¢, s") 29)
holds for all s and all real w; that is, each translation by, for instance, w of each
ensemble member, such as x(¢, s), yields another ensemble member, for example,
x(¢, s'). This time-invariance property (29) is more than sufficient for the desired
time-invariance property (27). An ensemble that exhibits property (29) shall be
said to have arisen from a strict-sense stationary stochastic process. For many
applications, a natural way in which a translation-invariant ensemble would arise
as a mathematical model is if the ensemble actually generated by the physical
phenomenon is artificially supplemented with all translated versions of the members
of the actual ensemble. In many situations, the most intuitively pleasing actual
ensemble consists of one and only one waveform, x(¢), which shall be called the
ensemble generator. In this case, the supplemented ensemble is defined by

x(t, §) = x(t + ). (30)

The way in which a probabilistic model can, in principle, be derived from this
ensemble is explained in Chapter 5, Section B. This most intuitively pleasing
translation-invariant ensemble shall be said to have arisen from an ergodic'
stationary stochastic process. Ergodicity is the property that guarantees equality
between time-averages, such as (22), and ensemble-averages, such as (23). The
ergodic relation (30) is known as Herman O. A. Wold’s isomorphism between
an individual time-series and a stationary stochastic process [Wold 1948].

In summary, statistical sine wave analysis—spectral analysis as we shall
call it—is especially appropriate in principle if we are interested in studying
linear time-invariant transformations of data and data from time-invariant phe-
nomena. Nevertheless, in practice, statistical spectral analysis can be used to
advantage for slowly time-variant linear transformations and for data from slowly
time-variant phenomena (as explained in Chapter 8) and in other special cases,
such as periodic time-variation (as explained in Part II) and the study of the
departure of transformations from linearity (as explained in Chapter 7).

C. ORIGINS OF SPECTRAL ANALYSIS

The Fourier theory of sine wave analysis of functions has its origins in two fields
of investigation into the nature of the physical world: acoustical/optical wave
phenomena and astronomical and geophysical periodicities.'> These two fields

! The term ergodic comes from the Greek for work path, which—in the originating field of
statistical mechanics—relates to the path, in one dimension, described by x(-, s), of an energetic
particle in a gas.

'z The historical survey given here has been synthesized from various other more brief historical
sketches found in the literature as well as from inspection of many (but not all) of the references
cited here.
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have furnished the primary stimuli from the natural sciences to the classical
study—which extends into the first half of the twentieth century—of spectral
analysis. The motions of the planets, the tides, and irregular recurrences of
weather, with their hidden periodicities and disturbed harmonics, form a counterpart
of the vibrating string in acoustics and the phenomena of light in optics. Although
the concept of sine wave analysis has very early origins, the first bona fide uses
of sine wave analysis apparently did not occur until the eighteenth century, with
the work of Leonhard Euler (1707-1783) and Joseph Louis Lagrange (1736-1813)
in astronomy [Lagrange 1772]."

The concept of statistical spectral analysis germinated in early studies of
light, beginning with Isaac Newton’s prism experiment in 1664 which led to the
notion that white light is simply an additive combination of homogeneous mono-
chromatic vibrations. The developing wave optics ideas, together with developing
ideas from meteorology and astronomy, led Sir Arthur Schuster (1851-1934),
around the turn of the nineteenth century, to the invention of the periodogram
for application to the problem of detection of hidden periodicities in random data
[Schuster 1894, 1897, 1898, 1900, 1904, 1906, 1911]. The periodogram, denoted
by S,,(f) (originally defined for discrete-time data), is simply the squared magnitude
of the Fourier transform of a finite segment of data, x;, normalized by the length,
T, of the data segment (graphed versus the frequency variable, f):

S, 2 2P (P an

I

T/2
f xp(e 2™ dt, (32)
7/2

Xr(f)

where x;(?) is taken to be zero for [t| > T/2. If a substantial peak occurred in
the periodogram, it was believed that an underlying periodicity of the frequency
at which the peak occurred had been detected. As a matter of fact, this idea
preceded Schuster in the work of George Gabriel Stokes (1819-1903) [Stokes
1879]; and a related approach to periodicity detection developed for meteorology
by Christoph Hendrik Diederik Buys-Ballot (1817-1890) preceded Stokes [Buys-
Ballot 1847]. The first general development of the periodogram is attributed to
Evgency Evgenievich Slutsky (1880-1948) [Slutsky 1929, 1934].

Another approach to detection of periodicities that was being used in me-
teorology in the early part of the twentieth century was based on the correlogram
[Clayton 1917; Alter 1927; Taylor 1920, 1938], whose earliest known use [Hooker
1901] was motivated by the studies in economics of John Henry Poynting (1852—
1914) [Poynting 1884]. The correlogram, denoted by R, () (originally defined
for discrete-time data), is simply the time-average of products of time-shifted
versions of a finite segment of data (graphed versus the time-difference variable, 7),

oo

R, @) 2 % f_wa(t + %) xT(t - %)dt. (33)

3 See [Wiener 1938; Davis 1941; Robinson 1982] for the early history of spectral analysis,
and [Chapman and Bartels 1940, Chapter XVI] for an account of early methods.

Sec. C Origins of Spectral Analysis 13



But since x7(t = 7/2) is zero for t £ 7/2 outside [—T/2, T/2], we obtain

R.(7) = % f e T(z + 1) xT<t - f)dz. (34)

—(T—rh/2 x 2 2
If an oscillation with 7 occurred in the correlogram, it was believed that an
underlying periodicity had been detected.'

The discovery of the periodogram-correlogram relation (e.g., [Stumpff 1927,
Wiener 1930]) revealed that these two methods for periodicity detection were,
in essence, the same. The relation, which is a direct consequence of the convolution
theorem (Appendix 1-1) is that S, (-) and R, () are a Fourier transform pair
(exercise 10):

Sef() = FIR, (). (35)
This relation was apparently understood and used by some before the turn of
the century, as evidenced by the spectroscopy work of Albert Abraham Michelson
(1852-1931), who in 1891 used a mechanical harmonic analyzer to compute the
Fourier transform of a type of correlogram obtained from an interferometer for
the purpose of examining the fine structure of the spectral lines of lightwaves.

A completely random time-series is defined to be one for which the discrete-
time correlogram is asymptotically (T — o) zero for all nonzero time-shifts,
7 # 0, indicating there is no correlation in the time-series. A segment of a
simulated completely random time-series is shown in Figure 1-1(a), and its per-
iodogram and correlogram are shown in Figures 1-1(b) and 1-1(c). This concept
arose (originally for discrete-time data) around the turn of the century [Goutereau
1906], and a systematic theory of such completely random time-series was developed
in the second decade by George Udny Yule (1871-1951) [Yule 1926]. Yule
apparently first discovered the fact that an LTI transformation (a convolution)
can introduce correlation into a completely random time series. It is suggested
by the periodogram-correlogram relation that a completely random time series
has a flat periodogram (asymptotically). By analogy with the idea of white light
containing equal amounts of all spectral components (in the optical band), a
completely random time series came to be called white noise. As a consequence
of the discoveries of the correlation-inducing effect of an LTI transformation,
and the periodogram-correlogram relation, it was discovered that a completely
random time series, subjected to a narrow-band LTI transformation, can exhibit
a periodogram with sharp dominant peaks, when in fact there is no underlying
periodicity in the data. This is illustrated in Figure 1-2. This revelation, together
with several decades of experience with the erratic and unreliable behavior of
periodograms, first established as an inkerent property by Slutsky [Slutsky 1927],
led during the mid-twentieth century to the development of various averaging
or smoothing (statistical) methods for modifying the periodogram to improve its
utility. A smoothed version of the periodogram in Figure 1-1(b) is shown in
Figure 1-1(d). Such averaging techniques were apparently first proposed by
Albert Einstein (1879-1955) [Einstein 1914], Norbert Wiener (1894—1964) [Wiener
1930] and later by Percy John Daniell (1889—1946) [Daniell 1946], Maurice Stevenson

' The early history of correlation studies is reported in [Davis 1941].
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periodogram, S, _{(f)

Bartlett (1910-) [Bartlett 1948, 1950], John Wilder Tukey (1915-) [Tukey 1949],
Richard Wesley Hamming (1915-), and Ralph Beebe Blackman (1904-) [Blackman
and Tukey 1958]. In addition, these circumstances surrounding the periodogram
led to the alternative time-series-modeling approach to spectral analysis, which
includes various methods such as the autoregressive-modeling method introduced
by Yule [Yule 1927] and developed by Herman O. A. Wold (1908-) [Wold 1938]
and others.

Apparently independent of and prior to the introduction (by others) of
empirical averaging techniques to obtain less random measurements of spectral

M 1l Ml LI l“ lrtll l A time
lw'n vwm;’ mnp i \

data

(a)

M

frequency

(b)

Figure 1-1 (a) Completely random data (white noise), T = 256T,. (b) Periodogram of
white noise, T = 256T,.
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Figure 1-1 (continued) (c¢) Correlogram of white noise, T = 2567,. (d) Smoothed
periodogram of white noise, T = 256T,, Af = 21/2567T,.

content of random time-series, Wiener developed his theory of generalized harmonic
analysis [Wiener 1930], in which he introduced a completely nonrandom measure
of spectral content. Wiener’s spectrum can be characterized as a limiting form
of an averaged periodogram. In terms of this limiting form of periodogram and
the corresponding limiting form of correlogram, Wiener developed what might
be called a calculus of averages for LTI transformations of time-series. Although
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first data segment

second data segment

(a)

u 1 1]

®

Figure 1-2 (a), (b) Two segments of narrow-band data, T = 2567T,.

it is not well known," Wiener’s limit spectrum and its characterization as the
Fourier transform of a limit correlogram had been previously presented (in rather
terse form) by Einstein [Einstein 1914].

The autonomous development of statistical mechanics, with Josiah Willard
Gibbs’ (1839-1903) concept of an ensemble average, and the study of Brownian
motion, by Maryan von Smoluchowski [von Smoluchski 1914], Einstein [Einstein
1906], and Wiener [Wiener 1923], together with the mathematical development

' This little-known fact was brought to the anthor’s attention by Professor Thomas Kailath,
who learned of it from Akiva Moisevich Yaglom.
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Figure 1-2 (continued) (c), (d) Periodograms of the two data segments shown in (a) and
(b). (Broken curve is the limit spectrum.)
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Figure 1-2 (continued) (e), (f) Correlograms of the two data segments shown in (a) and
(b). (Broken curve is the limit autocorrelation.)
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of probability theory based on the measure and integration theory of Henri Leén
Lebesgue (1875-1941) around the turn of the century, led ultimately to the
probabilistic theory of stochastic processes. This theory includes a probabilistic
counterpart to Wiener’s theory of generalized harmonic analysis, in which infinite
time-averages are replaced with infinite ensemble averages. It greatly enhanced
the conceptualization and mathematical modeling of erratic-data sources and the
design and analysis of statistical data-processing techniques such as spectral
analysis. The theory (for discrete-time processes) originated in the work of
Aleksandr Jakovlevich Khinchin (1894-1959) during the early 1930s [Khinchin
1934] and was further developed in the early stages by Wold [Wold 1938], Andrei
Nikolaevich Kolmogorov (1903-) [Kolmogorov 1941a,b], and Harald Cramér
(1893-) [Cramér 1940, 1942].'¢ Major contributions to the early development of
the probabilistic theory and methodology of statistical spectral analysis were
made by Ulf Grenander and Murray Rosenblatt [Grenander and Rosenblatt 1953,
1984], Emanuel Parzen [1957a, b], and Blackman and Tukey [Blackman and
Tukey 1958].

The probabilistic theory of stochastic processes is currently the popular
approach to time-series analysis. However, from time to time, the alternative
deterministic approach, which is taken in this book, is promoted for its closer
ties with empirical reality for many applications; see [Kampé de Fériet 1954;
Brennan 1961; Bass 1962; Hofstetter 1964; Finch 1969; Brillinger 1975, Sec. 2.11;
Masani 1979].

D. SPECTRAL ANALYSIS AND PERIODICITY

The problem of studying hidden periodicity in random data motivated the earliest
work in spectral analysis and provided much of the impetus for developing
spectral analysis concepts and methods during the first few decades following
Schuster’s pioneering work. However, the fact that most of the phenomena
being studied did not exhibit periodicity but rather gave rise to data consisting
of what came to be called disturbed harmonics (which result from subjecting a
completely random time-series to a narrow-band-pass filter) resulted in a major
shift in focus away from hidden periodicity and toward the time-invariance discussed
in Section B. It is curious that some branch of work in the field did not retain
a substantial focus on phenomena that do indeed give rise to random data with
hidden periodicity and thereby did not continue the initial development of statistical
theory and method for such time-series. Although existing theory and method
are usually adequate for additive periodic components in random data, there is
no generally appropriate theory and method for other types of hidden periodicity,

' The most extensive bibliography on time-series and random processes, ranging from the
earliest period of contribution (mid—nineteenth century) to the recent past (1960) is the international
team project bibliography edited by Wold [Wold 1965]. Starting with 1960, a running bibliography,
including abstracts, is available in the Journal of Abstracts: Statistical Theory and Method.
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such as multiplicative periodicity, that arise either from natural rhythms or from
transformations intentionally designed to be periodic, as in various techniques
of sampling, modulating, multiplexing, and coding employed in signal-processing
systems. The lack of development of theory and method for spectral analysis
of such time-series was recognized explicitly by Blackman and Tukey [Blackman
and Tukey 1958, p. vi], who in effect condoned it by arguing pragmatically that
no phenomenon is precisely periodic and that existing theory and method appear
to be adequate. In contrast to this point of view, it is shown in Part II of this
book that some phenomena can, to great advantage, be modeled as precisely
periodic; also, not only is existing theory and method for spectral analysis generally
inadequate in such cases, but an adequate generalization in terms of spectral
correlation can be developed. This more general theory and methodology of
statistical spectral analysis presented in Part II includes the theory and methodol-
ogy presented in Part I as the special case for which periodicity degenerates
into constancy (time-invariance). A brief introduction to the spectral corre-
lation theory of random data from periodic phenomena is given in Chapter 7
of Part I.

E. SUMMARY

Section A explains that the objective of Part I of this book is to show that a
comprehensive deterministic theory of statistical spectral analysis, which for
many applications relates more directly to empirical reality than does its more
popular probabilistic counterpart, can be developed—the motivation being to
stimulate a reassessment of the way engineers and scientists are often taught to
think about statistical spectral analysis by showing that probability theory need
not play a primary role. In Section B it is explained that the most basic purpose
of spectral analysis is to represent a function by a sum of weighted sinusoidal
functions called spectral components and that procedures for statistical spectral
analysis average the strengths of such components to reduce random effects. It
is further explained that sine wave components, in comparison with other possible
types of components, are especially appropriate for analyzing data from time-
invariant phenomena, because sine waves are the principal components of time-
invariant linear transformations and because an ideal sine wave spectrum exists
if and only if the data source is time-invariant (in an appropriate sense). The
conceptual link between this point of view and that of the probabilistic framework
of ergodic stationary stochastic processes on which statistical spectral analysis
is typically based is then explained in terms of Wold’s isomorphism. In Section
C, a historical sketch of the origins of spectral analysis is presented, and finally
in Section D the need for a generalization of the theory of spectral analysis of
random data, from constant phenomena to periodic phenomena, is commented
upon.

Appendix 1-1 is a brief review of prerequisite material on linear time-
invariant transformations and the Fourier transform.
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F. OVERVIEW OF PART I

This first chapter is concluded with a brief overview of the remainder of Part I.
In Chapter 2, the basic elements of empirical spectral analysis are introduced.
The time-variant periodogram for nonstatistical spectral analysis is defined and
characterized as the Fourier transform of the time-variant correlogram, and its
temporal and spectral resolution properties are derived. The effects of linear
time-invariant filtering and periodic time sampling are described. Then in Chapter
3, the fundamentals of statistical spectral analysis are introduced. The equivalence
between statistical spectra obtained from temporal smoothing and statistical spectra
obtained from spectral smoothing is established, and the relationship between
these statistical spectra and the abstract limit spectrum is derived. The limit
spectrum is characterized as the Fourier transform of the limit autocorrelation,
and the effects of linear time-invariant filtering and periodic time-sampling on
the limit spectrum are described. Various continuous-time and discrete-time
models for time-series are introduced, and their limit spectra are calculated.
Chapter 4 presents a wide variety of analog (continuous-time) methods for empirical
statistical spectral analysis, and it is shown that all these methods are either
exactly or approximately equivalent when a substantial amount of smoothing is
done. The spectral leakage phenomenon is explained, and the concept of an
effective spectral smoothing window is introduced. Then a general representation
for the wide variety of statistical spectra obtained from these methods is introduced
and shown to provide a means for a unified study of statistical spectral analysis.
In Chapter 5, it is explained that the notion of the degree of randomness or
variability of a statistical spectrum can be quantified in terms of time-averages
by exploiting the concept of fraction-of-time probability. This approach is then
used mathematically to characterize the temporal bias and temporal variability
of statistical spectra. These characterizations form the basis for an in-depth
discussion of design trade-offs involving the resolution, leakage, and reliability
properties of a statistical spectrum. The general representation introduced in
Chapter 4 is used here to obtain a unified treatment for the wide variety of
spectral analysis methods described in Chapter 4. Chapter 6 complements Chapter
4 by presenting a variety of digital (discrete-time) methods for statistical spectral
analysis. Chapter 7 generalizes the concept of spectral analysis of a single real-
valued time-series to that of cross-spectral analysis of two or more complex-
valued time-series. It is established that the cross spectrum, which is a measure
of spectral correlation, plays a fundamental role in characterizing the degree to
which two or more time-series are related by a linear time-invariant transformation.
Methods for measurement of statistical cross spectra that are generalizations of
the methods described in earlier chapters are presented, and the temporal bias
and temporal variability of statistical cross spectra are mathematically characterized
in a unified way based on a general representation. In Chapter 8, the application
of statistical spectral analysis to time-variant phenomena is studied. Fundamental
limitations on temporal and spectral resolution are discussed, and the roles of
ensemble averaging and probabilistic models are described. Finally, in Chapter
9, an introduction to the theory of autoregressive modeling of time-series is
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presented and used as the basis for describing a variety of autoregressive parametric
methods of statistical spectral analysis. The chapter concludes with an extensive
experimental study and comparison of various parametric and nonparametric
methods of statistical spectral analysis.

EXERCISES

1.

2,

Substitute x(z + w) in place of x(#) in the convolution (5), and use a change of variable
of integration to verify that this substitution produces y(z + w) in place of y(z).

The impulse function, denoted by 8(¢), (also called the Dirac delta) is formally defined
to be an idealized pulse with infinitesimal width, infinite height, and unity area; thus,

(=0, 1#0

j_ 8(t)ydt =1, e> 0. (36)
Consequently, the impulse function exhibits the sampling property
(1 —19)x(1) = x(t)8(t — 19) (37

for every function x(¢) that is continuous at ¢t = ¢,.
(a) Verify that the Fourier transform of the impulse function

x(1) = 8(t — 1) (38a)

is X(f) = e 0, (38b)
(b) Show that h(t) ® &(1) = h(t) for any continuous function k(f). Then use the
convolution (5) to verify that the response of an LTI transformation to an impulse
excitation at t = 0 is y(f) = h(f). Thus, the weighting function h(t) of an LTI

transformation is identical to its impulse response.
(c¢) Verify that the Fourier transform of a periodic function with Fourier series

representation
x(t) = Af D X, e (39a)
is X(f) = &f 2 X,.8(f — mAf). (39b)

3. (a) To gain some insight into the fact that the only bounded waveform whose form

is invariant to translation is a complex sine wave, subtract x(¢) from both sides
of (7), divide by v, and take the limit as v — 0, to obtain the following condition
for (7),

dx

E;=ax0)
A, 1-—c
a = lim
v—0 v

(notice that ¢ depends on v). Then solve this differential equation by integration
to obtain

x(f) = Be™

for arbitrary o and 8. This function x(¢) is bounded if and only if « is imaginary
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or zero. Substitute this x(¢) into (7) and solve for ¢. Then substitute this solution
into the definition of « to verify consistency.
(b) As another approach, Fourier transform both sides of (7) to obtain
X(N)e™™ = cX(f),

and argue that this equation is valid for all values of f if and only if X(f) is
nonzero for at most one value of f, say vy, to conclude that

X(f) = Ba(f — )
for arbitrary 8 and y. Then perform an inverse Fourier transformation of both
sides of this equation to obtain the desired result.

(c) As a third approach, consider an integer ¢ and iterate (7) forv = 1,2,3,.. ., ¢,
letting ¢, denote the value of ¢ for v = 1:
1 111 1\!
xW=—x(t-D=—|=x(t-2] =" =|—]x0).
Cy 1| ¢ Cq

Show that this result can be put into the form of (8).

. Prove the convolution theorem; that is, if

oo

2 = x() @y = j_mx(t — v)y() dv, (40a)

then

oo

z(f) £ f_wz(t)e“”’f’ dt = X(HY(f). (40b)

Hint: One method is to Fourier transform both sides of (40a) and then use the change
of variables + — v = u. Another method is to perform an inverse transformation of
both sides of (40b) and then use the transform pair (38).

. Substitute the sine waves (24) with frequencies f and v into (22), and verify that the

correlation is zero for f # v.

. Show that the double Fourier transform

j_ ﬁ R.(t, v)e ) 4r dy
vanishes for all f # v if and only if
R (t,v) = R, (t — v).
Hint: Let the above double integral be denoted by %.(f, v); then R.(¢, v) is given

by the inverse double Fourier transform

R,(t, v) = f f Fo(f, ) df dy.

Now, in order for &, (f, v) to vanish for all f # v without %.(¢, v) being identically
zero (or otherwise pathological), it is required that

yx(‘f’ V) = Sx(f)a(f - V)
= S,W3(f — v)

for some function S,(f).

. The Fourier transform representation (11)—(12) can be formally verified by substituting

(12) into (11) and using the transform

f e df = §(t - ).

—oo
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10.

11.

12.

13.

Do this by assuming that the required interchange of integrals is justified.

. To illustrate that negative frequencies f < 0 for a real waveform x(f) are simply

mathematical artifacts with no physical significance, show that they can be dispensed
with, while preserving the Fourier transform relation. Specifically, define the one-
sided Fourier transform, denoted by

F x()} = X.0),
by

x.n 2 B0 120

Then show that x(f) can be recovered from X, (f) by the inverse one-sided Fourier
transform, denoted by

x() = FIH{XL (),
and defined by

(1) = Re{ L mXAf)e""f’ df }

where Re{-} denotes the real part of the complex quantity in the braces.

Hint: First prove that for a real waveform x(¢), X(f) exhibits the Hermitian symmetry
X(=f) = X*(f).

Then use the result of exercise 7:

FYFIx()l} = x().

. Verify Parseval’s relation for Fourier transforms:

[ xoror g =[x ar @

Hint: Substitute the Fourier transform integrals for X(f) and Y(f) into the right
member of (41) and then use the transform (from exercise 2)

| emeag = a0, @)

Verify that a double convolution is given by the double integral

x() @y ®z(r) = f_m f_mx(t — Wy — v)z(v) du dv. 43)

Show that the periodogram-correlogram relation is simply an application of the con-
volution theorem (exercise 4). Hint: Use the change of variables t = ¢ + /2 in (33).

Verify the Fourier transform pairs given in Table 1-1 on page 26. The waveforms in
this table are defined by (12)—(15) in Chapter II. Hint: For vy(¢), use the convolution

. o1
theorem together with vy(f) = uy(t) ® urp(t). For wr(f), start with ?ul/r( f), and

evaluate the inverse transform.
Verify the transform pairs

FleosQrfitl} = 350 = ) + 33(F + )
Fisin@afy)} = 2801 = ) = 380 + fo).

Hint: Use Euler’s identity, ¢ = cos § + i sin 6.
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TABLE 1-1 Windows and Transforms

Time-function Fourier transform
1 .

Rectangle = u(f) }w,,,(f) = Sinc

. 1 .,
Triangle = v(¢) i,z,/T(f) = Sinc
1. 1
T Sinc = w() }uw(f) = Rectangle
| 1 .
? Sin¢® = z7(f) }vl,r()‘) = Triangle

14. Use the results of exercises 12 and 13 to determine the response of an LTI transformation
with impulse-response function h(f) to an excitation x(¢) for the following cases.
@) x(1) = cosQnfyd), h(t) = u ()
(b) x(2) sin(2mfyt), h(t) = v(t)
© x(t) = ur(®), h(t) = ur(t)

15. Use Parseval’s relation (exercise 9) to evaluate the integrals

I (sm m/T)Zdt
-0 Tt
jm (sin wt/T)l it
== at

16. The time-frequency dual of the convolution theorem (exercise 4) establishes that the

Fourier transform of a product of time functions is the convolution of their Fourier
transforms, that is, if

[l

and

2(8) = x()y(?)
then
Z(f) = X(f) ® Y( ).

Use this theorem and the result of exercise 13 to determine the Fourier transforms
of the waveforms z(r) = x(f)cosQufyf) and z(t) = x(D)sinQmfHt).

APPENDIX 1-1

Linear Time-Invariant Transformations and the
Fourier Transform: A Review

Let us begin with a problem that illustrates the utility of sine wave analysis.
We consider the problem of determining the current flow through a series connec-
tion of a voltage source, resistor, capacitor, and inductor, as depicted in
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Figure 1-1-1 Electrical circuit.

Figure 1-1-1. By equating the sum of voltages around the circuit to zero, we
obtain the integro-differential equation
L% + éJ’i(t) dt + Ri(t) — v() = 0. a1

We first consider a sine wave excitation

v(®) = A cos2uft + 0), Q)
and we assume that the response current is a sine wave of the same frequency,
/s

i(Y) = B cosQaft + ¢). 3
Substitution of expressions (2) and (3) into (1), the equation relating i(¢) to v(),
yields (after some algebraic and trigonometric manipulation)

B = A[H(f)|
¢ = 0 + arg{H(f)}, 4
where
27fC

H = = |H farg{H(f)} 5
In (5), i denotes the imaginary number, i = \/—1, and |-| and arg{-} denote the
magnitude and angle, respectively, of a complex number. Thus, (3) and (4) yield
the solution

i(t) = |H(f)|A cosQaft + 0 + arg{H(f)}). (6)
Hence, the generally complicated problem of solving an integro-differential equation
reduces, in this case of sine wave excitation, to relatively simple algebraic and
trigonometric manipulation. The simplicity of the solution is most evident for
a complex sine wave excitation

v(t) = Ae'PP = A cos(2mft + 0) + iA sinQuft + 6). (7
Following the same procedure, we obtain
i(t) = H(f)u(). (8)

The solution (6) for a real sine wave excitation is simply the real part of the
complex solution (8).

Now, let us inquire if this same simplicity of solution is possible for excitations
other than sine waves. To show that it is, in essence, still possible, the Fourier
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transforms
V() = Flo()},  I() = F{i(")}

of the waveforms v and i are introduced:

V(f) = f :u(t)e—""ﬁ dt

I(f) = fiomi(t)e‘iz"f’ dt. ()]

By Fourier transforming both sides of the integro-differential equation (1) and
using the properties summarized by

di

F{L— + =i dt} L@2af)F{} + —( L )F{z}

27

we obtain the solution for I in terms of V,

I(f) = H(NHHV(f), (10)
which looks much like the solution (8) for the complex sine wave excitation.
However, now we must inverse Fourier transform this result,

i) = FIC), i) = ]_wl(f)eiz"f' df, (11)

to obtain

i = |__HOVDE af 12

The reason we obtain essentially the same simplicity of solution to the potentially
complicated equation (1) by using the Fourier transform is that this transform
decomposes the waveforms i and v into continuous sums (integrals) of weighted
sine waves (11). Thus, we are using sine wave analysis of waveforms. Let us
now consider in more general terms the precise situation for which it is especially
useful to analyze (decompose) a waveform into sine wave components.

Sine waves are especially appropriate components with which to analyze
waveforms when we are studying linear time-invariant (LTI) transformations of
waveforms (such as the transformation relating v(¢) to i(?) in the preceding circuit
problem). An LTI transformation can be characterized by the convolution operation
that transforms a waveform, say x(f), into another waveform, say y(¢), according
to the formula

y0) = f: h(t — w)x(u) du = f:o h()x(r — v) dv
= h(2) ® x(0),

for some weighting function A(f). The time-invariance property is, more precisely,
a translation invariance property that guarantees that a translation by w of x(z)
tox(t + w) has no effect on y(¢) other than a corresponding translation to y(¢ + w)
(exercise 1). The linearity property guarantees that the transformation of a linear
combination of component waveforms, say x(f) = a;x;(!) + a,x,(9), is simply

(13)
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the same linear combination of the transformations of the component waveforms,
y() = ayy,(8) + ayy,(f), where y,(t) = h(t) ¥ x,(¢) is the transformation of x,(¢)
and y,(1) = h(t) ® x,(1) is the transformation of x,(¢) and a, and a, are arbitrary
real or complex numbers. To understand better the nature of the convolution
operation that characterizes all LTI transformations, we consider a discrete-time
approximation to the integral in (13),

y©) = D, h(nADx(t — nADAt = -+ + h(—ADx(t + ADAt + h(0)x(t)At

n= —oo

+ h(ADx(t — ADAL + hQQADx(t — 2A0AL + -+, (14)

in which At is a fixed increment of the variable t. We see from (14) that convolution
is approximately a linear combination of time-translates, x(t —nAt), of a waveform
x(#); that is, it is approximately a sum of weighted versions of the translates
x(t — nA®). In fact, (13) reveals directly that convolution is precisely a continuous
linear combination of time-tianslates. In order to discover the consequences of
this, we observe (exercise 3) that the only type of bounded waveform whose
form is invariant to translation—in the sense that

x(t + w) = cx(d) (15)

for all t and w and for some scalar, ¢, whose value can depend on w but not
on t—is the complex sine wave

x() = ™" (16)
for arbitrary real f. The invariance of (15) holds for (16) with
¢ = v, 17)

As a consequence of this unique translation-invariance property, the complex
sinewave is the only bounded waveform whose form is invariant to LTI trans-
formation. To illustrate, we substitute (16) into (13) to obtain

y(t) — jf h(v)eiZ‘n'f(tfv) dv

= f h(v)e 2™ dy ™™

= H(f)e*™ = H(f)x),

where
H(f) = [Omh(v)e"z”f” dv. (18)
Thus, with x(¢) given by (16), we obtain
(@) = H(f)x(). (19)

In common terminology, the weighting function k(") is the impulse-response
Sfunction of the LTI transformation (exercise 2), and H(-) is the transfer function.
Moreover, (18) reveals that these two functions are related by the Fourier
transformation

H() = F{h()}. (20)

Chap. 1 Appendix 1-1 29



As a result of this invariance property of complex sine waves with respect
to LTI transformations, the study of LTI transformations is greatly simplified
by analysis (decomposition) of the waveforms subjected to the transformation
into sine wave components. To explain, we first observe that a real waveform
with finite energy,"” denoted by &,,

0<%’xéf

oo

wxz(t) dt < oo, @2n

can be exactly represented'® on any finite time-interval, say [— 7/2, T/2], by a
denumerable linear combination of sine waves, namely, the Fourier series,

2 Xmei27rmAft Af

x(t) =
= - [X_,Afle 2™ + [X,Af] + [X,4fTe*™
+ [X,Af1”™Y + . e [-T/2,T/2], (22a)
for which Af = 1/7. The amount of the sine wave component ¢>™" in the
representation is the Fourier coefficient X,,Af for which
1/2Af
X, & f x(t)e 2 gy, (22b)
—1/2Af
Since X,, and X_,, are a complex conjugate pair (for real x(¢)), then
X_, e 2™ 4 X, P = 2|X,, |cosQRumAft + arg{X,,}). (23)
To illustrate, we consider as an example the specific waveform
e “, t=0
x(0) = {0, £ <0. @4)
Substitution of (24) into (22b) yields
1 )
X - _ ,—aT/2  —immAfT
" a+i27'rmAf(1 ¢ ¢ )
1 1
=T T>>—. 25
a+2amAf for a @5)
The magnitude of the mth sine wave coefficient is therefore
1
|X,,| = (26)

[@* + Qam/T)]'/*
A graph of these magnitudes versus the discrete frequency variable f = mAf =
m/T is shown in Figure 1-1-2 for increasing values of 7. The envelope of the
coefficient magnitudes, which is described by the function

IX(NI = [

1
a’* + Qaf)1V* @7

"If x(¢) is a voltage (measured in volts) developed across a resistance of 1 ohm, then &, is
the energy in joules dissipated in the resistance.

'® More precisely, the energy in the error between x(f) and a finite term approximation (truncated
version of the infinite series (22a)) approaches zero as the number of terms approaches infinity.
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remains fixed as 7T increases, but the individual sine wave coefficients become
increasingly more dense.

By letting T — <o (Af — 0) in (22a), we heuristically see that x(f) can be
exactly represented for all time ¢ by a nondenumerable linear combination (i.e.,
a continuous weighted sum) of sine waves,

x(f) = j : X(f)e™™ df, (28a)

for which X(f) is heuristically obtained from
X(f) = lim X,,
Af—0

with f = mAf, which yields the definition

oo

X(f) A j e dr. (28b)

Equations (28a) and (28b) are the inverse Fourier transform and Fourier transform,
respectively:

x() = FYX()},  X() = F{x()} 29

The decomposition (28a) of x(¢) into sine wave components indexed by f,
lim X,,e?™ = X(f)e'>™" & x(1), (30)
Af—0

when substituted into the LTI transformation (13), yields the desired result:

1) = f i f XN df du

= j l f lh(u)e*”"f“ du X(f)e”™ df €2))
= Lo H(N)X(f)e™™ df.
That is,
y = F{r}
Y(f) = H(N)X(S). (32)

In conclusion, the effect of an LTI transformation on a waveform is simply
to scale its sine wave components. The scaling function is the transfer function,
and therefore

¥ = Y(f)e*™ = H(f)X(f)e™™ & H()x,0). (33)
There is no interaction among these sine wave components when x is transformed

into y. This is due in part to the fact that the sinewave components are uncorrelated

with each other, in the sense that
172

(o xp), = lim — | xi(OxE@ dr =0, fi ¢ o (34)

Tow 1 J -1/
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and

<yf1’ yfz)t =0, h#h (35)
(the asterisk denotes complex conjugation). Property (34) can be verified (exercise
5) by substitution of (30) into (34). Because of these properties, (33)—(35), of
sine wave components with respect to LTI transformations, the components y.(¢)
are called the principal components of y(t) with respect to the LTI transformation
of x(¢). The values of H(f) are called the principal values, or the eigenvalues,
and the functions €™ are called the eigenfunctions of the LTI transformation.
(The prefix eigen means characteristic.)
It follows from (28a) that X(f) is the density of sine wave components
contained in x(¢#). Moreover, the Fourier transformation (28b) and its inverse
(28a) can be expressed explicitly in terms of sine wave components as

x() = f X0 df (282)’

x (1) = J’_ x(w)e™ " qy. (28b)’

Since (28b)’ is a convolution, we see that x(f) is the response to x(#) of an
LTI transformation with impulse-response function

g = & (36)
and corresponding transfer function (exercise 2)
G@w) =8(f — v), (37)

which is an ideal filter (with infinite gain) that passes only the single sine wave
of frequency f and transforms this infinitesimal sine wave component into a finite
sine wave component.

As a final item in this brief review it is pointed out-that inspection of (13)
and (32) reveals that if a function, say y, is given by the convolution of two
other functionsd, say x and A4, then the Fourier transform of y, Y, is given by
the product of Fourier transforms of x and H: Y = XH. This result is known
as the convolution theorem. Additional review material is incorporated in exercises
2,4,7,8,9, 10, 12, 13, 14, and 16.
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NONSTATISTICAL
SPECTRAL ANALYSIS

This chapter introduces the basic elements of empirical spectral analysis, namely,
the time-variant periodogram and time-variant correlogram, and establishes the
fact that these two functions are a Fourier transform pair. The temporal and
spectral resolution capability of the time-variant periodogram is determined, and
a fundamental time-frequency uncertainty principle is established. This principle
is illustrated by application to instantaneous frequency measurement in Appendix
2-1. The relationships between the time-variant periodograms of the excitation
and response and between the time-variant correlograms of the excitation and
response of a linear time-invariant transformation are derived. These relationships
are illustrated by application to instantaneous frequency demodulation in Appendix
2-1. They are also employed to derive a time-variant local-average power spectral
density function. Finally, the spectral-aliasing phenomenon associated with periodic
time-sampling is explained in terms of the time-variant complex spectrum.

Throughout this chapter and the rest of the book, it is assumed that the
mathematical model for each time-series of interest, say x(¢), unless otherwise
specified is sufficiently well behaved to be lag-product integrable as well as
Fourier transformable on every finite interval; that is, the integral

[+l # 3l -3

exists for every finite a and b. Then all of the finite-interval correlations and
spectra defined in this chapter exist. It is also assumed that the limit

IJ'T/Z T T
im — = — =) dt
Jim 7 _mx(’ * 2)x(t 2)d
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exists for every finite 7 and unless otherwise specified is continuous at 7 = 0
(and therefore is continuous at every 7 [Gardner 1985].) Then all limit correlations
defined in this and following chapters exist.

Motivating Example:

We consider the situation in which a physical system possesses several modes of
resonance. This could be an electrical circuit, a mechanical system, or some other
type of physical system. Let us assume that the system is repeatedly (aperiodically)
subjected to impulse excitations and the system response (e.g., voltage or displacement)
is recorded. In order to determine the natural frequencies of resonance and their
associated damping factors, or bandwidths, it is desired to Fourier transform the
recorded data in an attempt to estimate the transfer function of the system, which
exhibits a peak for each resonant mode of the system. If the impulse excitations
occur irregularly and the corresponding responses overlap each other in time, then
it is not clear how long a segment of the recorded composite response shouid be
Fourier analyzed. To complicate matters further, suppose that the physical system
is changing with time, so that the resonant frequencies and bandwidths are changing.
If it is desired to track these changes by allowing the time interval over which the
recorded data is Fourier transformed to slide along with time, then how does this
affect our choice of the segment length that is to be analyzed at each time instant?
In this chapter we shall obtain answers to these and related questions by determining
the temporal and spectral resolution capabilities of the time-variant periodogram
obtained by Fourier transforming a sliding segment of data.

A. TEMPORAL AND SPECTRAL RESOLUTION

The time-variant finite-time spectrum' of x(1), also called the time-variant per-
iodogram of x(t), is defined by

S, 0.0) 2 2Kt P 0

t+T/2
X(t,f) £ ft 2x(u)e"'z”f“du (2a)

and is the normalized squared magnitude of the Fourier transform of a data-
segment of length T centered at time ¢, as depicted in Figure 2-1. As revealed
by the inverse Fourier transformation,

x(u) = Lo Xo(t, e df,  u€lt - T/2,t + T/2], (2b)

the Fourier transform X, (¢, f) is the density of complex sine wave components
{e** 1 —oo < f < oo} contained in x(u) for u € [t — T/2, t + T/2]. This
transform is called the time-variant finite-time Fourier transform, or time-variant
finite-time complex spectrum. In order to reveal the resolving power of this
spectral measurement on x(?), it can be reexpressed in the two alternative forms

! This function was originally introduced by Harold Thayer Davis (1892-) [Davis 1941] for
tracking nearly periodic components with slowly evolving amplitude and phase.
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segment of length T

time
Figure 2-1 Data segment for time-variant spectral analysis.
(exercise 1)
1 ~i2m
St f) = ?I[x(t)e M ® ar(n)f (3)
1 i
=7 X7, )e*™ @ Ayr(HI, 4)

in which a; is a rectangle function of width T (to be generalized following the
discussion in this section)

1, |t| < 1/2

1 = 5
ar(t) {0, 1 > 172, ®)

and A7 is a sinc function with width parameter 1/7T (also to be generalized
following this discussion):

Ay(p) = ST ©®
mf
In fact, a; and A,,r are a Fourier transform pair
Ayr () = Flar (1)} (7a)
That is,
Ayr(f) = f war(t)e'iz"f’ dt. (7b)

Since convolution of any function, say y, with any pulselike function typically
removes all fine structure (wiggles) in y within intervals of the length of the
pulselike function (or less),” as illustrated in Figure 2-2, then (3) reveals that
S.,(t, f) typically will not have fine structure in ¢ within intervals of length 7 or
less, and (4) reveals that S, (¢, f) typically will not have fine structure in f within
intervals of length 1/T or less. This is further illustrated in exercises 2 and 3.

2 There are exceptions to this general rule, but they are typically pathological, in the sense
that the function y cannot represent random data but instead must exhibit a special type of structure;
see exercise 2 with T = 10A.
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Figure 2-2 (a) A function y for illustration of the smoothing effect of convolution with a
pulselike function. (b) A pulselike function p. (c) Smoothed version of function y obtained
by convolving with pulselike function p.

Thus, the time-variant finite-time spectrum S, (¢, f) has temporal resolution width,
denoted by Ar°, of
A =T t)]
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and has spectral resolution width, denoted by Af°, on the order of’

1
Af°=—.
f T )
The product of temporal and spectral resolution widths is therefore on the order
of unity,
AfPAfC =1, (10)

regardless of the length T of the analysis interval [t — T/2, t + T/2].

Another approach to establishing that X(¢, f)—and, therefore, S, (¢, f)—
has spectral resolution width on the order of 1/T is to prove that X,(¢, f) can
be exactly reproduced only from its frequency samples at f = n/T for all integers
n by interpolation. Thus there cannot be significant fine structure between points
separated by 1/T or less. This is explained in exercise 15.

The practical significance of the preceding results ((8)-(10)) on resolution
can be explained as follows. If there are spectral features in the data x(r) that
are as narrow as Af* (e.g., spectral peaks due to resonance phenomena), for
example, then these cannot be accurately resolved by the periodogram unless
Af° < Af*. Thus, the data segment length T analyzed must satisfy T > 1/Af*.
If the spectral features are changing with time and significant changes occur in
time intervals as small as Ar*, for instance, then these time-variations cannot
be accurately tracked by the time-variant periodogram unless A¢° < Ar*. Thus,
the data-segment length T analyzed for each time instant ¢ must satisfy 7' < Ar*.
Furthermore, (10) reveals that both tasks of spectral resolution and temporal
resolution (tracking) can be performed accurately only if Ar*Af* > 1. In fact,
it can be reasoned that it makes no sense even to conceive of a spectral feature
of width Af* changing substantially in a time-interval of length Ar* < 1/Af*,
regardless of the physical phenomenon (see exercise 23).

B. DATA TAPERING

The pulselike function a; in (3) plays the role of a temporal aperture, or window,
through which the data is seen, as revealed by reexpressing (2a) as

oo

Xr(t,f) = f_mar(v)x(t — v)e " gy (11a)

or

X, f) = [x(Oe "] ® ar(@). (11b)
That is, the complex spectrum X(¢, f) depends on those values of x(r — v) that
occur within the interval of v determined by a;(v)—those values of x seen
through ar. Similarly, the function A,,; plays the role of a spectral window as
revealed by (4) (which is analogous to (11b) except for the square). Furthermore,
these temporal and spectral windows are a Fourier transform pair (7). Moreover,

* The particular value here depends on the particular definition of width adopted. For example,

if the width is defined to be the distance between the first zero-crossings to the left and right of the
center of the pulse (6), then Af° = 2/T.
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since the Fourier transform of any pulselike function is itself pulselike and the
width of this Fourier transform is on the order of the reciprocal of the width of
the original pulselike function® (exercises 14 and 15), then relation (10) holds
regardless of the particular shape of the temporal window a,. However, the
particular shape of window, especially the spectral window A,,;, can be of
considerable importance, as discussed in the following chapters, and for this
reason the definition of the time-variant finite-time spectrum is generalized to
allow for an arbitrary pulselike function for the temporal aperture a; in (3). Four
apertures of particular theoretical interest are defined as follows:

Rectangle:
1
- H=<T/2
w27 =T (12)
0, | > 7/2
Triangle:
1
vr(®) = 4T T (13)
0, [t >T
Sinc:
a sin(@t/T) 5 1 . (L)
wp(t) = — Tsmc T (14)
Squared sinc:
A o |sin(@/TY2 1 . 2(1)
zr() =T — | = Tsmc 7): (15)

Each of these windows, which are depicted in Figure 2-3, is defined to have
unity area. An aperture with unity area preserves the level of the function it is
convolved with, whereas an aperture with unity height preserves the level of
the function it multiplies.

Apertures other than the rectangle have a tapering effect on the data they
multiply, since data occurring away from the aperture center are attenuated
relative to the data at the aperture center. Consequently, temporal windows
other than the rectangle are called data-tapering windows. The symbol a; will
be used from now on to denote an arbitrary data-tapering window of approximate
width T and unity height at the origin. For example, a; can represent any of
the four windows Tuy, Tvy, Twy, or Tzy. It should be noted that if g, is not
an even function, a;(—¢) # az(¢), then in expressions (3) and (11), ar(—¢) rather
than a,(¢) is the window that multiplies the data. This particular definition of
ar enables X;(¢, f) to be expressed as a convolution with a,(¢) rather than with
ar(—1). It should also be noted that with a; representing apertures other than

* The pulselike functions for which this reciprocal relationship holds are sometimes called
simple functions, and functions for which the product of widths greatly exceeds unity are called
complex, or sophisticated, functions (cf. [Vakman 1968]).
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Figure 2-3 (a) Rectangle window u;. (b) Triangle window v;.

the rectangle, expression (4) must be modified. For example, (4) is valid, with
Xz(2, f) in S,,(¢, f) in the left member of (4) defined by (11) for any data-tapering
window satisfying ar(z) = O for |f| > T/2, only if X;(z, ) in the right member
of (4) is defined by (2a) (which is (11) with a; = Tuy); otherwise, (4) must be
further modified. For example, (4) is valid with X,(z, f) in S, (¢, ) defined by
(11) for any positive ay if for the right member of (4), ay is replaced in (7) and
(11) with its square root. In any case, the interpretation of (4) or its modified
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versions is the same. It reveals that the spectral resolution width of S, (¢, f) is
on the order of 1/T for any pulselike aperture a; of width 7.

C. TIME-FREQUENCY UNCERTAINTY PRINCIPLE

When the amount of data to be analyzed is fixed at T units of time, then the
spectral resolution width is fixed to be on the order of 1/T. However, the precise
value of spectral resolution width Af° depends on the particular data-tapering
window via (7) (as well as on the particular definition of width of the pulselike
function A,/;). It is therefore of interest to determine the particular data-tapering
window a; of a given width that yields the finest possible spectral resolution.
By adopting the square root of the second central moment (standard deviation)
of the square of a function as a particular measure of its width, it can be shown
[Franks 1969] that the product of widths of temporal and spectral apertures is
minimized by the Gaussian aperture,

—(t/T)?
ar() = exp [ =412 (162)
whose Fourier transform also is Gaussian:
r~ —QafT)
Ayr(f) = T\/2m exp [—2— . (16b)
The minimized resolution product is
. 1
min{A°Af°} = —, 17)
2

for which Af° and Af° are defined to be the second central moments of the
(unsquared but positive) apertures, (16). Apertures that are more convenient for
implementation such as (13) (and other measures of width) yield resolution products
that are closer to unity than (17).

The general relation (10) and the specific bound (17) are referred to as
Dennis Gabor’s time-frequency uncertainty principle [Gabor 1946], after Werner
Heisenberg’s related principle of indeterminacy for wave mechanics, which was
formulated in 1927 (see [Vakman 1968; Robinson 1982]).

D. PERIODOGRAM-CORRELOGRAM RELATION

As a slight generalization of the periodogram-correlogram relation described in
Chapter 1, Section C, we have the following relation, which can be obtained by
application of the convolution theorem for Fourier transforms:

S.(t, ) = KR (&, )}, (18)
for which the function R, (¢, 7) is defined by
l t+(T—|1)/2

R, (t,7) & T X+ 7/2x( = 7/2) do RTun (D), (19)

and is called the time-variant correlogram and also the time-variant finite-time
autocorrelation. This function can be obtained from the more conventional static
correlogram, described in Chapter 1, Section C, by simply letting the time location
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of the data segment of length T evolve with time ¢ so that [— T/2, T/2] is replaced
by [t — T/2,t + T/2]. The limits of integration in (19) reflect the fact that the
interval of overlap of data segments of length T, centered at 1 + 7/2 and
t — 7/2,is [t + T/2 — |7|/2, t — T/2 + |7|/2] (see Figure 2-4). The unity-
height rectangle-window factor in (19) reflects the fact that this interval of overlap
vanishes when |rf| > T, and therefore the correlogram vanishes. This identity
(18) can be further generalized (exercise 5) to incorporate data tapering by replacing
definition (1) of S, (¢, f) with the more general form (3), in which a7 is any data-
tapering window, and by replacing definition (19) of R, (¢, v) with the more
general definition

oo

R, (t, 7) = le— ar(v + 7/2x(t — v — 7/Da;(v — 7/2)x(t — v + 7/2) dv.

(20)

The subscript T in R, (, 7) denotes an approximate width of this function of 7,
similar to the width T of the triangle window v, with base 2T. (The exact width
beyond which R, (1, ) = 0is 2T if a;(r) = 0 for |r| > T/2.) The generalized
definitions (1), (11a), and (20) reduce (exercise 5) to the specific definitions (1),
(2a), and (19), respectively, when ay is the rectangle aperture (see Figure 2-4).

E. FINITE-AVERAGE AUTOCORRELATION
AND PSEUDOSPECTRUM

In the development of the statistical theory presented in subsequent chapters,
another definition of an autocorrelation function plays a fundamental role. By
contrast with definition (19), which yields the correlation of a finite data-segment

x(t — v)[Tur(v)], the alternative definition
t+7T/2

R.(t, 7)1 2 }J;~T/2 x(v + 7/2)x(v — 7/2) dv [2Tuyr(7)] 1)

yields the correlation of an unlimited data-segment, but integration of the lag
product x(v + 7/2)x(v — 7/2) is carried out over only a finite interval (compare
with (20)), and only a finite set of lag values |r| < T are considered. The function
R.(t, 7) is called the time-variant finite-average autocorrelation.

Motivated by the periodogram-correlogram relation (18), an alternative time-

variant spectrum is defined by

S, )7 £ FR, )} (22)
The function S,(z, f) is called the time-variant pseudospectrum. The term pseudo
is used because, unlike the periodogram S, (¢, f), the function S,(, f)r can take
on negative values. Moreover, it is not obtainable from a Fourier transform of
a segment of data in contrast to (1).

It should be noted that the distinction between the definitions of the two
types of spectra defined by (1) (or (3)) and (22), and between the two types of
autocorrelations defined by (19) (or (20)) and (21), is denoted by the two different
locations of the subscript T.

The primary reason that the finite-average autocorrelation and its Fourier
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transform, the pseudospectrum, play a fundamental role in the theory of statistical
(time-smoothed) spectral analysis is because a time-smoothed spectrum is closely
approximated by a frequency-smoothed pseudospectrum. This follows from the
periodogram-correlogram relation and the following identity between time-smoothed
autocorrelations (for untapered data):

[R,, (£, T) ® us )12t U (7) = [R(t, T)a & g y(D)] Tv7(7) (23)
(for which both convolutions are in the time variable f), which can be used to
derive the approximation

R, (&, 7) ® uplt) = R (1, DadTor (0], T << At

This approximation reveals that a time-smoothed correlogram can be reinterpreted
in terms of a tapered (by v;) finite-average autocorrelation. Fourier transformation
(in 7) of both sides of this approximation yields the desired result, which is
explained in Chapter 3, Section B.

In preparation for discussions in subsequent chapters of several such equiv-
alences between time-smoothing and frequency-smoothing, the underlying ap-
proximations involving autocorrelations are described here.’ First, it is noted
that (23) follows (exercise 6) from the more fundamental window identity

T — |1

f|<——
== (24)
T -

>
which is depicted in Figure 2-4. Now, identity (23) can be used to derive the
approximation

R, (1, 1) @ us() = RAt, sl Tvr()], T << At (25)

This approximation can be made as accurate as desired for any given ¢ and T
and all 7 by choosing At sufficiently large, provided only that the limit autocorrelation
ﬁx(T) ((6), Chapter 1) exists (exercise 9). Analogous to identity (23), it can be
shown that

T T T2’
I/IT(I - E)MT(t + ’2_) = UT(T)MT—H(t) =
0, 1 >

[R.(t, )y ® us )12t ura(7) = [R(t, T)as & tr ()] 2Tur(7), (26)
and this identity can be used to derive the approximation
R.(t, 7)1 ® upt) = R(t, T)a, [2Tuyr(7)], T << At (27

Approximation (27) can be made as accurate as desired for any given ¢ and T
and all 7 by choosing At sufficiently large, provided only that R (7) exists (exercise
8). As a generalization of approximation (25) which is for untapered data, it can
be shown by using definition (20) that for tapered data

Rt ) ® us) = Rt Do ro®),  T<< AL, 28)

for which the function

oo

D 2 GO @ a0 = | e+ Dagw du 29)

® The reading of the material in this paragraph can be postponed until needed in subsequent
chapters.
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is called the finite autocorrelation of a;. Approximation (28) can be made as
accurate as desired for any given ¢ and 7, all 7, and any given bounded aperture
whose support® is contained within a finite interval by choosing At sufficiently
large, provided only that RX(T) exists (exercise 10). Finally, it can be shown that
the two types of autocorrelations in (19) and (21) are approximately equal over
a limited range of 7. For convenience in the sequel, let 7 in (19) and (21) be
replaced by At; then this approximation can be expressed as

R.(t,7)s =R, (1, 7), 7| = T << At. 30)
This approximation can be made as accurate as desired for any given ¢ and 7,
by choosing Az sufficiently large, provided only that R (r) exists. The accuracy
of approximations (25), (27), (28), and (30) can be quantified in terms of rms
error, that is, the square root of the average over all time ¢ of the squared error
of approximation. This approach is set up in Chapter S.

Related to the preceding approximations is the fact that the limit autocor-
relation ((6), Chapter 1) can be obtained (exercise 7) from the limit of either the
correlogram (for untapered data) or the finite-average autocorrelation

R(7) = lim R, (t,7) = lim R, 7)r, 31)
T—oo T—oo

and this limit is independent of . Furthermore, for tapered data it can be shown’
that

Figure 2-4 Product of shifted windows.

lim R, (t,7) = yR(), (32)
for which the scale factor
PR I
y= lim - | aiodt (33)
Tooeo 1 J-

¢ The term support denotes the domain over which a function is nonzero.

7 (31) is established in [Wiener 1930] (see also exercise 7 and [Kampé de Fériet 1954]), and
(32) is established in exercise 11.
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is typically on the order of unity, since ar has width parameter T and unity
height parameter (see (5)).

F. PERIODOGRAM AND CORRELOGRAM RELATIONS
FOR FILTERS

As explained in Chapter 1, Section B, a fundamental motive for spectral analysis
is a preoccupation with data filtering. It is therefore important to determine the
effect of filtering on the correlogram and periodogram. Let us consider the filtered
data

y(0) = h() @ x(2). (34)
It can be shown that the finite-average autocorrelations of x and y are related
by the approximation

R(t, 1) r=R(t, I)r @ r(7), || < T — 2A7%, T >> At*, 35)

(™) = h(7) @ h(—17), (36)
for which A7* is the memory length of the filter, namely, the width of A(). (The
condition |r| < T — 2A7* avoids edge effects.) Approximation (35) can be made
as accurate as desired for any given ¢ and 7 and any bounded /4 with finite support
by choosing T sufficiently large, provided only that R,(T) exists (exercise 12).
Similarly, it can be shown that the correlograms of x and y are related by the

approximation
R, (t,7) =R, (t,7) Q (1), T — || > Ar*. (37
Both approximations (35) and (37) become exact equalities in the limit 7 — o :
R(@) = R @ ryo). (38)

Approximations (35) and (37) can be used to derive the following approximations
between pseudospectra and between periodograms (in which the symbol T has
been replaced with the symbol A#):

Sy(t, far @ war(f) = [H(OPSt, Nad @ war(f),  AtAf > 1, At >> Ar*,
(39)
Sy (6, 1) @ war(f) = [H(OPS.,, (6, DI @ war (), AIAf> 1, At >> Ar*.
(40)
These approximations become exact in the limit Az — oo for any Af > 0 (exercise
13). In fact, as shown in Chapter 3, Section C, by also letting Af — 0, the
following relation is obtained:

5,00) = 840 [HP, @1)
where S ( f) is the limit spectrum introduced in Chapter 1,
S4) 2 lim lim S, ) ® wa(f). 42)
Af>0 At—oo

Moreover, as also shown in Chapter 3, Section C, (42) yields the identity
5.0) = FR,()}, (43)
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which is called the limit spectrum. (Thus, (41) can be obtained directly from
(38) using the convolution theorem and identity (43).) It is pointed out that if
Af < 1/A7*, then the operations of smoothing and multiplication by [H(f)* in
(39) and (40) can be interchanged. Also, if there is no anomalous behavior in x
at the edges of the data segment (i.e., within A7* of the two time points ¢ +
At/2), then the condition At >> A7* can result in (39) and (40) being accurate
approximations even with the frequency-smoothing operation (convolution with
wyy) deleted.” Since the condition At >> Ar* guarantees that the time-variant
spectrum and pseudospectrum are nearly time-invariant throughout the entire
response time of the filter, then the relations (39) and (40) are said to be quasi-
Static approximations.

Before proceeding it should be clarified why the condition Az >> Ar* is
needed in order for (40) to be a close approximation. To illustrate the necessity
of this condition, consider the situation where At = Ar*. In this case, the
response time, or memory length, of the filter equals the length At of the input
data segment being considered. Therefore, this input data segment will produce
an output data segment that is Az + A7* = 2Ar in length. Consequently, the
output segment of length At contains only half of the effects due to the input
segment. Therefore, there cannot be a one-to-one relationship between input
and output data segments of length At = Ar*. As an extreme example, if the
impulse response were A(r) = 8(r — A7*) and if x(¢f) were nonzero only within
the interval t € [—At/2, At/2], then y(t) = O for t € [—At/2, At/2] for At <
Ar*. Thus, S, (0, f) = 0, regardless of S,, (0, f). Hence, the approximation
S, 6, ) = |H(OP S, f), in which |[H(f)] = 1 in this example, would be
extremely poor for t = 0 and, in fact, very poor for all t € [—At/2, At/2].

Let us consider a practical application of (40). If 4(7) is the impulse response
of the multiply-resonant system discussed in the motivating example at the beginning
of this chapter, then the width of A(7) will be equal to several (say three to five)
time constants of the most narrow-band resonance. If At does not greatly exceed
this system memory length, then we cannot satisfy the conditions in (40). On
the other hand, if At is sufficiently large to satisfy these conditions and if Af is
smaller than the width of the narrowest resonant peak in the transfer function
magnitude |H(f)|, then by interchanging the order of the operations of smoothing
with w,,(f) and multiplication by |H(f)’, we obtain the close approximation

S, (6. ) ® wa, (f)
H(f) = :
H = o Y @ war ()

This can be used as a basis for determining the resonant frequencies and bandwidths
of the system. This idea is discussed further in the next chapter.

Relations (38) and (41) are called the limit-autocorrelation and limit-spectrum
relations for filters, respectively. These relations reveal that the limit autocorrelation
and limit spectrum are each self-determinate characteristics under an LTI trans-
forn/z\ation; that is, the only characteristic of x that determines Ry (or 5,) is R,
(or S,).
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G. LOCAL AVERAGE POWER SPECTRAL DENSITY

Relation (40) can be used to derive an interpretation of the time-variant periodogram
S.,(t, f) as the time-variant (or local) spectral density of average power in x(1).
Specifically, let H = F{h} be the transfer function of an ideal band-pass filter
with center frequency f (and image —f) and bandwidth Af*,

H@) = {1’ ”V‘ _fl = Af*/z (44)
0, [l-f1>Aar*/2.

Then, in view of the discussion in Chapter 1, Section B2, we see that the filter
output y represents the spectral content of the filter input x only in the band of
width A f* centered at f (and the image band centered at —f). The instantaneous
2 - . . . %
power ¥°(¢) in this spectral band, averaged over the time-interval [t — Ar*/2,
t + Ar*/2], is therefore
t+Ar*/2

Parapt, ) & 15 | ¥i(w) du (45)
=R,,.(t,0) (46)
= f S, (1, ) dv. 47)

Equation (46) is simply definition (19), and (47) is relation (18) in inverse form,

R, (t,") = F7'{S, (1, )}, (48)

with T = Ar* and evaluated at 7 = 0. Now, (47) can be identified with the left
member of (40), with Af — oo and Ar = Ar*. Therefore, substitution of (44)
into the right member of (40) yields (using S,,,.(t, —v) = S, ., v))

f+Af*/2
Pppppslt, f) =2 J;’—Af*/z SxM.(t, v) dv, Ar*Af* >> 1, 49)
in which the approximation
1
Ar* = NG (50)

has been used. (The factor 2 in (49) is due to the image band [—f — Af*/2,
—f + Af*/2].) It follows from (49) that the power of x(¢) in the spectral band
[f — Af*/2, f + Af*/2], averaged over the time interval [t — Ar*/2,
t + Ar*/2], is obtained, to a close approximation, by integrating the positive
function S,,«(t, *) over this spectral band. Since (49) is a close approximation®

# Since the ideal / corresponding to (44) does not have finite support, then the straightforward
method of proof analogous to that developed in exercises 12 and 13, that (40) and therefore (49) are
close approximations, does not apply. However, it does apply for bandpass filters that have finite
length impulse-response functions.
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to (45) if
APFAf* >> 1, 51)

then the periodogram S, (¢, f) (with T = Ar*) can appropriately be called the
time-variant average power spectral density of x(¢) if condition (51) holds. This
condition is called the time-frequency uncertainty condition for local-average
power spectral density. Furthermore, results in Chapter 5, Section C, reveal
that condition (51) is necessary (for a broad class of data) for (49) to yield a
reliable measurement of power spectral density for a constant phenomenon, in
which case P,pam(t, f) is essentially independent of ¢.

In summary, if it is desired to measure accurately the average power in
x(#) due only to spectral components in a band of width Af*, then the time-
average must be performed over an interval Ar*, greatly exceeding the reciprocal
bandwidth 1/Af*. And if the periodogram is to be used for this measurement
as in (49), then Ar* is simply the length of the data-segment that must be Fourier
transformed. From another viewpoint, we see that for a given data-segment
length A#*, the bandwidth A f* over which the periodogram must be integrated
as in (49) must greatly exceed the periodogram’s spectral resolution width 1/Az*.
Nevertheless, the raw (unsmoothed) periodogram can be a useful (if crude)
approximate measure of time-variant average-power spectral density, Py ap(2, f)
with Af* = 1/Af*, in some applications involving time-variant phenomena, such
as speech (see Chapter 8).

H. TIME SAMPLING AND ALIASING

Since spectral aralysis is often accomplished with digital implementations, which
operate in discrete time, it is important to understand the effects of time sampling
on the time-variant finite-time complex spectrum,

t+7T/2

Xo(t,f) & fhnz x(u)e ™ du. (52)

If x(u) is sampled every T, units of time, then the corresponding discrete-time
counterpart of (52) is
+T/2)/Ts
X:(t,f) & > x(nT)e T, (53)
n=—-T/2)/Ts
for which it is assumed (for simplicity of expression) that ¢/T, and T/2T, are
integers. Xi(t, f) is called the time-variant finite-time Fourier-series transform,
or the time-variant finite-time complex spectrum for time-sampled data. The
total number of time-samples transformed in (53) is N = T/T, + 1, which is an
odd number. Equation (53) can be reexpressed as the integral

t+T/2  ©

" > 8 — nT)x(we ™ du, (54)

—T,

X, f) = f

n
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and this integral can be reduced as follows:

Xt f) = J¥ > 8 — nT)Tu(t — wx(ue ™ du (53)
” 1 S m - —Ra(f—-vu
=T 2 8v - 5?)  Tuz(t — wx(we du dv (56)
o oo t+7T/2
7. 2 -], e auan 57
= % > f_m 6(v - %)XT(t,f— v) dv (58)
 [— m
=7 2 Xr(t,f - T)' (59)

Equation (56) is the convolution theorem together with the Fourier transform
pair (exercise 16)

- | =

F{ > 6(t—nTx)}=F S 5(f—ﬂ). (60)

Summarizing (54)-(59), we have

-  — m

= — - —=. 61

5.0 =5 3 Xfor-7) 61)

It follows from (61) that the complex spectrum of the time-sampled data is a

sum of translates of the complex spectrum of the continuous time data, as

illustrated in Figure 2-5. Thus, at a particular frequency f, X;(z, f) is the superposition

of all the values {X;(¢t, f — m/T,) :m = 0, =1, =2, =3, . .}. This is called

the aliasing phenomenon. If X;(z, f) is not negligible for |f| > 1/2T,, then

X, (t, )
i

/]

N/ \. 7/ \ 7/
A X X
S e L se—— -
B 1/Tg 2/Tg

Figure 2-5 Illustration of aliasing phenomenon for a triangular-shaped complex
spectrum X(¢, f) with bandwidth B > 1/2T, (¢ fixed).
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X (t, f_ ) can differ substantially from X;(z, /), and X(z, f) cannot be recovered
from X;(¢, f). Equivalently, in order to recover X,(¢, f) from X;(t, f), when
X.(¢, f) is negligible for |f| > B, the sampling rate must exceed 2B,

1
—>2B 62
T ; (62)

which is referred to as the Nyquist rate (in honor of Harry Nyquist’s pioneering
work [Nyquist 1928]).

Although it is not apparent from the aliasing formula (61), it can be shown
that the discrete-time periodogram

5t ) & < K OF ©3)

satisfies the periodogram-correlogram relation
St f) = FST{R, (¢, )}, (64)
where FST denotes the Fourier-series transform

FST{R, (t,7)} = > R, (t, qT)e ™" (65)
-
T/Ts _
= > Rt qT)e ™", (66)
q=-T/Ts

and i@xT(t, 7) 1s the discrete-time correlogram defined by

_ @+ T/2~|7)/Ts
R (t,7) = ~ > x(nT, + |Dx(nT)[2Tusr (7)),
n=—T/2)/Ts
=0, *T, £2T,, ..., =T, 67)

which is precisely the discrete-time counterpart of the continuous-time correlogram
(19) (with the change of variables v = u — |7//2). The relation (64) can be
shown to be a direct consequence of the convolution theorem for the FST
(exercise 19).

I. SUMMARY

In Section A, the time-variant periodogram, which is the squared magnitude of
the time-variant finite-time complex spectrum normalized by the data-segment
length T, is introduced as an appropriate measure of local spectral content of a
waveform; it is established that the temporal resolution width of the time-variant
periodogram is T, and the spectral resolution width is on the order of 1/T. In
Section B, the technique of data tapering is introduced as a means for controlling
the shape of the spectral smoothing window in the periodogram, and several
basic tapering apertures or windows are introduced. Then Section C explains
that regardless of the particular tapering aperture used, the product of temporal
and spectral resolution widths is always on the order of unity, because the
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corresponding temporal and spectral windows are a Fourier transform pair. In
Section D, the time-variant correlogram is introduced as a measure of local
autocorrelation of a waveform, and it is established that the time-variant periodogram
is the Fourier transform of the time-variant correlogram. Then in Section E, an
alternative measure of local autocorrelation termed the finite-average autocor-
relation is introduced, and its Fourier transform, the pseudospectrum, is claimed
to be a useful alternative to the periodogram when it is appropriately averaged
to obtain a statistical spectrum. Several exact and approximate relationships
among time-averaged correlograms and time-averaged finite-average autocorre-
lations are established for their use in the next chapter, where time-averaged
measures of spectral content are studied. It is also explained that in the limit
as the parameter T approaches infinity both the correlogram and finite-average
autocorrelation approach the ideal limit autocorrelation. In Section F, an ap-
proximate convolution relation between the correlograms (and finite-average
autocorrelations) at the input and output of a filter is derived and then used to
derive an approximate product relation between the corresponding periodograms
(and pseudospectra). It is explained that these approximate relations become
exact in the limit as the parameters T in (35) and (37) and Af in (39) and (40)
approach infinity. These are referred to as the limit-autocorrelation relation and
limit-spectrum relation for filters, (38) and (41). In Section G, the approximate
periodogram relation for filters is used to establish that the time-variant periodogram
can be interpreted as a measure of local-average power spectral density only if
the temporal and spectral resolutions are limited in order to satisfy the time-
frequency uncertainty condition (51). Finally in Section H, the discrete-time
counterpart of the continuous-time complex spectrum is introduced, and the
spectral aliasing phenomenon associated with time-sampling is described. Then
the discrete-time counterparts of the time-variant periodogram and time-variant
correlogram are introduced, and it is established that these are a Fourier-series
transform pair.

In Appendix 2-1, the concept of instantaneous frequency for a sine wave
with a time-variant argument is introduced and used to illustrate the resolution
limitations of the time-variant periodogram.

For the sake of emphasis, two basic and fundamental results on the rela-
tionships between the overall widths and the resolution widths of Fourier transform
pairs that are developed in this chapter and the exercises are repeated here at
the conclusion of this summary. If a time-function has overall width (duration)
on the order of 7, then the spectral resolution width Af* of its transform must
be on the order of 1/T. Furthermore, if the time-function is pulselike, then its
temporal resolution width Az* is on the order of its overall width 7. Similarly,
if a frequency function has overall width (bandwidth) on the order of B, then
the temporal resolution width Az* of its inverse transform must be on the order
of 1/B, and if the frequency function is pulselike (low-pass or band-pass) then
its spectral resolution width Af* is on the order of its overall width B. These
simple order-of-magnitude rules are a key to understanding the principles of
spectral analysis.
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EXERCISES

1. (a) Derive the time-convolution formula (3) from the definition of the time-variant
spectrum (1) and the rectangle window (5).

(b) Derive the frequency-convolution formula (4) from the definitions (1) and (6).
Hint: Use the change of variable # = ¢t — v in (2a), and use the identity
[x(t — v)Tu;(V)]Tu;(v) = x(t — v) for |v| < T/2 to show that

1X:(, )] = | J_w [x(t = v)Tur @)[Tur(v)e*™] du|.

Then use Parseval’s relation (exercise 9, Chapter 1).
2. As a simple illustration of the effect on resolution of convolution with a pulselike
function, draw graphs of the convolution y(r) = x(t) ® a(¢) for
x(0) = 8@t + AJ2) — 8(t — A/2)
a(t) = ur(t)
for T = 10A, T = A, and T = A/10. The case T = 104, in which x(¢) is a narrow

doublet, is an exception to the rule that the resolution width of y(¢f) will typically be
on the order of T.

3. To illustrate the spectral resolution capability of the periodogram, consider the sum
of two sine waves

x() = cosQmfit) + a cosQufat — P),
and show that

S, ) =T %sinc[(f — £)T]e Ui

+ 1sinc[(f+ fOT]e 2t

2
+ 5 sincl(f — f)T)e~Or -l
2

+ %sinc[( f + fTle Tru+fr=el (68)
_TIr. ., T.,
= Zsmc (f—AT] + 7 sinc’[(f + f)T]

2 2
+ (—14—Tsinc2[(f - HT] + ?sincz[(f + £)T]

+ S Sincl(f ~ )T sine [(f — T cos 2m(fy — f) + 6]

+ aTT sinc [(f + f)T]sinc [(f + f)T] cos 27 (f; — f)t + ¢] (69)

T . T .
=7 sinc® [(f — AT] + 2 sinc? [(f + f)T]
@1
4
Hint: Verify that the several cross-product terms in (68) are negligible for 2T >> 1

2
+ G (= 1 + “TT sinc? [(f + £)TI. (70)
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and 25T >> 1. Then verify that the two cross-products in (69) are negligible for
Ifi — AT >> 1 (for f # 0). Graphs of (68) for several values of |f; — £|T shown in
Figure 2-6 reveal that the two spectral components in x(#) are not resolved by
S, (t, ) unless |f; — fo| > 1/T.

Sx(t. f)

(@)

Sx(t, f)

(b)

Figuri/g-(i Spectra of two sine waves: (@) f, — f, = 1/T, a = V2. 0 f — fi = 3/2T,
a=1\/2.

4. (a) Prove that a spectral window A has unity height, A(0) = 1, if and only if the
corresponding temporal window a has unity area

fi at)dt = 1

and vice versa. Verify that the transform pairs in Table 1-1 satisfy this property.

(b) Prove that areas multiply under convolution; that is, if a(f) has area a and b(¢)
has area B, then a(f) ® b(¢) has area aB. Verify that this property is satisfied
by vr(t) = up(t) ® ur(t).
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Syt f)

()
Sx(t, )

N -

@
Figure 2-6 (continued) (¢) f; — f; = 2/T, a = V2. ) f, — fi = 10/T, a = \/2.

(¢) Evaluate the aperture parameter y in (33) for unity-height rectangle and sinc
windows. Hint: Use Parseval’s relation for the sinc window.

(d) Use the convolution theorem to prove that
wr(f) @ wr(t) = wr(?). 1)

5. (a) Use definitions (1), (11a), and (20) to verify the time-variant periodogram-correlogram
relation for tapered data (18). Hint: Express (20) as a convolution in terms of
the time-series y(w) £} a;(w)x(t — w) and z(w) 4 ar(—w)x(t + w), by using a
change of variables, and then apply the convolution theorem.

(b) Show that (20) reduces to (19) for a rectangle aperture, a; = Tuy.

6. (a) Draw a graph of left and right members of the window identity (24) as a surface
above the (¢, 7) plane to verify this identity. Hint: The height of the window
ur_p, is proportional to 1/(T—|r)).

(b) Use identity (24) to verify identity (23).
(¢) Verify identity (26).
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7. (a) Prove that for # = 0 the two limits in (31) both equal the limit autocorrelation as
defined by (6) in Chapter 1. Hint: Use the fact that

lim A(T)B(T) = lim A(T) lim B(T) (72)
T

T—oo T—oo

if the two limits on the right exist to show that
lim R0, 7); = R,(7)
by letting _B(T) = 2Tu,7(7). Then show that
R, 0,7 = RO, 97 (1 - 2) 73)

and again use the above fact for limits to conclude that the right side converges
to R.(7) (e.g., let T' = (T — |7]). (The proof for ¢ # 0 is not as straightforward;
see [Kampé de Fériet 1954].)

8. To verify approximation (27), show that
R(t, Do @ ur(t) = R(t, Ty, 1| S T<< A1, 4
and use this in (26). Hint: To verify that (74) is a close approximation for sufficiently
large At, proceed as follows. By virtue of (31), we know that for each ¢ and T, all
v for which |v| < T/2, and any € > 0, there exists a At such that
le(t + v, T)AI - ﬁx(7)| < €, |T, < T'
Use this to show that

IRt, Dar ® ur(t) — R(7)| < € (75)
and
Rt, D — R < e. (76)
Then use (75)-(76) to show that
|R.(t, D)oy @ ur() — Rz, 7)) < 26, I7|<T. an

Thus, for each ¢ and T and any arbitrary small € > 0, there exists a At sufficiently
large that (77) holds.

9. To verify approximation (25), show that
R Da @ ur () =R, Dary 1] ST << At (78)
and use this in (23). Hint: To verify that (78) is a close approximation for sufficiently
large Az, proceed by analogy with exercise 8.
10. To verify approximation (28), use definition (20) to show that for tapered data in
R, (t, 7),

(Rt ) @ usOPts®) = %[ ar (v + Harlv ~ DR~ v, 1o, 09

where R,.(t — v, 7)a by definition includes no data tapering, and then use the ap-
proximation (see exercise 8)

Rx(t + U, T)At = Rx(t’ T)Als Iv‘ << At (80)
Assume there exists a T* such that ar(f) = 0 for || > T*/2, where T* #*T.

11. To verify (32)—(33) for the limit autocorrelation, use (31) and the result of exercise
10 to show that

. . . 1 . ~
lim R, (¢, 7) = lim lim R,(z, 7)y }ra(f) = vy lim R, T)a = YR(7).
T—oo A

T—oo At—oo 1—00
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12. (a) Verify the limit-autocorrelation relation for filters (38) directly by substitution of
(5) in Chapter 1 into (6) in Chapter 1 (with x replaced by y). Hint: Use (5b) in
Chapter 1 and interchange the order of the two integrations from (5b) in Chapter
1 with the limit time-average operation from (6) in Chapter 1.

(b) Verify the finite-average autocorrelation relation (35). Hint: Proceed as follows.
In order to relate the finite-average autocorrelation for y(¢) to the finite-average
autocorrelation for x(¢), substitute (34) into definition (21) (with x replaced by y)
to obtain

t+T/2

| o oo
R(t,7r = 7 f, o f_m f_m h(vl)h(vz)x(u +3- vl)x(u -5 - vz) dv, dv, du[2Tus(7)]
o o 1 1+T/2 . I
= f_w J:m h(v)h(v,) ?J;m x(u + 37 vl)x(u -3 vz) du [2Tu,;(7)] dv, dv,.

()

Assume that the amount of integration, 7, used to obtain the correlation R.(t, 7)r
is substantially larger than the filter memory length Ar*:

T >> Ar*, (82)
Since the factor h(vy)A(v,) in the integrand in (81) is negligibly small for
IUI - Uzl > 2A1*, (83)

then the window u,;(7) in (81) can be replaced by the slightly shifted window
u,r(t — vy + v,) to obtain the close approximation
w172 T v+ Uy Uy — Uz)

R(t, 7)r= J':) fio h(v)h(v,) {%J:—T/z x(u + i e

v+ U, vy — U,

.
x x(u -3 : ) du 2Ty (r — v, + vz)]} dv, dv,,

|| < T — 2A7%. (84)

Show that this approximation is exact if #(v) = 0 for |[v] > Ar*. The quantity in
braces in (84) is a time-variant finite-average autocorrelation

1 19+ T/2 70 7o
{t= T =T/ X(U + 5) X(U - 3) dv [2Tuyr(19)] = Rty To)7,
_ vy + U,

2 (85)

A
7= 17— (v — V).

[l

ty

Therefore, (84) can be reexpressed as

I e +
Rt e = | [ noonar (1 — 2527 — vy + ) rd dos,
7] < T — 2A7%. (86)
Since the temporal resolution of R.(¢, 7); is T, then for
[ + v < Ar* 87)
2
condition (82) suggests that
Rx(t - %”2 - vz) = R{t,7 — v, + v)r 88)
T
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14.

58

is a close approximation. Show that the accuracy of approximation (88) for fixed 7,
subject to (87) with fixed A7*, can be made as high as desired by choosing T sufficiently
large (see exercise 8). Since A(v)h(v,) is zero for
s + vy >
2

(assuming h(v) = 0 for |v| > Ar*), then (88) yields the close approximation

AT* (89)

I
2

for all values of v, and v, for which these quantities are nonzero. Substitution of (90)
into (86) yields the close approximation (for sufficiently large T)

Hwh@IR1 ST v+ ) = REMEIRGT = v+ v (90)

Ryt, )r= f_w f_w h(V)h(W)IR(t, T — v, + v)rdv; dv,,

|| < T — 2A7*, T >> Ar*, o1
Now, show that (35) is equivalent to (91).
Verify the pseudospectrum relation (39). Hint: Proceed as follows. The condition

7| < Ar — 2A7* 92)
can be satisfied by the two conditions

Il = (1 — €At 93)

Ar > 2A7*

€
for arbitrarily small positive €. Use this equivalent condition to reexpress (35) (with
T replaced by Ar) as
At=T/(1 — e

R(t, T)attr(7) = [RAt, T)a @ ri(m)]ur(7), {Af >> Ar* %94)
At = 2A7* /€

for sufficiently large At and 0 < € < 1. Then verify that for e << 1 (94) yields
R(¢, Dasur(7) = [RAt, T)p @ ri(@]ur(r), At > T, At >> At 95)
Finally, Fourier transform (95) to obtain (39) (using Af = 1/7).

Let hA(r) have approximate (or exact) duration At*, centered at 7 = 0. Then use the
approximate (or exact) equation

H(f) = f: h(r)e™ ™" dr

AT*/2

= f h(r)e ™" dr

—Ar/2
to show that

H(f) = H(f) ® wiaAf) (96)

approximately (or exactly). Thus, the transform of any centered function with ap-
proximate duration Ar* will have a resolution width, denoted by Af*, that is typically
no smaller than 1/Ar*: Af* = 1/Ar*. (If h(r) is not centered, the same result can
be obtained for |H(f)|.) In fact, it is shown in the next exercise that Af* and 1/Ar*
are on the same order of magnitude: Af* = 1/Ar*. If k() happens to be pulselike,
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15.

then Ar* is not only the duration (or overall width), it is also the resolution width of
h(r). Thus, for a pulselike function, the resolution widths of the function and its
transform are approximately reciprocals. Show that these two general rules regarding
the resolution width Af* do indeed hold for the following examples of A(7):

(a) Rectangle pulse

(b) Triangle pulse

(¢) Symmetrical exponential pulse, ¢~
(d) The product of (a), or (b), or (c) with a sum of sine waves with arbitrary frequencies.
To illustrate further the reciprocal relationship between the width of a time function
and the resolution width of its Fourier transform show that if

A(f) £ Fla®}

|el/*

then

Fla(et)} = %A (Jg)

for any constant ¢. Thus, for example, if ¢ = = so that the width of a is doubled,

1
2
then the resolution width of A is halved. This relationship is further elucidated in
the next exercise.

(a) Consider a transient (not persistent) finite-energy waveform x(?),
j : xXt) dt < oo. 7
Use the approach illustrated in section H to show that
xp=7 3 x{r-7) 98)
where X(f) is the Fourier transform
X(f) £ fi x(e " dt, (99)
and X(f) is the FST
X(f) 2 i x(nT,)e 2mTsS, (100)

n=—oo

This reveals that X(f) (and therefore x(¢)) can be recovered from X(f) (and therefore
from {x(nT,)}) provided that

1

X(fy=0, |fl> T (101)
(b) To obtain x(¢) directly from {x(nT,)} when (101) is satisfied, substitute (100) into
X(f) = X(fuyz, (f) (102)

(which follows from (98) and (101)) and then evaluate the inverse Fourier transform
of (102). The result is

oo

x() = 2 x(n

n=—co

sm[w(t nT)/T,]
(t - nTx)/T:

(103)
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17.

18.

19.

20.

21.

60

This result is referred to as the sampling theorem for transient waveforms. A completely
analogous theorem applies to persistent waveforms (se . [Gardner 1985]). The sampling
theorem proves that if a Fourier transform X(f) has absolute width Af* = 1/T,,
then its inverse transform x(f) can be perfectly reconstructed by interpolating its time
samples separated by Ar* = T, = 1/Af*, with a sinc-interpolating pulse as indicated
by (103). Thus, the resolution width of x(¢) is on the order of Ar*. This is the time-
frequency dual of the result illustrated in the previous exercise.

Verify the Fourier transform pair (60). Hint: Use (39) in Chapter 1 together with the
formula for Fourier coefficients,

1/25F
X, f x(f)e 2 gy,
—1/2Af

where 1/Af = T, is the period.

Assume that at a particular time instant ¢ = ¢,, the time-variant complex spectrum
of x(#) is given by a triangle with base extending from f = —B to f = +B. Draw
graphs of the complex spectrum X;(z,, f) of the time-sampled data x(nT,) for sampling
rates of 1/T, = B, 3B/2, and 2B.

Show that the Fourier series transform of the discrete-time rectangle window

N-1
1, o=
a(nT) = - (104)
0, |nf >N2 1, N odd
is
- _ sin(afNT)
Af) = sin(mfT,) (105)
Hint: Use the identities
N-1 1 — g~V
—ifin __
ZO et =T (106)
and
(o0 _ =iy — i
2% (e e ") = sin(h).
Prove the convolution theorem for the FST; that is, if (using T, = 1)
) = ) @y & 2 x(t — v)y) (107)
then
Z(f) & 3 e ™™ = X(HT). (108)

t=—o0
Hint: Take the FST of both sides of (107) and then make the change of variables
u=_t-u.
Verify the periodogram-correlogram relation (64) for discrete time. Hint: Use the
convolution theorem for the FST (see exercise 19).
Verify that the inverse FST is given by

1/2

0= X(f)e™™ df, (109)
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where the FST is defined by (using 7, = 1)

oo

X(f) 2 D xe ™ (110)

H < {= —oco
Hint: Substitute (110) into (109) and use the identity
J‘I/Z 2 1 t = 0
i2m, d - 1 111
apf if {0, t = integer # 0. (D

22. (a) Consider the sum of two sine waves as in exercise 3, and assume that the two
frequencies are close together: |fi — fi| << (f; + f»)/2. Show that this time-
series can be reexpressed as a sine wave with frequency f, = (f; + f)/2 and
with slowly varying amplitude and phase,

x(t) = a()cos2mfot + 6(D].

Determine explicit formulas for a(¢) and 8(f). Hint: Express f; and f; in the form
fo = f+, and use the trigonometric identity

cos(A = B) = cos(A)cos(B) ¥ sin(A)sin(B).

(b) Show that when the sum of two sine waves, as in part (a), goes through a
nonlinearity, say a square-law device, the resultant time-series, y(f) = x*(f), contains
additive sine wave components at both the sum and difference frequencies,
fi — frand f; + f,. These are called beat frequencies. Hint: Use the following
trigonometric identity after expanding the square x%(¢),

1
cos(A)cos(B) = %cos(A + B) + Ecos(A — B).

Consider the frequency-modulated sine wave

B

x(t) = sin[2m L, f) du]

whose instantancous frequency is f(t) (from (1)-(2) in Appendix 2-1). We want to
show that the bandwidth of the resultant spectral peak exhibited by x(#) can be no
narrower than the bandwidth of f(r), say B. It then follows that the width, say Af*,
of the spectral peak satisfies Af* = B = 1/Ar*, where At* is the temporal resolution
width of f(f). To accomplish this we consider the extreme example in which the
entire frequency content of () is at the frequency b,

f() = a sinQmbi),

where b >> a so that Sf() fluctuates rapidly relative to the largest value a of the
instantaneous frequency f(¢) of x{t). Use this condition and the small-angle approximation
sin 6 = 6 to show that

x(t) = 27 J._mf(u) du.

This same result holds for arbitrary f(£) provided that its lowest frequency b is not
too small compared with its peak value a. Use this result to show that the bandwidth
of x(¢) (the width Af* of its spectral peak) is approximately equal to the bandwidth
B of f(), Af* = B. Theérefore, Af* = 1/Ar*. It can be shown that when the above
assumption that b is not too small is violated, the bandwidth of x(¢) can only be larger
than the value B. Thus, in general, Af* = B = 1/At*.
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b(t)

10usec 22 usec

(b)

Figure 27 Two functions for application of the general rules of thumb regarding
resolution width and overall width.

24, (a) Consider the pulse a(#) shown in Figure 2-7(a). What is the approximate bandwidth
of the Fourier transform A(f)?

(b) Consider the waveform b(¢) shown in Figure 2-7(b). Give a useful approximate
lower limit on the resolution width of the Fourier transform B(f). Thea give an
order-of-magnitude estimate of the bandwidth of B(f).

(¢) It is desired to determine the locations and widths of spectral peaks exhibited in
some measured data that consist solely of sine waves with slowly varying amplitudes
and phases. The minimum separation between peaks is known to be 10 Hz, and
the narrowest peak is known to be 1 Hz. Approximately how long a time segment
must be Fourier transformed in order to determine both the location and width
of each spectral peak to within an error of no more than 100% of the peak width?
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25. Tt is desired to estimate the transfer function of a linear time-invariant transformation
that is continuously excited by random noise from a constant phenomenon, and it is
decided to accomplish this by taking the ratio of the output periodogram to the input
periodogram,

Syf(t - to,f )
S, f)

If the impulse response A(7) is known to be centered at + = 10 us, and to have

approximate width 1 us, then what value for #, should be used and which of the

values of T would yield the best results: T = 1/10 us, 1 us, or 10 us? Explain your
answer for T in words with reference to appropriate general results in the chapter.

If it were decided to frequency-smooth the periodograms before taking their ratio,

what value of width Af for the smoothing window would you use, Af < 1/10 MHz,

Af > 1 MHz, or 1/10 MHz < Af < 1 MHz? Explain your answer for Af in words

with reference to appropriate general results in the chapter.

26. (a) It is desired to estimate the amount of average power in x(7) over the time interval

0 to 1s that is due to spectral components in the band fy, — Af/2 to
Jo + Af/2 by integrating the periodogram S, (¢, f) over this band. What values
for ¢t and T should be used, and which condition on Af will yield the most accurate
estimate, Af < 1 Hz, Af > 1 Hz, or Af > 10 Hz? Explain your answers for Af
in words with reference to appropriate general results in the chapter.

(b) If it is desired to carry out the power measurement in (a) digitally and if it is
known that the average power is negligible in bands above 100 Hz, then what is
the lowest rate that should be used for time-sampling x(¢) (for digitization)? Explain
your answer in words with reference to appropriate general results in the chapter.

APPENDIX 2-1
Instantaneous Frequency

Instantaneous Frequency Measurement

Consider the sine function with an argument that varies with time:

x(#) = sin[é(9)]. 1)
The instantaneous frequency’® of this waveform is defined to be the derivative
of the argument divided by 27 and is denoted by f(¢):

fy = 220

2@ dt
For example, for the sine wave
x(t) = sin(wyt + 0),

@

® This definition of instantaneous frequency was apparently introduced by B. Van der Pol
[Van der Pol 1946].
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the instantaneous frequency is a constant,
[O1)
) = —
f® 2

If f(¢) is not a constant, then x(f) in (1) is called a frequency-modulated (FM)
sine wave. '

Let us determine the conditions under which this mathematical definition
of instantaneous frequency (2) ‘corresponds to a quantity that can be measured
in practice using spectral analysis; that is, we want to determine the condi-
tions on f(¢) under which a time-variant finite-time spectrum S, (¢, f) will track
the time variations of f(¢) to within an accuracy of, say, Af. Thus, we want

S,,(t, f) to be nonnegligible at time ¢ within only the spectral band of width Af,
centered at f(¢) (and its image — f(t)) This will occur if and only if |f()| remains
in the spectral band [|f(t)) — Af/2, |f(§] + Af/2] during the time-interval
[t — At/2,t + At/2], where Af and At are the spectral and temporal resolutions
of S,.(¢, f), namely, Af = 1/T and At = T. Thus, if f(r) changes by an amount
8f during a small time interval 8¢, then it is sufficient if |§f/5¢| does not exceed
Af/At = (Af)?, which can be interpreted as a bound on the derivative of £(¢),

4] < apr. @3

Thus, the instantaneous frequency can be tracked by the time-variant periodogram
within an accuracy of Af if its rate does not exceed (Af)*. This leads to a related
condition involving only frequency parameters, as follows. The peak frequency
deviation of the FM sine wave is defined by P

fox & max{lfio)},

and the frequency of the highest-frequency‘component of f(¢) is denoted by vy,
which is the bandwidth of f(t). Since the derivative of a sine wave with.amplitude
f and frequency », . :
(f)sin(Rmvi),

is upper bounded in magnitude by |2mfy|, then a sufficient condition for frequency
tracking is

271 fmaxmax < (AF)%. (4)
This condition is also necessary for (3) if f(¢) is simply a sine wave.

An example of an FM sinewave is the linear FM signal, for which
f() = at.
This signal
x(t) = sin[wat’]

is called a chirp signal, and « is the chirp rate. It follows from the preceding

discussion that the instantaneous frequency of x(#) can be tracked if (and in this
case only if) the chirp rate does not exceed the square of the desired resolution,

a < (Af)~.
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In this case, it can be shown that the time-variant spectrum of the chirp signal
is closely approximated by

S, (t,f)= %{sincz([f — af]T) + sinc® (I f + at]T)}

for at >> 2/T.

Instantaneous Frequency Demodulation

As an application of the time-variant periodogram relation for filters, (40) in
Chapter 2, consider the problem of measuring the instantaneous frequency of
the FM sine wave

x() = sin[¢(#)]. %)

It is assumed that the instantaneous frequency rate is sufficiently low (3) that
the time-variant periodogram with 7 = At is simply

Sy, (6, )= % {sinc®([f — fO]An) + sinc*([f + fD]AD)}, (6)
where
_ 140
S = o dr )

as explained in the preceding section. Consider two filters with transfer functions
H(f) and G(f) that are approximately linear in magnitude over the spectral band
for which S, (¢, f) is nonnegligible, say
HAN) =c(fl = f) +d, |Ifl —fil<B (8)
GO =cfo = IfD) +d, |Ifl -fl<B
for some constants ¢ and d, and assume that Ar greatly exceeds the memory
lengths of these filters, which are generally much less than 1/B (so that (40) in
Chapter 2 applies to the following). Now, consider the difference between the
time-averaged powers of the responses of these two filters to x(¢):

A t+At/2 t+At/2

a 1 2 L 2

() = v v (u) du v A z2(u) du 9
where

y() = x(t) ® h(?)
2(1) = x(t) ® g(@). (10)

The function v(f) can be reexpressed as
v(t) = R, (t,0) — R, (1, 0)

= f_m Sy, & ) df — f_w S, @. ) df. (11)

Substitution of (40) in Chapter 2, for both y and H and z and G, into (11) yields
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(using A7* << 1/B)

W= | AHR = [GOPS. 1) df (12)

= 1
=a J_m 0f] = fol Su @, £) df,  for||[f(] — /| <B and B (13)
where a is just a scale factor. Substitution of (6) into (13) and use of the fact

that S, (1, f) is negligible for ||f| — f(z)] > 1/At yields

w0 = bilf) — fil,  for [T

< (Ait)z <B and |f0|-f|<B, (14)
where b is just a scale factor. Thus, the difference (9) of time-averaged powers
of the filtered signals yields the instantaneous frequency (14). Since this result
requires balancing the characteristics of the two filters, as indicated by (8), this
method of measurement of instantaneous frequency is called balanced frequency
discrimination.'® Filters that exhibit the linear characteristics (8) are called fre-
quency-to-amplitude converters. Alternative methods for rapid instantaneous
frequency measurement that can accommodate faster frequency deviation are
available. Some of these are closely related to some of the time-series-modeling
approaches to spectral analysis described in Chapter 9.

1 This balanced scheme will cancel out even-order nonlinear terms, such as (f = )%, in (8)
that are common to both |H(f)| and |G(f)|.
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STATISTICAL SPECTRAL
ANALYSIS

This chapter introduces the fundamentals of statistical spectral analysis: the
equivalence between statistical spectra obtained from temporal smoothing and
statistical spectra obtained from spectral smoothing, and the relationship between
these statistical spectra and the abstract limit spectrum. The motivation for
smoothing—to average out undesired random effects that mask spectral features
of interest—is developed by consideration of the problem of measuring the
parameters of a resonance phenomenon. It is established that the limit auto-
correlation and limit spectrum are a Fourier transform pair and that each is a
self-determinate characteristic under a linear time-invariant transformation (filtering
operation). The utility of the limit spectrum for characterizing spectral features
in stationary time-series is illustrated with several examples of modulated wave-
Sforms. Periodically time-sampled waveforms are considered, and a formula for
the limit spectrum of the discrete-time sampled data, in terms of the limit spectrum
of the waveform, is derived and used to describe further the spectral aliasing
phenomenon. The moving average and autoregressive models of discrete-time
data are introduced, and their limit spectra are derived. In Appendix 3-1, band-
pass time-series are considered and a general representation in terms of low-
pass time-series 1s derived, and the relationships between the limit autocorrelations
and limit spectra of the bandpass and lowpass time-series also are derived. In
Appendix 3-2, the role of spectral analysis in the detection of random signals is
explained.
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A. MOTIVATING EXAMPLE

transfer function magnitude squared, |H(f)[|2

In order to understand why a statistical (average) spectrum can be preferable to
a nonstatistical spectrum, we must focus our attention not on the data itself but
rather on the source of the data—the mechanism that generates the data. Generally
speaking, data is nothing more than a partial representation of some phenomenon—
a numerical representation of some aspects of a phenomenon. The fundamental
reason for interest in a statistical (e.g., time-averaged) spectrum of some given
data is a belief that interesting aspects of the phenomenon being investigated
have spectral influences on the data that are masked by uninteresting (for the
purpose at hand) random effects and an additional belief (or, at least, hope) that
these spectral influences can be revealed by averaging out the random effects.
This second belief (or hope) should be based on the knowledge (or, at least,
suspicion) that the spectral influences of the interesting aspects of the phenomenon
are time-invariant, so that the corresponding invariant spectral features (such as
peaks or valleys) will be revealed rather than destroyed by time-averaging.
This idea is illustrated with the following example. Consider the problem
of determining the resonance frequency and damping ratio of a single-degree-of-
freedom mechanical system (see exercise 10) that is subject to a continuous
random vibrational force excitation x. The system displacement response y can
be modeled as an LTI transformation of the excitation, with the transfer function
magnitude |H| shown in Figure 3-1, which reveals the resonance frequency f,

frequency, f

Figure 3-1 Magnitude-squared transfer function of resonant system.
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and the bandwidth B (which can be related to the damping ratio). The vibrational
response of the system is random by virtue of the randomness of the excitation.
Consequently, the spectrum of the response data does not exhibit the desired
single smooth peak shown in Figure 3-1. Rather, it is an erratic function with
numerous sharp peaks and valleys, as revealed by the simulation shown in Figure
3-2(a). Moreover, as the time-interval of analysis is made longer by increasing
T, the spectrum only becomes more erratic (at least locally), as revealed by the
simulation shown in Figure 3-2(b). However, if the random excitation arises
from a system in statistical equilibrium, the underlying time-invariance in the
excitation, as well as in the resonant system, suggests that time-averaging the
response spectrum will reduce the random effects while leaving the desired
spectral features intact. In fact, it is shown in the next section that for
At/T >> 1, the time-smoothed spectrum,

Syt Plac £ 8,8 £) ® ualo), (1)
is closely approximated by the frequency-smoothed spectrum
SyM(t,f) ® Zl/T(.f)’ (2)

and for sufficiently large At and T the particular form of the spectral-smoothing
window z,,r is irrelevant. Consequently, approximation (40) in Chapter 2 can
be used to obtain

S, &, ac = [HOPS (2, ars 3)
for which it has been assumed that’

l ¥

7 <Af, )
where Af* is the resolution width of the function |H|* (Af* is on the order of
1/A7*, where Ar* is the system memory length—the width of #). If the system
excitation is completely random so that it exhibits no spectral features, then for
At/T >> 1, S, (¢, f)a Will closely approximate a constant (over the support for
which |H| is nonnegligible), say N,. Therefore, (3) yields the desired result:

Syt o = NlH()F,  AtAf* = At/T >> 1, ®)

from which the resonance frequency and damping ratio can be determined. This
is illustrated with the simulations shown in Figure 3-2c, d.

In addition to illustrating the use of a statistical spectrum obtained from
time-smoothing a periodogram (1), this example introduces the idea that an
equivalent statistical spectrum can also be obtained from frequency-smoothing
a periodogram (2). This equivalence is established in the following section.
However, before proceeding it should be clarified that in practice when automated
spectrum analyzers are used to study visually the spectral features of a phenomenon,
it is common practice to use very little smoothing (and in some cases no smoothing)
in spite of the erratic behavior of the displayed spectrum due to random effects.
But it should be remembered that human visual perception incorporates spatial

! Condition (4) guarantees that the order of multiplication with |H|* and convoluti