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Abstract. A spectral correlation theory for cyclostationary time-series is introduced. It is established that a time-series is 
cyclostationary if and only if there exists a quadratic time-invariant transformation that generates spectral lines, and this is 
so if and only if the time-series exhibits spectral correlation. Fundamental properties of a characterizing spectral correlation 
function are developed. These include the effects of periodic modulation and periodically time-variant linear filtering. 
Relationships between the spectral correlation function and the radar ambiguity function and the Wigner-Ville distribution 
are explained. The spectral correlation properties of Rice's representation for bandpass time-series are derived. A generalization 
of the Wiener relation from the spectral density function to the spectral correlation function is developed, and generalizations 
of the aliasing formula for periodic time-sampling, and the frequency conversion formula for amplitude modulation, from 
the spectral density function to the spectral correlation function are developed. 

Zusammenfassung. Vorgestellt wird eine Theorie der spektralen Korrelation zyklisch-station~irer Zeitreihen. Es wird gezeigt, 
dab eine Zeitreihe dann und nur dann zyklisch-station~ir ist, wenn eine zeitinvariant quadratische Transformation existiert, 
die ein Linienspektrum erzeugt; und dies ist dann und nur dann so, wenn die Zeitreihe eine spektrale Korrelation aufweist. 
Die grundlegenden Eigenschaften der zugehSrigen spektralen Korrelationsfunktion werden entwickelt. Diese beinhalten die 
Auswirkung periodischer Abtastung, einer Frequenzwandlung sowie periodisch zeitver~indedicher linearer Filterung. Die 
Beziehungen zwischen der spektralen Korrelationsfunktion, der Mehrdeutigkeitsfunktion fLir Radar und der Zeit-Frequenzver- 
teilung der Leistungsdichte nach Wigner-Ville werden erkl~irt. Ebenso werden die Eigenschaften der spektralen Korrelation 
fiir bandbegrenzte Zeitreihen in der Darstellung von Rice hergeleitet. Eine Verallgemeinerung der Wiener-Gleichungen yon 
der spektralen Dichtefunktion hin zur spektralen Korrelationsfunktion wird entwickelt. Zus~itzlich wird die Formel fiir 
Faltungsverzerrungen gleichfSrmig abgetasteter Signale sowie die Formel fiir die Frequenzwandlung bei Amplitudenmodula- 
tion auf den Fall der spektralen Korrelationsfunktion erweitert. 

R~sum~. Une th~orie de la corrrlation spectrale pour des s~ries temporelles cyclostationnaires est introduite. I1 est ~tabli 
qu'une s~rie temporeile est cyclostationnaire si et seulement si il existe une transformation quadratique invariant dans le 
temps qui g~n~re des lignes spectrales, et il enest  ainsi si et seulement si la s~rie temporelle poss~de une correlation spectrale. 
Les proprirtrs fondamentales d'une fonction caract~ristique de la correlation spectrale sont drveioppres. Elles comprennent 
les effets de la modulation prriodique et le filtrage prriodique variant dans le temps. Les relations entre la fonction de 
correlation spectrale, la fonction d'ambiguit~ en radar et la distribution de Wigner-Ville sont expliqu~es. Les proprirt~s de 
correlation spectral de la r~presentation de Rice pour des s~ries /i bande limit~e sont ~tablies. Une g~nrralisation de la 
relation de Wiener de la fonction de densit~ spectrale ~ la fonction de correlation spectrale est d~velopp~e, et les g~n~ralisations 
de la relation de repliement pour l'~chantillonnage p~riodique et la formule de conversion de frrquence pour la modulation 
d'amplitude, de la fonction de densit6 spectrale h la correlation spectrale sont d~veloppres. 

Keywords. Cyclostationary processes, time-series analysis, spectral correlation, periodic phenomena, time-frequency signal 
representation. 
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1. Introduction 

The subject of this paper is the statistical spectral 
analysis of empirical time-series from periodic 
phenomena, which are called cyclostationary time- 
series. The term empirical indicates that the time- 
series represents data from a physical 
phenomenon; the term spectral analysis denotes 
decomposition of the time-series into sinewave 
components; and the term statistical indicates that 
averaging is used to reduce random effects in the 
data that mask the spectral characteristics of the 
phenomenon under study: in particular, products 
of pairs of sinewave components are averaged to 
produce spectral correlations. The purpose of this 
paper is to introduce a comprehensive theory for 
spectral correlation analysis of cyclostationary 
time-series. The motivation for this paper is to 
foster better understanding of special concepts and 
special time-series-analysis methods for random 
data from periodic phenomena. In the approach 
taken in this paper, the unnecessary abstraction of 
a probabilistic framework is avoided by extending 
to periodic phenomena the deterministic 
approach, based on time-averages, originated by 
Wiener for constant phenomena [53]. The reason 
for this is that for many applications the conceptual 
gap between practice and the deterministic theory 
presented here is narrower and thus easier to bridge 
than is the conceptual gap between practice and 
the more abstract probabilistic theory. 1 Neverthe- 
less, a means for obtaining probabilistic interpreta- 
tions of the deterministic theory is developed in 
terms of periodically time-variant fraction-of-time 
distributions. 

To the author's knowledge, essentially all pre- 
vious theory of random data from periodic 
phenomena that is comparable to that presented 
in this paper is based on the probabilistic fou~ada- 
tion of cyclostationary stochastic processes. This is 

i This is explained in considerable detail in a forthcoming 
book [29]. Basically, the deterministic theory presented here 
applies to a single time-series, whereas the probabilistic theory 
only applies to an ensemble of random samples of time-series 
defined on an abstract probability space. 
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analogous to the fact that the great majority of 
theoretical treatments of random data from con- 
stant phenomena are based on the probabilistic 
foundation of stationary stochastic processes. The 
most comprehensive treatment of the probabilistic 
theory of cyclostationary stochastic processes to 
date is given in [24]. 

In order to avoid unnecessary confusion due to 
semantics, the terminology used in this paper is 
explained in the following. Although the terms 
statistical and probabilistic are used by many as if 
they were synonymous, their meanings are quite 
distinct. According to the Oxford English Diction- 
ary, statistical means nothing more than "consist- 
ing of or founded on collections of numerical 
facts". Therefore, an average (e.g., over time) of 
a collection of measured spectra is a statistical 
spectrum. And this has nothing to do with probabil- 
ity. Thus, there is nothing contradictory in the 
notion of a deterministic or nonprobabilistic theory 
of statistical spectral analysis. (An interesting dis- 
cussion of variations in usage of the term statistical 
is given in [3].) The term deterministic 2 is used 
here as it is commonly used in engineering, as a 
synonym for nonprobabilistic. Nevertheless, the 
reader should be forewarned that some of the 
elements of the nonprobabilistic theory presented 
in this paper are defined by infinite limits of time 
averages and are therefore no more deterministic 
in practice than are the elements of the probabilis- 
tic theory. In mathematics, deterministic and prob- 
abilistic theories, as referred to herein, are some- 
times called functional and stochastic theories, 
respectively [55]. The term random is used here to 
mean nothing more than erratic unpredictable 
behavior. Its use is not meant to suggest probabilis- 
tic concepts. 

Examples of periodic phenomena that give rise 
to random data abound in engineering and science. 
For example, in mechanical vibrations monitoring 
and diagnosis for machinery, periodicity arises 

2 The meaning of the term deterministic used in this paper 
should not be confused with the meaning of the same term as 
used in mathematics to describe the singular, or predictable, 
part of a stochastic process. 
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from rotation, revolution, and reciprocation of 
gears, belts, chains, shafts, propellers, bearings, 
pistons, etc.; in atmospheric science, e.g., for 
weather forecasting, periodicity arises from sea- 
sons caused primarily by rotation and revolution 
of the Earth; in radio astronomy, periodicity arises 
from revolution of the moon, rotation and pulsa- 
tion of the sun, rotation of Jupiter and revolution 
of its satellite, Io, etc., and can cause strong peri- 
odicities in time-series, e.g., pulsar signals; in biol- 
ogy, periodicity in the form of bio-rhythms arises 
from both internal and external sources, e.g., cir- 
cadean rhythms; in communications, telemetry, 
radar, and sonar, periodicity arises from sampling, 
scanning, modulating, multiplexing, and coding 
operations, and it can also be caused by rotating 
reflectors such as helicopter blades, and air- and 
water-craft propellers. Thus, the potential applica- 
tions of the theory presented in this paper are 
diverse (cf. [24, 29]). For example, in the general 
signal processing field, the relevance of the concept 
of cyclostationarity is illustrated by recent work in 
synchronization [17, 18, 36, 39, 40, 41, 42, 43, 46], 
crosstalk interference and modulation transfer 
noise [2, 7], transmitter and receiver filter design 
[14, 31, 37], noise analysis for periodic circuits 
[50], adaptive filtering and system identification 
[16,21], coding [8, 19], queueing [1], detection 
[22], and digital signal processing algorithms 
[15, 45]. In addition, the growing role of cyclo- 
stationarity in other signal processing areas is illus- 
trated by recent work in biomedical engineering 
[34], and climatology [32], and by recent develop- 
ments in basic theory for prediction [38], extrac- 
tion [31], detection [22], modulation [25, 30], and 
signal modeling and representation [26, 27]. Other 
work involving cyclostationarity is cited in [29]. 

In Section 2, the fundamental idealized statis- 
tical parameters of the theory are introduced. These 
parameters, called the limit cyclic autocorrelation, 
limit periodic autocorrelation, limit cyclic spectrum, 
and limit periodic spectrum, are generalizations of 
the conventional limit autocorrelation and limit 
spectrum, which are the fundamental idealized 
statistical parameters in the deterministic theory 
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of random data from constant phenomena [53]. 
The relationships between these fundamental 
statistical parameters and other well-known data 
parameters, such as the radar ambiguity function 
and the Wigner-Ville distribution, are explained, 
and a means for obtaining probabilistic interpreta- 
tions is described. 

In Section 3, basic properties of the limit cyclic 
spectrum, which is a spectral correlation function, 
are described. These include input/output spectral 
correlation relations for periodic modulators and 
samplers, linear periodically time-variant filters, 
and spectral correlation relations for (i) Rice's rep- 
resentation for bandpass time-series, (ii) sampling 
and aliasing, and (iii) frequency conversion. 

2. Fundamental  statistical parameters 

2.1. Limit cyclic autocorrelation 

A time-series x(t) contains a finite additive 
sinewave component with frequency a, say 

a cos(2nvat+O), aSO,  (1) 

if and only if the parameter 

m x =  lim -- / x(t) e-i2="'dt (2) 
T~oc~ T 4 - T / 2  

exists and is not zero, in which case 
A 

Mx = ½a e i°. 

In this case, the spectral density of x(t) exhibits 
a spectral line at f =  a and its image f =  - a .  That 
is, the spectral density contains the additive com- 
ponent 3 

]/~/~{2[ 6 ( f -  a) + 6( f+ a)],  (3) 

where 6(. ) is the Dirac delta, or impulse, function. 
For convenience in the sequel, we shall say that 
such a time-series contains first-order periodicity, 
with frequency a. 

3 The strength of the spectral line is IMP[ 2 as indicated in 
(3) if and only if the limit (2) exists in the temporal mean 
square sense with respect to the time-parameter u obtained by 
replacing t with t+u in (2) [29]. 
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Let x(t) be decomposed into the sum of  its finite 

sinewave component,  with frequency c~, and its 
residual, say n(t), 

x(t) = a cos(2~rat + 0) + n(t), (4) 

and assume that n(t) is random (erratic). I f  the 

strength of the sinewave is weak relative to the 
random residual, then it is not evident from visual 

inspection of  the time-series that x(t) contains 

periodicity. Hence, it is said to contain hidden 
periodicity. However, because of the associated 
spectral lines, hidden periodicity can be detected 

and otherwise exploited through techniques of  

spectral analysis. 
In this paper,  we are concerned with time-series 

that contain more subtle types of  hidden periodic- 

ity that do not give rise to spectral lines, but which 
can be converted into spectral lines with a non- 

linear time-invariant transformation of the time- 

series. In particular, we shall focus on the type of  

hidden periodicity that can be converted into spec- 
tral lines with a quadratic time-invariant (QTI) 

transformation. 
A transformation of a time-series x(t) into 

another time-series y( t )  is QTI if and only if there 

exists a function k ( . , . ) ,  called the kernel, such 
that y(t) can be expressed in terms of k ( . ,  • ) and 

x(t) by 

Y ( t ) = f ~ f ? o  ° k( t -  u, t -  v)x(u)x(v) du dv, - 

(5a) 

which is equivalent (by a change of variables of  

integration) to 

y(t)=f?~f?k(u,v)x(t-u)x(t-v)dudv. 
(5b) 

A QTI transformation is said to be stable if and 
only if the kernel is absolutely integrable, 

f~_~f? [k(u,v)ldudv<oo. (6) 

By restricting attention to only those quadratic 
transformations that are time-invariant (as reflec- 
ted in the dependence of  k in (5) on the three 
Signal  Processing 
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variables t, u, v through only the differences t - u 
and t - v )  and stable, we rule out periodically 
time-variant and oscillating time-invariant trans- 

formations, both of  which introduce periodicity 

into y(t) that is foreign to x(t). 
We shall say that a time-series x(t) contains 

second-order periodicity with frequency ot if and 

only if there exists some stable QTI transformation 

of x(t) into, say, y(t) such that y(t) contains 
first-order periodicity with frequency a ;  that is, 

y(t) exhibits a spectral line at f =  +a.  By substitu- 

tion of (5) into (2), it can be shown that x(t) 
contains second-order periodicity with frequency 

if and only if the parameter  4 

x( t +½~.)( t-½r) e -i~' dt 
T J-r/2 

(7) 

exists and is not identically zero as a function of 

~-. Consequently, we focus our attention in this 

paper  on the class of  time-series for which the 

f u n c t i o n / ~  exists and is not identically zero for 
some nonzero values of  t~. Also, in order to avoid 
anomalous time-series, 5 it is assumed t h a t / ~ , ( z )  

is a continuous function of  ~'. For ot = 0, R~, is the 
A 

conventional limit autocorrelation, denoted by Rx, 
which plays a fundamental  role in the theory of  

conventional spectral analysis (of. [24,33, 53]). 
For a # 0, / ~  is a generalization of the limit 

autocorrelation that incorporates a cyclic 

(sinusoidal) weighting function, and / ~  shall 

therefore be referred to as the limit cyclic autocorre- 
lation (and is sometimes abbreviated to cyclic 

A 

autocorrelation). Whereas Rx(r), for fixed r, is the 

constant (dc) component  of  the time-series 

z( t) A x( t + ½¢)x( t - ½z), (8) 

4 Much of the theory developed in this paper requires only 
that (7) converge pointwise in z and in u (obtained by replacing 
t with t+ u). However, in order to include the spectral density 
of a quadratically transformed version of x(t) in the theory, it 
is required that (7) converge in temporal m e a n  square  with 
respect to u (obtained by replacng t with t + u in (7)) [29]. 

For example, if/~(¢) is discontinuous at ¢ =0 for a =0, 
the spectral density can be identically zero even though the 
average power is nonzero [53]. 
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/ ~ ( z )  is the sinewave (ac) component, with 
frequency a, of the time-series z(t). This interpre- 
tation is expanded on in the next subsection. 

By comparison of (2) and (7), it can be seen 
that a time-series contains second-order periodic- 
ity if and only if its lag product (8) contains first- 
order periodicity for some lag values, ~'. 

2.2. Limit periodic autocorrelation 

The limit cyclic autocorrelation (7) can be 
derived by an alternative means that emphasizes 
its relationship to the oldest 6 known technique for 
extracting periodicity from random data, the tech- 
nique of synchronized averaging, which is also 
referred to as superposed epoch analysis [9]. This 
technique can be viewed graphically as follows. If  
the period To of periodicity which is hidden in the 
data is known, the data can be partitioned into 
disjoint adjacent segments of length To, and these 
horizontally arranged segments can be stacked up 
vertically as shown in Fig. 1. Then for each point 

,Vv VV r y V V V 5To, V v' 

Fig. 1. Superposed epoch analysis. 

6 Carded out with discrete-time data arranged in tabular 
form, this technique was evidently first used by Buys-Ballot in 
1847 [6] (see also [9, Chapter 1]) on meteorological data. 
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within a period, say t within the first period, an 
average can be obtained to reduce undesired ran- 
dom effects, by adding the time-samples along the 
vertical line intersecting the points t, t ± To, t ± 2 To, 
t ±3 To, . . . ,  t ± NTo, as shown in Fig. 1. In this 
way, the time-variant mean 

1 N 
- -  ~ x(t+nTo), (9) M x ( t ) T A 2 N + I  ~ - N  

based on a total data-segment length of 

T = ( 2 N  + I)To, (10) 

is obtained. 
As an alternative approach to implementation, 

this time-variant mean can be obtained by using a 
particular linear time-invariant (LTI) transforma- 
tion, called a comb filter, which is equivalent to a 
sum of bandpassfilters (BPFs) with center frequen- 
cies equal to the harmonic frequencies, + l /To ,  
±2/To, + 3 / T o , . . . ,  of the periodicity of interest. 
To establish this equivalence, we proceed as 
follows. The time-variant mean (9) can be re- 
expressed as the convolution 

Mx(t)T = I~_~ g ( t -  u)X(U) du ~ g(t)®x(t) ,  

(11) 

where the impulse-response function g is 

1 N 
= ~ 8 ( t -  nTo). (12) g(t) 2 N + l n = _ N  

The corresponding transfer function is 

G ( f ) =  ~ 1 . . . .  ~ w l / r ( f -  m~ To), (13) 

where 

sin(~ Tf) 
WUT(f) ~= ~rf (14) 

This is the transfer function of a comb filter, which 
has passbands at all the harmonic frequencies 
{m/To}, and each passband has width 1/T and 
unity attenuation at band center. 

In the limit as the number of time-samples 
averaged in (9) approaches infinity, N->m (and 
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therefore T-+ oo), the limit time-variant mean, 
A 

Mx(t) a= lim M~(t)r,  (15) 

W.A. Gardner/Cyclostat ionary time-series 

limit periodic mean 7 

Mx( t) = l(4m/r° e i2"mt/ro. A.~ X 
rtl = -- oo 

is obtained. In this limit, the bandwidths of the 
comb filter (13) become infinitesimal so that the 
filter response hT/~(t) can contain only frequency 
components at the discrete frequencies {re~To}. 
Hence, h~/x(t) is periodic with period To, 

A A 
M~(t+ To)=M~(t) ,  (16) 

and will therefore be referred to as the limit periodic 
mean. The individual sinewave components of this 
periodic function/V/~(t) can be obtained by using 
the individual teeth of the comb filter, that is, by 
using individual BPFs from the sum of BPFs that 
comprise the comb filter (equation (13)). Thus, to 
obtain the ruth sinewave component, the desired 
filter transfer function is 

1 
G,,( f )  =-~ W, / r ( f  - m /  To). (17) 

The corresponding impulse-response function is 
obtained by inverse Fourier transformation, 

g,,( t) = Ur(t) e i2"nmt/T°, (18) 

where ur is a unity-area rectangle of  width T 
centered at the origin. Consequently, the desired 
averaging operation required to obtain the mth 
sinewave component is, analogous to (11), 

gm(t)®x(t ) ,  

which, upon substitution of (18), becomes 

A 1 fT/2 
M ~ ( t ) r  =-~  a-r/2 x ( t +  u) e -i2' '" du, (19) 

where a = m/To.  In the limit T+oo,  this yields 
the mth sinewave component of  the limit periodic 
mean 

^ a ~t M~(t)  a= lim Mx( t ) r .  (20) 

Comparison of (19)-(20) with (2) reveals that 

A~/x~(t) = h~/~ e i2'',. (21) 

Summing all the sinewave components yields the 

(22) 

Comparison of (9) and (15) with (19), (21), and 
(22) reveals the fundamental identity for synchron- 
ized averaging 

^ 1 N 

Mx(t)  m X x(t+nTo) 
2 N +  1 ,=-N 

. 1 fT /2  
"~" ra=-oo 1TimmT d - T / 2  X (  t"[- U) e -i2"rcrau/T° du. 

(23) 

Now, for a time-series x(t)  that contains second- 
order periodicity, but does not contain first-order 
periodicity, synchronized averaging applied 
directly to the time-series is of no use, since 

AT/x (t) - constant. 

However, synchronized averaging applied to the 
lag-product time-series (8) yields 

N 

A 1 ~. x( t+nTo+½r)  Rx(t, r) A= l~mo ~ 2 N +  1 .=-N 

x x( t  + nTo-½Z), (24) 

from which identity (23) yields 

/~x(t, r) = ~ ~xd"/r°'(~')" ei2""'/r0, (25) 
m ~ - - o o  

where 

f T/2 / ~ ( z )  -o- lim 1 x( t+½r)x( t -½r)  
r-~oo T a-T~2 

- i 2 ~ v a t  - - -  x e at, (26) 

which is recognized as the limit cyclic autocorrela- 
tion (7), and which is not identically zero if and 
only if x(t) contains second-order periodicity with 
frequency a. By analogy with the terminology for 
BT/x(t), the funct ion/~( t ,  z) shall be referred to as 

7 A l l  F o u r i e r  s e r e s  i n  t h i s  p a p e r  a r e  a s s u m e d  t o  c o n v e r g e  

in some appropriate sense (such as pointwise or in temporal 
mean square), which depends on the particular mathematical 
applications and the corresponding assumptions about the 
mathematical model for x(t). 

Signal Processing 
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the limit periodic autocorrelation. In summary, the 
limit cyclic autocorrelation can be interpreted as 
a Fourier coefficient in the Fourier series expansion 
of the limit periodic autocorrelation (25). 

2.3. The limit cyclic spectrum 

Yet another interpretation of the limit cyclic 
autocorrelation can be obtained as follows. The 
generalized limit autocorrelation / ~  defined by 
(7) is actually the conventional cross-correlation 
of the two complex-valued frequency-shifted 
versions, 

u(t) a=x(t) e - i~ ' ,  
(27) 

v(t) a--x(t) e +i~rat, 

of the real time-series x(t), that is 

/~(~)-=/~.o(~) 
. 1 f r / 2  

=a lrim'~ ,_ r/2 u( t + ½r)v*( t-½r) dt. 
(28) 

This is easily verified by substitution of (27) into 
A 

(28). Consequently, R~ is the inverse Fourier trans- 
A 

form of the cross-spectral density S,v, of u(t) and 
v(t) (cf. [24, 33]), 

/~:(r)  = y f  S~'(f) ei2~f" df, (29) 

for which the notation 

~(f-)  a__ S~o(f) (30) 

is introduced. This special limit cross-spectral 
density shall be referred to as the limit cyclic spectral 
density of x(t) (and is sometimes abbreviated to 
cyclic spectrum). It follows from the definition of 
the conventional cross-spectral density (cf. [24]) 

A 
that S~(f) is the limit temporal correlation of the 
two spectral components of x(t) with frequencies 
f+½c~ and f - l a ;  that is, 8 

S~(f) = lim lim S, oT(t,f)a,, (31) 

s Convergence pointwise in both t and f in (31) is adequate 
for much of the theory developed in this paper. However, in 
order to include the spectral density of the time-series S,o~ ( t, f) 
in the theory, it is required that (31) converge in temporal mean 
square with respect to t [29]. 
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where Suv~(t,f)a, is the temporal correlation of 

1 
~/--~ Ur(t, f)  a=~_~ X r ( t , f  +½a), 

and 

1 a 1 
4 T  V-r( t,f) =--~ Xr(  t , f  -~a),  (32) 

and Xr(t, f )  is the time-variant finite-time complex 
spectrum 9 of x(t),  

f t+ T/2 
Xr( t , f )  a= x ( u )  e -i2~rfu du (33) 

dr- T~ 2 

(i.e., Xr( t , f )  is the complex envelope of the nar- 
rowbandpass component of x(t) with center 
frequency f and approximate bandwidth l / T ) .  
The temporal correlation referred to here is defined 
by 

S, vT(y,f)a, 

a 1 [at/2 1 U r ( t + u , f ) V , ( t + u , f ) d u .  
At j_atl2 T 

(34) 

Because of this spectral correlation characteriz- 
ation, the limit cyclic spectral density shall also be 
called the spectral correlation function. Equations 
(31)-(34) reveal the fundamental result that since 
any comprehensive statistical theory of second- 
order periodicity must be based on the limit cyclic 
autocorrelation (as explained in the two preceding 
subsections), then such a theory must also be based 
on cross-spectral analysis of frequency-translated 
versions of the time-series of interest. In fact, we 
have just discovered that a time-series x(t) con- 
tains second-order periodicity with frequency a 
(as defined in Section 2.1) if and only if there exists 
correlation between spectral components of x(t), 
with frequencies separated by the amount a, 
namely, frequencies f +  ½a and f -  ½or for appropri- 
ate values of f. 

9 Equa t ion  (33) is somet imes  refer red  to as the short-time 
Fourier transform; however ,  the  t e rm short is re la t ive and  not  

a lways appl icable .  
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Moreover, this spectral characterization (29)- 
(34) of second-order periodicity leads naturally to 
a particularly convenient and appropriate spec- 
trally decomposed measure of the strength of 
second-order periodicity contained in a time-series, 
namely, the limit correlation coefficient for the two 
spectral components with frequencies f+½a and 
f - l a .  This is given by the cross-coherence between 
u(t) and v(t), which is defined by (of. [24, 33]), 

A 

, . ,  a S,v(f) 
G"vtJ ) = [ g . ( f ) ~ ( f )  ] ' /2 

^ 

S~(f) 
=- [~x(f +½a)~x(f _la)]l/2 

Act 
C~(f),  (35) 

that is, 

C~(f)--- C~o(f). (36) 

This special cross-coherence shall be referred to 
as the spectral autocoherence of x(t) at cycle 
frequency a and spectrum frequency f. (It should 
be noted that a is the separation, andf the  location, 
of the two frequencies f+½a and f -½a in the 
autocoherence.) It follows from a fundamental 
property of the cross-coherence (the correlation 
coefficient) that the spectral autocoherence is 
upper-bounded by unity [24], 

I x (f)l 1, (37) 

for all time-series containing second-order perio- 
dicity. Consequently, x(t) shall be said to be com- 
pletely coherent (contain the maximum amount of 
second-order periodicity) with cycle frequency a 
and spectrum frequency f if and only if the spectral 
autocoherence is unity in magnitude, 

IC:(f)[ = 1. (38) 

Furthermore, x(t) shall be said to be completely 
incoherent lO (contain no second-order periodicity) 
with cycle frequency a and spectrum frequency f 
if and only if the spectral autocoherence is zero, 

A 

C,~ (f)  =0. (39) 

io A time-series that is completely incoherent for all a and 
f can contain periodicity of order higher than the second. 
Signal Processing 
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In addition to possessing the normalization 
property (37), the spectral autocoherence also is 
appropriately invariant to linear time-invariant 
(LTI) transformations of the time-series. That is, 
it can be shown (using (96)) that i fy(t)  is a filtered 
version of x(t), 

y( t) = h( t)®x( t), (40) 

and the filter transfer function is nonzero, 

I-I(f)~ h(t)e-i2~I' dt~O, (41) 

then the autocoherence magnitude of y(t) is iden- 
tical to the autocoherence magnitude of x(t), 

)d (f)l = I d:(f) l .  (42) 

This invariance property reveals that the strength 
of second-order periodicity contained in a time- 
series is unaffected by LTI transformation, pro- 
vided that frequency components are not annihi- 
lated because the transfer function equals zero at 
some frequencies. 

Alternatives to the definition of the limit cyclic 
spectrum as the Fourier transform of the limit 
cyclic autocorrelation, 

= f~o~/~'(~') e-i2~f~ dT' (43) g:(Y3 

that are analogous to the empirically motivated 
definitions of the spectral density (a = 0) can be 
obtained as follows. Let us define the cyclic peri- 
odogram by 

a l  
S~(t , f )  =-~ Xr ( t , f  +½a)X*(t,f-½a), 

(44) 

where Xr  is defined by (33), For a = 0, the cyclic 
periodogram reduces to the conventional peri- 
odogram (cf. [24, 33]).The limit cyclic spectrum 
can be obtained from the cyclic periodogram by 
either (i) time-averaging as in (31) (using the nota- 
tion T= 1/Af), 

oc t  t t ¢~ a_ 1 f t+At/2 S~,/As(u,f) du, 
L'33¢l/~fk "J }At - - ~ ' ~  dr--At~2 

(45) 
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or (ii) frequency smoothing (using the notation 
T=At) ,  

a 1 ff+Af/2 
S~'( t ' f )af=-'~ af-af/2 S~,,(t, v) dv. (46) 

Specifically, it can be shown (cf. [29]) that, as in 
(31)-(34), 

A 

S'~(f) = lim lim S~,, (t,f)a,, (47) 
Af-..*O At--*oo /af 

and that 

sT(y) = lira lim Sx~,(t,f)AI. (48) 
A f - * O  A t ~ o o  

Furthermore, it can be shown that the cyclic peri- 
odogram is the Fourier transform, 

Sx~( t,.f) = f ~oo Rx=( t, r) e-i2~':" dr, (49) 

of the cyclic correlogram, which is defined by 

a 1 ft+(r-1,1)/2 
x(~+½~)x(~-½~) R~( t, z)=-~ a,-(T-1,1)/2 

X e -i2~" du. (50) 

For a = 0, the cyclic correlogram reduces to the 
conventional correlogram (cf. [24, 33]). 

It should be emphasized that the cyclic 
autocorrelation (7), cyclic spectrum (47)-(48), cyc- 
lic periodogram (44), and cyclic correlogram (50), 
all reduce to conventional statistical parameters 
for a = 0. Consequently, the Fourier transform 
relation (43) shall be called the cyclic Wiener rela- 
tion, n as a generalization of the Wiener relation 
( a = 0 )  between the spectral density and the 
autocorrelation [53], and similarly the Fourier 
transform relation (49), shall be called the cyclic- 
periodogram/cyclic-correlogram relation, as a gen- 
eralization of the known periodiogram/cor- 
relogram relation (a = 0) (cf. [33]). 

periodic autocorrelation (24), 

S~(t,f) ~ f~ R~(t, ~') e -i2~rf~" dr. 
3-oo 

2.4. Limit periodic spectrum 

By analogy with (43), the limit periodic spectrum 
is defined to be the Fourier transform of the limit 

i1 In the probabilistic theory, the counterpart of  the Wiener 
relation is known as the Wiener-Khinchine relation (cf. [24]). 
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(51) 

It follows from (25), (43), and (51) that the limit 
cyclic spectra are the Fourier coefficients of the 
limit periodic spectrum, 

L( t , f )  = ~ Sx~/r°(f) e i2~'"/r°. (52) 
rrl = - - o o  

For time-series that contain second-order perio- 
dicity with more than one period, the limit periodic 
autocorrelation and limit periodic spectrum can 
be generalized to 

~(t ,  ~)~Y ~ ( r )  e i2~°', (53) 
ot 

L(t,f) g E g;(f) e i2~', (54) 

for which the sums are over all a for which the 
limit cyclic autocorrelation / ~  is not identically 
zero. These limit functions (53) and (54) are in 
general almost periodic functions in the mathemati- 
cal sense (cf. [11, 20]). 

It follows from (43) and (52) that the limit cyclic 
autocorrelation and the limit periodic spectrum 
are related by the Fourier-transform/Fourier- 
series relation 

:oo | ~To/2 

/ ~ ( r ) =  / ~ |  S~(t,f)e-i2~(~'-~Y)dtdf. 
J-~ To J-T0/2 

(55) 

This is analogous to the double Fourier transform 
relation 

Ex(t,f)e-i2~('~'-'Y)dtdf 

(56) 

where Px is the symmetric ambiguity function (with 
conventional frequency parameter v = - a )  for a 
real finite-energy waveform x(t) (cf. [51, 56]), 

p~(z,a) a= I~_ooX(t+½z)x(t-½r)e-i2~"' dt, 

(57) 
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and E~ is the Wigner-Ville distribution ~ (cf. 
[10, 52, 54]) for a real finite-energy waveform x(t),  

Ex( t,f) a= f foox( t + ½z)x( t-½r) e-i2~Y" dz. 

(58) 

More specifically, comparison of (57) and (7) 
reveals that p~(r, a) is the counterpart for finite- 

A 
energy waveforms of Rx(z), which is for finite- 
power waveforms. Consequently, the analogy 
between (55) and (56) suggests that Ex(t,f) is the 

A 

counterpart for finite-energy waveforms of  S~ (t, f ) ,  
which is for finite-power waveforms. However, 
whereas px and E~ are of potential use for only 
finite-energy but otherwise arbitrary waveforms, 
/ ~ ( r )  and Sx(t,f) are of use for only finite-power 
waveforms containing second-order periodicity. 
M o r e o v e r , / ~ ( z )  and S~(t,f) are idealized (limit) 
statistical parameters in which all randomness has 
been removed (by averaging), whereas p~ and Ex 
are random (erratic) if the waveform x(t) is ran- 
dom. The difference between the limit cyclic 
autocorrelation of  a real waveform x(t), and the 
ambiguity function for the complex envelope y(t) ,  
of x(t) (which is the appropriate ambiguity func- 
tion for radar ambiguity applications) is even more 
distinct as explained in the following. The complex 
envelope of  x(t) is defined by 

y(t)  = [x(t)  + ig( t ) ]  e -i2~rf°t, (59) 

where g is the Hilbert transform of x, and fo is 
typically chosen to be near the center of the spectral 
band occupied by x(t). It can be shown (cf. Section 
3.5) that R~, cannot in general be recovered from 
/ ~  (except for a = 0). Rather, both the limit cyclic 
autocorrelation of y (which uses y(t  + ½ r ) y * ( t -  
½r)) and the limit cyclic cross-correlation of  y and 
its conjugate y* (which uses y( t + ½r) y( t - ½~')) are 
needed to recover / ~ .  The cross-ambiguity of  y 
and y* plays no role in the conventional theory 
of radar ambiguity. Thus, the limit cyclic 
autocorrelation / ~  contains more information 

t2 Equation (58) is sometimes called a time~frequency energy 
density, but is more appropriately interpreted as a time- 
frequency energy flow rate. 
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about periodicity than that obtainable from the 
limiting f o r m / ~  of the radar ambiguity function. 
Similar remarks apply to the Wigner-Ville distribu- 
tion for the complex envelope 7(t). 

2.5. Probabilistic interpretation 

The periodically time-variant infinite synchron- 
ized time-average used to define the limit periodic 
autocorrelation, 

N 

/~(t ,  r) =a lim - - 1  ~ x(t+nTo+½r ) 
N ~ 2 N + I  ~=-N 

xx ( t+nT o- l r ) ,  (60) 

and thereby the limit cyclic autocorrelation (for 
a = m~ To) 

^ 1 [ to/2 
Rx(t, r) e -i~'~t dt, (61) 

g~ ( r) =Too J- ro/2 

the limit periodic spectrum, 

~ x ( t , f )  = ~ g ~ ( t ,  ~-) e -i2~s" d n  (62) 

and the limit cyclic spectrum (for a = m~ To), 

S : ( f )  = f ~ / ~ x  ('r) e-i2~f" dr, (63) 

can be re-interpreted probabilistically in terms of 
expected value. To see this, consider the joint frac- 
tion-of-time amplitude distribution for a time- 
series x(t) defined by (cf. [24]) 

F~ttl)x~t2)(Y~, Y2) 

1 N 
___a lim ~ U[yl-x(t l+nTo)] 

N~oo 2 N +  1 ,=-N 

x U[y2-x(t2+nTo)], (64) 

in which U is the unit step function. The joint 
fraction-of-time amplitude density for x(t) is 
defined by (cf. [24]) 

02 
fx~,Ox~t2)(Yl, Y2) - Fx~,,)x~t~)(y,, Y2). 

ayl 0y2 
(65) 

Both Fx,1)x(,2) and f~(,l)x(,2)are jointly periodic with 
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period To in the two time-variables, tx and t2, e.g., 

Fx(,,+ To)x(t2+ To) = Fx(q)~(t2). (66) 

It can be shown using only (64) and (65) that the 
probabilistic autocorrelation, which is defined by 
(cf. [24]) 

E{X(tl)X(t2)} 

a= I~oo f ~ YlY2fx(t,)~(,2)(Y,, y2) dy, dy2, 

(67) 

is given by 

E { X ( / l ) X ( / 2 ) }  

1 N 
= lim E X(tl+nTo)x(t2+nTo). 

N ~ 2 N + I  ,=-N 

(68) 

This is verified simply by substitution of (64) into 
(65) into (67), and interchange of the order of 
operations. ~3 It follows from (60) and (68) that the 
limit period autocorrelation can be interpreted as 
the probabilistic autocorrelation, 

Rx( t, r) = E{x( t + lr)x( t-½r)}. (69) 

Moreover, this expected value can be interpreted 
as an ensemble average (at least heuristically) by 
defining ensemble members (random samples) to 
be time-translates of x(t). That is, the sth ensemble 
member is 

x( t, s) A x( t -  sTo), (70) 

for integer values of s. The mapping (70) between 
an individual time-series and an ensemble of time- 
series is the basis for an isomorphism between an 
individual time-series and a cyclostationary 
stochastic process. This is a generalization of 
Wold's isomorphism for discrete-time stationary 
stochastic processes [55]. This isomorphism can 
be generalized to almost cyclostationary stochastic 
processes as outlined in [24] (of. [29]). 

~3 Strictly speaking, this interchange of operations must  be 
mathematically justified. The primary requirements are simply 
that the double integral in (67) exists and the limits in (64) and 
(68) exist in appropriate senses. 
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Since it is common practice in the use of the 
probabilistic theory of stochastic processes to 
assume that a process has Gaussian distributions, 
it should be clarified that if either (i) the cyclo- 
stationary probabilistic model, (64), or (ii) the 
stationary probabilistic model 

= U[yl - x(t, + t)] 
J--T~2 

xU[y2-x( t2+t)]d t ,  (71) 

is Gaussian, then either (ii) or (i), respectively, 
cannot be Gaussian unless x(t) contains no 
second-order periodicity, /~---0 for a ~ 0. This 
follows (cf. [24]) from the fact that F~(,,),,(t2) is a 
mixture of Fx(t+t,)x(,+,~), namely, 

1 f T°/2 
Ftx(tl)X(t2)- To a-To~2 Fx(tl+t)x(t2+t) dt. (72) 

3. Properties of the limit cyclic spectrum 

3.1. Time dependence 

It can be shown (by analogy with the argument 
for a -- 0 in [35]) that the limit of the cyclht cor- 
relogram is the limit cyclic autocorrelation, 

lim R~(t,  r) = / ~ ( r ) ,  (73) 
T~oo 

and this limit is independent of the time-location 
parameter t of the measurement (cf. (50) in Section 
2). Similarly, the limit cyclic spectrum, defined in 
terms of the cyclic periodogram 

lim lim Sx~(t,f)af = Sx(f),  (74) 
Af-~0 T~oo 

is also independent of the time-location t, as 
revealed by (43) in Section 2. However, it should 
be clarified that when x(t) is translated to, say, 
x(t+t') ,  then these limit statistics do indeed 
change, and the variation with t' is sinusoidal. That 
is, for the time-translated time-series y( t )A 
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x(t+ t') the limit statistics are given by 

/~y  (T)°~ ~--- R ~ ( T )  ei2Wat', (75) 
A A 
'~ - (76)  s y ( f )  - s T , ( f )  e i2~' ' .  

This is consistent with the periodic dependence of 
the limit periodic autocorrelation and spectrum, 
for example, 

A A 
Ry(t, I") = Rx(t+ t', ¢) 

= E Rxa('r) ei2=~t' ei2~at. (77) 
a 
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of x(t) is as shown in Fig. 2, which depicts the 
constraints 

Acx 
sx(f) =o 

It should be emphasized that this reveals that the 
limit cyclic spectrum, unlike the conventional limit 
spectrum, contains phase information. 

3.2. Spectrum types and bandwidths 

It can be shown that a time-series x(t),  for which 
the lag-product time-series (8) has finite power, 
can exhibit at most a denumerable set of nonzero 
cyclic spectra (of. [20]). Thus, the cycle spectrum 
is discrete, say {am : m = 0, ±1, ±2, . . .} .  If  the cycle 
spectrum contains only the frequency a = 0, then 
x(t) is said to be purely stationary. If  the cycle 
spectrum contains only integer multiples of some 
fundamental frequency, say ao = 1/To, then x(t) is 
said to be purely cyclostationary with period To. 
Otherwise, x(t)  is said to be almost cyclostationary 
(cf. [20, 24, 4]) because the Fourier series (54) in 
Section 2 is an almost periodic function. 

It can also be shown that if the conventional 
limit spectrum contains no spectral lines and is 
therefore a continuous function off ,  then the limit 
cyclic spectrum is also a continuous function o f f  
On the other hand if there are spectral lines (Dirac 
deltas in f )  in the conventional limit spectrum then 
there are also Dirac deltas in f in the limit cyclic 
spectrum. 

If x(t) is bandlimited in the temporal mean 
(time-average) square sense to the band, say, b < 
IJ] < B, that is, 

L ( f )  = 0 for 13~ ~> B or for IJ~ ~ b, (78) 

then it follows from (35)-(37) in Section 2 that the 
support in the (f, a )  plane for the cyclic spectra 
Signal Processing 
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(0) 

2B 

(el 

for [J~> B-½1-I 

or for (I.t] <~ b +½1~1 

and b + Ill). (79) 

2b 

~f  

~~~ (b) 

~f  

Fig. 2. Bi-frequency support for cyclic spectra of bandlimited 
time-series. (a) Lowpass. (b) Highpass. (c) Bandpass. 

3.3. Real representation 

The real and imaginary parts of the limit cyclic 
autocorrelation can be characterized by conven- 
tional auto- and cross-correlations of the two real 
time-series 

c( t) & x( t) cos(~rat), (80) 

s( t) & x( t) sin(~rat). (81) 
A 

Specifically, the real part of R~(r) is given by 

/~(T)r = Re(T) -- R,(T), (82) 

and the imaginary part is given by 

/~:(T)i = -Re,(7) -/~,c (r). (83) 
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This interesting relationship (82)-(83) is studied 
more deeply in the discussion of Rice's representa- 
tion in Section 3.5. 

3.4. Linear periodically time-variant 
transformations 

A particularly common situation in which 
second-order periodicity arises is that for which a 
purely stationary time-series x(t) is subjected to a 
linear periodically time.variant (LPTV) transforma- 
tion. For example, many modulation systems can 
be modeled as the scalar response of a multi-input 
LPTV transformation with purely stationary exci- 
tation. This includes amplitude modulation 
(double sideband, single sideband, vestigial 
sideband, and with or without suppressed carder), 
phase and frequency modulation, quadrature 
amplitude modulation, pulse-amplitude modula- 
tion, pulse-position modulation, and all syn- 
chronous digital modulations such as phase-shift 
keying, frequency-shift keying, etc. (cf. [24]). Con- 
sequently, the study of second-order periodicity is 
facilitated by general formulas that describe limit 
cyclic spectra, or spectral correlation functions, in 
terms of the parameters of LPTV transformations. 
This includes limit cyclic spectra that are generated 
by LPTV transformations of purely stationary time- 
series, as well as limit cyclic spectra that are trans- 
formed by LPTV transformations of cyclostation- 
ary time-series. 

Let us consider the LPTV transformation 

y ( t ) = f ~  h(t ,u)x(u)du,  (84) 

for which x(t) is a (column) vector excitation, y(t) 
is a scalar response, and h( t. u) = h( t + To, u + To) 
is the periodically time-variant (row) vector of 
impulse-response functions that specify the trans- 
formation. The function h(t+ 7, t) is periodic in t 
for each r. and can therefore be represented by 
the Fourier series 

where 

a 1 [ T°/2 
g.(r) =-Too .-ro/2 h(t+ ¢, t) e -'2~'"#r° dt. 
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(86) 

The system function, which is the well-known gen- 
eralization of the transfer function defined by the 
Fourier transform [12] 

G(t, f)  a= f ~  h(t, t- r) e -i2~f, dr, (87) 

can therefore also be represented by a Fourier 
series, 

G(t , f )= ~ G , ( f+n / ro )  e i2~"#ro, (88) 

where 

G,(f)  a=f~_g,(r)e-i2~Y'dr. (89) 

By substitution of (85) into (84) into the definition 
of the limit cyclic autocorrelation (7), it can be 
shown that 14 

/~(r)= ~ tr{[R~-("-")/4(r)e -i'("+m),/r°] 
n,m=--oo 

® r ~ ( - r ) } ,  (90) 

whe re / ~  is the matrix of limit cyclic cross-correla- 
tions of the elements of the vector x(t), 

R~(r) ~ lira I f r /2  _-  x( t+lr)x ' ( t  ½r) e -i2"#t dt, 
T~oo 1 d--T~2 

(91) 

and r:m is the matrix of finite cyclic cross-correla- 
tions 

r~ra(T  ) ~A g ~ (  1 , 1 e -i2ql.o~, t+~r)gm(t-~r) dt. 
-oo 

(92) 

Fourier transformation of (90), and application of 

h(t+r,t)= ~ gn(r) e i2~nt/T°, (85) 
n ~ --oo 

14 In (90), tr{ .} is the trace operation, and in (91) the super- 
script prime denotes matrix transposition. 
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the convolution theorem yields 

S~(f)  = ~ G,.(f+lct)S~ -('-m)/r° 
n , m  = - c o  

x ( f - [ n + m ] / 2 T o ) C , ' ( f - ½ a ) * .  (93) 

Formulas (90)-(93) reveal that the set of limit 
cyclic autocorrelations and the set of limit cyclic 
spectra are each self-determinant characteristics 
under an LPTV transformation, in the sense that 
the only features of the excitation that determine 
the limit cyclic autocorrelations (spectra) of the 
response are the limit cyclic autocorrelations 
(spectra) of  the excitation. 

In the special case of a linear time-invariant 
(LTI) transformation, 

h(t, u) = h(t - u), (94) 

formulas (90)-(93) reduce to 

Aot Ry ('r) = tr{l~'(~')® r~'(- r)} (95) 

and 

A a  1 A a  t 1 ~g Sy(f)  = H ( f  +~a)Sx( f )H ( f  -~a)  , (96) 

in which 

r<~(¢) a= r °° h'(t+½r)h(t-½r) e - i 2 ~ r a t  dt 
J - o c  

(97) 

and H ( f )  is the Fourier transform of h(r).  Also, 
in the special case for which the excitation x(t) is 
purely stationary, (90)-(93) reduce to 

oo 

n ~ oo tr{[Rx(r) e-iW(2n-P)'r/T°] 

/~7(r) = ® r~(,_p)(-~')}, (98) 
a =p/To,  

O, ct ~S p l To, 

and 

cc + 1  A 1 
,.:-~" ~ G,.+.(f ~a)Sx(f  --~a - ml To) 

g~(f) = x G'(f-½ot)*, ct =p/To,  

O, a # p l T o ,  

(99) 
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for all integers p, where 

r'~,.(~-) a=" g ' ( t+ lr)g*(t-lr)e-i2~'~' dt. 
o o  

(100) 

This result reveals that y( t )  is purely cyclostation- 
ary with period To. 

For convenient reference, formulae (93), (96), 
and (99) shall be referred to as input-output spectral 
correlation relations. 

By substitution of (85) into (84) into the 
definition of  the limit cyclic cross-correlation, it 
can be shown that 

ACt ^ Rxy(~) = ~ [RT"/T°(~) e i~m'/To] 
rn = --cx3 

®[g~(-~-)* e'~"~]. (lOt) 

Fourier transformation of (101) and application 
of the convolution theorem yields 

ACt 
Sxy(f)= ~ S~+"lr°[f-m/ETo] 

rn  = --  oo  

x C,m(f-~a) . (102) 

In the special case of an LTI transformation, for- 
mulae (101) and (102) reduce to 

and 

A a /~xr(r) = R~(~') ® [ h ' ( - r )  e i==,] (103) 

" a  ^ a  t I * 
Sx,( f)  = S x ( f ) H  ( f - ~ a )  . (104) 

Also, in the special case for which the excitation 
x(t) is purely stationary, (101) and (102) reduce to 

A 
e ] ® [ g p ( - ~ )  e ], f fRx( r )  - i ~ a ' r  t iTra¢  

l -  - - A~2 t 
Rxy(~') = J  a = p / T o ,  (105) 

tO, a #p /To ,  

and 

S~r(f) = J a = pl  To, 
{o, ~ # pl  To, 

(106) 

for all integers p. 
The general input-output formulas (90), (93), 

(101), and (102) for periodic transformations are 
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easily generalized for almost periodic transforma- 
tions, that is, transformations exhibiting more than 
one incommensurate periodicity, in which case the 
sum over all harmonically related frequencies a = 
n/To in (85) is generalized to include all values of 
a for which the Fourier coefficient functions, 

1 f r /2  
g . ( r )  & limoo ~ O-r/2 h ( t +  r,t) e i2~.,, dt, 

are not identically zero. The generalized versions 
of (90), (93), (101), and (102) simply sum over all 
corresponding values of frequencies, rather than 

just the values n~ To and m~ To. 

3.5. Rice's representation 

It is Well known that any time-series x ( t )  can 
be expressed in the quadrature amplitude modula- 
tion (QAM) form 

x( t ) = c( t ) cos(2~rfot)-s( t)  sin(2~rfot), 
(107) 

for any value o f f o ,  provided that c(t)  and s( t )  
are given by 

c( t ) = x(  t ) cos( 2~rfot ) + ~( t ) sin(27rfot), 
(108a) 

s(t) = if(t) cos(2~rfot) - x(t)  sin(2~rfot), 
(108b) 

for any auxiliary time-series ~(t). This is easily 
verified by substitution of (108) into (107) and use 
of a standard trigonometric identity. The QAM 
representation is particularly useful when x ( t )  is 
a bandpass time-series, with spectrum concen- 
trated near f = f o ,  because then c(t)  and s( t )  can 
both be made low-pass time-series, with spectra 
concentrated around f =  0, by appropriate choice 
of $(t).  An especially appropriate choice of g(t)  
is the Hilbert transform of x( t ) ,  

~( t) = h( t ) ® x (  t), (109a) 

for which 

In this case, it can be shown that if x ( t )  is 

bandlimited to f c  ( f o -  B, fo+ B) (and the image 
band f e  ( - f o - B ,  - fo  + B)), then c(t)  and s( t )  are 
bandlimited t o f e  ( -B ,  B). Furthermore, given any 
time-series in the form (107), with c(t)  and s( t )  
bandlimited to f e  ( -B ,  B) for B <fo,  it can be 
shown 15 that c(t)  and s ( t )  are uniquely determined 

by x( t )  and are given by (108), with if(t) defined 
by (109). 

This QAM representation (107)-(109) is often 
called Rice's representation, in honor of Stephen 
O. Rice's pioneering work [47, 48, 49]. It is valid 
regardless of the statistical properties of x(t).  That 
is, x( t )  can be a finite-energy function, or it can 
be a finite-power time-series that is purely station- 
ary, purely cyclostationary, or almost cyclostation- 
ary. However, the statistical properties of x(t) ,  c(t) 
and s( t )  have evidently been studied only within 

the probabilistic framework of stationary stochas- 
tic processes (cf. [13, 44]), which masks statistical 
properties associated with second-order periodic- 
ity, as explained subsequently. 

A complete study of the second-order statistical 
properties, including the limit cyclic correlations 
and limit cyclic spectra, for x ( t )  and its in-phase 
and quadrature components c(t) and s(t), as well 
as their conventional limit correlations and spectra, 
can be based on one general formula for QAM 
time-series. Specifically, let us consider a time- 
series, say y(t) ,  in the QAM form 

y( t ) = z( t ) cos(2~rfot) + w( t ) sin(2~rfot). 

(110) 

This is a particular LPTV transformation of the 
two-dimensional vector of time-series [z(t),  w(t)]', 
for which the vector of impulse-response functions 
is 

h( t, u) = [ cos( 2~rfot )6( t - u ), 

s in(2wfot)6(  t - u)] ( l l l )  

h(t) = 1 / (~r  t ) ,  (109b) 

- i ,  f > 0 ,  (109c) 
H ( f ) =  +i, f < O .  

ts This can be verified by substitution of (107) into (108), 
and use of the fact that, for B <fo, the Hilbert transforms of 
c(t) cos(2~rfot) and s(t) sin(2~rfo t) are c(t) sin(2~rfot) and 
-s(t) cos(2wfot), respectively. 
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and the vector of corresponding system functions 
is 

G(t,f)  = [cos(2~rfot), sin(2~rfot)]. (112) 

Application of  formula (90) yields 16 

~ y ( r ) -  _~[gz(,r)+ 
I "~'ot A a  + ~ [ R w , ( ~ ' )  - R,w(~' ) ]  sin(2"trfo~') 

+41. fl_ 1,, [/~7+2"f°('r) - /~  ~'+2"i°('r)] 

-I-" "d~'+2nf°" ' - -d '~+ '~n f ° "  ""  
l n L K ~ z  t ~ ' J * l ~ z w  t~ ' )J ,  

(113) 
and application of  formula (93) yields 

S y ( f )  = ~  ~ [ S ~ ( f + n f o ) + S ~ ( f + n f o ) ]  
n=--l,l 

+ n i [ S ~ ( f +  nfo) - S~w(f+ nfo)] 

1 ~ [~7+2nfo(f)_~+2nfo(f) ] 
"~- 7 n=- l , l  

.,~,~+2-So: r~ + ~+2.fo( ~q] 
n l [ ~ . ~ w z  i j ] ~ z w  x J  z a .  

(114) 

From formula (113) and its Fourier transform 
(114), we can determine all cyclic correlations and 
cyclic spectra ~7 for x(t), c(t), and s(t), since each 
of  the three representations, (107), (108a), and 
(108b), is of  the form (110). For example, with the 
use of  y =x,  z =c,  and w = - s ,  and selection of  
a =0,  (113) yields 

/~x(r) = ½[/~(~') +/~,(z)] cos(2~rfo~') 

+½[/~.(r) -/~,~(z)] sin(2"rrfo~') 

• A2n fo  ^ - , n [ R .  (~) + R~:o(r)]. 
(115) 

i~ The result (113) was obtained by Brown [5], who general- 
ized our formula (90) from the scalar case to the vector case, 
and then applied the result to generalize our formula (113) 
from the case a = 0, +2f0 to the case of  arbitrary a. 

~7 It is mentioned in passing that by letting z(t ) be identically 
zero, (113) and (114) yield formulas for the limit cyclic 
autocorrelation and limit cyclic spectrum for an amplitude- 
modulated time-series (e.g., for frequency conversion). 
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This result reveals that the conventional formula 
(e.g., [44]), which omits the terms in the sum over 
n = - 1 ,  1, is correct only if c(t) and s(t) contain 
no second-order periodicity with frequency a = 
+2fo (e.g., if c(t) and s(t) are bandlimited to 
f e  (-fo,fo)), or the second-order periodicity is 
balanced in the sense that 

R ± 2 f o [  \ ~ -  t~'~ ,~ ~:So(~.), 
~ ± 2 f o ;  x _ ~ c ? f O ( _ T ) "  cs t r )  =- 

( l l6a)  

(116b) 

As another example, with the use of y =x,  z =c,  
and w = - s ,  and assuming that c(t) and s(t) are 
jointly purely stationary, (113) yields 

R~2f°(z) = z[Rc(z) - Rs(z)] 

:F ~i[/~, (z) +/~c  (z)], (l17a) 

and also 

/ ~ ( 7 ) - 0 ,  lal # 2fo. (117b) 

This result (117) reveals that x(t) is purely station- 
ary if and only if the correlations of c(t) and s(t) 
are balanced in the sense that 

/~c(~') -=/~s(z). (l18a) 

/~cs (z)-= -/~cs ( -  ~'). (118b) 

Otherwise, x(t) is purely cyclostationary with 
period 1/(2fo). Similarly, it can be shown through 
use of  y = c, z = x, and w = £, and also y = s, z = £, 
and w = - x  in (114) that if x(t) is purely cyclo- 
stationary with period 1/(2fo), then c(t) and s(t) 
are purely stationary if and only if the cyclic spec- 
trum of x(t) is bandlimited, 

Sx~2f°(f) = 0, Ifl>~fo. (119) 

This necessary and sufficient condition is satisfied 
if and only if either x(t) is bandlimited such that 

Sx(f) = O, IJl ~> 2fo, (120) 

or c(t) and s(t) are balanced out of band in the 
sense that 

S~(f) = Ss(f), if[ >fo ,  (121a) 

g,c(f) = - L c ( - f ) ,  IYl>fo. (121b) 
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Moreover, it can be shown that the second-order 
periodicity of x(t) at cycle frequency a depends 
on the second-order periodicity of c(t) and s(t) 
at only the cycle frequency a if and only if the 
cyclic correlations are balanced in the sense that 

/~ :±2s°(r)-=/~:±2s°(r), (122a) 

^ r~ a ±2fo," x R;±2f°(r) =- -~cs  t - r ) .  (122b) 

Otherwise, there is dependence on the second- 
order periodicity of c(t) and s(t) at the cycle 
frequencies a + 2fo, as well as at a. 

The only relations needed, in addition to for- 
mula (114), to completely determine the cyclic 
spectra of c(t) and s(t) in terms of the cyclic 
spectra of x(t)  are the following cyclic spectra for 
Hilbert transforms (which follow from (96), (104), 
and (109c)): 

act 
- f - S ~  (f),  Ifl<½1~l, 

(123a) "t ^or S~( f )  = [+S~( f ) ,  Ifl>ll l, 

^ - 1  x ( f )  ^t~ ct 

Sx~(f) = S~x(-f) = ( +lSx" ct ( f) ,  
f < ½a, 

f>½a.  
(1235) 

An alternative to the approach based on the 
general QAM formula (114) for determining 
explicit formulas for the cyclic spectra of x in terms 
of c and s, and vice versa, is based on the complex 
envelope 

y(t) & [x(t) +i2( t ) ]  e -i2=f°' (124a) 

= c(t )+is( t ) .  (124b) 

This equation is easily solved to obtain 

x( t) = ½3'(t) ei2~e°t +½T*( t) e -'2~'s°', 

c ( t )  = '  ' * 2T(t) +~T (t), 

(125a) 

(125b) 

(125c) 
1 1 

s(t) =~-~ T ( t ) - ~  T*(t). 

Substitution 
yields 

A 

S~( f )  = 

29 

(126c) = gTVo(f) u(½,, +fo-  Lfl), 

~ ( f ) ,  ^~ % % = a[S~(f) + S~.(f) + S ~ . ( f )  
A 

+ Sv.v(f)], (126d) 

S~'(f) = ¼[S~(f) + S~.(f) - S~v.(f) - S~. ,(f)] ,  
(126e) 

S~s(f) = ¼i[S~(f) - S~.(f) - S ~ . ( f )  

+ S~*v(f)]. (126f) 

of (126b)-(126c) into (126d)-(126f) 

S~(f+fo) U(f+fo-½1~l) 
+ S~ ( f - f o )  U ( - f + f o  - ½l a l) 

+ ~+2So(f) U(½a + f o - I f  I) 
+ g~-2fo(f) U(-½a +fo -[ f l ) ,  

S~(f+fo) u(f+fo-½]~l) 
+ S ~ ( f - f o )  U(- f+fo-½1~l)  

_ ~+2So(f) U(½a +fo-I]1) 

_ ~-2So(f)  U(-½a + f o - I ~ ) ,  

(127a) 

(127b) 

^ 

S~( f )  = 

~r ,  _ ,  Ac t  - ~  
Scs(f) - l [Sx ( f  fo) U ( f  +fo-½1al) 

- S : ( f - f o )  U ( - f + f o -  

- S~+2f°(f) U(½a +fo -I,tl) 

+ S;-2f°(f) U(-½a +fo- I~)] .  
(127c) 

It should be noted that it follows from (126b) and 
(126c) that the supports in the (f, a)  plane of the 
four terms in (126a) are disjoint, as shown in Fig. 
3. For convenient reference, formulas (126) and 
(127) will be referred to as the spectral correlation 
relations for Rice's representation. 

Now, it can be shown that 

~ ( f )  i % % = a[S~,(f- fo) + S~*(f+fo) 
A A 

+ S~.2fo(f) + c~+2/o, ¢~1 ° ' / * 3 ,  k J l J ,  

S~( f )  = gT(f + fo) u ( f  + fo-½1al), 

(126a) 

(126b) 

3.6. Sampling and aliasing 

Consider the discrete-time-series {x(nTo): n = 
0, +1, +2, +3 . . . .  } that is obtained by periodically 
sampling a continuous-time-series x(t),  and let us 
determine the relationship between the cylic 
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In order to determine the relationship between 
the limit cyclic autocorrelations for x(t) and 
{x(nTo)}, the synchronized averaging identity (23) 
is applied to definition (129) to obtain 

R~,(kTo) : ~ R~c+'n/T°(kTo) e i~rmk. (131) 
rtl = --oo 

Substitution of relation (131) into definition (130) 
yields the spectral correlation aliasing formula 

Fig. 3. Bi-frequency support for cyclic spectra of complex 
envelope. 

ct3 A 

S~(f) =-Too ,.~=-o~ S:+m/r°(f - m/2 To- n~ To). 

(132) 

Thus, ST(f) exhibits the periodicity properties 

S ~ ( f +  1/To) -- S~(f) ,  (133a) 

S;+2/T°(f) = S~(f) ,  (133b) 

~ + ~ / t o ( f _  1/2 To) = S~(f) ,  (133c) 

spectra of x(t) and {x(nTo)}. Since the symmetric 
version of  the definition of the limit cyclic 
autocorrelation (7) cannot be directly extended to 
discrete-time-series (because the data {x(½kTo)} 
does not exist for odd integers k), then the asym- 
metric version 

T / 2  

i ~ ( z )  = lim 1 x(t+¢)x(t)  
T~o~ T j-T/2 

X e - i 2 ~ a ( t + ' r / 2 )  dt (128) 

is extended. Specifically, the limit-cyclic autocorre- 
lation for a discrete-time-series {x(nTo)} is defined 
by 

1 N 

~(kTo)  =a l im E ~o~2N+1 .= N 
x(nTo+ k To) x( n To) 

× e -i2~(n+k/2)T°. (129) 

Motivated by the cyclic Wiener relation (43), the 
limit cyclic spectrum for {x(nTo)} is defined by 

~(f) A ~ R~(kTo) e -i2~krJ. (130) 
k = - - o o  

Signal Processing 

in addition to the symmetry properties 

S ;~ ( f )  = gT(f)*, (133d) 

g ~ ( - f )  = Sx~(f). (133e) 

We see from ( 132) that the cyclic spectrum of x (t) 
is in general not obtainable from the cyclic spec- 
trum of {x(nTo)} due to aliasing effects in both a 
and f However, if x(t) is bandlimited in the tem- 
poral mean square sense to the Nyquist bandwidth, 

Sx(f) = 0, [fl>~B<l/2To (134) 

then the bandwidth property (79) applied to (132) 
reveals that the support in the (f, a)  plane of each 
of the terms in (132) indexed by n and m is disjoint 
from the support of all other terms, as shown in 
Fig. 4. Therefore, aliasing does not prevent 
recovery of S~ from S~, that is, 

S~(f)  = Sx~(f), [f[ < [B-½[a[[, (135a) 

and 

Sx~(f) = 0, [f[ 1> [B -½[a [[. (135b) 

On the other hand, if x(t)  is not bandlimited, even 
the conventional spectrum suffers from aliasing in 



c/ 
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Equation (138) is an LPTV transformation with 
scalar impulse-response function 

h(t, u) = cos(2~rfot + Oo)6(t- u) (139) 

and corresponding system function 

O(t, f )  = cos(2~rfot + 0o) 

= G I  e i2~rf°t + G-i  e -i2~rf°t, (140a) 

I where 

- -~ '~i°° ( 1 4 0 b )  G i = G * - ~ - 2 , .  • 

Application of formula (93) yields the spectral 
correlation frequency-conversion formula, 

Sv(f) 1 %  = a[  S,, (f+fo) + Sx ( f - fo)  

+ S~+2fo(f) e-i2Oo+ g~-2fo(f) ei2°o], 

(141) 

which reveals that frequency conversion translates 

the spectrum frequency f by +fo, and translates 
the cycle frequency a in separate terms by +2fo. 
Even the conventional spectrum contains cycle- 
frequency translates, 

Sy(f) = J [S~( f+fo)+  Sx( f - fo)  

+ Sffo(f) e-i2°o+ gx2so(f) ei2°0]. 
(142) 

This is often unrecognized in probabilistic treat- 
ments. Only in the case for which x(t) is purely 
stationary and therefore exhibits no spectral corre- 
lation do we obtain the known formula 

Sy(f) = ¼[S~(f+fo)+ Sx( f - fo ) ] ,  (143) 

for all fo. 

Fig. 4. Bi-frequency support for the first nine terms in the 
aliasing formula (132) for the cyclic spectrum of a time-sampled 
time-series for which Sx(f)=0 when I]~>B (vertical scale 

compressed). 

t~ as well as f, 

1 ~ g7lTo(f-m/To-n/To). (136) 
. . . . . .  

This is often unrecognized in probabilistic treat- 
ments. Only in the case for which x(t) is purely 
stationary and therefore exhibits no spectral corre- 
lation do we obtain the known relationship 

1 
s~(S) = ~oo .=  ~ oo S~(f-nlTo), (137) 

for all T O . 

3. 7. Frequency conversion 

A common signal processing operation is that 
of frequency conversion whereby the spectral con- 
tent of a time-series is shifted from one band to 
another. This can be accomplished by multiplying 
the time-series x(t) by a sinewave to obtain 

y( t )  = x(t)  cos(2~rfot + 0o), (138) 

and then either low-pass filtering or band-pass 
filtering for down-conversion or up-conversion, 
respectively. 

3.8. Product modulation 

Both periodic time-sampling and frequency con- 
version are special cases of the more general prod- 
uct modulation operation, 

y(t) = w(t)x(t), (144) 

where x(t) and w(t) are arbitrary time-series. For 
example, w(t) can be a periodic train of narrow 
pulses, a sine wave, any other periodic or almost 
periodic function, or a random time-series like 
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x(t). If w(t) and x(t) are statistically independent 
(in the sense that their joint fraction-of-time proba- 
bility distributions factor into the product of the 
two individual marginal distributions, cf. [29]), 
then the spectral correlation characteristics of y(t) 
can be expressed explicitly in terms of the spectral 
correlation characteristics of w(t) and x(t). It can 
be shown [5, 29] that every periodic or almost 
periodic time-series is statistically independent of 
every other time-series. Given this statistical 
independence, it can be shown that the limit almost 
periodic autocorrelation (53) of the product (144) 
is given by the product of limit almost periodic 
autocorrelations, 

,,~ A A 

Ry(t, z) = Rw(t, ~')Rx(t, z). (145) 

Substitution of the Fourier series representations 
(53) for both/~w(t, z) and Rx(t, T) into (145), and 
use of the formula 

~,~ . 1 f r /2  A 
Ry(T) = lri~m°°-T --J-t~2 Ry(  t, 7") e -i2"#~, dt, 

(146) 
yields the discrete convolution 

/~(7)  = Y./~-~(~-)/~(z). (147) 

Fourier transformation of (147) yields the double 
(discrete and continuous) convolution 

S~(f) = ~ foo S~,-a( f -  v)g~(v) dv, (148) 
d-oo  

which is the desired result. 
As an example, if w(t) is almost periodic, 

w(t) =E w~ e i~', 
lJ 

then 

S~(f) = ~, W~W~_,8( f -  v+½fl), (149) 
v 

and therefore (148) yields 

g ~ ( f ) = E  * ^ ~ - "  - W, Wa_,Sx ( f  v+½fl). (150) 
~,,~ 

As another example, if x(t) is purely stationary, 
then (148) yields 

S'~(f)= f~_ S~(f - v ) S : ( v )  dv. (151) 

S i g n a l  P r o c e s s i n g  
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The spectral-correlation convolution relation 
(148) together with the spectral-correlation input- 
output relations for time-invariant and periodically 
time-variant filtering, (96) and (93), provide means 
for quickly and easily obtaining spectral correla- 
tion formulas for many signal processing 
operations and many modulation types (cf. [24]). 
As an example, the class of phase-shift-keyed 
modulation types is briefly considered in the 
following subsection. 

3.9. Phase-shift-keyed signals 

A particularly important application of the con- 
cept of spectral correlation is to the study of modu- 
lated signals. As an example, we briefly consider 
phase-shift keyed signals, and simply present 
results, that are derived elsewhere [24], for illustra- 
tive purposes. Specifically, to show some of the 
ways in which the spectral correlation function 
S~(f) can be used to characterize different modu- 
lation types, the magnitude Ig:(f)l is graphed as 
the height of a surface above the bi-frequency 
(f, or) plane for four different types of phase-shift- 
keying, namely, BPSK, QPSK, SQPSK, and MSK. 
It can be seen from these graphs shown in Fig. 5 
that the first three types of PSK have identical 
power spectral density functions (t~ = 0), but have 
highly distinct spectral correlation functions. In 
particular, for BPSK, S~ ( f )~0  for only a =Pfd 
and a = +2fo+Pfd for all integers p, where fo is the 
carder frequency andfd is the data rate; for QPSK, 
S~(f) 40  for only a =Pfd for all integers p; for 

A 

SQPSK, S~(f) ~ 0 for only a = Pfd for p even and 
a = +2fo+Pfo for p odd, and similarly for MSK. 

3.10. Noise in periodic circuits 

A number of modern signal processing systems 
employ periodically switched and modulated 
linear circuits. An important problem in the use 
of all electrical circuits for signal processing is the 
analysis and control of noise at the output of the 
circuit due to thermal noise from the circuit ele- 
ments. Typically each internal noise source is 
independent of all other internal noise sources in 
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(a) 

- I / 2  0 + I/2 

f 

+1 

- I / 2  0 + I/2 
f 

+1 

. I / 2  0 + I/2 

f 

• I / 2  

+1 

0 + I/2 

f 
Fig. 5. Cyclic spectrum magnitudes for PSK signals. (a) BPSK. (b) QPSK. (c) SQPSK. (d) MSK. 
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the circuit. Consequently, the linearity of the cir- 
cuit results in the spectral density of the total 
output noise being the sum of spectral densities of 
the individual output-noise components corre- 
sponding to each internal noise source. In order 
to determine the output-noise spectral density due 
to a particular internal noise source, we need only 
the system function that specifies the input-output 
relation for the particular noise source. If the noise 
source is stationary, then the output-noise spectral 
density is, from (99) (generalized for almost peri- 
odic transformations), given by 

A 2 A 

Sy(f)  =Z [G~(f)l S x ( f - a ) ,  (152) 
ct 

and if the noise source produces white noise (e.g., 
thermal noise), then (152) reduces to 

Sy(f) = No • [Go(f)l 2. (153) 

The output-noise variance in this case is given by 
the integral of (153), 

var{y(t)} = No ~ fy~ IQ(f)[ 2 df  (154a) 

= No~ f ;  ]g~('r)12 d'r. (154b) 

Alternative equivalent formulas for output-noise 
variance are given by (using (85) and (88)) 

var{y(t)} = No I ~  ([G(t,f)l 2) d f  (155a) 

=go f? ([h(t+z,t)[2)dr, (155b) 

where (-) denotes average over all t for an almost 
periodic circuit, or simply average over one period 
for a periodic circuit. 

4. Conclusions 

By definition, a phenomenon or the time-series 
it produces is said to exhibit second-order periodic- 
S i g n a l  Processing 
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ity if and only if there exists some quadratic time- 
invariant transformation of the time-series that 
gives rise to finite additive periodic components 
(spectral lines). An introduction to a comprehen- 
sive theory of statistical spectral analysis of time- 
series from phenomena that exhibit second-order 
periodicity, that does not rely on probabilistic con- 
cepts, has been presented. It has been shown that 
second-order periodicity in the phenomenon is 
characterized by spectral correlation in the time- 
series, and that the degree of coherence of such a 
time-series is properly characterized by a spectral 
correlation coefficient, the spectral autocoherence 
function. A fundamental relationship between 
superposed epoch analysis (synchronized averag- 
ing) of lag products, and spectral correlation, 
which is based on the cyclic autocorrelation and its 
Fourier transform, the cyclic spectral density, has 
been revealed through a synchronized averaging 
identity. Relationships to the radar ambiguity func- 
tion and the Wigner-Ville time-frequency distribu- 
tion have also been explained. It has been shown 
that the theory extends and generalizes the con- 
cepts associated with such time-frequency rep- 
resentations from finite-energy time-series to finite- 
power time-series. This complements Wiener's 
extension and generalization of frequency rep- 
resentations (the Fourier transform and Fourier 
series) in terms of the theory of spectral density. 
It has been shown that the deterministic theory 
can be given a probabilistic interpretation in terms 
of periodically time-variant fraction-of-time distri- 
butions obtained from synchronized time averages. 
This extends and generalizes Wold's isomorphism 
from stationary processes to processes that are 
cyclostationary or almost cyclostationary. Several 
fundamental properties of the cyclic spectrum, 
which is a spectral correlation function, including 
the effects of time sampling, frequency conversion, 
periodically time-variant linear filtering, and prod- 
uct modulation, and including the spectral correla- 
tion properties of Rice's representation for band- 
pass time-series, have been derived. 

It should be emphasized that essentially all the 
fundamental results of the theory of cyclic spectral 
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analysis presented in this paper are generalizations References 
of results from the conventional theory of spectral 
analysis, in the sense that the latter are included [1] 
as the special case of the former for which the 
cycle frequency a is zero (or the period To is 
infinite) or the time-series is purely stationary. For [2] 
example, the cyclic periodogram / correlogram rela- 
tion, the equivalence between time-averaged and 
spectrally-smoothed cyclic spectra, the cyclic 

[3] 
Wiener relation, the periodic Wiener relation, the 
input-output spectral correlation relations for linear [4] 
periodically time-variant transformations, the spec- 
tral correlation relations for Rice's representation, 
the spectral correlation aliasing formula for time- [5] 
sampling, the spectral correlation frequency conver- 
sion formula, and the spectral-correlation con- 

[6] 
volution relation for product modulation are all 
generalizations of results from the conventional [7] 
theory of spectral analysis, and reduce to the con- 
ventional results for a = 0 (or To = oo) or purely 
stationary time-series. 

The theory has obvious and immediate applica- [8] 
tions to the characterization of modulated signals 
[25,30], noise analysis for periodically time- [9] 
variant linear systems [50], and synchronization 
problems [23]. It also has potentially important 

[10] 
applications to problems of identification of peri- 
odically time-variant systems [21, 29], and to prob- 
lems of detection, classification, parameter estima- 
tion, and extraction of modulated signals buried [11] 
in noise and further masked by interference [12] 
[22, 29]. Many other applications in signal process- 
ing are also being pursued [1, 2, 7, 8, 14-19, 21, [13] 
22, 29, 31, 32, 34, 36, 37, 39-43, 45, 46, 50]. [14] 

Further development of the fundamental theory 
of cyclostationary time-series can be found in [5] 

[15] 
and [29]. 
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