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Editor’s Introduction

Many conventional statistical signal-processing methods treat tandom signals
as if they were statistically stationary, that is, as if the parameters of the underly-
ing physical mechanisms that generate the signals do not vary with time. But for
most man-made signals encountered in cornmunication, telemetry, radar, and sonar
systems, some parameters do vary periodically with time. In some cases even multi-
ple incommensurate (not harmonically related) periodicities are involved. Examples
include sinusoidal carriers in amplitude, phase, and frequency modulation systems,
periodic keying of the amplitude, phase, or frequency in digital modulation systerns,
periodic scanning in television, facsimile, and some radar systems, and periodic
motion in rotating machinery. Although in some cases these periodicities can be
ignored by signal processors, such as receivers that must detect the presence of sig-
nals of interest, estimate their parameters, and/or extract their messages, in many
cases there can be much to gain in terms of improvements in performance of these
signal processors by recognizing and exploiting underlying periodicity. This typically
requires that the random signal be modeled as cyclostationary or, for multiple period-
icities, polycyclostationary, in which case the statistical parameters vary in time with
single or multiple periods. Cyclostationarity also arises in signals of natural origins,
because of the presence of thythmic, seasonal, or other cyclic behavior. Examples in-
clude time-series data encountered in meteorology, climatology, atmospheric science,
oceanology, astronomy, hydrology, biomedicine, and economics.

Important work on cyclostationary processes and time-series dates back over
three decades, but only recently has the number of published papers in this area
grown exponentially. Fueled by recent advances in applications to communications,
signal processing, and time-series analysis that demonstrate substantial advantages of
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exploiting cyclostationarity in both design and analysis, the appetite for learning about
cyclostationarity exhibited by research and development communities in areas such as
wireless and cable communications, signals intelligence and covert communications,
and modeling and prediction for natural systems (hydrology, climatology, meteo-
rology, oceanology, biology/medicine, economics, etc.) has outgrown the available
tutorial literature. This edited book is intended to help fill this void by presenting indi-
vidual futorial treatments of the major subtopics of cyclostationarity and by featuring
selected articles that survey the latest developments in various specific areas.

The book is composed of two parts. Part I consists of six chapters, the first four of
which are adapted from the four plenary lectures at the Workshop on Cyclostationary
Signals, which was held August 16-18, 1992, at the Napa Valley Lodge in Yountville,
California. Part I consists of seven articles. Part I is strongly tutorial and provides
in-depth surveys of major areas of work. Similarly, Part II, which focuses on more
specific topics, also has a tutorial survey flavor. Each of these two parts treats both
theory and application.

Chapter 1 provides a historical perspective on cyclostationarity and discusses in
detail both the practical and mathematical motives for studying cyclostationarity. It
also treats the philosophy of aesthetics and utility that underlies alternative concep-
tual/mathematical frameworks within which theory and method can be developed.
The latter half of the chapter surveys the theory and application of wide-sense cyclo-
stationarity, touching on the problems of detection, modulation recognition, source-
location, and extraction of highly corrupted signals, and the roles that the spectral-line
generation and spectral-redundancy properties of cyclostationarity play in tackling
these and other problems. This chapter provides an introduction to cyclostationary
signals that serves as a foundation for the remainder of the book.

Chapter 2 provides an overview of the recently formulated theory of higher-order
temporal and spectral moments and cumulants of cyclostationary time-series. It is
shown that the nth-order polyperiodic cumulant of a polycyclostationary time-series
is the solution to the problem of characterizing the strengths of all sine waves that
are produced by multiplying » delayed versions of the time-series together, with the
parts of those sine waves that result from products of sine waves that are present in
‘lower-order factors of the nth-order product removed, Thus, the study of higher-order
cumulants is motivated by a practical problem that arises in signal processing. The
chapter also discusses other motivations for studying the moments and cumulants
and provides a historical account of cumulants and their uses. The properties of these
statistical functions that render them useful in signal processing are discussed and
compared to the properties of similar statistical functions for stationary time-series.
Applications of the unique signal-selectivity property of the polyperiodic cumulants
to the tasks of weak-signal detection and source location are briefly described.

Chapter 3 provides an overview of sensor array processing for cyclostation-
ary signals, focusing on adaptive spatial filtering and direction-of-arrival estimation,
and presenting some new results on blind equalization and channel identification. It
briefly describes many recently introduced methods and highlights their advantages
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and disadvantages relative to each other and to more conventional techniques that
ignore cyclostationarity. Applications of cyclostationarity-exploiting methods to ex-
isting problems in array processing and to the design of new wireless communication
systems are suggested.

Chapter 4 supplements the material on cyclostationary processes by reviewing
the basic theory of periodically and polyperiodically time-varying linear systems.
Such systems are extensively employed as filters for processing and modeling cyclo-
stationary signals. Various input-output and state-variable descriptions together with
filter structures that are appropriate for implementing the desired response charac-
teristics in both continuous- and discrete-time are discussed. The chapter concludes
with a brief discussion and some examples of polyperiodic filtering for waveform
extraction.

Chapter 5 provides an overview of the state-space theory of cyclostationary
processes in discrete time. The three alternative descriptions, (/) jointly periodic
autocovariance functions, (i7) state-space stochastic models (Markovian representa-
tions), and (ii{) autoregressive moving average models with periodic coefficients, are
investigated, and connections among them are explained. Innovations representa-
tions, linear prediction, spectral factorization, and model identification are all studied
and the current state of knowledge on these topics is summarized.

Chapter 6 provides a review of the spectral theory of cyclostationary (periodically
and almost periodically correlated) random processes and of existing results on the
consistent estimation of the Fourier coefficients of the autocorrelation function and
their Fourier transforms, the spectral cormrelation densities. The representation of
these processes in terms of sets of jointly stationary processes and in terms of unitary
operators also is reviewed.

Article 1 in Part IT addresses the joint transmitter/receiver optimization prob-
lem for multinser communications and presents a coherent view of system design
approaches that include different but related multiinput/multioutput models on the
basis of analytical optimization. The present state of knowledge in this area is summa-
rized, and the potential for suppression of cochannel interference that is
afforded by the cyclostationarity of the signals is emphasized. The results demonstrate
analytically that greatly improved cross-talk rejection is achievable when the spectral
correlation property of the cyclostationary signals is properly exploited.

In Article 2 the objective is to provide insight into the nature of the self-noise
that is present in the timing wave produced by a square-law synchronizer acting
on a cyclostationary pulse-amplitude modulated signal and to provide a quantitative
analysis of the mean square phase jitter in the timing wave. The results obtained show
explicitly how the design and performance analysis of the square-law synchronizer
is characterized by the spectral correlation function and the fourth-order spectral-
moment function of the signal.

Article 3 provides a tutorial review of recent methods for multipath channel
identification using known test signals. By exploiting the signal-selectivity proper-
ties of the cyclic autocorrelation function or the associated spectral correlation func-
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tion, these methods can perform well in severely corruptive noise and interference
environments. Several such identification methods are compared in terms of their
performance characteristics by analysis and simulation.

Article 4 provides a brief overview of the various approaches to blind chan-
nel equalization and identification that have been reported in the literature and then
explains the potential advantages to be gained by exploiting the cyclostationarity
of digital-quadrature-amplitude-modulated signals. The theoretical possibility of
accomplishing blind identification with the use of only second-order statistics
is explained, and a frequency-domain approach is described.

The fifth article presents a time-domain approach to the blind channel eqgualiza-
tion and identification problem. The results of simulations presented therein suggest
that exploitation of second-order cyclostationarity can be an effective alternative to
methods that ignore it in favor of higher-than-second-order statistics. A connection
between the frequency-domain and time-domain approaches also is explained.

Article 6 reviews the theory and implementation of digital spectral correlation
analysis. The performance characteristics and computational requirements of various
algorithms based on either time smoothing or frequency smoothing are compared
analytically, and two specific implementation studies are briefly presented.

Article 7 briefly reviews recent developments in the theory of prediction for
cyclostationary processes. The fundamental role in the theory played by multivariate
stationary representations of untvariate cyclostationary processes is explained, and
both discrete-time and continuous-time processes are considered.

The chapters in Part I and articles in Part II collectively cover a wide range of
topics in the theory and application of cyclostationarity. We hope that the tutorial
style of these contributions coupled with the broad survey and comprehensive refer-
ence lists they provide will make this volume instrumental in furthering progress in
understanding and using cyclostationarity not only in the fields of communications
and signal processing, but in all fields where cyclostationary data arises.
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the Army Research Office (Grant # DAAL03-92-G-0297), the Air Force Office of
Scientific Research (Grant # F49620-92-1-0303), and the Office of Naval Research
(Grant # N0O001492-J-1218). This workshop motivated this volume and most of the
contributions contained herein grew out of presentations made at this workshop.

PART I




Chapter |

An Introduction
to Cyclostationary Signals

William A. Gardner
Statistical Signal Processing, Inc.
www.sspi-tech.com
1909 Jefferson Street
Napa, CA 94559

This introductory chapter has five objectives. The first is to give a broad but thorough
view of the status of the development of the theory and application of cyclostationary
signals. This entails discussing and answering the following questions: What is
cyclostationarity? How is it usefui? Why publish a book on cyclostationarity? What
are some of the seminal contributions to the study of cyclostationarity? and What
are some of the specific motivations—both practical and mathematical—for studying
cyclostationarity?

The second objective is to explain the philosophies behind the two altemative
approaches to the subject: the orthodox approach based on stochastic processes and
ensemble averaging and the more recently developed approach based on nonstochas-
tic time-series and time averaging. Since some controversy regarding these two
approaches is said to exist (it is more misunderstanding than it is controversy), the

Thischapter is adapted from the opening plenary lecture at the Workshop on Cyclostationary Signals,
held August 16-18, 1992 in Yountville, CA. The reference style (author(s), date(s}) is used in this chapter
to help the reader put the contributions surveyed into hislorical perspective. In the remainder of the book,
references are identified by number according to the order listed at the end of each chapter and article.

1



2 Gardner

discussion here is intended to be particularly thorough, including both pragmatic and
mathematical arguments and illuminating both strengths and weaknesses of each ap-
proach. The goal is to provide a sound basis for choice for everyone interested in
studying cyclostationarity.

The third objective is to provide a comprehensive introduction to the principles of
second-order cyclostationarity, which involve only second-order statistical moments
of signals in the time and frequency domains. This treatment considers primarily
discrete-time signals, and in this way it complements previous treatments by this
author, which focus on continuous-time signals.

The fourth objective of this chapter is to survey applications of second-order
cyclostationarity in the areas of communications and signal processing. The focus
here is on exploiting the spectral redundancy and sine-wave generation properties of
cyclostationary signals to perform difficult signal-processing tasks.

The fifth objective is to provide a reasonably comprehensive bibliography of
work on the theory and application of cyclostationarity (which is complemented by
the more focused bibliographies in subsequent chapters and articles).

Altogether, this chapter provides a foundation for the rest of the book that will
help the reader to put each individual contribution into perspective and to integrate
the parts into a whole reference source that not only will chart the past, but also will
serve as a primary vehicle for taking us into the future,

1 BACKGROUND
1.1 What Is Cyclostationarity?

Let us begin with the most obvious question: “What is a cyclostationary signal?”!
One answer is that a signal is cyclostationary of order » (in the wide sense) if and onlyif
we can find some nth-order nonlinear transformation of the signal that will generate
finite-strength additive sine-wave components, which result in spectral lines. For
example, for n = 2, a quadratic transformation (like the squared signal or the product
of the signal with a delayed version of itself, or the weighted sum of such products)
will generate spectral lines. For n = 3 or n = 4, cubic or quartic transformations
(.., sums of weighted products of 3 or 4 delayed versions of the signal) will generate
spectral lines. In contrast, for stationary signals, only a spectral line at frequency zero
can be generated.

Another answer to this question, which is completely equivalent to the first an-
swer but does not appear to be so upon first encounter, is that a signal is cyclostationary
of order  (in the wide sense) if and only if the time fluctuations in » spectral bands
with center frequencies that sum to certain discrete nonzero values are statistically
dependent in the sense that their joint #th-order moment (the infinite time average of
their product in which each factor is shifted in frequency to have a center frequency of

!For the moment, it is not important o be specific about whether or not we conceive of a signal as a
member of the ensemble of some stochastic process. This issue is addressed later. Similarly the modifier
wide sense is also explained later, in footnote 12,
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zero) is nonzero. In contrast, for stationary signals, only those bands whose center
frequencies sum to zero can exhibit statistical dependence. .

In fact, for a cyclostationary signal, each sum of center frequencies for which
the nth-order spectral moment is nonzero is identical to the frequency of a sine wave
that can be generated by putting the signal through an appropriate #th-order nonlinear
transformation.

For the simplest nontrivial case, which is n = 2, this means that a signal x(t)
is cyclostationary with cycle frequency « if and only if at least some of its delay-
product waveforms, y(¢) = x (¢t — 7)x (t) or z(#) = x{¢ — T)x*(t) (where (-')" denotes
conjugation) for some delays 7, exhibit a spectral line at frequency o, and if and only
if the time Auctuations in at least some pairs of spectral bands of x(¢), whose two
center frequencies sum (for the case of y(¢)) or difference (for the case of z(1)) to &,
are correlated.

If not all cycle frequencies e for which a signal is cyclostationary are multi.plcs
of a sinigle fundamental frequency (equal to the reciprocal of a fundamental pE.:l'IOd),
then the signal is said to be polycyclostationary (although the term cyclostatlonar'y
also can be used in this more general case when the distinction is not important). This
means that there is more than one statistical periodicity present in the signal.

1.2 1s Cyclostationarity Useful?

Perhaps the second most obvious question an engineer would ask is, “Is the p.ropcl.'ty
of cyclostationarity useful?” The answer is emphatically “Yes!” Cyclo.statlona.lrlty
can generally be exploited to enhance the accuracy and reliability _of information
gleaned from data sets such as measurements of corrupted signals. This enhancement
is relative to the accuracy and reliability of information that can be gleaned from
stationary data sets or from cyclostationary data sets that are treated as if they were
stationary. Such information includes the following:

1. A decision as to the presence or absence of a random signal, or about the
number of random signals present, with a particular modulation type in a
data set that also contains background noise and other modulated signals,

2. A classification of multiple received signals present in a noisy data set ac-
cording to their modulation types,

3. An estimate of a signal parameter, such as carrier phase, pulse timing, or
direction of arrival, based on a noise-and-interference-corrupted data set,

4. Anestimate of an analog or digital message being communicated by a signal
over a channel corrupted by noise, interference, and distortion,

5. A prediction of a future value of a random signal,

6. Anestimate of the input-output relation of a linear or nonlinear system based
on measurements of the system’s response to random excitation,

7. An estimate of the degree of causality between two data sets, and

8. An estimate of the parameters of a model for a data set.
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1.3 Why Publish a Book on Cyclostationarity?

The next question we should consider is “Why publish a book on cyclostationarity?”
Some of the primary reasons are

1. There is a growing awareness in signal processing and communications
communities that the cyclostationarity inherent in many man-made random
signals and some signals of natural origins (that were previously modeled as
stationary) must be properly recognized and modeled if analyses of systems
involving such signals are to properly reflect actual behavior;

2. Thereis a growing awareness of the potential for considerable enhancement
of performance of signal-processing algorithms by recognizing and exploit-
ing cyclostationarity in the design process rather than ignoring it by treating
signals as if they were stationary;

3. There is a growing awareness by theoreticians that cyclostationary processes
are, in many ways, much more than a trivial variation on stationary processes
and do, therefore, merit their attention to further develop and refine the theory
of these processes;

4. There is a perception by engineers and scientists that cyclostationary pro-
cesses are much more than a trivial variation on stationary processes and
do, therefore, merit their effort to retrain—to expand their theoretical back-
ground (their analytical/conceptual “tool boxes™) from stationary to cyclo-
stationary processes; and

5. Technological advances, which enable the implementation of increasingly
sophisticated signal-processing algorithms, have made the exploitation of
cyclostationarity more viable in practice.

We have important work on cyclostationary processes dating back twenty to
thirty years (Bennett, 1958; Gladyshev, 1961; Brelsford, 1967; Franks, 1969; Hurd,
1969; Gardner, 1972) and the author’s research group at the University of California,
Davis, has contributed for the last twenty years. Also, there have been relatively
isolated confributions from many others to the development of this subject over the
last twenty years. However, the growth in the number of research papers has re-
cently accelerated, and it is only in the last five years that research groups, journal
editors, and program directors at funding agencies have sliown real interest. The
accelerated growth in research activity is illustrated by the histogram of the num-
ber of papers on cyclostationarity published per two-year period that is shown in
Fig, 1.2

2The statistics in this graph were compiled by the author using a comprehensive bibliography that
he has created over the last five years using his personal files, computerized literature searches, and the
assistance of colleagues and students, most notably L. Paura, C. M. Spooner, and K. Vokurka.
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Figure 1: Histogram of papers on cyclostationarity.

Considering the following indicators, it appears that a “critical mass” of in-
terest has been reached and, as a result, that research activity will undergo explosive
growth:

1. Acceleration in production of research papers on cyclostationarity;

2. Interest of the National Science Foundation, Army Rescarch Office, Air
Force Office of Scientific Research, and Office of Naval Research in sup-
porting the recent workshop on cyclostaticnarity;

3. Interest demonstrated by the participants of the recent workshop on cyclo-
stationarity; .

4, Recent increases in both industrial and government funding of research on
cyclostationarity.
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Thus, the time is right for publishing a book that provides comprehensive tu-
torial treatments of the major subtopics of cyclostationarity and surveys the latest
developments in various specific areas.

1.4 What Are Some of the Seminal Contributions
to the Study of Cyclostationarity?

To expand our perspective on this subject, let us consider the following brief his-
torical survey of some of the seminal contributions to the theory and application of
cyclostationarity:3

{Bennett, 1958; Franks, 1969): Establishment of cyclostationary processes as
appropriate models for many communications signals,

(Jacobs, 1958; Gladyshev, 1963, Gardner, 1978): First studies of cyclostation-
ary processes with multiple periods.

(Gudzenko, 1959): First study of consistency of nonparametric estimates of the
Fourier coefficients of periodic autocorrelations.

(Gladyshev, 1961 and 1963): Discovery of equivalences among a cyclostationary

- process (with one period) and several vector-valued stationary processes. Initial work
on spectral representation. .

(Brelsford, 1967). Seminal work on periodic autoregressive modeling and
periodic linear prediction.

(Hurd, 1969, 1989a; Gardner, 1986¢, 1987a; Brown 1987): First studies of con-
sistency of nonparametric estimates of spectral moments of cyclostationary processes
with one period (Hurd) and with multiple periods (Gardner and Brown).

(Gardner, 1972; Gardner and Franks, 1975): First development and application
of several series representations of continuous-time cyclostationary processes in terms
of jointly stationary processes for optimum periodically time-variant linear filtering
of cyclostationary processes. First characterization of Fourier coefficients of periodic
autocorrelations and periodic spectra {the cyclic autocorrelations and cyclic spectra)
as crosscorrelations and cross-specira of frequency-shifted versions of the process.

(Rootenberg and Ghozati, 1977, 1978, Bittanti 1987; Bittanti and DeNicolao,
1993): First efforts to develop the Gauss-Markov theory of cyclostationary processes;
formulation and partial solution of the cyclospectral factorization problem.

(Pagano, 1978): Development of equivalence between univariate periodic AR
modeling and multivariate constant AR modeling.

(Miamee and Salehi, 1980): Extension—from stationary to cyclostationary
processes—of the Wold-Cramér decomposition of a process (and its spectrum) into
regular (continuous) and singular (discrete) components.

(Nedoma, 1963; Boyles and Gardner, 1983): First formulation and development

of cycloergodicity for cyclostationary processes with single (Nedoma) and multiple
(Boyles and Gardner) periods.

) 3Contributions from the untranslated Russian literature are not included here, but it is men-
tioned that several Russian authors, most notably Ya, P. Dragan, have published a substantial armount
on cyclostationarity.
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(Gardner, 1985): First general treatise on cyclostationary processes and their
applications to signal processing and communications {1 book chapter).

{Gardner, 1986b, 1987a): First formulation and development of the nonstochas-
tic statistical theory of cyclostationary time-series and its applications to signal pro-

cessing and communications (6 book chapters).

(Gardner, 1987a; Brown, 1987, Chen, 1989; Agee et al., 1990, Schell, 1990,
Spooner, 1992): First studies of the exploitability of the separability of individual-
signal contributions to cyclic temporal and spectral moments {of second order) of
multiple interfering signals for the problems of detection, modulation recognition,
time-delay estimation, blind-adaptive spatial filtering, and high-resolution direction
finding. Discovery that spectrally overlapping signals can be separated with linear
temporal processing by exploiting spectral redundancy.

(Gardner and Spooner, 1992b; Spooner and Gardner, 1992a, b; Spooner, 1992).
First formulation and development of the temporal and spectral moment and cumulant
theory of cyclostationary time of order series n > 2.

1.5 What about Terminology?

A few words about terminology are in order. The first term given to this class of pro-
cesses is the term cyclostationary, which was introduced by Bennett (1958), who also
introduced the term cycloergodic. Other terms used include periedically stationary,
periodically nonstationary, and periodically correlated. This last term is appropri-
ate only for second-order (wide-sense) cyclostationarity, whereas the preceding three
terms admit the modifiers wide-sense, nth-order, and strict-sense, and are, therefore,
more general. The most commonly used term is cyclostationary. 'When multiple
periodicities exist, this term is modified to polycyclostationary, although the terms
almost cyclostationary and almost periodically correlated are used also.

1.6 What Are Some of the Specific Motivations
for Studying Cyclostationarity?

There is a great deal of motivation for studying cyclostationarity. Let us consider
first some of the practical motives and then some of the mathematical motives and,
while we are at it, we can recognize many of the existing contributions to the study of
cyclostationarity. The practical motives cited here are specified in terms of a series
of facts.

Fact 1: Cyclostationary models, such as PAR (periodic autoregressive), PMA
(periodic moving average), and PARMA (periodic autoregressive moving average),
can be more parsimonious—better fit with fewer parameters—than stationary models
(AR, MA, and ARMA) are. This has been illustrated with real data from

s climatology/meteorology (Brelsford, 1967; Hasselmann and Barnett, 1981;
Barnett, 1983; Barnett et al., 1984; Johnson et al., 1985)

e hydrology (Salas, 1972; Salas and Smith, 1980; Vecchia, 1983, 1985; Thomp-
stone et al., 1985; Obeysekera and Salas, 1986; McLecd et al., 1987; Bartolini
et al., 1988)
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» medicine/biology (Newton, 1982)
e oceanology (Dragan and Yavorskii, 1982; Dragan et al., 1984, 1987)
¢ economics (Parzen and Pagano, 1979).

Fact2: Periodic prediction of cyclostationary processes can be done (and peri-
odic causality between cyclostationary processes can be found) when time-invariant
prediction is not possible or is inferior (and time-invariant causality is not found or is
weaker). Examples are given in Section 2.

Fact 3: Spectrally overlapping cyclostationary signals can never be separated
using time-invariant linear filters (e.g., optimum filters of the Wiener and Kalman
type for stationary models of the cyclostationary signals). But they can possibly be
separated using periodic filters that exploit spectral redundancy. This has been demon-
strated for PAM (pulse-amplitude modulation), digital QAM (quadrature-amplitude
modulation), AM (amplitude modulation), ASK {amplitude-shift-keying), and PSK
{phase-shift-keying) signals (Brown, 1987; Gardner, 1987a; Gardner and Brown,
1989; Gardner and Venkataraman, 1990; Reed and Hsia, 1990; Petersen, 1992; Gard-
ner, 1993).

Fact4: Thebiases and variances of parameter estimators (e.g., for TDOA (time-
difference-cf-arrival), FDOA (frequency-difference-of-arrival), and AQA (angle-of-
arrjval) of propagating waves) can be much lower, especially for multiple interfering
signals, when algorithms that exploit the signal selectivity associated with cyclosta-
tionarity (rather than ignore it by treating the signals as if they were stationary)
are used. This has been demonstrated for various types of communications signals
(Gardner, 1987a, 1988a, 1990a; Gardner and Chen, 1988, 1992; Chen 1989; Chen and
Gardner, 1992; Schell and Gardner 1989, 1990a,b,¢, 1991, 1992, 1993a; Schell, 1990;
Gardner and Spoener, 1993; Izzo et al., 1989, 1990, 1992; Xu and Kailath, 1992).

Fact 5: For the design and analysis of systems that synchronize local digi-
tal clocks and sine-wave generators to the frequencies and phases of periodicities
embedded in received communications and telemetry signals, the property of cyclo-
stationarity is crucial (Franks, 1980; Franks and Bubrouski, 1974; Moeneclaey, 1982,
1983, 1984; Gardner 1986a).

Fact6: For the design of algorithms that blindly adapt sensor arrays to perform
spatial filtering (for beam/null steering and/or mitigation of multipath fading effects),
exploitation of signal selectivity associated with cyclostationarity has proven to be
extremely powerful (Agee et al.,, 1987, 1988, 1990; Schell and Gardner, 1990a;
Gardner 1990a} and application to multiuser wireless communications appears to be
promising (Gardner et al., 1992; Schell et al., 1993).

Fact 7@ For the design of algorithms that adapt channel equalizers to remove
intersymbol interference in digital communication systems, exploitation of the phase
information contained in second-order cyclostationary statistics of the channel output
enables blind adaptation without the use of higher-order statistics (cf. Chapter 3 and
Articles 4 and 5 in this volume).
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Fact 8: For radio-signal analysis, including detection, classification, modu-
lation recognition, source location, etc., the cyclic spectrum analyzer and related
algorithms that exploit cyclostationarity have proven to be ideally suited (Gardner,
1985, 1986b,c, 1987a,b, 1988b,c, 1990a,c, 1991a; Gardner et al., 1987; Brown, 1987
Roberts, 1989; Roberts et 2l., 1991; Brown and Loomis, 1992; Spooner and Gardner,
1991, 1992a,b; Gardner and Spooner, 1990, 1992a; Spooner, 1992).

Fact 9: For the design and analysis of communications systems that accom-
modate unintentional nonlinearities that inadvertently generate spectral lines from
modulated message signals, the property of cyclostationarity is crucial (Campbell et
al., 1983; Albuquerque et al., 1984).

Fact10: For acoustic-neise analysis for rotating machinery, the cyclic spectrum
analyzer holds promise for improved diagnosis of machine wear (e.g., in ground, air,
and water vehicles, and hydroelectric plants} and for detection, classification, and
location of cyclostationary noise sources (e.g., submarines) (Sherman, 1992).

Fact 11: Many statistical inference and decision problems involving multi-
ple interfering cyclostationary signals in noise can exploit the cyclostationarity to
great advantage because of the inherent noise-tolerance and separability of the cyclic
features in the signals (Gardner, 1987a, 1990z, 1991a, 1992).

Let us now consider some of the mathematical motives for studying cyclosta-
tionarity. Cyclostationary processes (including one or more periods), as a subclass of
nonstationary processes, have more in commeon with stationary processes than do other
subclasses of nonstationary processes. The commonstructure shared by cyclostation-
ary processes suggests (and in some ways this has already been proven) that important
theorems and special theories for stationary processes can be extended and/or gen-
eralized, and that important theorems for generally nonstationary processes can be
specialized, to cyclostationary processes. This potential for mathematical progress,
coupled with the increasingly recognized importance of cyclostationarity to practical
problems, provides strong motivation for mathematicians to study these processes.

A few examples of important theorems/theories for stationary (or nonstationary)
processes that should be—or have been—extended/generalized (or specialized) are
given here (consult the key given below*},

Topic 1: 1t Wiener-Khinchin and Shiryaev-Kolmogorov theorems relating
temporal and spectral moments and cumulants (Gardner 1986b, 1987a, 1990c; Gard-
ner and Spooner, 1990; Spooner and Gardner, 1992a; Spooner, 1992; Chapter 2 in
this volurne)

Topic 2: | Spectral representation theory (e.g., for harmonizable processes)
(Gladyshev, 1963; Hurd, 1974a, 19890, 1991; Honda, 1982; Rao and Chang, 1988;
Chapter 6 in this volume}

4+ Some progress has been made for cyclostationary processes with one period.
1 Substantial progress has been made for cyclostationary processes with one period.
** Some progress has been made for polycyclostationary processes with multiple periods.
1 Substantial progress has been made for polycyclostationary processes with multiple periods.
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Topic 3:  Wold-Cramér theorem on decomposition of a process into sin-
gular and regular components and decomposition of its spectrum into discrete and
continuous components (Miamee and Salehi, 1980; article 7 in this volume)

Topic 4: *x Wiener and Kalman smoothing, filtering, and prediction theory
(Gardner, 1972; Gardner and Franks, 1975; Gardner 1985, 1987a, 1993; Brown,
1987; Gardner and Brown, 1989; Chapter 5 and Article 1 in this volume)

Topic 5: x Theory of AR, MA, and ARMA models, linear prediction, and
paramerric spectral estimation (Brelsford, 1967, Pagano, 1978; Miamee and Salehi,
1980; Tiao and Grupe, 1980; Sakai, 1982, 1983, 1990, 1991; Pourahmadi and Salehi,
1983; Vecchia, 1985; Obeysekera and Salas, 1986; Li and Hui, 1988; Anderson and
Vecchia, 1992; Chapter 5 and Article 7 in this volume)

Topic 6: x Theory of fast algorithms for linear prediction and filtering (Sakai,
1982, 1983)

Topic 7: * Markov theory of state-space representations (Rootenberg and
Ghozati, 1977, 1978, Bittanti, 1987; Bittanti and DeNicolao, 1993; Chapter 5 in this
volume)

Topic8: * Birkhoff Ergodic Theorem and associated ergodic theory (Nedoma,
1963; Blum and Hansen, 1966; Boyles and Gardner, 1983; Honda, 1990}

Topic9: *x Theory of consistent nonparametric estimation of temporal and
speciral moments and cumulants (Gudzenko, 1959; Hurd, 1969, 1989a; Alekseev,
1988, 1991; Gardner, 1985, 1986c, 1987a, 1991b; Dehay, 1991; Spooner, 1992;
Spooner and Gardner, 1991, 1992¢; Genossar et al., 1993; Hurd and Leskow, 1992a,
1992b; Chapter 2 in this volume)

Topic10: it Theoryof higher-order statistics (temporal and spectral moments
and cumulants} (Gardner, 1990c; Gardner and Spooner, 1990, 1992b; Spooner and
Gardner, 1992a,b; Spooner, 1992; Chapter 2 in this volume)

2 FUNDAMENTAL CONCEPTS, PHILOSOPHY,
AND DEFINITIONS

What do we need to accomplish here? We need a general description of the types of
signals that motivate the work being done under the name of cyclostationarity; we need
a generally useful definition of the signal property called cyclostationarity, and we
need to understand what mathematical/conceptual frameworks are particularly useful
for formulating and solving practical problems involving cyclostationary signals,
particularly those arising in communication system design and analysis and more
general signal processing.

We shall see that an empirically motivated approach to accomplishing these
things leads naturally to a probabilistic conceptual framework. However, this frame-
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work is distinct from that of stochastic processes in that it does not involve the concept
of an ensemble of random samples.

2.1 Signal Types

The types of signals of primary interest here are those normally encountered in com-
munication systems. These signals are typically unpredictable and occur over long
periods of time. That is, they are in some sense random (this does not necessarily
mean stochastic) and they are persistent rather than transient. These signals also typ-
ically originate from physical sources with parameters that are either time-invariant,
periodic, or polyperiodic. Thus, the characteristics of the physical signal-generating
mechamism vary polyperiodically with time (this includes as special cases periodic
variation and time invariance). In some cases the signal-generating mechanism can
be decomposed into more elementary signal generators whose outputs are mixed te-
gether to form the signal of interest. Some of these more elementary signal generators
can have characteristics all of which are time-invariant, thereby giving rise to station-
ary random signals. Other elementary signals can be simply pericdic or polyperiodic
functions of time. Thus, the signals of interest often consist of combinations—
additive, multiplicative, and other types—of stationary and polyperiodic signals, and
are called polycyclostationary signals.

2.2 Operational Definition of Polycyclostationarity

What physical evidence in a signal reveals that there is polyperiodic time variation
present in its generating mechanism? Fortunately, there is a unique unambiguous an-
swer to this question that appears to be adequate for the general purpose of designing
and analyzing signal-processing algorithms that exploit or in some way involve the
underlying pelypericdic time variation: We shall say that polyperiodic time variation
exists in the generating mechanism of a signal if and only® if it is possible to gener-
ate finite-amplitude additive polyperiodic components from the signal by passing it
through some appropriate nonlinear transformation that is time-invariant and stable.
‘We can take this as an operational definition of polycyclostationarity.

2.3 Operational Origin of Probabilistic Models

There are two particularly interesting ways to characterize an adequately large class of
all nonlinear transformations that could potentially generate polyperiodic components
from polycyclostationary signals. One way is to require that all transformations of
interest be Tepresentable in a generalized® Volterra series (which is a multivariate
Taylor series with a continuum of variables indexed by time). Thus, for a signal x

5One can conceive of polyperiodic variation in a signal generatar that is unobservable in the signal.
This is analogous to the concept of unobservability in system theory. Since the focus here is on modeling
signals in which there is physical evidence of underlying polyperiodic variation, we are not interested in
uncbservable polyperiodic variation.

5“Generalized” in the sense that the transformations are not constrained to be causal.
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and a transformation g{:), we have

g(x) = Ef kﬂ(Tn)LX(tv Tn)n dTr

n T

where L, (¢, 7;), is the nth-order delay product

Lo, mn =] [xC+ 17

J=1

and k, (1;,) is the nth-order Volterra kernel. For example, all transformations g(-) that
are continuous and have finite memory admit a convergent Volterra series represen-
tation.

Another way is to require that all transformations be representable as a convo-
lution with a finite product of Dirac deltas:

g(x) =fg(}’l-yz,—--:J’n)na[J’j—x(!+rj)]dyj

=1
T R )

which can be reexpressed as a Riemann-Sticltjes integral

3(x)=f8(_)’,,)d"11(1',‘1"m)’n)n

where

Lt T yadn = [ [ — x5t + 2]
j=!
and I(-) is the indicator function

1, z>0
=1y i
for which'd f(z) = &(z)dz. For example, all continuous transformations with finite
discrete memory admit this representation. Although this representation of g(:) in
terms of itself appears to accomplish nothing, we shall see that it is very useful for
our purpose here.

The operation, denoted by P{-}, for extracting the additive polyperiodic com-
ponent of a signal is linear (as explained subsequently). Therefore, the polyperiodic
component of a weighted sum of signals is the weighted sum of polyperiodic com-
ponents. Consequently, the polyperiodic component of the first type of transformed
signal is given by

Ple@i =Y [ hmP L)) d,

n Ta
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and that of the second type of transformed signal is given by

P{g(x)} =f30’,,)d"P{11(t.Tn.y,,)n}-

As explained later on, the function P{L,(t, T),) is mathematically equivalent to
the joint #th-order moment of 7 random variables X; = x(t + 7)), f = 1,2,...,n,
and the function P{I, (¢, Tx, ¥, )n} is mathematically equivalent to the joint #th-order
probability distribution for the same N random variables, and these equivalences
reveal that the polyperiodic component exiraction operation P{-} is mathematically
equivalent to the probabilistic expectation operation. In fact, choosing

g(x) = Lx(t- Trr)n

in the preceding equation yields

P{L,(:,T,,),,}=f[]'[y,-] d" P{L(t, Ty Y )n)

=1

which is the standard formula from probability theory for the nth-order moment in
terms of the nth-order probability distribution.

We see, then, that the physical evidence in a signal of polyperiodic time-variation
in the generating mechanism of the signal is completely characterized by the signal’s
temporal moment functions or its temporal probability distribution functions. That is,
the polyperiodic component of the delay product of the signal is a temporal moment
function and the polyperiodic component of the indicator product is a temporal prob-
ability distribution. Hence, we are led naturally by a practically motivated inquiry
into the problem of mathematically characterizing physical evidence of polyperiodic
time-variation in an unpredictable signal, to a probabilistic description of the signal.
Moreover, as explained later on, these moments and distributions are identical to those
corresponding to a polycyclostationary stochastic process with appropriate ergodic
properties (called cycloergodicity), in which case the signal x(f) can be interpreted
as a sample path (one ensemble member) of the stochastic process. However, in spite
of this equivalence between the mathematical model of polyperiodic time variation
underlying a signal and a corresponding stochastic process model, the conceptual
framework of a stochastic process and its associated ensemble is fundamentally dif-
ferent from the conceptual framework of a single signal that is characterized by all
the polyperiodic components that can be generated from it using nonlinear trans-
formations. It is the latter conceptual framework, not the former, that is motivated
by the desire to design and analyze signal processors that exploit the generatable
polyperiodic components.

2.4 Stochastic vs. Nonstochastic Operational Models

We need to understand the similarities and differences between the stochastic-process
approach and the nonstochastic signal (or time-series) approach to conceptualizing,
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defining, and modeling stationary (8), cyclostationary (CS), and polycyclostationary
(PCS) signals, and to developing theory—Ilike the classical theory of statistical infer-
ence and decision—to guide the practice of designing and analyzing signal-processing
algorithms.

The nonstochastic time-series approach to this subject has not gained the wide
level of acceptance that the stochastic-process approach enjoys, particularly for sta-
tionary processes. This is believed to be primarily a result of the limited exposure
that the time-series approach has received. The aim i recent work (Gardner, 1987a)
on developing the time-series approach has been to bring the aesthetics of mathemat-
ics and the utility of engineering pragmatism together to produce elegant problem
solving.” The treatment presented here aims at the same target: the focusing of
attention on important concepts for mathematicians who care about the applicabil-
ity of the mathematics of polycyclostationary signals and for engineers who seek
more than a superficial understanding of not only the “how™ but also the “why” of
polycyclostationary signal processing.

However, before embarking on a discussion of specific mathematical defini-
tions and properties, questions of mathematical existence, and unsolved mathematical
problems, a brief summary of the essence of the differences and similarities, from an
operational standpoint, of the two alternative approaches is presented.

When properly restricted to appropriate domains of definition (i.e., requiring
stochastic process models to exhibit certain ergodic properties and requiring time-
series models to exhibit certain regularity properties that guarantee the existence of
infimitely long time averages), either approach can be used to obtain the same results
in deriving signal-processing algorithms and analyzing their performances (Gardner,
1990a). However, it is not guaranteed that any particular user will in fact obtain
the same results regardless of the approach used, because each approach has its
own unique conceptual attributes. Thus, it is argued here that the most proficient
problem solvers need to understand how to use both approaches.? Some problems
may naturally fit one approach or the other, and some other problems may benefit
from application of both approaches. For example, sometimes it is easier to see how
to carry out a particular mathematical calculation using one or the other approach
(the stochastic-process approach seems to be favored here), and sometimes it is easier

TThe title of the book (Gardner, 1987a), which seems to have sparked some controversy, Statistical
Spectral Analysis: A Nonprobabilistic Theory, can be misleading since it is shown in this book that an
empirically motivated inquiry into the problem of quantifying the average behavior of spectral measure-
ments leads naturally to a probabilistic theory. Since this probabilistic theory is nonstochastic (it involves
only time averages, not ensemble averages), the title could have been Statistical Spectral Analysis: A
Nonstochastic Theory. Neventheless, the majority of the concepts and methods developed in the book are
not only nonstochastic, they are indeed nonprobabilistic, and a primary goal of the book is to show that
in an empirically motivated development of the fundamental concepts and methods of statistical spectral
analysis, probability does not play a seminal role. It does play an important role in the mechanics of quan-
tifying average behavior, but it plays no role in conceptualizing the objectives and methods (parametric
and nonparametric) of statistical spectral analysis of single time-series. )

®1t is curious that some followers of the stochastic-process approach insist that the alternative
approach is of no value or, worse yet, has negative value. Perhaps the stochastic process faith should be
formally recognized as a religion.
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to relate the mathematics to the real-world problem at hand using one or the other
approach (the nenstochastic time-series approach seems to be favored here with regard
to many of the applications discussed in this book®).

Mathematicians have, for the most part, chosen the stochastic-process frame-
work for their work because it is apparently more amenable to deep mathematical
treatment. Statisticians have, for the most part, chosen the approach to statistical
inference and decision that is based on stochastic processes because it does naturally
fit the problem of making inferences about a total population on the basis of limited
“random™ samples from the population, which is the statistician’s classical problem.
The concept of a population, or ensemble, also naturally fits a number of situations in
communications engineering and signal processing or time-series analysis for engi-
neering purposes; however, there are many other engineering (and science) problems
involving time-series data where the ensemble concept is fictitious, irrelevant, or oth-
erwise inappropriate. In these cases, users often force an application of the theory
of stochastic processes onto their real-world problem because they have not leamed
that there is a viable alternative for statistical inference and decision. This can lead
to substantial confusion and less effective engineering,.

2.5 Nonstochastic Statistical Inference and Decision

Let us briefly consider how a theory of statistical inference and decision can be based
on the concept of a single time-series without reference to an ensemble. Many—but
by no means all—real-world problems in engineering and science involve time-series
data for which no population exists; that is, for which replication of the “experiment™
is impossible or impractical. However, many of these time-series arise from physical
phenomena that can be considered to be unchanging in their basic nature for a very
long time. In such cases, conceptually idealizing this time-invariance by extending
the length of time without bound enables us to conceive of a model that is derivable
from the data in the limit as the amount of data used for measuring the parameters of
the model approaches infinity. This leads us to the concept of a fraction-of-time (FOT)
probability model that is free from the abstract concept of a population. For example,
the FOT probability that a time-series exceeds some specified level is defined to be
the fraction of time that this event occurs over the life of the time-series.

Once we have accepted the idea of an infinitely long time-series with an FOT
probability model, we can develop a theory of statistical inference and decision that is
isomorphic to the theory for stationary stochastic processes. This was briefly pointed
out in (Wold, 1948), developed in (Hofstetter, 1964), and extended from stationary
to cyclostationary and polycyclostationary time-series in (Gardner, 1987a}, {(Gardner
and Brown, 1991). But one might ask what it is that motivates the development of
such a FOT probability theory. One of the answers to this question is analogous to
that which motivates the theory that is based on the concept of a population: We want
to make inferences about the physical phenomenon that gave rise to the observed

9 A compelling example of this is the novel derivation of the cumulant in the study of higher-order
cyclostationarity presented in Chapter 2.
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time-series. To the extent that this phenomenon is characterized by the FOT model
for the time-series x (¢), (i.e., the set of joint FOT probability distributions for all finite
sets of time translates {x{(t 4+ &) : i = I, ..., n} for all » translations z; and all natural
numbers 7), we can interpret our objective as that of making inferences about the
infinitely long time-series or its generating mechanism on the basis of finite-length
observations, We can use the FOT probability model to calculate bias, variance,
and confidence intervals for parameter estimates, and we can calculate probabilities
of correct and incorrect decisions. We also can formulate and solve optimization
problems.

2.6 A Historical Perspective

The stochastic-process approach (to the exclusion of the nonstochastic time-series
approach) is currently the orthodox approach because this is the approach that dom-
inated for sixty years in mathematics and statistics and it is, therefore, the approach
in terms of which the theory of statistical inference and decision has been formulated
and is taught. It does not follow that the stochastic-process approach is orthodox
because it is always the superior approach. This last point can be illustrated with a
brief history of statistical inference and decision in communications engineering.

Why have communications engineers focused on using theoretical measures of
performance that average over an ensemble of signals and/or noises? Because they
have wanted to design systems that would perform well on the average over the
ensemble, and because mathematicians and statisticians had developed a powerful
theory of statistical inference and decision that was based on ensemble averages,
and because probability theory itself is an immensely powerful conceptual tool, and
few engineers have realized that probability theory can be based entirely on time-
averages. But why then have communications engineers focused almost exclusively
on measuring system performance in practice by averaging over time for a single
system? Because of economics (the high cost of making measurements on many
systerns) and because they also want each system to perform well on the average over
time.

In order to match the theory based on ensembles of data to the practice based on
a single record of data, they invoked the concept of ergodicity. That is, they agreed
to use stationary stochastic-process models that were ergodic so that the mathemati-
cally calculated expected values (ensemble averages) would equal the measured time
averages (in the limit as averaging time approaches infinity).

Unfortunately, however, the logic seems to have stopped at this point, It ap-
parently was not recognized (except by too few to make a difference) that once con-
sideration was restricted to ergodic stationary models, the stochastic process and its
associated ensemble could be dispensed with because a completely equivalent theory
of statistical inference and decision that was based entirely on time-averages over a
single record of data could be used (Hofstetter, 1964). Any calculations made using
a model based on the time-average theory could be applied to any one member of an
ensemble if one so desired because the arguments that justify the ergodic stochastic-
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process model also guarantee that the time-average for one ensemble member will be
the same (with probability one) as the time-average for any other ensemble member.

Because the time-average framework is more conceptually straightforward for
applicaticn to problems where time-average performance is of primary concern, it
is a more natural choice; but because of history and inertia, it may never gain its
rightful place in engineering. This is even more likely to be the case when the utility
of nonergodic stochastic processes is taken into account. For example, whenever
transient behavior is of interest, ergodic models are ruled out, because all transient
behavior is lost in an infimitely long time-average. Thus, to counter the conceptual
simplicity and realism offered by the time-average approach, the stochastic-process
approach offers the advantage of more general applicability.

Nevertheless, there is a special class of signals that includes more than just those
that can be medeled as stationary ergodic processes, for which there is a compelling
argument, which has only recently surfaced, to adopt an alternative nonstochastic
approach. And these are the signals that are appropriately modeled as polycyclo-
stationary time-series. As explained earlier here, the use of time-averages to extract
additive polyperiodic components from nonlinear transformations of these signals
leads naturally to a probability theory based entirely on time averaging. Let us now
consider in some detail these two alternative approaches to conceptualizing, defining,
and modeling signals.

2.7 Dual Theoretical Frameworks

The concepts and definitions presented here apply equally well to continuous-time
and discrete-time signals. We need only choose either the continuous-time-averaging
operation

A L. 1f2
=1 — Ydt
(y= tim > _z()

or its discrete-time counterpart

A 1 Z
32 fim — ;
0= Jim 577 20

‘We consider first stochastic processes, and then we consider nonstochastic time-
series. Let X{¢) be a real-valued stochastic process on the real line —o0 < ¢ < o0,
with measure 1 on the probability space £2. Consider the event indicator

I, X)) <x

Ihx — X(n] £ { 0 X0 > s

The expected value of this event indicator is the probability distribution (PD) function
for the random variable X (¢),

Fxey(x) & Prob{X(t) < x} = E{[x — X(O]}
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where the expectation operation E{-} is defined by
£ 2 [ H)duto)
Q

for any random variable F defined on §2. Therefore, the joint PD function for the set
of random variables

X(0) 2{X¢ + ). ..., Xt + 1)},
where ¢ is the time-translation parameter, is given by the expectation
n
Fx(;)(x) =K [l_[I [x — Xt +fj)]] ,
Jj=1

and the joint probability density (Pd) function is

n

a
Jrn (@) = Fr—

X...9%n Fxo (.

which contains Dirac deltas when the PD contains step discontinuities. We have the
following theorem from probability theory.

Fundamental Theorem of Expectation

For any nonrandom function g(-) for which E{g[X(z)]} exists, we have

E{glX(O]} £ [ Yaxaen () dy

- f £00) Figy () dx

That is, the Pd for g[X(#)] need not be found from the Pd of X(¢) in order to
evaluate the expected value of this random variable. This theorem can be used to
verify that the PD is indeed equal to the expected value of the event indicator by
letting

glX®)=[]1[x— Xt +1)]
J=1

to obtain

seixon = [ T[ 15y - 5] fro@de
j=1

= f fx(g) (z) dz

= Fypn ).
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Let us now consider time-series. Let x{#) be a well-behaved'? real-valued time-
series {a nonstochastic real-valued function) on the real line —oo < f < oo. Consider

the event indicator
Al L o x()<x
Ix —x(f)] =
0, x()=x.

The time-average of this event indicator is the fraction-of-time (FOT) PD
FO00) 2 Probix () < x} = E°U1x — x()])

where the time-average operation E®(.) is defined by
EOm@©) 2 lim — Zh(t rydr’
=jm gz ) e

for any time function 4. (The superscript 0 will be explained subsequently.) Therefore
the joint FOT PD for the set of variables x(¢) 2 {x(t+11),....x{+1,))is given by

Fl ) = E° ]‘[ Iy —x(e+ rj)]]
Jj=1

and the joint FOT Pd is

fon@ = ﬁx— Fly ().
We have the following theorem,
Fundamental Theorem of Time-Averaging
For every time-invariant function g(-) for which f’.‘o[g[x(t)]} exists, we have

7 : 1 “ i !
Elgtx(on) £ Jim = [ etwte+ s

= f g(x) 8 (x) dx.

This theorem motivates us to call the time-average operation E‘O{-} the temporal-
expectation operation. To illustrate the validity of this theorem, we can substitute the
definition of the FOT PD into the definition of the FOT Pd, which can be substituted
into the result of this theorem to obtain

10we mean “well-behaved” in the sense that x(t) exhibits the regularity required for all time averages
of interest Lo exist.
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aﬂ
j 80 foy ®) dx = f 805 Feo () d

a7 A z
=fg"“mE° lgf[xj—x(r+rj)]] dx

=fg(x)E° []‘[a[xj—x(wrj)]} dx

J=1

=E0lfg(x)]_[5[xj—x(t+t,-)]} dx
j=1

= E%glx(1),

where we have used the sampling property of the Dirac delta &, which is the derivative
of the unit-step function J(-). )
For any function £(¢) for which %A (1)} exists, we have

h(t) = ¢+ r (1)

wherec = £ ®[R(¢)}isa constant (independent of ¢} and r(¢) = h(t) — ¢ is the residual
for which E%{r(/}} = 0. Consequently, the temporal expectation operation can also
be called the constant-component extractor.

‘We can see from these two theorems that there is a duality between the probability-
space theory of stochastic processes based on the operation E{-} and what we shall
call the time-space theory of time-series based on £°{-). Wold (Wold, 1948) tried to
formalize this duality in terms of an isomorphism based on the mapping

x(t+o0) > X, (o))

where X(t, @) is a sample path of the stochastic process X(#) corresponding to the
sample point @ = w(o), indexed by o, in §. That is, the ensemble members of
X(¢) correspond to translates of x(¢) in this isomorphism. While this isomorphism is
conceptually useful, a mathematically rigorous study of it has not (to my knowledge)
been performed. (For example, does such a stochastic process corresponding to a
given time-series actually exist?}

We can justifiably ask, “Just how viable is the time-space theory?—do ‘well-
behaved” time-series models exist?” The answer to the latter question is “Yes™;
examples are provided by typical sample paths of ergodic stochastic processes. But,
“Can we construct useful time-series models?” The answer, again, is “Yes™: We can
construct models in the same way we do for stochastic processes, except we specify
Fyn(x) instead of Fyqy(x).

Regarding the answer to the first question, we might ask “Does this apparent
reliance, of existence of time-series, on stochastic processes detract from the concep-
tual simplicity of working with time-series rather than stochastic processes?” The
answer, in my opinion, is “No.”
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Let us trace the conceptual paths for both stochastic processes and time-series
s0 that we can see specifically where they are parallel and where they diverge. As
before, we begin with stochastic processes by giving the definitions of the classes of
processes of interest in the study of cyclostationarity, namely, processes that are S,
CS, or PCS of order » (in the strict sense).

2.8 Stochastic-Process Definitions

Definition 1: X(r) is a S process if and only if Fy((x) is independent of the
time-translation parameter ¢.

Definition 2: X(¢) is a CS process with period T if and only if Fy(x) is
periodic in ¢ with period T'.

Definition 3: X(r) is a PCS process with periods {7} =71, 73, T3, ... if and
only if Fy(x) is polyperiodic in ¢ with periods {T'} (which is a sum of periodic
functions with single periods 71, T3, 75, ...).

The relationships among the class of generally nonstationary (NS) processes and
the three classes S, CS, and PCS can be described with the Venn diagram shown in
Fig. 2.

( )
NS N
PCS p N
cs [
S
L \ S = 2/ )

Figure 2: Venndiagram of classes of stochastic processes. With the class NS omitted,
also the Yenn diagram of classes of time-series,

It is useful to expand the polyperiodic PD functicn in a Fourier series:
Frn(®) = Y Fig () ™™ =" B, (x),
a o

where Ff(o) (x) are the Fourier-coefficients, and where the sinusoidal-component func-
tions are given by
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For any function h(7) for which £°{k(r)} exists, we have
h() = ce@ 4 r (1)

where c is a constant, ce'”™*' = E=(h()}, and r(t) = h(¢) — ce’™™ is the residual
for which E*{r(¢t)} = 0. Consequently, we call the operation

E“ {1 é EO [(_)e—EZTrcr!} ei2:rrm

the sine-wave-component extractor. It can be thought of as the limit, as bandwidth
goes to zero, of a bandpass filter with center frequency o« and unity gain at &. For
o = 0, it reduces to the constant-component extractor £E9{.].

2.9 Time-Series Definitions

Now let us tum from stochastic processes to time-series. Before we can give the
dual time-space definitions of S, CS, and PCS time-series, we need to generalize the
tcmporal expectation operation E°{ -}. The appropriate generalization is simply the
sum of sine-wave-component extractors

A E DI A0

aela}l

for all sine-wave frequencies in some set {} of interest. Thus, £@}{.} is called the
multiple-sine-wave-component extractor or, equivalently, the polyperiodic-component
extractor. (Itis identical to the operator P{-} discussed in Section 2.3.) The sine-wave
frequencies & are the harmonics of the reciprocals of the periods 1/77, 1/ T5, 1/ 75, ...
of interest.

In terms of the generalized temporal expectation operation, we can define the
polyperiodic FOT PD:

F (x) = B [l—[ I[x;—x(t+ tj)]]
j=1
and the polyperiodic FOT Pd:
aﬂ
Ao} _ Ala)
fx(;) (x) = rpx(;) (x).

It is not obvious that F E’(',}) {x) is indeed a valid probability distribution function,
but this proposition is proved in (Gardner and Brown, 1991). We have the following
theorem.
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Fundamental Theorem of Polyperiodic-Component Extraction

For every time-invariant function g(-) for which £1%{g[x(1)]} exists, we have
N 1 7 o
{er) A : _ r —i2rat 7]
E¥ {glx(O]} = E,,, Zil[lge 77 /: glx( +1)]e dt

= f g0 /% vy dx

The validity of this theorem can be illustrated in the same way the validity of
the fundamental theorem of constant-component extraction is illustrated. Also, this
theorem is valid more generally if g(-) = g(¢, -) is polyperiodic in time ¢.

We are now in a position to define the classes of S, CS, and PCS of order » (in
the strict-sense) time-series. Let {«} be the set of all @ for which FL?,}) #0.

Definition 4: x(¢) is a S time-series if and only if ¥ (“}) (x) exists and # 0 and

x(r
is independent of the time-translation parameter # (that is, {a} = {0}).

Definition 5: x() is a CS time-series with period T if and only if F{) (x)
exists and # 0 and is periodic in ¢ with period T (that is, {«} = {harmonics of 1/T}).

Deﬁmtlon 6: x(r) is a PCS time-series with periods {T} = T, T2, T3, ... if
and only if F (,)(:c) exists and # 0 and is polyperiodic in ¢ with periods {T}).

The relationships among these three classes of time-series can be described
with the Venn diagram shown in Fig. 2 except that for time-series, unlike stochastic
processes, the superclass NS does not exist. Generally nonstationary FOT PDs cannot
be defined (although locally S FOT PDs, which are NS, can be defined by limiting
the time-averaging interval used in E9{-} to one of finite length Z).

These definitions of S, CS, and PCS time-series represent a medification of
previous terminglogy. Wold (Wold, 1948) defined a stationary (S') time-series to be .
one for which Fom(x) exists and # 0. To refine this definition, (Gardner, 1987a)
defined a purely S time-series to be a S’ time-series for which Fgm(x) = 0 for all
o # 0. Following Wold, (Gardner, 1987a) also defined a cyclostationary (CS') time-
series with period T to be one for which F (,)(x) exists and &£ 0 for some {a} €
{harmonics of 1/ T}, and to reﬁne this a purely CS' time-series was defined to be a
CS' time-series for which £%) m(x) 0 for all & ¢ {harmonics of 1/T}.

The relationships among these previously defined classes of time-series can be
described with the Venn diagram shown in Fig. 3. Observe that the nesting of the
classes §', CS’, and PCS’ = PCS is inverted from that in Fig. 2 for the classes S, CS,
and PCS. The definitions of S, CS, and PCS form the basis for a theory of time-series
that in some ways has a stronger duality with the theory of stochastic processes than
does the theory that could be based on the previous definitions of §', CS', and PCS'.

On the other hand, the previous concepts of pure stationarity and pure cyclosta-
tionarity arise also within the framework of stochastic processes. Since these concepts
depend on notions of ergodicity, let us now consider the relevant types of ergodicity.
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( purely S )
s’ ~\
( purely CS’
Cs’ (
PCLS’
- J)

Figure 3: Venn diagram for previously defined classes of time-sedes.

2,10 Cycloergodicity and Refined Stochastic-Process
Definitions

Definition 7: X (¢) is an ergodic (E) process if and only if for every natural
number # and every nonrandom function g(-) of » variables for which E{g[X(#)]}
exists, we have

EYNEX(ON) = E%glX®)]) w.p. 1

(where w.p. 1 means with probability equal to 1). For a S process, EM{E{-}} = E{]
(since the constant component of a constant is that constant) and the outer operation
on the left side of this defining equation can be deleted.

Definition 8: X (¢) is a cycloergodic (CE) process with period T if and only
if for every natural number n and every nonrandom function g(-} of n variables for
which E{g[X(#)]} exists, we have (with {«} € {harmonics of 1/T} )

ERNE{IX(OM = E¥NglX()]) w.p. 1.

For a CS process, E@E{}} = E{} (since the periodic component of a periodic
function is that pericdic function) and the outer operation on the left side of this
defining equation can be deleted.

Definition 9:  X(¢) is a polycycloergodic (PCE) process with periods {T) if and
only if it is cycloergodic with period Ty, fork = 1,2, 3, .. ..

Stochastic processes that are not CE or PCE can exhibit hidden cyclostationarity.
For example, if X(#) is S and PCE with all periods, then its sample paths are stationary
time-series (w.p. 1); however, if X(¢) is S (and possibly E) but not CE, its sample
paths can be CS (w.p. 1). Similarly, if X(¢) is CS and PCE with all periods, then its
sample paths are CS time-series (w.p. 1); however, if X(¢) is CS {and possibly CE),
but not PCE, its sample paths can be PCS {(w.p. 1). Such non-CE and non-PCE models
typically result from the (explicit or implicit) inclusion of random-phase variables in
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the stochastic-process model. This hidden cyclostationarity motivates the following
refined probability-space definitions.

Definition 10: If X(¢} is S and PCE with all periods, then it is defined to be
purely stationary, and its sample paths are purely stationary (S or purely 5"} time-
series (w.p. 1): there is no hidden CS.

Definition 11: If X(z) is CS and PCE with all periods, then it is defined to
be purely CS, and its sample paths are purely cyclostationarity (CS or purely CS’)
time-series (w.p. 1): there is no hidden PCS.

Definition 12: If X(¢) is PCS and PCE with all periods, then it is defined to be
purely PCS: there is no hidden PCS.

The relationships among all the classes of stochastic processes defined so far are
illustrated with the Venn diagram shown in Fig. 4.

purely PCS ——
TN
PCS CS
NN
\
\\ S 4/9/“591//5/ 4%
hidden PCS ;s
2N
hidden CS A
A
N
N
N
NN\ AL LA \/\\

Figure4: Vern diagram of classes of stochastic processes.

Let us now consider an example that illustrates the various classes of stochastic
processes and time-series that have been introduced. Let the siochastic process X(t)
be specified by

Xy = A@) + B(t) cos{w\t + 8;) + C(¢t) cos{unt + &),

where A(t), B(r), and C{¢) arc purely stationary ergodic processes. If ) and 8, are
nonrandom, then the stochastic process X{¢) is PCS and PCE. On the other hand, if
8 and/or ; is random, then {depending on their PDs) the stochastic process X(1) can
be PCS (with periods T and T3), or it can be CS (with period 7} or T3), or it can be
S, and X{¢) is not PCE. Furthermore, with probability one, the sample paths of X (¢}
are PCS time-series, the sample paths of A(¢), B(t}, and C(¢) are S time-series, and
the sample paths of the components B(¢} cos{e;! + 6;) and C(¢) cos(wyt + 6;) are
CS time-series. '
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2.11 Phase Randomization

To pursue the concept of phase randomization a little further, it is noted that even if 8;
and #, are both nonrandom, we can introduce a random phase ® into X(¢) to obtain

YO =X+ )

which can be changed from PCS to CS or to S by choosing the distribution for
© (Gardner, 1978; Hurd, 1974b). Thus, we see that theére is a nonuniqueness of
models for stochastic processes. We can change the stochastic process from PCS to
CS to S by phase-randomizing with a single phase variable: X{¢) - X{¢ + ©). Or,
equivalently, we can change the PD function from polyperiodic to periedic to constant
by time-averaging; .g.,

R @] = Ry,

That is, phase-randomizing a CS or PCS process or time-averaging its PD function
can result in hidden cyclostationarity. Similarly, we can change the PD function for
a time-series from polyperiodic to periodic to constant by time-averaging; e.g.,

BFE @) = £,
2.12 Pitfalls of the Stochastic-Process Framework

There are some significant pitfalls associated with nonunique models. One such pitfall
is “hidden statistical dependence.” Let SI denote statistical independence (e.g., of two
variables). We can show that SI in a CS model does not necessarily imply SI in the
corresponding S model, and that S in an S model does not necessarily imply SIin the
associated CS model. To prove the first statement we simply observe that the equality

Frnxn = fan Moo

that results from the ST of jointly CS processes X (¢) and X3 (f) does not necessarily
imply the equality

E [ frinmn) = B fro) E°{ frw)

which would hold if, in the associated $ model, X, (¢) and X;(¢) were SI. To prove
the second statement, we consider the example of discrete-time processes

Xi(y=2Z(¢)=iid *1

Xa(t) = Z() cos(z).

We can easily show that

EE(Xi(nxg 0} = EPE{XO}EE {x30)

An Introduction to Cyclostationary Signals 27
for all n and m and, therefore, X (¢} and X;(¢) are SI in the S model. However,
E{X]0X7 (0} # E{X7 (O} E {X7 (1)}

for n and m odd and, therefore, X, (¢) and X(¢) are not SI in the CS model.

We are now ready to take stock. One conclusion we can draw is that when a
process is not PCE, the hidden CS or hidden PCS can result in single-sample-path
behavior (w.p. 1) that cannot be predicted from probabilistic analysis (unless the
hidden CS can be revealed by conditioning on certain random phase variables).

An important fact concerning this conclusion is that the theory of PCE is mostly
nonexistent and appears to require nontrivial extensions/generalizations of the theory
of E and the incomplete theory of CE.

Another important fact is that the commonplace approach to deriving ad hoc
signal-processing algorithms, of replacing expectation operations £{.} in analyti-
cal expressions with time-average operations Eo{-}, or (when a composition of both
operations are present in the analytical expression) of deleting the expectation oper-
ation, cannot be justified (and will often fail to produce the desired results) when the
stochastic-process model used is not PCE.

A related important fact is that the “optimum” soluticns to inference and decision
problems (e.g., for signal estimation and detection) that are based on S and E, but not
CE (or based on CS and CE, but not PCE), process models can be highly inferior to
inference and decision rules that exploit the hidden CS (or hidden PCS).

Let us consider some examples that illustrate the ramifications of the preceding
conclusion and associated facts.

Example1: Let Y () be the output of a time-invariant nonlinear transforrnation
with input X (¢). Let X(¢) be S (for all ») and E, but not CE, with no spectral lines.
Then ¥ (¢) is S (for all ) and E but, becaunse of the hidden CS in X(¢), contains spectral
lines. The presence of these spectral lines cannot be explained except by virtue of the
hidden CS in X(£). As a specific example, let X(#) = A(t) cos{en ! + ©,), where
A(t)is S and E, and ®, is independent of 4(¢) and uniformly distributed on [0, 27],
and let ¥ (£) = X2(t). Then Y (¢} has spectral lines at frequencies 0 and e /7 Hz.

Example 2: Let X(¢) be S (for » = 2) and E, but not CE, and let X{(¢} admit
an exact AR mode! (with white residuals). The sample paths of the white residuals
can be partially predictable (w.p. 1} using linear periodic predictors derived from the
sample-path statistics. For example, let U(¢f) be any nonwhite CS process and let
¥ (¢) be an independent S process with complementary spectrurn; that is, the sum of
the spectra of ¥ (¢) and the stationarized version U{¢ 4+ @) of U(¢) equals a constant
over all frequency. Then the S process W (t + ©) = U(t + ©) + V (¢ -+ ©) is white
(the spectra of ¥ (£) and ¥ (¢ + ©) are identical) but the CS process # (¢) is nonwhite.
That is, the autocorrelation of W (¢ + ®) is proportional to a delta function in the
lag variable but the autocorrelation of # (¢} is not. Thus, ¥ (£} is predictable using
linear periodic predictors and so too are its sample paths. Since the sample paths of
W (¢ +©) and ¥ (¢) are the same except for a time-shift, the sample paths of # (¢ + @)
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are also predictable with a periodic predictor. Furthermore, the sample paths of a S
and E, but not CE, process X (f) can admit periodic AR (PAR) models {w.p. 1) with
finite pericdic order even though the stochastic process X(¢) admits no finite-order
AR model. For example, let the CS and CE process Z(¢) be a first-order PAR process.
The stationary process X(r) = Z(t 4 ©) will not, in general, admit any finite-order
AR model. But its sample paths, being the same as the sample paths of Z(7) except
for a time shift, admit first-order PAR models that can be identified from the sample
path statistics.

Example 3: Let X(¢) and Y {¢) be jointly S (for all n) and E, but not CE, and,
according to the usual definition of causality, let there be no causal relationship of
X(¢) to Y (¢). That is, no linear or nonlinear time-invariant operation on X(¢) and its
past has any prediction capability for ¥ (¢) and its future. Yet, each sample path of
¥ (¢) can possibly be perfectly cyclicaily caused by the corresponding sample path of
X(¢). That is, a periodic operation on X (f) can possibly perfectly predict Y (7). Asa
specific example, consider the two continuous-time processes

X({t)=Z(@) ==1
Y({) = Z({t — v)cos(t + B)

where the transition times between +1 and —1 are arbitrary, and @ is independent of
Z(z) and uniformly distributed on [0, 27 ]. Ft can easily be shown that

E{X"¢ -0} = E{X"¢ —v)] E {r" ()}

for all » and mm, and all v; that is, ¥ (¢) is statistically independent of the past of X ().
Nevertheless, each sample path of Y (f) can be perfectly predicted from the past of
the corresponding sample path of X (2):

Y({#) = X(¢t — 1) cos(t + ©).

Example 4: Let Z(¢) = X(¢) + Y (¢), where X(¢) and Y (¢) are statistically
independent, § (for n = 2), and E, but not CE, processes that have identical spectral
densities. The Wiener filter for extracting X (¢) from Z (¢) (separating X(¢) and ¥ )
is essentially useless. Its transfer function is a constant. Yet the sample paths of X'(¢)
and Y (r) can possibly be perfectly separated with a periodic filter. Examples include
communication signals such as digital QAM, AM, PSK, ASK, and PAM. Asa specific
example, it can be shown (Gardner, 1993) that up to N spectrally coincident digital
QAM signals with excess bandwidth > (N — 1)100% can be perfectly separated.

Example 5: Let X(t) = [X;(2), X2(2)) be purely S (for all ») with a proba-
bilistic model that is very similar to that of ¥(¢) = {¥1(¢), Y2(r}}, which is CS (e.g.,
X(¢) and ¥{¢) are both Gaussian processes and the PSDs of X(¢) equal those of the
stationarized ¥(¢)). The Cramér-Rao bounds of the same parameters in each of X (€3]
and ¥ (¢) (e.g., the relative time delay (TD) of an additive signal component comnion
to both X (£) and X3 (¢)) can be drastically different. This has been demonstrated for
TD at two reception platforms and for angle-of-arrival at a sensor array (Chen and
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Gardner, 1992; Schell and Gardner, 1992b). Moreover, even the Cramér-Rao bound
of the stationarized ¥ () can be drastically different from that of the purely S X(z).

Example 6: Let X(¢) and Y{¢) be independent, S (for all n), and E, but not
CE, and let Z(¢) be specified under two hypotheses—

under hypothesis 1: Z(#) = X} + Y (@)
under hypothesis 2: Z{t) = Y (¢)

The “optimum” (e.g., maximum-posterior-probability) detector for the presence
of X(¢) in Z(¢) can be greatly outperformed by detectors that expleit the hidden CS
in X(¢) and/or ¥ (1), e.g., the joint maximum-posterior-probability detector and phase
estimator (Gardner, 1988b; Gardner and Spooner, 1992a).

2.13 Two Paths into the Future

One approach to this unsettling situation, which is illustrated by the preceding ex-
amples, that should appeal to mathematicians is to take what shall be called Path !:
Develop the needed theory of PCE. The current status of the theory of CE and PCE
is that substantial progress has been made for (1} CE w.p. 1 for discrete-time CS
processes and Gaussian continucus-time CS processes, and (2) PCE in mean-square
for finite-order moments of discrete- and centinuous-time PCS processes. Little or
no progress has been made for (1) PCE w.p. 1 for discrete-time PCS processes, (2)
CE w.p. 1 for non-Gaussian continuous-time CS and PCS processes, and (3) PCE
w.p. 1 for continuous-time CS and PCS processes.

The only paper to address PCE w.p. 1 (Boyles and Gardner, 1983) suggests that
a substantial breakthrough will be required {even for the much less technical case of
discrete time): conventional approaches and ideas apparently lead to dead ends. This
suggests a challenge not unlike that Birkhoff faced around 1930 when he formulated
and proved the fundamental ergodic theorem to replace the very unsatisfying “er-
godic hypothesis.” We need a fundamental polycycloergodic theorem that elegantly
formalizes our informal notion of a PCE process in terms of a necessary and sufficient
condition on the associated probability measure.

The most useful concept regarding PCE that we have for applications is the
following unproved proposition. :

Proposition PCS processes constructed from stable (decaying-memory) non-
random polyperiodic transformations of purely stationary ergodic processes are PCE.

Stochastic-process models for many, if not most, communications signals can
be constructed in this way.

In view of the difficulties before us, we should ask what some of the advantages
of the stochastic-process approach are. The most apparent advantages are listed here:

1. Tt is the orthodox approach to modeling and studying evolutionary random
phenomena and it is, therefore, attractive to those already familiar with it.
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2. Mathematicians do know how, in principle, to construct stochastic-process
models from elementary mathematical constructs (Borel fields, sigma alge-
bras, probability measures, etc.). Therefore, there is a greater likelihood of
success (compared with time-series) in constriricting a mathematical theory
of PCS and PCE processes from a few basic axioms.

3. Ttis possible, in principle, to exploit the hidden CS (or PCS) in a non-CE
(or non-PCE) process within the conventional framework of stochastic pro-
cesses. But, this requires that one have a model of the hidden CS (or PCS)
that is explicitly dependent on one or more random phase variables © that are
responsible for the lack of CE so that one can calculate probability densities
and expectations conditioned on @.

4. Development of the theory of PCE will help clear the way for making the
time-space theory of time-series mathematically rigorous.

In spite of these advantages, there is an alternative approach that should appeal to
pragmatic engineers and scientists. Let us begin with the following perspective: The
probability-space approacl based on expectation introduces abstractions that, in many
applications (e.g., many problems for which single-sample-path signal processing is
of interest), have no redeeming practical value. Some of these abstractions can be
properiy dealt with only with a theory of PCE that is presently nonexistent. Regressing
back to pre-1930 and adopting a “PCE hypothesis” is very unappealing (because the
hypothesis can be false). ‘

So, let us consider taking what shall be called Parh 2: Adopt the time-space
approach whose theory is in many ways dual to that of the probability-space approach,
but without the practical drawbacks associated with cycloergodicity and the distracting
abstraction associated with expectation over ensembles.

The essence of cyclostationarity from an operational standpoint is the fact that
sine waves making up additive polyperiodic components can be generated from ran-
dom data by applying certain nonlinear transformations. And, the time-space theory
of cyclostationarity arises naturally out of the fundamental theorem of polyperiodic-
component extraction using the generalized temporal expectation operation £{®);
whereas the expectation E that gives rise to the probability-space theory has little to
do with the essence of cyclostationarity.

But, can we construct time-series models? The answer is yes. Time-series mod-
cls for many, if not most, communication signals can be constructed by subjecting one
Of more elementary tirne-series (¢.g., purely stationary and white) to elementary trans-
formations such as filters, periodic modulators, multiplexors, etc. (Gardner, 1987a),
The defining properties of a discrete-time purely stationary white time-series are:

1. Whiteness: ff(,)(x) =f Sy 1) 7 N coy 7 b1 () for unequal
t,la, ooty
2. Pure stationarity: f[“])(x) = “f(,)(x) for all {a}.

x(r
3. Existence: any sample path of any i.i.d. stochastic process will do (w.p. 1).
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Okay. But, can we do probabilistic analysis using time-space theory? The
answer, again, is yes. Performance measures such as bias, variance, Cramér-Rao
bounds, confidence intervals, probabilities of decision-errors, etc., can be calculated
using time-space theory just as well as they can using probability-space theory (Gard-
ner, 1987a). But can we use the theory of statistical inference and decision? Yes,
indeed.

The author’s current assessment of progress along Path 2 can be summarized as
follows: The considerable progress in the development and application of the time-
space (or temporal-probability, or fraction-of-time probability) theory of CS and PCS
time-series that has been made since its adoption by the UCD and SSPI groups in
1985, cf. (Gardner, 1987a, 1991a) includes:

1. Temporal and spectral second-order-moment theory (cyclic autocorrelation
and cyclic spectra, or spectral correlation functions) (Gardner, 1987a; Sec-
tion 3 in this chapter).

. 2, Temporal and spectral higher-order-moment and cumulant theory (cyclic cu-
mulants and cyclic polyspectra, or spectral cumulants) (Gardner and Spooner,
1992b; Spooner and Gardner, 1992a,b; Spooner, 1992; Chapter 2 in this vol-
ume).

3. The rudiments of fraction-of-time probability distribution theory (Gardner,
1987a; Gardner and Brown, 1991).

4. A wide variety of applications of the theory to signal-processing and commu-
nications problems involving signal detection, signal classification, signal-
parameter estimation, and signal-waveform estimation (Agee, et al., 1987,
1988, 1950; Brown, 1987, Chen, 1989; Chen and Gardner, 1992; Gard-
ner, 1987a,b, 1988a,b,c, 1990a,b, 1991a,c, 1992, 1993; Gardner and Archer,
1993; Gardner and Brown, 1989; Gardner and Chen, 1988, 1992; Gard-
ner and Paura, 1992; Gardner and Spooner, 1992a, 1993; Gardner and
Vernkataraman, 1990; Gardner et al., 1987, 1992; Schell, 1990; Schell and
Agee, 1988; Schell and Gardner, 1989, 1990a,b,c, 1991, 1992, 1993a,b;
Schell et al., 1989, 1993; Spocner, 1992; Spocner and Gardner, 1992b;
Section 4 in this chapter; Chapter 2; Chapter 3).

Also, the conceptual gap between the existing time-space thecry and its application
to many signal-processing problems in communications is perceived by its current
users to be much narrower than it is for the dual probability-space theory.

Further support for taking Path 2 includes the fact that the temporal-probability
approach, which is centered on the concrete sine-wave extraction operation, has led
naturally to a derivation of the cumulant as the solution to a fundamental problem
in characterizing higher-order CS and PCS. It is doubtful that this derivation would
have been discovered within the stochastic-process framework, which is centered on
the abstract expectation operation. This derivation is discussed in Chapter 2 in this
volume.
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But, in the final analysis, the duality between the time-space and probability-
space theories will likely result in either path taking the sufficiently persistent practical
problem solver to the same places, although not necessarily in the same elapsed time
or with the same energy. This duality can be formalized with the following loosely
stated conjecture.

Conjecture  For every theorem that can be proved for a PCE PCS process, a
dual theorem can be proved for a PCS time-series—and vice versa.

This can be viewed as a generalization of Wold’s isomorphism from § to PCS
processes.

Nevertheless, there does remain a fundamental question that is not yet always
answerable: Given a self-consistent set of probability distributions ¥ L"('}) for all orders
n, does there exist a corresponding time-series x(#)? We have sufficient conditions
on FL"(',}) that guarantee existence of x(¢): They are identical to the conditions that
guarantee that Fyg, is PCE and they are called mixing conditions in the theory of
stochastic processes. But we do not yet have a necessary and sufficient condition.
(This presents another challenge for mathematicians.)

With regard to the taking of Paths I and 2, we can draw three conclusions:

1. The more abstract theory of PCS stochastic processes will undoubtediy be
found to be of considerable value as it is developed, and those who are
sufficiently matheinatically inclined are encouraged to pursue this approach.

2. The less abstract theory of cyclostationary time-series is more accessible to
engineers and scientists interested in theory as a conceptual aid for solv-
ing practical problems. It should be the preferred approach for the practi-
cally oriented whenever ensembles are not, in and of themselves, of primary
concern,!!

3. Both theories present important challenges to mathematicians.

In the remainder of this chapter, Path 2 is taken, and the theory and application
of second-order (wide-sense) cyclostationarity is pursued in some detail.

3 INTRODUCTION TO THE PRINCIPLES
OF SECOND-ORDER (WIDE-SENSE)
CYCLOSTATIONARITY

The second-order (wide-sense'?) theory of discrete-time stochastic processes deals
with the probability-space autocorrelation function

Ry(t,t —1) = E{X(O) X*(t - 1)).

UThe practical value of this approach is amply demonstrated for parametric and nonparametric
spectral analysis of S as well as CS and PCS time-series in (Gardner, 1987a).

12Wide-sense theory deals with moments, whereas strict-sense theory deals with probability
distributions.
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For a PCS process X(¢), this function is polyperiodic in f for each z. The associated
Fourier series for this function is

Rx(t,t — 1) = Z R}(T) i mel—1/2)
la)

where {a} includes all values of @ in the principal domain (—3, 1] for which the
corresponding Fourier coefficient is not identically zero as a function of t:

RY(T) 2 (Ry(t,t — 1) e 2T/ 22 0,
If this PCS process is PCE, then (with probability equal to one)
R(r) = Ro(n) £ {X(0) X*(t — 7) e”2mett=x/D},

The sine waves exp[i2ra(t — t/2)] in the Fourier series introduced here contain
the time shift —z/2 so that the discrete-time theory presented here will match the
continuous-time theory {cf. Gardner, 1985) in which the function Rx(t +1/2, t—t/2)
is expanded in a Fourier series with unshifted sine waves exp{(i2Zmwat).

The second-order theory of PCS discrete time-series x(¢) deals with the time-
space autocorrelation function

E"'[a} {x(t)x*(t _ I')} - ZEO {x(z‘)x*(t _ r)e—r‘Zmrr] glemat
{a}

_ Z B2 (1) e Lrat—7/2)
= b '
()

where
R (r) & E'x(6)x*(t ~ 1) e~ 2P0/,

That is, this theory deals with the sine-wave components in the delay product
x()x*(r — t), whereas in the stochastic-process framework, we deal with an en-
semble average that happens to be made up entirely of a sum of sine waves.

When our primary concern is the sine-wave components generated from x (£} by
the quadratic transformation x (£)x*(t — ), then the expectation operation E{-} 3.!‘ld
the associated ensemble are irrelevant. This being the case here, we proceed with
the time-space theory, However, it is mentioned that the time-space theory presented
can be translated to a probability-space theory (cf. Section 2) simply by following the
rule: .

For all sinusoidally-weighted time averages (z(t)e 2™} of time-series z(?),
replace z(z) by the expected value E{Z(f}} of the corresponding stochastic
process Z{(f) to obtain (E{Z(#)}e”* 2Zmaty (when o = 0, the operation {-) can be
omitted to obtain E{Z(f)} only if Z(r) is purely stationary).

Common examples of z(¢) appearing in this presentation include delay products
z(t) = x()x* (¢ — 1) and cross products z(¢) = u(f)v*{f).
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In the remainder of this chapter, the circumfiex notation (that was introduced in
Section 2) on all time-average quantities is omitted for simplicity.

In the first part of this section, the possibility of generating spectral lines by
simply squaring the signalis illustrated for two types of signals: the random-amplitude
modulated sine wave and the random-amplitude modulated periodic pulse train. Then
in the second part, it is explained that the property that enables spectral-line generation
with some type of quadratic time-invariant transformation is called ¢yclostationarity of
order 2 (in the wide sense) and is characterized by the cyclic autocorrelation function,
whichis a generalization of the conventional autocorrelation function. Following this,
itis shown that a signal exhibits cyclostationarity if and only if the sxgnal is correlated
with certain frequency-shifted versions of itself.

In the third and last part of this section, the correlation of frequency-shifted
versions of a signal is localized in the frequency domain and this leads to the definition
of a spectral correlation density function. It is then explained that this function is
the Fourier transform of the cyclic autocorrelation function. This Fourier-transform
relation between these two functions includes as a special case the well-known Wiener
relation between the power spectral density function and the autocorrelation function.
A normalization of the spectral correlation density function that converts it into a
spectral correlation coefficient, whose magnitude is between zero and unity, is then
introduced as a convenient measure of the degree of speciral redundancy in a signal.

Continuing in the final part of this section, the effects on the spectral correlation
density function of several signal-processing operations are described. These include
filtering and waveform multiplication, which in turn include the special cases of
time delay and multipath propagation, bandlimiting, frequency conversion, and time
sampling. These results are used to derive the spectral correlation density function
for the random-amplitude modulated sine wave, the random-amplitude modulated
pulse train, and the binary phase-shift keyed sine wave. The spectral correlation
density functions for some other types of phase-shift keyed signals are also described
graphically.

To conclude this section, the measurement of the (estimation of the ideal) spectral
correlation density function is discussed and a particular algorithm for this purpose
is illustrated with a simulation of a phase-shift keyed signal.

To complement similar treatments of this material (Gardner, 1987a; Gardner,
19%91a), attention is focused in this section primarily on discrete-time signals rather
than continuous-time signals.!?

3.1 Spectral Line Generation

A discrete-time signal x{¢), for ¢ = 0,1, £2, +3, ..., contains a finite-strength
additive sine-wave component (an ac component) with frequency e, say

acos(2rat +8) withe #£0 (1)

3For convenience, the notation herein is modified from that in (Gardner, 1987a; Gardner 1991a);
here, R" and S - are used for continuous time and RY and S¥ are used for discrete time.
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if the Fourier coefficient

MY = (x(t) e”7) 2)
is not zero, in which case (1) gives
1 e
M} = Eae .

In (2), the operation {-} is the time-averaging operation

A

{-)

1 Zz
I 5%
Zne0 2Z + 1 ,;Z()

In this case, the power spectral density (PSD) of x (¢) includes a spectral line at /' = o
and its image /' = —a. (The PSD is defined later in this section.) That is, the PSD
in the principal domain (—1/2, 1/2] contains the additive term'4

M2 2180 — @) +6(f + )], 3

where 8(-) is the Dirac delta, or impulse, function. For convenience in the sequel, it
15 said that such a signal exhibits firs-order periodicity, with frequency o.

Let x(¢) be decomposed into the sum of its finite-strength sine-wave component,
with frequency o, and its residual, say n(2),

x(t) = acos(rat 4+ 0) +n(t), C))

where n(z) is defined to be that which is left after subtraction of (1) from x(¢). It
is assumed that n{¢) is random. Here, the term random is used to denote nothing
more than the vague notion of erratic or unpredictable behavior. If the sine wave is
weak relative to the random residual, it might not be evident from visual inspection
of x(¢t) that it contains a periodic component. Hence, it is said to contain Aidden
periodicity. However, because of the associated spectral lines, hidden periodicity
can be detected and in some applications exploited through techniques of spectral
analysis.

This presentation is concerned with signals that contain more subtle types of
hidden periodicity that, unlike first-order periodicity, do not give rise to spectral
lines in the PSD, but that can be converted into first-order periodicity by a nonlinear
time-invariant transformation of the signal. In particular, we shall focus on the type
of hidden periodicity that can be converted by a quadratic transformation to yield
spectral lines in the PSD.

The discussion begins with two motivating examples. In the convention used
here, the PSD for x (¢} is denoted by S, (/) and is periodic with unity period. S; (/)

4The strength of the spectral line is IM;’ |2 as indicated in (3) if and only if the limit (2) exists in
the temporal mean square sense with respect to the time parameter u obtained by replacing ¢ with f 4 u in
(2) (Gardner, 1987a, Chapter 15, exc. 6).
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denotes the PSD restricted to the principal domain (—1 /2, 1/2]; therefore,

S(fy= D S(f +n).

N==00

On occasion, continuous-time signals also are discussed herein. In such cases it
is assumed that the signal is time-scaled and bandlimited so that the PSD is restricted
tothe band (—1/2, 1/2]. Consequently, the PSD of the discrete-time sampled version,
restricted to the principal domain, wiil be identical to the PSD of the continuous-time
signal. Consequently, the same notation, 3, (f), is used for both,

Examplel: AM Leta(¢) be areal random lowpass signal (say lowpass filtered
thermal noise) with the PSD 5, ( /') shown in Fig. 5a, which contains no spectral lines.
If a(¢) is used to modulate the amplitude of a sine wave, we obtain the amplitude-
modulated (AM) signal

x{#) = a(t) cos2m f1), (3)
whose PSD S, (f) is given by (Gardner, 1937a, Chapter 3, Sec. D)

1 1
S:(f) = 75U+ o) + 75U = L) (6)

as shown in Fig, 5b.

Although the PSD is centered about f = f and S = —fs, there is no spectral
line at f, or — f;. The reason for this is that, as shown in Fig. 5a, there is no spectral
ling in S,(f) at f = 0. This means that the dc component

MP 2 (a(r)) Q)
is zero, since the strength of any spectral line at f = 0 is | M?]".
Let us now square x (¢) to obtain
¥(€) = x2(1) = a*(t) cos*2x £, 1) @
= 1[b(t) + b(t) cos(dn f,1)]
where 2
b(r) = &2(¢). ®

Since b(#) is nonnegative, its dc value must be positive: M > 0. Consequently, the
PSD of b(¢) contains a spectral line at f = 0, as shown in Fig. 5c. The PSD for v(!)
is given by

1 1
S =73 [Sb(f) + S+ 2+ B - 2%}] (10)

and, as shown in Fig. 5d, it contains spectral lines at f = 42 foaswellasat [ = 0.
Thus, by putting x(¢) through a quadratic transformation (a squarer in this case) we
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Figure 5: (a) Power spectral density (PSD) of a lowpass signal. (b) PSD of an
amplitude-modulated (AM) signal. (¢) PSD of a squared lowpass signal. (d) PSD
of a squared AM signal.

have converted the hidden periedicity resulting from the sine-wave factor cos(2r f,£)
in (5) into first-order periodicity with associated spectral lines. This is particularly
easy to see if a(¢) is a random binary sequence that switches back and forth between
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+1 and —1 because then b(t) = 1 and y(¢) in (8) is therefore a periodic signal:

() = % + %cos(4n’f,,t).

Example 2: PAM  As another example, we consider the real pulse-amplitude-
modulated (PAM) signal

[».°]
x(0) =Y anT,) p(t — nT,), an
n=—0oQ
where the pulse p(¢) is confined within the interval (—7,/2, T,/2) so that the pulse
translates do not overlap, as shown in Fig. 6. For simplicity, we consider a continuous-

time signal in this example (to avoid aliasing). The PSD of x(r} is given by (Gardner,
1987a, Chapter 3, Sec. D)

5= B[ 3 Sr—mm, (2)

R=—00

where S, ( J) is shown in Fig. 5a, which contains no spectral lines, and where P(J)
is the Fourier transform of p(¢). Since there are no spectral lines in S, ( ) (or P(S)
since p(¢) has finite duration), there are none in S’x (f), as shown in Fig. 7a, regardless
of the periodic repetition of pulses in x (). But, let us look at the square of x(¢):

YO =x"0)= Y b(nT)q(t —nT), (13)
where
b(nT,) = a*(nT,) (142)
and
q@t) = pA(®). (14b)
The PSD for y(¢) is given by
- 1= 2 =
SN =700 Y Sr-mm, (15)

where Q( [} is the Fourier transform of ¢ (¢). Because of the spectral line at f = Oin
Ss( ), which is shown in Fig. 5c, we have spectral lines in § (f) at the harmonics
m/ T, (for some integer values of m) of the pulse rate 1/ T, as shown in Fig. 7b. Thus,
again, we have converted the hidden periodicity in x () into first-order periodicity with
associated spectral lines by using a quadratic transformation. This is particularly easy
to see if a(n7,} is a random binary sequence with values 1, because then b(nT,,) = 1
and p(¢) in (13) is therefore a periodic signal

o0

Y@= 3 q—nT). (16)

nH==-0C
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x(t)

Fipure 6: A pulse-amplitude-modulated (PAM) signal with pulse width less than interpulse time.

(a) Sx(f)

0 28 L 2 2

Figure 7: (a) Power spectral density (PSD) of a pulse-amplitude-modulated (PAM)
signal with 67% duty-cycle pulses. (b) PSD of the squared PAM signal.

3.2 The Cyclic Autocorrelation Function

Although the squaring transformation works in these examples, a different quadratic
transformation involving delays can be required in some cases. Forexample, ifa(n7},)
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in Example 2 is again binary, but p(¢) is flat with height 1 and width T, as shown in
Eig. 8, then ¥(f) = x%(¢) = 1, which is a constant for all ¢. Thus, we have a spectral
line at f* = O but none at the harmonics of the pulse rate. Nevertheless, if we use the
quadratic transformation

yE&)=xt)x(t - 1) an

for any of a number of nonzero delays 7, we will indeed obtain spectral lines at
f=m/T, Thatis,

M; — (y(t) e—r'2m:t.')

. 1
= (x()x(t — T) e 2y £ s

fora = m/ T, for some m-

x(t)

Figure 8: A binary pulse-amplitude-modulated (PAM) signal with full duty-cycle pulses.

The most general time-invariant quadratic transformation of a real time-series
x(r) is simply a linear combination of delay products

YO =Y h(z, wdx(t — m)x(t — )
. T2

for some weighting function 4 (zy, 12) that is analogous to the impulse-response func-
tion for a linear transformation, This motivates us to define the property of second-
order periodicity as follows: The real signal x(¢) contains second-order periodicity
if and only if the PSD of the delay-product signal x (¢ — 7))x(¢ — 72) for scme delays
7) and 7, contains spectral lines at some nonzero frequencies . But, this will be so
if and only if the PSD of (17) for some delays (v = 7; — 7)) contains spectral lines
at some nonzero frequencies & # 0; that is, if and only if (18) is satisfied.

In developing the continuous-time theory of second-order periodicity it has been
found to be more convenient to work with the symmetric delay product

P () = x(t + T/2x*(t — 2/2). (19)

The complex cenjugate * is introduced here for generality to accommodate complex-
valued signals, but it is mentioned that for some complex-valued signals, the quadratic
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transformation without the conjugate can also be useful (Gardner, 1987a, Chapter 10,
Sec. C). From (19), the fundamental parameter (18) of second-order periodicity for
continuous time becomes

RE() 2 (x(t + 1/Dx*(t — 1/2) e~/ 2y, (20a)

which is the Fourier coefficient A/} of the additive sine-wave component with fre-
quency o contained in the delay-product signal y;(¢#). However, for discrete-time
signals, delays equal to half the sampling increment are not allowed. Nevertheless,
since

(x(t)x'(t _ r)e—EZn‘m') = E:(’E) e—i:rrar

for continuous time, then we can define the fundamental parameter of second-order
periodicity for discrete time as follows

RE(x) £ (x(x*(t — v) e 2"y gioT (20b)

in order to maintain the strongest analogy between the continuous- and discrete-time
theories. Observe that since ¢ and t take on only integer values, then R2 (7) is periodic
in & with period two, and also R2H!(t) = R%(z)e/™*.

The notation RY () is introduced for this Fourier coefficient because, fora = 0,
{20) reduces to the conventional autocorrelation function

Ro(x) = (x()x* (¢ — ),

for which the notation R, (z) is commonly used. Furthermore, since RY () is a gener-
alization of the autocorrelation function, in which a cyclic (sinusoidal) weighting
factor =™ js included before the time-averaging it carried out, R%(t) is called
the cyclic autocorrelation function. Also, the conjugate cyclic autocorrelation for
complex-valued signals obtained from (20) by deleting the conjugate,

R% (1) = {(x(O)x(t — 7) e'2mr) ™7, 210

is a further modification of the conventional autocorrelation.!®

Thus, we have two distinct interpretations of Rf (v) = M . Infact, we have yeta
third distinct interpretation, which can be obtained by simply factoring exp(—i2matr)
in order to reexpress (20) as

RY(t) = ([x(t) e_"“'] [x(t —1) e""'”"("’)]*) ; (22)

15 Although some readers will recognize the similarity between the cyclic autocorrelation function
and the radar ambiguity function, the relationship between these two functions is only superficial. The
concepts and theory underlying the cyclic auntocorrelalion function, as summarized in this article, have
little in common with the concepts and theory of radar ambiguity (cf. (Gardner, 1987a, Chapter 10, Sec.
C)). For example, the radar ambiguity function has no meaning relevant to ambiguity (in Doppler) when
applied to a real signal, or when applied to a complex signal without the conjugate.
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That is, RS (z) is actually a conventional crosscorrelation function

Rau(1) 2 (u(e)™(t — D)) = R%(1), (23)
where
u(t) = x(t) e " (24a)
and
u(t) = x(t) et (24b)

are frequency translates of x(¢). Recall that multiplying a signal by exp{4:mwt}
shifts the spectral content of the signal by +-o:/2. For example, the PSDs of u(f) and
v(!) are

Su(f)=8(f +/2) (25)
and

S(f) = 8(f —a/2). (26)
It follows from (23} and (24) that x (¢) exhibits second-order periodicity ((20) is not
identically zero as a function of t for some & % 0} if and only if frequency transiates
of x(¢) are correlated with each other in the sense that (23) is not identically zero as
a function of ¢ for some « 3 0 in (24). This third interpretation of R (r) suggests
an appropriate way to normalize RZ(t) as explained next.

As long as the mean values of the frequency translates u(¢) and v(¢) are zero
(which means that x(f) does not contain finite-strength'® additive sine-wave com-
ponents at frequencies +«/2 and, therefore, that S,(f) has no spectral lines at
f = +a/2), the crosscomelation R,, (1) = RZ2(z) is actually a temporal cross-
covariance K,, (7). That is,

Kuo(T) 2 ([u() — ()] vt — ) — (vt — NI
=u@v*'t—1)) = Ru(T)

An appropriate normalization for the temporal crosscovariance is the gecmetric mean
of the two comresponding temporal variances. This yields a temporal correlation
coefficient, the magnitude of which is upper bounded by unity. It follows from (24)
that the two variances are given by

K (0) = Ru(0) = (Iu()*) = R.(0) (28a)

@7

and
K, (0) = Ry(0) = {|v(®)|*) = R:(0). (28b)
Therefore, the temporal correlation coefficient for frequency translates is given
by
Kn(®) _ _ RAD) s
[K.(0)K, (0] R:(0)

¥x (0. _ (2%}

161 does contain infinitesimal sine-wave COmponents.
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Hence, the appropriate normalization factor for the cyclic autocovariance RZ(z) is
simply 1/R,(0) (and it is the same for the conjugate cyclic autocovariance).

This is a good point at which to introduce some more terminology. A signal x(z)
for which the autocorrelation R, {t) exists (e.g., remains finite as the averaging time
goes to infinity) and is not identically zero (as it is for transient signals) is commonly
said to be stationary of second order (in the wide sense). But we need to refine
the terminology to distinguish between those stationary signals that exhibit second-
order periodicity (R () # O for some o # 0) and those stationary signals that do
not (R¥(r) = 0 for all @ % 0). Consequently, we shall call the latter for which
R2(t) = 0 stationary of second order (in the wide sense) and the former for which
R2(1) # 0 for some values of o that are integer multiples of a single fundamental
frequency 1/ T (corresponding to the period T') cyclostationary of second order (in
the wide sense). If there is more than one fundamental frequency, then we call the
signal polycyclostationary of second order (in the wide sense). We shall also call any
nonzero value of the frequency parameter « in the principal domain —%, %] for which
R%(z) # 0 acycle frequency. The discrete set of cycle frequencies is called the cycie
spectrum. For example, if a signal is cyclostationary, the cycle spectrum contains
only harmonics (integer multiples) of the fundamental cycle frequency, which is the
reciprocal of the fundamental period. But if the signal is polycyclostationary, then
the cycle spectrum contains harmonics of each of the incommensurate fundamental
cycle frequencies.

We conclude this section by reconsidering the AM example and determining the
cyclic autocorrelation function for the AM signal.

Example 1 continued: AM Let a(t) be a real random stationary signal with
ZETO mean:

{a()} =0, (302)
{aa*t — 1)) #£0, (30b)
laa*(t — t)e ™y =0 foralle 0. (30c)
Equation (30c) guarantees that .
(a(t)e ™y =0 foralla #0. (30d)

We consider the amplitude-modulated sine wave

x(®) = a(t)cos2m fot + 6)

1 i(2 2] —i(2 ] (31)
=—a(t) [ei( T fot - )+€ P2 for + )]'
2

Because of (30d), a(¢) contains no finite-strength additive sine-wave components
and, therefore (together with (30a)), x(f) contains no finite-strength additive sine-
wave components. This means that its power spectral density contains no spectral
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lines, However, the quadratic transformation
Yy =x(Ox*(¢ — 1)

_ a(t)a‘(t—r)% [e2hr 4 i2mis - R A fx | gmithn ot 20) it |
(32)

does contain finite-strength additive sine-wave components with frequencies o =
+2 f,, since (30b) renders one or the other of the last two terms in the quantity

(yr (f) e—iZJ'ml) — %er'erﬂ,t (a(t)a*(t _ ,r)e—r'lrra:)
4 e"'z”f“(a(t)a'(t —17) e—i27rw)
(33)

+ ei29 e—l‘erj;r (a(t)a‘(t _ I‘) e—IZ}r(a—Zj;)r)

— Rl ] e

+7 e TLT (q(Ha*(t — 1) eI TTEHTLN)

nonzero for « = +2f,. That these are the only two nonzero cycle frequencies
follows from the fact that (30c) renders (33) equal to zero for all & except & = 0
and @ = +2 f,. Thus, the cycle spectrum consists of only the two cycle frequencies
o = 12 f, and the degenerate cycle frequency o = 0.

Hence, the versions u(¢) and v(¢) of x(#) obtained by frequency shifting x (¢) up
and down by a/2 = f, are correlated. This is not surprising since (31) reveals that
x(t) is obtained from a (¢) by frequency shifting up and down by f; and then adding. In
concluston, we have the cyclic autocorrelation function (in the principal domain of «)

%e*"wR,, (1) fore = 2,
R(7) ={ iRa(t)cos(2mf,r) fora =0 (34)
0] otherwise,

the magnitude of which is graphed in Fig. 9 for a typical autocorrelation R, (z). It
follows from (34) that the temporal correlation coefficient is given by

3¢9, 0(7) fora =427,
yi(m) =1 ¥2(x)cos(nfr) fora =0 (35a)
0 otherwise.

Thus, the strength of correlation between x (1) exp(—irat) and
x(t —©) exp(imelt — 1), which is given by

1
@) =3 @l (35b)

can be substantial (as large as 1/2 for this amplitude-moduiated signal.
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Figure %:  Magnitude of the cyclic autocorrelation function for an AM signal graphed
as the height of a surface above the time-frequency plane with coordinates t and a.

As an especially simple specific example of a(¢), we consider as before a random
binary sequence, which switches back and forth between +1 and —1. If wesett = 0
in (32), we obtain

yot) = Ix(®)* = |a() ] cos’ (2m ft +6)

1 1
=3 + Ecos(4rrﬂ,t +28),

which clearly contains finite-strength additive sine-wave components with frequen-
cies @ = X2 f,. In fact, in this very special case, there is no random component in
Jo(t). On the other hand, for 7 # 0, 3, () contains both a sine-wave component and
a random component.

To illustrate the conjugate cyclic autocorrelation (21), let us consider the analytic
signal for AM,

z2(t) = 1a(!) e/t +8)
2
For this signal, we have

RZ.(7) & (z(D)z(t — 1) e~27a) gimer

i(d(t)a(t _ T) eiZJr(Zj;—a).r) e—i[‘br(j;-nr/Z)r—ZB]

[ 1R, (1) e fora =2f,

0 otherwise.

Other examples of cyclostationary and polycyclostationary signals can be sim-
ilarly viewed as mixtures of stationarity and periodicity. Examples are cited in
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Section 1. Typical cycle spectra include harmonics of pulse rates, keying rates,
spreading-code chipping rates, frequency hopping rates, code repetition rates, doubled
carrier frequencies, and surns and differences of these (Gardner, 1987a, Chapter 12).

3.3 The Spectral Correlation Density Function

In the same way that it is beneficial for some purposes to localize in the frequency
domain the average power (Ix(®?) = R.(0)ina stationary random signal, it can be
very helpful to localize in frequency the comrelation ((¢)v*(2)} = (|x(1)|? e~ 27"} =
RZ(0) of frequency-shifted signals u () and v(¢) for a cyclostationary or polycyclosta-
tionary random signal x(z). In the former case of localizing the power, we simply pass
the signal of interest x () through a narrowband bandpass filter and then measure the
average power at the output of the filter. By doing this with many filters whose center
frequencies are separated by the bandwidth of the filters, we can partition any spectral
band of interest into a set of contiguous narrow disjoint bands. In the limit as the
bandwidths approach zero, the comesponding set of measurements of average power,
normalized by the bandwidth, constitute the power spectral density (PSD) function,
That is, at any particular frequency f (in the principal domain (—1/2, 1/2]), the PSD
for x(¢) is given by

52 im ([ o xo| 36)
()= Bl—rﬂi B\ x » (
where ® denotes convolution and hﬁ(r) is the discrete-impulse response of a one-
sided bandpass filter with center frequency f, bandwidth B, and unity gain at the
band center (see Fig. 10).

Center Frequency = f .

x(t) = Sy (f)
—

BPF |— [«|® — ()

Bandwidth =B

Figure 10: One channel of a spectrum analyzer for measuring the power spectral
density (PSD). (The symbol = indicates that the output only approximates the ideal
function Sy(f) for finite T and B.)

In the latter case of localizing the correlation, we simply pass both of the two
frequency translates () and v(z) of x(¢) through the same set of bandpass filters that
are used for the PSD and then measure the temporal correlation of the filtered signals
(see Fig. 11) to obtain

52 2 tim ([0 o] v evo]), (37)

which is called the spectral correlation density (SCD) function. This yields the
‘'spectral density of correlation in u(#) and v(¢) at frequency f, which is identical to
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the spectral density of correlation in x (¢} at frequencies f + /2 and f — e/2 (see
Fig. 12). Thatis, SZ( f) is the bandwidth-normalized (i.e., divided by B) correlation
of the amplitude and phase fluctuations of the narrowband spectral components in
x(t) centered at frequencies f + /2 and f — /2, in the limit as the bandwidth
B of these narrowband components approaches zero. For complex-valued signals,
the conjugate SCD obtained from (37) by deleting the complex conjugate is also of
interest for some signals (Gardner, 1987a, Chapter 10, Sec. C).

exp(—iwmat)
t
LN e
x(t) Center Frequency =f R = Sg (f)
Bandwidth= B ( T |
v} g |+

exp(+inot)

Figure 11:  One channel-pair of a spectral correlation analyzer (or a cyclic spectrum
analyzer) for measuring the spectral correlation density (or cyclic spectral density).

Strictly speaking, the SCD is not a valid density function in the usual sense,
since it is not nonnegative and, in fact, not even real-valued. However, its integral
over all frequencies does equal the correlation of u(¢) and v(¢) and, when u(¢) and
v(t) are decomposed into narrowband spectral components, the correlation of the
components centered at f is indeed the SCD evaluated at f. Because of the lack of
the nonnegativity property of the SCD, the correlation of u(t) and v(¢) can equal zero
without the SCD being identically zero because the integral of the SCD over all f
can be zero even though the SCD is not identically zero. Nevertheless, because of
the properties that the SCD does share with densities like the PSD, the term density
is retained.

It is well known (see, for example, (Gardner, 1987a, Chapter 3, Sec. C) for a
proof for continuous time) that the PSD obtained from (36) is equal to the Fourier
transform of the autocorrelation function,

Se(f)= Y Re(m)e /e (38)
T=—00
Similarly, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. C) for continuous
time) that the SCD (or conjugate SCD) obtained from (37) is the Fourier transform
of the cyclic autocorrelation function (or conjugate cyclic autocorrelation),
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o
+2f

Figure 12: Tllustration of spectral bands used in the measurement of the spectral
correlation density 52 (/). (v is a dummy frequency variable; the shaded bands are the
bands selected by the BPFs.)

S#(f) = i R2(z)e /T (39a)

T=—00
and, therefore, RZ ()} is given by the inverse transform
1/2 ]
R (1) = S2(f)e™ I df. (39b)
Since R7 (<} is periodic in o with period two, so too is ST(f). Also, since T takes
on cnly integer values, then S2(f) is periodic in f with period cne. Furthermore,

An Introduction to Cyclostationary Signals 49

since increasing f £ /2 by %1 has no effect on the spectral components at these
frequencies, then it follows that S7( /) also exhibits the periodicity S+ ( f + %) =
87 (f). Consequently, the principal domain for SF(f) can be taken to be either
the square with vertices (f, @) = (+3, :I:%) or the diainond with vertices (f, ) =
(0, £1) and :I:%, 0). Relation (38) is known as the Wiener relation (see, for example,
(Gardner, 1987a, Chapter 3, Sec. C)), and (39) is therefore called the cyclic Wiener
relation (Gardner, 1987a, Chapter 11, Sec. C). The cyclic Wiener relation includes
the Wiener relation as the special case of @ = 0. (In the probabilistic framework of
stochastic processes, which is based on expected values [ensemble averages] instead
of time averages, the probabilistic counterpart of (38) is known as the Wiener-Khinchin
relation and, therefore, the probabilistic counterpart of (39) is called the cyclic Wiener-
Khinchin relation (Gardner, 1990a, Chapter 12, Sec. 12.2).) Because of the relation
(39), the SCD is also called the cyclic spectral density function (Gardner, 1987a,
Chapter 10, Sec. B).

It follows from (39) and the interpretation (23) of R%(t) as R,,(t) that the
SCD is the Fourier transform of the crosscorrelation function R,, (1) and is therefore
identical to the cross-spectral density function for the frequency translates #(¢) and
v(t):

SEF) = Sulf), 40)

where 8,,,( /) is defined by the right-hand side of (37) for arbitrary u(¢) and v(¢). This
is to beexpected since the cross-spectral density S, ( /) is known (cf. (Gardner, 19874,
Chapter 7, Sec. A)) to be the spectral correlation density for spectral components in
u(r) and v(z) at frequency f, and u(¢) and v(¢) are frequency-shifted versions of
x(¢). The identity (40) suggests an appropriate normalization for S¥(f): As long
as the PSDs of u{f) and v(¢) contain no spectral lines at frequency f, which means
that the PSD of x(¢) contains no spectral lines at either of the frequencies f + /2,
then the correlation of the spectral components (40) is actually a covariance since
the means of the spectral components are zero {Gardner, 1987a, Chapter 11, Sec. C).
When normalized by the geometric mean of the corresponding variances, which are
given by

8:(f)=S(f +a/2) (41a)
and
S(f) = 8(f —a/2), (41b)
the covariance becomes a correlation coefficient:
Sua (f) SN

=p5(f). @D

SIS ™ [S:(f + /D 8:(f — a/ 2]

Since | p5(N) | is bounded to the interval [0, 1], it is a convenient measure of the degree
of local spectral redundancy that results from spectral correlation. For example, for
|p;'(f)| = 1, we have complete spectral redundancy at f + o/2 and f — /2.
For conjugate spectral redundancy of complex-valued signals, (42) is modified by
replacing the numerator with the conjugate SCD.
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Let us now return to the AM example considered previously.

Example 1 continued: AM By Fourier transforming (34) and invoking the
cyclic Wiener relation (39), we obtain the following SCD function on the principal
domain for the amplitude-modulated signal (31):

1652 S, (f) fora = £2,
SHH =1 1S+ +is( - f) fora=0 43)
0 otherwise,

where it has been assumed that S,(f £ f,) = 0 for | f| > 1/2 to avoid ahiasing
effects in the principal domain. The magnitude of this SCD is graphed in Fig. 13
as the height of a surface above the bifrequency plane with coordinates f and o.
For purposes of illustration, a(¢) is assumed to have an arbitrary low pass PSD for
this graph. Observe that although the argument f of the SCD is continuous, as it
always will be for a random signal, the argument « is discrete, as it always will be
since it represents the harmonic frequencies of periodicities underlying the random
time-series (the sine-wave carrier in this example).

Figure 13: Magnitude of the spectral correlation density function for an AM signal
graphed as a height above the bifrequency plane with coordinates f and .

It follows from (43) that the spectral correlation coefficient is given by

Sa(f) &5

fi =12 £f.
ST T2 S DS T S/ — 2 ore =+

(44a)
Thus, the strength of correlation between speciral component in x(¢) at frequencies
f+af2and f — /2 is unity:

|2(f)| =1 forl|fl < fo and o==2f, (44b)

()=

provided that a(¢) is bandlimited to | f| < f,
S(f)=0 forlfl= fo (45)
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This is not surprising since the two spectral components in x(f) at frequencies
fExafl = f =X f, are obtained from the single spectral component in a(f) at
frequency f simply by shifting and scaling. Thus, they are perfectly correlated. That
is, the upper (lower) sideband for f > O carries exactly the same information as the
lower (upper) sideband for f < 0. Techniques for exploiting this spectral redundancy
are described in Section 4.

To illustrate the conjugate SCD, we consider the analytic signal z(¢) for AM.

o0
S&(f)= ) RE.(r)e ™
T=—00
| i8N e® fora=2f
0 otherwise.

Before considering other examples of the SCD, let us first gain an understanding
of the effects of some basic signal-processing operations on the SCD. This greatly fa-
cilitates the determination of the SCD for commonly encountered man-made signals.

3.4 Filtering

When a signal x(f) undergoes a linear time-invariant (LTI} transformation (i.e., a
convolution or a filtering operation),

z(t) = h(t) ® x()

o 46
2 3 hx( —w), (46)

H=--00

the spectral components in x{¢) are simply scaled by the complex-valued transfer
function H{ ), which is the Fourier transform

H = 3 by e s @7

1=—00

of the discrete-impulse-response function #(t) of the transformation, As a result,
the PSD gets scaled by the squared magnitude of H(f) (see, for exanple, (Gardner,
1987a, Chapter 3, Sec. C) or (Gardner, 1990a, Chapter 10, Sec. 10.1) for continuous
time)

SN =HP S (48)

Equation (48) can be derived from the definition (36) of the PSD. Similarly, because
the spectral components of x(¢) at frequencies f + /2 are scaled by H(f +a/2),
the SCD gets scaled by the product H{f + a/2)H*(f — a/2):

SS)=H({f +a/)H* (f— /2SI (f). {49)
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This result, called the input-output SCD relation for filtering, which can be derived
from the definition (37) of the SCD, includes (48) as the special case of @ = 0.
Observe that it follows from (49) and the definition (42) that

lo2(H)] = |p2()]. (50)

That is, the ragnitude of the spectral correlation coefficient is unaffected by filtering

Gf H{f £ a/2) #0).

Example 3: Time Delay As our first example of (49), we consider a filter that
simply delays the input by some integer ¢,; then h(#) = 8(¢ — t,), where 5 is the
Kronecker delta, and H(f) = e "%, Therefore, for z{t) = x(t — f,), we obtain
from the input-output SCD relation (49)

SE(f)=82(f)e o, (51

which indicates that, unlike the PSD, the SCD of a cyclostationary signal is sensitive
to the timing or phase of the signal.

Example 4: Multipath Propagation As a second example of (49), if x(¢)
undergoes multipath propagation during transmission to yield a received signal

Z(t) = Zanx(t —h),

where a,, and the integer £, are the attenuation factor and delay of the nth propagation
path, we have

H(f)y=) a,e2/n (52)
and therefore (49) yields
SHN) =8N Eana; exp(—i2n[f(ts — tn) +x(ta +12)/2D.  (33)

Example 5: Bandpass Signals As a third example of the utility of the relation
(49), let us determine the support region in the ( f, &) plane for a bandpass signal with
lowest frequency b and highest frequency B. To enforce such a spectrum, we can
simply put any signal x(¢) through an ideal bandpass filter with transfer function {on
the principal domain (—1/2, 1/2])

1 forb<|fl< B

0 otherwise.

H(f)=[

It then follows directly from the input-output SCD relation (49) that the SCD for the
output of this filter can be nonzero only for || f| — |«|/2| > b and | f] + |a]/2 < B:

0 for || f] —ll/2] < bor[fl+lal/2 > B,

SE(f) = 54
) [Sg(f) otherwise. o9
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This shows that the support region in the ( f, &) plane for a bandpass signal is the four
diamonds located at the vertices of a larger diamond, depicted in Fig. 14a. By letting
b — 0, we obtain the support region for a lowpass signal, and by letting B — 1/2,
we obtain the support region for a highpass signal. This is shown in Figs. 14b and 14c.

Figure 14: (a) Suppor: region in the bifrequency ptanc for the speciral comelation
density function of a bandpass signal. (b) Support region for a lowpass signal. (c)
Support region for a highpass signal (shown over a small fraction of the diamond-shaped
principal domain).
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3.5 Signal Multiplication and Time Sampling

When two signals are multiplied together, we know from the convolution theorem
that their Fourier transforms get convolved. From this, we expect some sort of convo-
lution relation to hold for the SCDs of signals passing through a product modulator.
In fact, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. C) or (Gardner, 1990a,
Chapter 12, exc. 41) for continuous time) that if x(¢) is obtained by multiplying
together two statistically independent!” time-series r(¢) and s(r),

x(8) =r(6)s(e), (55)

then the cyclic autocorrelation of x (¢) is given by the discrete circular convolution in
cycle frequency of the cyclic autocorrelations of () and s(z):

RI@) = ) R@EF@, (56)
Be(—1.1]

where, for each o, B ranges over all values in the principal domain (— %, %] for which

Rf (r) # 0. By Fourier transforming (56), we obtain the input-output SCD relation
for signal multiplication:

Sy = [ Y LSS~ v 57
2 ge(-1.1)

which is a double circular convolution that is continuous in the variable f and discrete
in the variable .

Example 6: Frequency Conversion As an example of (57), if s(¢) is simply
a sinusoid,
5(t) = cos(2w £t + 8),

the product modulator becomes a frequency converter when followed by a filter to
select either the up-converted version or the down-converted version of r(#). By
applying first the input-output SCD relation (57) for the product modulator {which
applies since a sinusoid is statistically independent of all time-series (Gardner, 19872,
Chapter 15, Sec. A)), and then (49) for the filter, we can determine the up-converted
or down-converted SCD. To illustrate, we first determine the SCD for the sinusoid
s{f). By substituting the sinusoid s(¢) into the definition of the cyclic autocorrela-
tion, we obtain

cosQr f,r) fora =0
R¥(1) = % +i20 fora =+2f, (58)
0 otherwise

on the principal domain of o.

1"Time-series are statistically independent if their joint fraction-of-time probability densities factor
into products of individual fraction-of-time probability densities, as explained in (Gardner, 1987a, Chapter
15, Sec. A).
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Fourier transforming then yields the SCD

%5(f—fo)+;1;8(f+ﬁ,) fore =0

SESfy= eT P51 fora = £2, (59)

1
1
0 otherwise

on the principal domain, which is illustrated in Fig. 15a. Using (57), we circularly
convolve this SCD with that of a stationary signal r(¢), for which

S(f)y fore=0
57(f) = l J) fore (60)
0 fora #0

on the principal domain (see Fig. 15b). The result is that the SCD of the stationary
signal simply gets replicated and scaled at the four locations of the impulses in the
SCD of the sinusoid, as illustrated in Fig. 15¢ (provided that §.(f + f£,) = 0 for
| /1 = 1/2 to avoid aliasing effects in the principal domain).

Example 7: Time Sampling Another important signal-processing operation
is periodic time sampling. It is known that for a stationary signal x{¢), the PSD
S, (f) of the sequence of samples [x(nT;) : n = 0, £1, £2,...} is related to the
PSD 8, ( ) of the continuous-time waveform by the aliasing formula (cf. (Gardner,
19874, Chapter 3, Sec. E) or (Gardner, 1990a, Chapter 11, Sec. 11.1))

Sx(f)- E S (f— —) (61)

T; n=—00

It is shown in (Gardner, 1987a, Chapter 11, Sec. C), (Gardner, 1990a, Chapter 12,
Sec. 12.4) that this aliasing formula generalizes for the SCD to

= nr+m/]'} _ m _E_ '
; (f 2T, Ts). ©»

Observe that, when x(¢} is not stationary (i.e., when .§’f (Y £ 0fore = m/T
for some nonzero integers m), the conventional PSD aliasing formula (61) must be
corrected according to {62) evaluated at o = 0:

x m n
; gt ( T,‘E)‘ (63)

This reflects the fact that, when aliased overlappmg spectral components add together,
their PSD values add only if they are uncorrelated. When they are correlated, as in a
cyclostationary signal, the PSD value of the sumn of overlapping aliased components
depends on the particular magnitudes and phases of their correlations. The SCD
aliasing formula (62) is illustrated graphically in Fig. 16, where the supportregions fer

Se()=

"‘"]|>—‘

S:(f) =

ha|



56 Gardner

-3f
-4f,/3 —_— af/3 " °

Figure 15: (a) Magnitude of the spectral correlation density (SCD) for a sine wave
of frequency f,. (b} SCD for a lowpass stationary signal. (¢} SCD magnitude for the

product of signals corresponding to (a) and (b}, obtained by convolving the $CDs in (a)
and (b},

the SCD S (f) for the sequence of samples {x (= T;)} is depicted in terms of the single

diamond support region for a lowpass waveform x (¢}, which is shown in Fig. 14b.
When we subsample a discrete-time signal x(¢) with sampling rate 1/7; for

some integer T to obtain the signal z(¢) = x(¢7;), we obtain the discrete-time analog

of (62),
S3(fy= Ti D stk Ts (—f+q/2), (64)

fqepy T
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Figure 16: llustration of support regions in the bifrequency plane for the spectral
comelation densities that are aliased by periodic time sampling,

where P, is the set of all integers g = BT; — & for which o € (-4, %]._ Similarly,
when we resample a discrete-time signal x(¢), by (effectively) interpolating back Fo
a continuous-time waveform and then time sampling at the new rate 1/ 7 to obtain
z(¢), the SCD is given by

1 X sarm m n
§H(f)= Z f+/n(f—2T:—E), (65)

S mn=—c2

=]

where §2(f) is the SCD $2(f) testricted to its principal domain.
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3.6 Periodically Time-Variant Filtering

Many signal-processing devices such as pulse and carrier modulators, multiplexors,
samplers, and scanners, can be modeled as periodically time-variant filters, especially
if multiple incommensurate periodicities (i.e., periodicities that are not harmoni-
cally related) are included in the model. By expanding the periodically time-variant
discrete-impulse-response function in a Fourier series as explained shortly, any such
system can be represenied by a parallel bank of sinusoidal product modulators fol-
lowed by time-invariant filters. Consequently, the effect of any such system on the
SCD of its input can be determined by using the SCD relations for filters and product
modulators. In particular, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. D)
for continuous time) that the SCD of the output z(f) of a multiply-periodic system
with input x(f) is given by

SE) = Y Gplf +a/G(f - a/DSEFr (f - E%) . (66)
Byed

provided that S (f + 8) = Ofor | f| = 1/2 for all 8 € A to avoid aliasing effects in
the principal domain, where Gg( ') are the transfer functions of the filters and 4 is
the set of sinusoid frequencies associated with the product modulators in the system
representation. More specifically, for the input-output equation

2@) = > ht, wx(u), (67)

U=m—00

the multiply-periodic discrete-impulse-response function A(z, «) can be expanded in
the Fourier series _
Bt +2,0 =) gp(x) e, (68)
peAd

where the Fourier coefficients (for each ) are given by
85(0) = (h(t + 7, 1) e 7). (69)
It follows from (67) and (68) that the filter output can be expressed as

2t) =Y [x(t) ™) ® ga(r), (70)

Bed

where gg(¢) are the discrete-impulse-response functions of the filters with corre-
sponding transfer functions Gg(/f). Thus, periodically time-variant filters perform
time-invariant filtering on frequency-shifted versions x{t)e>™# of the input. This
results in sumrming scaled, frequency-shifted, cycle-frequency-shifted versions of the
SCD for the input x(¢) to obtain the SCD for the output z(¢), as indicated in (66).
Let us now consider some additional examples of modulation types, making use
of the results obtained in the preceding paragraphs to determine SCDs. However, in
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the interest of realism and for the sake of analytical simplicity, continuous-time signal
models are used.

Example 2 continued: PAM Let {a,} be a stationary random sequence, and let
us interpret these random variables as the time samples of a continuous-time random
waveform, a, = a(nT,), with PSD §,, (f). We consider the continnous-time PAM
signal

=]
x(t) = Z a, p(t —nT, +€), o))
H=—00
where p(t) is a deterministic finite-energy pulse and ¢ is a fixed pulse-timing phase
parameter. To determine the SCD of x (¢), we can recognize that x (¢) is the output of
a periodically time-variant linear system with input a{¢), and impulse response

o0

Bt u) = Z plt —nT, +£)8(u —nT,),

n=—co

where § is the Dirac delta. We can then use the continuous-time counterpart of the
input-output SCD relation (66), which is identical in form except that continuous-
time Fourier transforms are used (cf. (Gardner, 1987a, Chapter 11, Sec. D)). Or we
can recognize that this particular periodically time-variant system is composed of a
product modulator that implements an impulse sampler, followed by a linear time-
invariant pulse-shaping filter with impulse-response function A{f} = p{f}, as shown
in Fig. 17. We can then use the continuous-time counterpart of the input-output
SCD relation (57), which is identical in form except the convolutions are linear (cf.
(Gardner, 1987a, Chapter 11, Sec. C)), as it applies to impulse sampling, together
with the relation (49) for filtering. The result is

Ga — I 5 DH( £ c- Satm/ T, _ i Y inee
SN = P +e/DP(f ~af2) mz_m 82 (f o To) e,
(72)
Using the SCD aliasing formula (62) for a(¢) we can reexpress (72) as
- 1 ~ ~ .
$2N) = B + /)P (f = /S () ™™, (73)

where S%(f) is the SCD for the pulse-amplitude sequence {a,). Having assumed
that {a,} is stationary, and using the periodicity property

o | S f+af2) fora=k/T,
S ()= [ 0 otherwise (74)
fork=10,41,42, ..., we can express {73) as
1. Ty i2wae —_
§o(f) = EP(f+a/2)P (f —e/)S(ft+ta/D)e fora =k/T, (75)
0

otherwise,
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A graph of the magnitude of this SCD for the full-duty-cycle rectangular pulse

1 forjt| =T,/2
P = [ 0 otherwise (76)
and a white-noise amplitude sequence with PSD
S(f)=1 "N
is shown in Fig, 18.
p(t)
a(t) . x(t)
» Filter f——

s{t) =3 §(t-nTy)
n
s(t)=§%o exp(izn%t)

Figure 17: Tnterpretation of PAM signal generator as the cascade of an impulse sam-
pler and a pulse-shaping filter.

Figure 18: Magnitude of the speciral correlation density for a PAM signal with full-
duty-cycle rectangular pulses.

_ It follows from (77) that for all « = k/T, for which S,(f & «/2) # 0 and
P(f+a/2)P*(f — a/2) # 0, the spectral correlation coefficient p%(f) is unity in
magnitude:

et (N =1. (78)
Thus, all spectral components outside the band | f| < 1/2T, are completely redun-

dant with respect to those inside this band. Techniques for exploiting this spectral
redundancy are described in Section 4.
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The conjugate SCD for the PAM signal (71) is given by (73) with P*(f — «/2)
replaced by P*(a/2 — f) and S%(f) replaced by $%.(f). For a real PAM signal,
the conjugate SCD is identical to the SCD; however, for complex PAM the conjugate
SCD is, in general, different and is, in fact, zero for the complex PAM that models
the complex envelopes of most digital QAM signals, including QPSX. This follows
from the fact that {@,ay+m} = 0 for all m for such signals; consequently, $5.(f) =0
for all a.

By inverse Fourier transforming the SCD (75), we obtain the cyclic autocorre-
lation function

1 & - .
2 —
Fo=lT n;mRa(nT,,)r; (t —nT,) e fora =k/T, 79
0 otherwise,
where -
@2 [ per e - e (30)
-0
For a white-noise amplitude-sequence as in (77), (79) reduces to
~ 1 ,
R (1) = Frg(r) e* ™ fora =k/T,, (81)
[4]

and, for a rectangular pulse as in (76), this yields the temporal correlation coefficient

for|t| < 7, (82)
mal,

YD) =
the magnitude of which is shown in Fig. 19. This correlation coefficient peaks for
o =1/T, at 1 = T,/2, where it takes on the value

|Pe(T/2)| =1/ fora=1/T,. (83)

That is, the strongest possible spectral line that can be regenerated in a delay-product
signal for this particular PAM signal occurs when the delay equals half the pulse
period. In contrast to this, when the more bandwidth-efficient pulse whose transform
is a raised cosine is used, the optimal delay for sine-wave regeneration 1§ zero.

An especially simple example of a sequence of pulse amplitudes {a,} is a binary
sequence with values £1. If we consider 1 = C in the delay-product signal, then we
obtain

oQ
yol&) = x(OP = Y anamplt —nT, +6)plt —mT, + ).
ma=—00
If the pulses do not overlap (i.e., if p(t} =0 for |¢| = T,/2), this reduces to

o]

yo®)y= Y a2 pr(t —nT, + &)
n=—-0cQ
o0

= Y Pu-nT +e),

H=—0Q



62 Gardrer

Figure 19: Magnitude of the cyclic autocorrelation function (normalized to form a
correlation coefficient) for a PAM signal with full duty-cycle rectangular pulses.

which is periodic with period T, and therefore contains finite-strength additive sine-
wave components with frequencies &/ T, (except when p(#) is flat as in (76)). In this
very special case where {4, } is binary and the pulses do not overlap, there is no random
component in y{£); but, for T # 0, 3, (¢} contains both sine-wave components and
random components (even when p(¢) is flat).

Example8: ASKand PSK By combining the amplitude-modulated sinc wave
and the digital amplitude-modulated pulse train, we obtain the amplitude-shift-keyed
(ASK) signal

x(t) = aft)cos(2m f,t +0), (84)
where o
ay= ) ay plt —nT, +8), (85)

and {a,} are digital amplitudes. By using the continuous-time counterpart of the SCD
relation (57) for signal multiplication and the result (75) for the SCD of a{#), we can
obtain the SCD for the signal (84) by simply convolving the SCD functions shown in
Figs. 15a and 18. The result is shown in Fig. 20a, where the cycle frequencies shown
aree¢ = 32 f, +m/ T, and @« = m/T, for integers m, and where f, = 3.3/7T,. When
JoT, is irrational, the ASK signal is polycyclostationary with fundamental periods T,
and 172 f,.

For a binary sequence with each a, = %1, this amplitude-shift-keyed signal,
with the pulse (76), is identical to the binary phase-shift-keyed (BPSK) signal

x(¥) = cos |:27r_ﬁ,t +8+ Z ¢n p(t — nTa):| . (86)

n==-00
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Figure 20: Magnitude of speciral correlalion densities. (a) BPSK, (b) QPSK, and (¢)
SQPSK. (Each signal has a rectangular keying envelope.)

where ¢, 2 {(a, — 1)/2, since shifting the phase of a sine wave by 0 or & is the same
as multiplying its amplitude by 1 or —1. Other commonly used types of phase-shift-
keyed signals inciude quaternary phase-shift keying (QPSK) and staggered QPSK
(SQPSK). The details of these signal types are available in the literature (see, for
example (Gardner, 1987a, Chapter 12, Sec. E) or (Gardner, 19904, Chapter 12, Sec.
12.5)). Only their SCD-magnitude surfaces are shown here in Fig, 20b, ¢, where
again f, =3.3/T,.



64 Gardner

1t is emphasized that the three signals BPSK, QPSK, and SQPSK differ only
in their carrier phase shifts and pulse timing and, as a result, they have identical
PSDs, as shown in Fig. 20 {consider @ = (). However, as also shown in Fig. 20,
these differences in phase and timing result in substantially different SCDs (consider
a # 0). That is, the phase-quadrature component present in QPSK but absent in
BPSK results in cancellation of the SCD at cycle frequencies associated with the
carrier frequency (viz., & = £2 f, +m /T, for all integers m) in QPSK. Similarly, the
pulse staggering by T, /2 (between the in-phase and quadrature components) present in
SQPSK but absentin QPSK results in the SCDs being cancelled ate = +£2 £, +m /T,
only for even integers m, and at @ = m /7, only for odd integers m in SQPSK. This
again illustrates the fact that the SCD contains phase and timing information not
available in the PSD. In fact, as formulas (43) and (75) reveal, the carrier phase 8
in (31) and the pulse timing £ in (71) are contained explicitly in the SCDs for these
carrier- and pulse-modulated signals.

3.7 Measurement of Spectral Correlation

The ideal SCD function (37} is derived by idealizing the practical spectral correlation
measurement depicted in Fig. 11, by letting the averaging time T in the comelation
measurement approach infinity and then letting the spectral resolving bandwidth B
approach zero. Consequently, the practical measurement with finite parameters T and
B can be interpreted as an estimate of the ideal SCD. This estimate will be statistically
reliable only if T8 » 1, and it will approach the ideal SCD only for sufficiently
large T and sufficiently small B. Numerous alternative methods for making this
practical measurement are described in (Gardner, 1986¢; Gardner, 1987a, Chapter
13), and computationally efficient digital algorithms and architectures for some of
these, which are developed in (Roberts et al., 1991; Brown and Loomis, 1992), are
presented in Article 6 in this volume. The statistical behavior (bias and variance) of
such estimates is analyzed in detail in (Gardner, 1986¢; Gardner, 1987a, Chapter 15,
Sec. B; Brown and Loomis, 1992), and in Chapter 6 in this volume. For the purpose
of making the applications described in Section 4 more concrete, it suffices here to
simply point out that because the SCD S¥(f) is equivalent to a particular case of
the conventional cross speciral density S, (/) (cf. (40}}, one can envision any of the
conventional methods of cross spectral analysis as being used in the applications.

Example 9: QPSK As an example, the result of using the Wiener-Daniell
method (Gardner, 1987a, Chapter 7, Sec. D), based on frequency smoothing of the
cross-periodogram of 4 (¢) and v(¢) (the conjugate product of their FFTs), is illustrated
in Fig. 21 for a QPSK signal with carrier frequency f, = 1/47, and keying rate
1/T, = 1/8T;, where 1/T; is the sampling rate. An FFT of length 128 (T = 1287T)
was used in Fig. 21a, and only four frequency bins were averaged together (B = 4/T)
to produce each output point, whereas, in Fig. 21b, the FFT length used was 32,768
(T = 32,7687;) and 1,024 bins were averaged together (B = 1,024/ T). 1t is easily
seen by comparing with the ideal SCD in Fig. 20b that without adequate speciral
smoothing the variability of the SCD estimate can be very large.
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Figure21: Magnitude of a spectral correlation density (SCD) estimate obtained from
a finite-length data record for the QPSK signal whose ideal SCD is shown in Fig, 20b.
(a}Record length is 128 time samples, and four adjacent frequency () bins are averaged
together. (b) Record lengthis 32,768 and 1,024 adjacent frequency () bins are averaged
together. (The sampling rate in both (&) and (b) is 10/ T,,, where 1/ T, is the keying rate
of the QPSK signal.)

4 EXPLOITATION OF CYCLOSTATIONARITY

This section describes some ways of exploiting sine-wave generation and the inher-
ent spectral redundancy associated with the spectral correlation in cyclostationary
signals to perform various signal-processing tasks. These include detecting the pres-
ence of signals buried in noise andfor severely masked by interference; recognizing
such corrupted signals according to modulation type; estimating parameters such
as time-difference-of-arrival at two reception platforms and direction of arrival at a
reception array on a single platform; blind-adaptive spatial filtering of signals imping-
ing on a reception array; reduction of signal corruption due to cochannel interference
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andfor channel fading for single-receiver systems; linear periodically time-variant
prediction; and identification of linear and nonlinear systems from input and output
measurements. The descriptions include brief explanations of how and why the signal
processers that exploit sine-wave generation or spectral redundancy can outperform
their mere conventional counterparts that ignore cyclostationarity. References to
more detailed treatments are given throughout. It should be ciarified at this point
that although the classical theory of statistical inference and decision is certainly
applicable in principle to cyclostationary signals {modeled either as stochastic pro-
cesses or as nonstochastic time-series with fraction-of-time probability models, cf.
Section 2), the types of problems where exploitation of cyclostationarity can really
pay off are often not amenable to the classical theories (e.g., Bayes minimum risk
and maximum likelihood) because of analytical intractability and implementational
complexity. Thus, the techniques surveyed here are for the most part ad hoc, but
nevertheless very powerful.

4.1 Spectral Redundancy

The existence of correlation between widely separated spectral components (separa-
tion equal to a cycle frequency «) can be interpreted as spectral redundancy. The
meaning of the term redundancy that is intended here is essentially the same as that
used in the field of information theory and coding. Specifically, multiple randomly
fluctuating quantities (random variables) exhibit some redundancy if they are sta-
tistically dependent, for example, correlated. In coding, undesired redundancy is
removed from data to increase the efficiency with which it represents information,
and redundancy is introduced in a controlled manner to increase the reliability of
storage and transmission of information in the presence of noise by enabling error
detection and correction.

Here, redundancy that is inadvertently introduced into signals by the modula-
tion process is to be exploited to enhance the accuracy and reliability of information
gleaned from the measurements of corrupted signals, but the tenn information is
interpreted in a broad sense. For instance, it includes the eight examples cutlined
in Section 1.2. In all of these examples, the performance of the signal processors
that make the decisions and/or produce the estimates can be substantially improved
by suitably exploiting spectral redundancy. The degree of improvement relative to
the performance of mere commonly used signal processors that ignore spectral re-
dundancy depends on both the severity of the signal corruption (noise, interference,
distortion) and the degree of redundancy in the signal x (t), as measured by the mag-
nitude of the spectral correlation coefficient |oZ( )| (or its conjugate counterpart)
defined in Section 3. The degree of improvement also depends on the amount of
data available for processing (the collection time). The utility of exploiting spectral
redundancy can also be enhanced by intentionally designing the signal to exhibit a
sufficient amount of spectral redundancy.

The primary feature of spectral redundancy that enables it to be readily ex-
ploited is its distnctive character. That is, most man-made signals exhibit spectral
redundancy, but most noise (all noise that is not cyclostationary) does not and, more
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importantly, when multiple signals of interest and signals not of interest (interference)
overlap in both time and frequency, their spectral redundancy functions are nonover-
lapping because their cycle frequencies & are distinct. This is aresultof signals hav.mg
distinet carrier frequencies and/or pulse rates or keying rates, even when occupying
the same spectral band.

The distinctive character of spectral redundancy makes signal-selective mea-
surements possible. Specifically, for the received composite signal

L
x(6) =Y se(t) +n(®), 87)
é=1

where the set {s; (t)}‘lr‘ includes both signals of interest and interference—all of_ which
are statistically independent of each other—and where #(¢) is background noise, we
have the SCD (for measurement time 7 — c0)

SEf) = Z 2+ SED. (88)

But if the only signal with the particular cyele frequency o = o is s (¢), then (for
T — o0) we have

S =850/, (89)

regardless of the temporal or spectral overlap among [.se(t)}f and also n(¢). This
perfect signal selectivity of ideal SCDs implies that practical measurements of SCDs
or their parameters can be made signal selective for measurement times t that are
long enough.

Example 1: BPSK Signal in Multiple AM Interference and Noise To il-
lustrate the concept of signal selectivity, let us consider the situation in which a
broadband BPSK signal of interest is received in the presence of white noise and five
interfering AM signals with narrower bandwidths that together cover the entire band
of the BPSK signal. The noise and each of the five interfering signals have equ'?\l
average power. Therefore, the total signal-to-interference-and-noise ratio (SINR) is
approximately —8 dB. The BPSK signal has carrier frequency f, = 0.25/ 7} and
keying rate @, = 0.0625/T;. It has full-duty-cycle half-cosine envelope, which re-
sults in an approximate bandwidth of B, = 0.1875/T. The five AM signals have
carrier frequencies f; = 0.156/ T, o = 0.203/T;, f3 = 0.266/T;, fa = 0.313/T;,
fs = 0.375/T;, and bandwidths B, = 0.04/T;, B, = 0.05/T;, By = 0.045/T;,
By = 0.04/T,, Bs = 0.08/T,. With the use of the same measurement parameters
(FFT length = 32,768) as in Example 9 in Section 3 for the measurement of the SCD
of QPSK, the SCD for these six signals in noise was measured. The resultant. SCD
magnitude is shown in Fig. 22a. Also shown in Fig. 22b, c are the SCD magnitudes
for the BPSK signal alone and for the five AM interferences plus noise alone. Al-
though all six signals exhibit strong spectral redundancy {|p2%(f)| = l) the cycle
frequencies « at which this redundancy exists are distinct because the carrier frequen-
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Figure 22: Magnitudes of estimated spectral correlation densities (SCDs). (a) SCD
magnitude for a BPSK signal corrupted by white noise and five AM interferences, (b)
SCD magnitude for the BPSK signal alene. (c) SCD magnitude for the white noise and
five AM interferences. (The power levels, center frequencies, and bandwidths for the
signals and noise are specified in the text; the record length used is 32,768 time samples,
and 1,024 adjacent frequency (/) bins are averaged (ogether.)

Gardner
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cies are all distinct. Thus, an accurate estimate of the SCD for the BPSK signal is
casily extracted from the SCD for the corrupted measurements. Similarly, accurate
estimates of the SCDs for each of the five AM signals can be extracted. Consequently,
any information contained in these SCDs can be reliably extracted.

In connection with this example, let us briefly consider some of the signal-
processing tasks outlined in Section 1.2.

4.2 Detection and Classification

We can see from Fig. 22 that knowing the particular pattern of the SCDs for BPSK and
AM signals (see Figs. 13 and 20) enables us to detect the presence of six signals and
to classify them according to modulation type. This would be impossible if only PSD
(S8CD at ¢ = ) measurements were used. One approach to exploiting the spectral
redundancy of a signal to detect its presence is to generate a spectral line at one of
its cycle frequencies and then detect the presence of the spectral line (cf. Section 3).
It has been shown that the maximum-SNR spectral-line generator for a signal s()
in additive Gaussian noise and interference with PSD S, ( f) produces the detection
statistic (cf. (Gardner, 1987a, Chapter 14, Sec. E} for continuous time)

1/2 . Sa(f)*
= S s d 90
z f_m D5 Tramsg-an ©0

for comparison to a threshold. In (90), 3‘;’ () is a crude estimate of 57 (f) obtained
by deleting the time-averaging operation {-) and the limiting operation froin (37) and
choosing B equal o the reciprocal of the record length of x (). It can be shown
that (90) is equivalent to whitening the noise and interference using a filter with
transfer function 1/ [S,{f )]1’ 2 and then correlating the measured SCD for the noise-
and-interference-whitened data with the ideal SCD of the signal, as transformed by
the whitener, to be detected (Gardner, 1987a, Chapter 14, Sec. E). Equivalently, for
noise consisting of a white component plus strong narrowband components, (90)
corresponds to attenuating the narrowband components well beiow the white-noise
component—i.e., excising the narrowband components—using a filter with transfer
function 1/.5,(f), and then correlating the measured SCD for the narrowband-excised
data with the ideal SCD of the signal (untransformed by the excision filter).

A detailed study of both optimum (e.g., maximum-likelihood and maximumn-
SNR) and more practical suboptimum detection on the basis of SCD measurement is
reported in (Gardner, 1988b), and receiver operating characteristics for these detectors
obtained by simulation are presented in (Gardner and Spooner, 1992a, 1993). See
also (Zivanovich and Gardner, 1991).

4.3 Parameter Estimation

Once the six signals have been detected and classified, their carrier frequencies and
phases and the keying rate and phase of the BPSK signal can—with sufficiently long
signal duration—be accurately estimated from the magnitude and phase of the SCD
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(cf., fo. 8 in (43) and T,, £ in (75)) (Gardner and Spooner, 1993), It is clear from
the theory discussed in Section 3 that SCD measurement is intimately related to the
measurement of the amplitudes and phases of sine waves generated by quadratic
transformations of the data. Thus, the fact that an SCD feature occurs at & = 2 f,
for each carrier frequency f, is a direct result of the fact that a sine wave (spectral
line) with frequency o = 2 f, and phase 26 can be generated by putting the data
through a quadratic transformation. Similarly, for the SCD feature at & = 1/ 7T,
where 1/7p is the keying rate, a spectral line with frequency ¢ = 1/7; and phase
€ can be quadratically generated. Consequently, SCD measurement is useful either
directly or indirectly for estimation of synchronization parameters (frequencies and
phases) required for the operation of synchronized receivers. The link between syn-
chronization problems and spectral redundancy is pursued in {Gardner, 1986a) and
also in Article 2 in this volume.

4.4 Time-difference-of-arrival Estimation

The cross SCD S5 (f) for two signals x{¢} and w(¢) is defined in a way that is
analogous to the definition (37) and (24) of the auto SCD S¥(f). That is, x(¢) in
(24a) is simply replaced with w(z). If we were to compute the cross SCD for two
sets of corrupted measurements obtained from two reception platforms, then the cross
SCD magnitude would look very similar to that in Fig., 22 (except that the low flat
feature at @ = 0, which represents the PSD of the receiver noise, would be absent),
but the phase of the cross SCD would contain a term linear in f at each value of &
where the auto SCD of one of the six signals is nonzero. The slope of this linear
phase is proportional to the time-difference-of-arrival (TDOA) of the wavefront at
the two platforms for the particular signal with that feature, That is, for x(¢) from
one platform given by (87) and w(¢) from the other platform given by

L
w(t) =Y arse(t —te) +m(®) o1
£=1

where {#;} are the TDOAs, we have
Sax() = S5 (frage™ 2t/ ol 92)

provided that s¢(¢) is the only signal with cycle frequency @. Consequently, accurate
estimates of the TDOAs of each of these signals can be obtained from the cross SCD
measurcment, regardless of temporal and spectral overlap or of the closeness of the
individual TDOAs. In other words, the signal selectivity in the o domain eliminates
the problem of resolving TDOAS of overlapping signals.

For example, it follows from (89) and (92) that

Sux () —i2m( f+a/2)i,
=gpe T TE 93
sec) ©3)

over the support band of 57(f). This suggests doing a weighted least-squares fit,
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with respect to a; and #;. of a measurement of the left side of (93) to the right side:

1/2
min f
dede ~1/2

where W,(f) is some weighting function. After minimization with respect to ag,
this reduces to

2
df (94)

S‘:x(f) n —i2n(f+u/2)rc}
wa(f) | 2Ll e
/ [S;'(f) ‘

‘ 112 55U ianroasmi ]
W, 2 Swr in(fra/die gy (95)
i {[1/2| ! S () ¢ 4

The two algorithms corresponding to the two choices Wo(f) = S7(f) (which
yields the SPECCOA method) and W, (f) = 1 over some band (which yields the
SPECCORR method), along with several other related algorithms are siudied in de-
tail in (Gardner and Chen, 1992; Chen and Gardner, 1992; Gardner and Spooner,
1993), where excellent robusiness to unknown and/or varying noise and interference
is demonstrated. Itis also shown in Article 3 in this volume that this approach is easily
generalized to the problem of multipath channel identification where multiple f¢ and a¢
for a single signal are to be estimated using the least-squares criterion (94) with a sum
over £ included (provided that the multiple #, are resolvable, i.e., spaced farther apart
than the width of the inverse discrete Fourier transform of | W, ( f)|2 S (USESN.

4.5 Spatial Filtering

Continuing in the same vein, we consider receiving these same six signals in noise
with an antenna array. Then we can use the signal selectivity in o to blindly adapt
(without any training information other than knowledge of the cycle frequency «
of each signal of interest) adapt a linear combiner of the complex-valued outputs
from the clements in the array to perform spatial filtering. Specifically, by directing
the linear combiner to enhance or restore spectral redundancy (or conjugate spectral
redundancy) in its output at a particular cycle frequency o, the combiner will adapt
to null out all other signals (if there are enough elements in the array to make this
nulling possible). This behavior of the combiner can be seen from the fact that the
spectral correlation coefficient for x(¢) in (87) is (from (89})

S ()

¢y = : (96)
D) = S a8 — e/
where .
S:(f) =) Sl + 50 o7
k=1

and, similarly, the temporal correlation coefficient for the frequency-shifted versions
of x(¢) is
R (@)

R:(0)’ 9

ye(T) =
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where
L
Re(0) = D Ry (0) + Ry(0). (99)
k=1

Thus, nulling signals other than s;(#) in the output x(#) of the linear combiner and
attenuating the noise #{#) in x(¢) reduces the denominators in (96) and (98) but not
the numerators. Hence, [p%(f)| and |y&(z)| can be increased by attenuating the
noise and nulling any of the signals other than s;(z). Moreover, the linear combiner
needs no knowledge of the reception characteristics of the array (no calibration) to
accomplish this attenuation and nulling. A thorough study of spectral-coherence-
restoral algorithms that perform this blind adaptive spatial filtering is reported in
(Schell and Apgee, 1988; Agee et al., 1990; Schell and Gardner, 1993b) and a tutorial
discussion is given in Chapter 3 in this volume,

4.6 Direction Finding

We can take this approach one step further if we do indeed have calibration data for the
reception characteristics of an antenna array because we can then also exploit signal
selectivity in « to perform high-resolution direction finding (DF) without some of the
drawbacks (described below) of conventional methods for high-resolution DF, such
as subspace fitting methods (Schell and Gardner, 1993a), that do not exploit spectral
redundancy. In particular, let us consider the narrowband model

L
x(t) = 3 a@)se(t) + n(0) (100)
=1

for the analytic signal (or complex envelope) x of the received data vector of dimension
r, where a(y) is the direction vector associated with the £-th received signal 5; (¢}, and
the function a(-) is specified by the calibration data for the array. Then, by working
with the magnitude and phase information contained in the r x » cyclic correlation
matrix

RI(r) = Ri(v) = a@)RE(v)al (6)) (101)

for some fixed T (where t denotes conjugate transpose), instead of working with the
information contained in the conventional correlation matrix

L 1
Ri(0) =) Ry(0) +Ra(0) = > a(@r) R, (O)al (@) + R,(0)  (102)
=1

=1

we can avoid the need for advance knowledge of the correlation properties of the
noise R, (0) and interference Ry, (0) for £ # k, and we can avoid the consiraint
imposed by conventional methods that the nuinber of elements in the array exceed
the total number L of signals impinging on the array. Also, by resolving signals in
&, we need not resolve them in direction of arrival. Consequently, superior effective
spatial resolution is another advantage available through the exploitation of spectral
redundancy. As an example of a cyclostaticnarity-exploiting DF method, we can use

An Introduction Lo Cyclostationary Signals - 73

the fact that the # x 7 matrix in (101) has a rank of unity and the (» — 1)-dimensional
null space of this matrix is orthogonal to a(#;). Therefore, we can choose as our
estimate of &, that value ék which renders a(é &) most nearly orthogonal to the null
space of an estimate of the matrix RS () obtained from finite-time averaging. Similar
remarks apply to the conjugate cyclic autocorrelation matrix. A thoreugh study of this
approach to signal-selective DF is reported in (Schell et al., 1989; Schell, 1990; Schell
and Gardner, 1991), where various algorithms are introduced and their performances
are evaluated, and a tutorial discussion is given in Chapter 3 in this volume.

In the preceding paragraphs of this Section 4, the signal-processing tasks (with
the exception of spatial filtering) involve decision or parameter estimation, but do not
involve estimating (or extracting) an entire signal or an information-bearing nessage
carried by the signal. Nevertheless, for the signal-extraction problem, the utility of
spectral redundancy is just as apparent, as explained in the following paragraphs.

4.7 Signal Extraction

Specirally redundant signals that are corrupted by other interfering signals can be more
effectively exiracted in some applications by exploiting spectral correlation through
the use of periodic or multiply-periodic linear time-variant filters, instead of the more
common time-invariant filters. These time-variant filters enable spectral redundancy
to be exploited for signal extraction, because such filters perform frequency-shifting
operations (cf. {70)) as well as the frequency-dependent magnitude-weighting and
phase-shifting operations performed by time-invariant filters. The utility of this is
easily seen for the simple example in which interference in some portions of the
spectral band of the signal is so strong that it overpowers the signal in those partial
bands. In this case, a time-invariant filter can only reject both the signal and the
interference in those highly corrupted bands, whereas a time-variant filter can replace
the rejected spectral components of the signal of interest with spectral components
from other uncorrupted {or less corrupted) bands that are highly correlated with the
rejected components fromn the signal.

AM is an obvious example of this because of the complete redundancy that exists
betweenits upper sideband (above the carrier frequency) and its lower sideband (below
the carrier frequency). Although this redundancy is exploited in the conventional
double sideband demodulator to obtain a 3-dB gain in SNR performance, it is seldom
exploited properly when partial-band interference is present. The proper exploitation
in this case is illustrated in Fig. 23. Figure 23a shows the spectral content (Fourier
transform magnitude of a finite segment of data) for an AM signal with partial-band
interference in the upper sideband. Figure 23b shows the spectral content after the
interference has been rejected by time-invariant filtering. The signal distortion caused
by rejection of the signal components along with the interference can be completely
removed by simply shifting replicas of perfectly correlated components from the
lower sideband into the upper sideband, and then properly adjusting their magnitudes
and phases, as suggested in Fig. 23c.

A less easily explained example involves two spectrally overlapping linearly
modulated signals such as AM, PAM, ASK, PSK, or digital QAM (quadrature AM).
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(b)

Figure 23: Illustration of power spectral densities (PSDs) for cochannel-interference
removal with minimal signal distortion. (2) PSD for AM signal plus interference. {b)
PSD after interference removal by time-invariant filtering. (c) PSD afier distortion
removal by frequency-shifting.

It can be shown that, regardless of the degree of spectral and temporal overlap, each of
the two interfering signals can be perfectly extracted by using frequency shifting and
complex weighting, provided only that they have either different carrier frequencies or
phases (AM, ASK, BPSK) or different keying rates or phases (PAM, ASK, PSK, dig-
ital QAM) and at least 100% excess bandwidth (bandwidth in excess of the minimum
Nyquist bandwidth for zero intersymbol interference). In addition, when the excess
bandwidth is (L — 1)100%, L spectrally overlapping signals can be separated if they
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have the same keying rate but different keying phases or carrier frequencies. Also,
when broadband noise is present, extraction of each of the signals can in many cases
be accomplished without substantial noise amplification. To illustrate the potential
for signal separation in this case, consider L digital QAM signals with (L — 1)100%
excess bandwidth, all sharing the same carrier frequency and keying rate, but with
distinct keying phases. Then for any particular frequency f in the Nyquist band the
received spectral component at that frequency is a weighted sum of the L spectral
components of the I individual signals at that same frequency f and the same is true
at the L — 1 additional frequencies separated by the keying rate, except that the sets
of L weights in each of thesg L weighted sums are distinct, although the L sets of
L spectral components are all identical (because the spectral correlation coefficients
are unity in magnitude). Thus, for each frequency within the Nyquist band, we have
L equations with L unknowns. In practice, the L x L array of weights also will be
unknown and will have to be adaptively learned.

This particular problem of separating multiple digital QAM signals sharing the
same carrier frequency (or baseband PAM signals) and sharing the same keying rate
is explored in Article 1 in this volume.

To gain additional insight into how spectrally overlapping signals can be sep-
arated by frequency-shift filtering, we consider the case of two QPSK (quadrature-
phase-shift-keyed) signals with unequal carrier frequencies and unequal keying rates
and 100% excess bandwidth. The graphs in Fig. 24 show the overlapping spectra for
these two signals. Starting from the top of this figure, each pair of graphs illustrates
the tesult of one filtering and frequency-shifting stage. The subband shaded with a
single set of parallel lines represents spectral components from one signal that are not
corrupted by the other signal. These components are selected and complex-weighted
by a filter and then frequency-shifted to cancel the components in another subband,
which is identified by crosshatched shading. The result of this cancellation is shown
in the second graph (which contains no shading) of each pair. After five such stages, a
full sideband of each of the two QPSK signals has been completely separated. Ineach
stage the complete spectral redundancy between components separated by the keying
rate is being exploited, and this same spectral redundancy can be used to reconstruct
the entire QPSK signal from either one of its sidebands.

The five cascaded stages of filtering, frequency-shifting, and adding operations
can be cenverted into one parallel connection of frequency-shifters, each followed by a
filter, simply by using standard system-transformations to move all frequency-shifters
to the inpat.

Further insight into how spectrally overlapping signals can be separated by
frequency-shift filtering can be gained by considering the case of two double sideband
AM signals with suppressed carrier (or, equivalently, two ASK signals, or one AM
and one ASK) with different carrier frequencies and any amount of spectral over-
lap. For each of these signals the upper sideband is completely redundant with the
lower sideband. Consequently, if we were to reflect the complex spectrum about its
center—its downconverted carrier frequency—say fi, by replacing frequency f with
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f-1 £

Figure 24: Ilustration of power spectral densities for cochannel-QPSK-signal sepa-
ration. The keying rates of the two signals are different and the carrier frequencies also
are different. Each QPSK signal has a positive-frequency bandwidth equal to twice its
keying rate.

2 f; — ffor all f, and we were to shift its phase so that the downconverted carrier
phase becomes zero, and we were to conjugate this reflected phase-shifted spectrum,
then we would obtain precisely the criginal spectrum. Thus, if we subtracted the
conjugated, phase-shifted, reflected spectrum from the original spectrum, we would
cancel the signal. This cancellation in the frequency domain is equivalent to simply
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downconverting the signal to a carrier frequency and phase of zero and then conjugat-
ing the time-dornain signal and subtracting it from the unconjugated downconverted
time-domain signal. However, in the process of cancelling the signal downconverted
to zero frequency, we introduce severe distortion to the other signal present, which
is downconverted to frequency f> — fi 3 0: there will be two replicas of the signal
present, with carrier frequencies of f2 — f and f; — f;. Nevertheless, by downcon-
verting the processed data so that one of the two replicas present (either the original
signal or its conjugate that was added in the first stage of processing) has carrier
frequency and phase of zero, we can again subtract the conjugate of this processed
data to cancel one of the two replicas present. This will introduce new distortion;
that is, there will again be two replicas of the signal present, but this time the carrier
frequencies will be £2 | 5 — f]|. By proceeding through N = B/2| 6 — fi| — 1
stages of downconverting, conjugating, and subtracting (where B is the bandwidth
of the signal with original carrier frequency f,), we end up with two nonoverlapping
replicas of the signal, which can be separated with a filter.

When signal distertion due to convolution (e.g., from passage through a channel)
is present, this procedure will still work, in principle, provided that a filtered version
of the conjugated data is subtracted at each stage. The challenge in practice is to find
a way to adapt the filter needed to obtain effective cancellation.

A final example involves the reduction of the signal distortion due to frequency-
selective fading caused by multipath propagation. Straightforward amplification in
faded portions of the spectrum using a time-invariant filter suffers from the resul-
tant amplification of noise. In contrast to this, a periodically time-variant filter can
replace the faded spectral components with stronger highly correlated components
from other bands, If these correlated spectral components are weaker than the orig-
inal components before fading there will be some noise enhancement when they are
amplified. But the amount of noise enhancement can be much less than that which
would result from the time-invariant filter, which can only amplify the very weak
faded components.

Detailed studies of the principles of operation and the mean-squared-ermor perfor-
mance of both optimurmn and adaptive frequency-shift filters are reported in (Gardner,
1987a, Chapter 14, Secs. A, B; Gardner, 1990a, Chapter 12, Sec. 12.8; Gardner
and Brown, 1989; Reed and Hsia, 1990; Gardner, 1993). See also (Zivanovich and
Gardner, 1991).

4.8 Prediction and Causality

If a signal is correlated with time-shifted versions of itself {i.e., if it is not a white-noise
signal), then its past can be used to predict its future, The higher the degree oftemporal
coherence ny (1) ], the better the prediction. A signal thatexhibits cyclostationarity is
also correlated with frequency-shifted versions of itself. Consequently, its future can
be better predicted if frequency-shifted versions of its past also are used, so that its
spectral coherence as well as its temporal coherence can be exploited. For example,
if x(¥) has cycle frequencies {o, ..., ay-1) then we can estimate the future value
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x(t + v} for some t > 0 using a linear combination of the present and past values of
the N signals

X, () =x(1) ™' forg=0,...,N—1. (103)
That is, the predicted value is given by

M-1N-1

e+ =) ho(w) x,[t —ul, (104)

u=0 g=0

where M is the memory-length of the predictor. The set of M.N prediction coefficients
that minimize the time-averaged (over f) squared magnitude of the prediction error
%(¢+t)—x(t+7) canbe shown to be fully specified by the cyclic correlation functions
for the N cycle frequencies. Specificaily, the set of MN coefficients {k, ()] is the
selution to the set of MA simultaneous linear equations

M-1N-1 )
Z Z A, (H)R:p—ﬂq ¢ — u) gimlep—ag)t—u} _ R:P(f +1) g T lt+T) (105)

u=0 g=0

fort =0,...,M—1and p=0,..., N—1. Also, the percent accuracy of prediction
is determined solely by the temporal coherence functions (29) for the frequency
translates. It can be shown that for each cycle frequency «, exploited, there is a
corresponding increase in the percent accuracy of the prediction.

In the same way that time-invariant autoregressive model-fitting of station-
ary time-series data is mathematically equivalent to time-invariant linear predic-
tion (Gardner, 1987a, Chapter 9, Sec. B), it can be shown that frequency-shift (or
polyperiodic time-variant} autoregressive model-fitting is mathematically equivalent
to frequency-shift linear prediction. Studies of this problem are reported in (Brels-
ford, 1967; Pagano, 1978; Miamee and Salehi, 1980, Tiao and Grupe, 1980; Sakai,
1982, 1983, 1990, 1991; Vecchia, 1985; Obeysekera and Salas, 1986; Li and Hui,
1988; Anderson and Vecchia, 1992). Also, the univariate prediction preblem for
cyclostationary (not polycyclostationary) time-series is equivalent to the multivariate
prediction problem for stationary time-series (Pagano, 1978). This follows from the
representation of univariate cyclostationary time-series in terms of multivariate sta-
tionary time-series (Gladyshev, 1961; Gardner and Franks, 1975). A survey of recent
results in prediction theory for cyclostationary processes is given in Article 7 in this
volume.

A measure of the degree to which one time-series causes another time-series is
the degree to which the present and past of the former can linearly predict the future
of the latter. If the two time-series are jointly cyclostationary, then cyclic as well as
constant causality is possible. In fact, by considering only time-invariant predictors,
it is possible to conclude for some pairs of time-series that no causality exists when,
in fact, one time-series is perfectly cyclically caused by the other. An example of this
is x(¢) = z(¢) and p(¢) = z(f — t) cos(t), where T > 0 and z(¢) is an independent
identically distributed sequence. The best linear time-invariant predictor of y(#) using
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the past of x (¢} is () = 0, whereas the best linear periodically time-variant predictor
is p(¢) = x(t — t) cos(z) = y(¢), which yields perfect prediction. Moreover, if z(¢)
takes on values of only £1, it is particularly easy to show for this example that

XM= s = E"@ =" W)

for all positive integers m, n, and s. Consequently, even the best nonlinear time-
invariant predictor is $(¢) = 0.

4.9 Linear and Nonlinear System ldentification

The cyclostationarity of signals passing through linear time-invariant systems can be
exploited in several ways for the purpose of using input/output or cutput-only mea-
surements to identify the system. In the case where the input/output measurements
are corrupted by additive noise and/or interfering signals, the signal selectivity prop-
erty associated with cyclostationarity can be used to obtain (asymptotically) complete
immunity to this corruption. As explained in more detail in (Gardner, 1990b), the
transfer function A (f) of a system with corrupted input w(¢) and corrupted output
x(f) is given by

wa (f _ a/ 2)

Su(f —a/2)
regardless of the additive corruption in w(¢) and x(¢f), provided only that o is a
cycle frequency of the uncorrupted system-input and is not a cycle frequency of the
corruption, and that the support of the SCD 87 (f — «/2) in f covers the whole
passband of the system.

Also, in the case where corrupted output-only measurements are available, the
fact that the spectral correlation function S (f) of the system output contains infor-
mation about the phase as well as the magnitude of the transfer function A{S) (cf.
{49)) means that blind identification of the system using only second-order statistics
(SCD and PSD) is possible (Gardner, 1991c¢). One particularly simple scheme for
blind channel equalization for digital QAM signals (or PAM signals) uses the fact
that over each and every symbol interval, the channel output is the sum of noise and a
linear combination of the same functions (viz., {#(t —nT): n =0, X1, L2, ...} for
0 <t < T, where T is the length of the symbol interval, and #(r) is the combined
impulse response function of the transmitter’s pulse-shaping filter and the channel.
Consequently, the first term of an empirical Karhunen-Loeve expansion of the channel
output over one symbol interval obtained from an eigendecomposition of the empiri-
cal output autocovariance matrix over one symbol interval (measured by performing
synchronized averaging over multiple symbol intervals) can be used to equalize the
channel. (This is particularly so when the symbol sequence and noise are both white.)
That is, the eigenvector ¢ corresponding to the largest eigenvalue will tend fo be
colinear with the channel output pulse over one symbol interval and orthogonal to the
tails within this interval from the pulses centered in other symbol intervals. Thus, the
inner product
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nT—1
dn= Y w®e)
t={n—1)T

of this eigenvector with the channel output (for the nth symbol interval with length T')
can suppress intersymbol interference and provide an accurate estimate of the symbol
in each interval.

The aforementioned synchronized average that provides the empirical autoco-
variance matrix is given by

1 N

—_— xt+nD)x*Es+nT)
2N +1 n;rv

for the ts element of the T x T matrix (assuming the sampling increment is 7, = 1).

This straightforward approach is the special case of a more general approach
{comresponding to the choice of parameters K = L = 0) proposed by Schell in
Chapter 3 in this volume, where the results of a simulation of this special case are
presented. Schell’s more general method is derived from another approach based on
least-squares filtering of a cyclostationary signal model to the channel output. Other
approaches are described in Articles 4 and 5 in this volume.

A popular approach to the identification of nonlinear dynamical systems from
input-output measurements is to model the system in terms of the Volterra series,
which is a generalization of the power-series {or polynomial) representation of a
memoryless system to systems with memory, and then to identify one-by-one the
Volterra kemels, each one of which characterizes one term in the series representation.
The first kernel is the impulse response of the linear part of the system. The second
kemel is a two-dimensicnal generalization of the impulse response of the quadratic
part of the system, and so on. Commeon approaches to identifying the kernels are
based on crosscorrelation measurements between the unknown-system output and
specially designed nonlinear functions of the system input.

Although the fundamental theory of this crosscorrelation approach to nonlin-
ear system identification is built on the foundation of stationary random processes
or time-series (Schetzen, 1989), it has recently been shown (Gardner and Archer,
1993) that substantial advantages can be gained by using cyclostationary inputs to the
unknown systemn and cyclic crosscorrelations. In particular, desirable orthogonality
(zero-correlation) properties between the system output and nonlinear functions of
the input that are not possible for stationary inputs are possible for cyclostationary
inputs, and this leads to particularly convenient designs for the inputs and the non-
linear functions. Moreover, this approach of exploiting cyclostationarity to identify
time-invariant systems has recently been generalized to identify polyperiodic non-
linear systems (Gardner and Paura, 1992). In (Gardner and Archer, 1993; Gardner
and Paura, 1992}, the basic theory of this new approach is presented for both a time-
domain method, which directly identifies the Volterra kernels or their polyperiodic
counterparts, and a frequency-domain method, which directly identifies the multi-
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dimensional Fourier transforms of the kemels—the Volterra transfer functions, and
several examples of cyclostationary inputs and corresponding nonlinear functions are
given. This work exploits higher-than-second-order cyclostationarity, the principles
of which are given in Chapter 2 in this volume.
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Chapter 2

Higher-Order Statistics
for Nonlinear Processing
of Cyclostationary Signals

Chad M. Spooner
Department of Electrical and Computer Engineering
University of California
Davis, CA 95616

I INTRODUCTION TO HIGHER-ORDER
CYCLOSTATIONARITY

This chapter presents a tutorial introduction to the theory and application of higher-
order cyclostationarity and is an adaptation and extension of the fourth plenary lecture
given at the Workshop on Cyclostationary Signals [111] held in August 1992, As the
title indicates, this chapter is generally concerned with higher-order statistics (HOS),
which means moments and cumulants with orders greater than two. It is specifically
concerned with the higher-order statistics of polycyclostaticnary signals, the study
of which is called higher-order cyclostationarity (HOCS). This tutorial explains the
mathematical structure of the moments and cumnulants of polycyclostationary signals
in both the time and frequency domains, provides practical interpretations of these
moments and cumulants, discusses several applications of the theory, and presents
nonparametric estimators of the higher-order statistics, which are generalizations of
nonparametric autocorrelation and spectrum estimators for stationary signals and for
order two to polycyclostationary signals and to arbitrary orders.

The word signal is used in this chapter to mean a single persistent time-series
with finite time-averaged power. This is somewhat unusual because the study of

This work was supported jointly by the National Science Foundation under grants MIP-88-12902
and MIP-91-12800, PI: W. A. Gardner, and by the Uniled States Army Research Office under contract
DAALO3-91-C-0018, PI: W. A, Gandner.
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higher-order statistics is usually carried out in the framework of stochastic process
theory. However, it has been demonstrated that the theory of second-order poly-
cyclostationarity (SOCS) is more naturally developed in the time-series framework
because it closes the conceptual gap between the abstract probability space quanti-
ties of the theory and the empirical quantities of interest in practice [34, 33, 43, 45,
52, 53, 110]. For example, it has the benefit of permitting the sine-wave-generation
interpretation of cyclostationarity, which in turn has led to a unique derivation of the
cumulant (Section 2.3).

A signal x{¢) is second-order cyclostationary (in the wide sense, cf. [52]) if there
exists a quadratic transformaticn, such as a squarer, of x (£) such that the output of this
transformation contains at least one finite-strength additive sine-wave component with
nonzero frequency. Equivalently—but not obviously—a signal x (¢) is second-order
cyclostationary if the amplitude and phase fluctuations of some narrowband frequency
components with center frequencies that are separated by a nonzero amount are tem-
porally correlated; that is, x(¢) is second-order cyclostationary if it exhibits spectral
correlation. The frequencies of the quadratically generated sine-wave components
and the frequency separations of the correlated spectral components are specified by
the same set of numbers. These numbers are most commonly called cycle frequencies,
but are also called frequency separations. 1f the cycle frequencies are not all harmon-
ically related, then the signal is said to be polycyclostationary (cf. Chapter 1). The
subject of HOCS is the study of the additive sine-wave components in the outputs of
higher-than-second-order nonlinear transformations of x(¢). Equivalently—but not
obviously—it is the study of the temporal statistical dependence between more than
two spectral components of x(¢). Important examples of modulations that produce
polycyclostationary signals are analog and digital amplitude and frequency modu-
lation, and digital quadrature-amplitude modulation (QAM) (which includes some
phase-shift-keyed and amplitude-shift-keyed signals as special cases) [37, 38]. Nat-
urally occurring signals can also exhibit polycyclostationarity [35, 52].

The existence of unintentional, unavoidable, and purposely designed nonlinear
transformations forms the basic motivation for studying the statistics of arbitrary non-
linear transformations of pelycyclostationary signals. Unintentional and unavoidable
nonlinearities can be found in the components of receivers and signal processors,
such as amplifiers and modulators. When polycyclostationary signals are processed
by these components, spectral lines can appear in the output. To characterize the
performance of systems containing these components, a statistical characterization
of the dependence of the frequencies, amplitudes, and phases of these spectral lines on
the inputs is necessary. Purposely designed nonlinearities include quadratic timing-
recovery circuits, such as the delay-and-multiply circuit, fourth-power carrier-phase
recovery devices for digital quadrature-amplitude-modulated signals with balanced
M-ary symbol constellations for M > 2, and other similar quadratic, quartic, and
higher-order processors for signal detection, modulation recognition, and parameter
estimation.

Nonlinear system models are commen in many areas of scientific inquiry, such
as physics, biology, and engineering. It is ofien of interest to determine an appro-
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priate model for a particular system, and then to design and carry out experiments
to determine the model’s parameters. A commen model for the relation between the
input and output of a nenlinear system is the Volterra series [102]. This model is
quite general and is used to motivate the choice of the particular statistical quantities
to be dealt with by the theory of HOCS that is developed in this chapter. Before
proceeding with this, however, the analytical tools of fraction-of-time probability are
defined, the relationship of the theory of HOCS to cother theories that deal with the
statistical properties of nonlinearly transformed signals is clarified, and two specific
signal-processing preblems are described in order to properly motivate the subsequent
development.

1.1 Fraction-of-Time Probability

In direct analogy with the joint probability distribution function defined for stochastic
processes, the nth-order fraction-of-time (FOT) probability distribution function for
the time-series x(f), ¢ € (—oo, 00) is defined by

Fen(y) = E* [ [Tty —x¢ +t,-)]} M

i=1
where
Elet (z()} = Z(Z(t + u)e-—iZn'uru) — Z (z(u)e—iZJmu)einrm @
o o
is the multiple sine-wave extraction operation and
L 1 pEn
{w()) = ZangoE [_lew(u) du

is the usual tiine-averaging operation. In (1), U[-] is the event-indicator function

1, x(+) <y

Ulyj =x+il= [ 0, otherwise,

and the vectors x(£) and y are specified by

x() = [x(t+4) - x(¢+ )T,

y= - ol
where { denotes matrix transpose. The sum in (2) is over all real numbers ¢ for
which (z(u)e~™2") 3 0. The multiple sine-wave extraction operation £® {.} is
completely analogous to the expectation operation £{-}. That is, it is shown in [45]
that the function (1) is a valid probability distribution function for the time-series for
which it exists.
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If the only nonzero term in the sum over « in (2) is that corresponding to ¢ = 0,
then the time-series x(t) is said to be stationary of order n (in the strict sense, cf.
[52]). On the other hand, if some terms corresponding to & 5 0 are also nonzero, then
x(t) is said to exhibit nth-order cyclostationarity. If all such values of « are integer
multiples of a single fundamental frequency, corresponding to a period Ty, then x (¢) is
said to be cyclostationary of order n; otherwise x (¢) is said to be polycyclostationary
(or multiply cyclostationary or almost cyclostationary) of order n. In the latter case,
the FOT distributicn function can be expressed as

Fen(0) = FX( + ) [Ferr, () — FX()],
q

where
Fi(n= ( [TU [y —xc +z,-)]>,
j=1

and Fyqy., (y) is the FOT distribution obtained from (1} by summing in (2) over only
those values of o that are integer multiples of the distinct fundamental frequency
1/ T,

The FOT probability density function is given by the n-fold derivative of the
FOT distribution function,

"
&

Lo () " Fen (3,

a Y- a3
and has the properties normally associated with a probability density function. The
FOT expectation operation is defined in terms of the FOT probability distribution in
the natural way. Let g[x(t)] be any function of the vector of time-samples x(¢). If we
redefine the symbol £{#! {.} to mean the expected value with respect to the probability
density function (PDF) fin (1),

Bl {gx()]) 2 f f gLy fio () d, @)

then it can be shown that this expected value consists exactly of the finite-strength
additive sine-wave components that are present in g[x(¢}] (cf. [45, 52]). Specifically

B gx(]) = ) Mge™™, @)

o

where
ME 2 (glx()]e"), (5)

which is consistent with the meaning given to £t} [} in (2).
The FOT distributions and densities are not used explicitly (as in (3)) in this
chapter. Instead, the time-averages that characterize the FOT expectations are used
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directly as in (4) and (5). Thus, the primary purpose of the preceding discussion of
FOT probability is to show that the multiple-sine-wave extraction operation Bl )
is completely analogous to the familiar probabilistic expectation operation E{-} and,
therefore, that the subsequent use of terms such as moment, cumulant, and character-
istic function is both appropriate and mathematically justified. For a more detailed
overview of the theory of FOT probability, see Chapter 1.

It is important to understand that the theory herein can be developed using
stochastic processes and E{-} instead of time-series and £1! {-). Doing so, how-
ever, results in a more abstract theory in the sense that it is another step removed from
practice. Specifically, developing the theory of HOCS using stochastic processes:
(i) requires a thorough understanding of ergodicity and cycloergodicity, (ii) does not
lend itself to the important interpretation of moments and cumulants as nonlinearly
generated sine waves, and (iii) complicates the development of single-data-record
estimators of the parameters of the theory, because the parameters are based on an
ensemble, whereas the estimators operate on a single sample path. However, ana-
lytical calculation of parameters, such as cumulants, can sometimes be easier using
stochastic processes rather than FOT probability. Both frameworks have been used to
develop the theory herein, with the time-average framework heavily favored and the
stochastic-process framework used as a too] to facilitate certain calculations. Never-
theless, only the time-average framework is used to present the theory herein so as to
develop a unified. whole in the reader’s mind.

1.2 Other Theories for Statistical Analysis of
Time-Series

Because the autocorrelation function is the expected value (either stochastic or FOT)
of a signal x(f) multiplied by a delayed version of itself—which is a quadratic
transformation—it can be viewed as the expected value of a signal y(¢, ¢) that is
obtained by nonlinearly transforming x (),

yit, ) =x( +1/0x( —7/2).

If the expected value of y{¢, ¥} does not depend on ¢, then the signal x(f) is said to
be second-order stationary in the wide sense, and the autocorrelation function is said
to be translation invariant because when ! is replaced by ¢ + g, the autocorrelation
remains the same. The theory of wide-sense stationary signals is well developed and
the basics of this theory are assumed 1o be familiar to the reader. The point here is that
we can think of the autocorrelation as a second-order statistic of x (), or as the mean
of the output of a quadratic transformation of x(¢), and when we use the expectation
E'@ {.} this mean is just the dc value or the constant component of the output of the
transformation. )

For wide-sense polycyclostationary signals x (¢), the autocorrelation depends on
t in a specific way:

E¥ (y(t, 1)} = Re(t, T) = ZR,",‘(r)e"z”“’,
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where
RI(%) 2 (x ¢+ 1.‘/2);;(; — I—/Z)e—ﬂnm) )

If we think of this autocorrelation as the expected value of y{¢, T), then it is clear
that the output of the quadratic transformation contains finite-strength additive sine-
wave components. Alternatively, if we think of the autocorrelation as a second-order
statistic of x(¢), then it is clear that this autocorrelation is polyperiodic in ¢.

‘We can thus interpret the theories of second-order wide-sense stationarity and
polycyclostationarity in two different ways: (i) in terms of translation invariant or
polyperiodic second-order probabilistic parameters, or (ii) in terms of the constant or
sine-wave components in the outputs of quadratic transformations of the signal.

These two interpretations extend to the case of higher-order statistical parameters
such as moments. A signal x(¢) is nth-order stationary in the wide sense if each kth-
order moment is translation invariant for k = 1, - - -, n. Such signals are the subject
of the theory of higher-order statistics [9, 54, 81, 83, 99] (which is somewhat of a
misnomer since the restriction to stationarity is not made explicit).

A signal x(¢¥) is nth-order polycyclostationary in the wide sense if the output
¥y, 1) = ﬂf: 1 X(t + ;) of some nth-order nonlinear transformation of x (¢) contains
at least one finite-strength additive sine-wave component with nonzero frequency a:

R:(T)" = ( Hx(t + tj)er?-lTlI!> —_ (y(t, T)e—errar) i 0.

=1

Thus, for a polycyclostationary signal

E¥) (ye, m) = 3 R, €™,

where the sum is over the frequencies of all of the sine-wave components of y(¢, 7).
That is, the nth-order nonlinearity generates sine waves from an nth-order polycyclo-
stationary signal.

It is the interpretation of sine-wave generation, rather than periodicity of the mo-
ment, that is most important from both conceptual and practical standpoints because
it is by examining this interpretation that cumulants naturally assume their central
role in the theory of HOCS. This is explained in detail in Section 2.

The difference between the theories of SOCS, HOS, and HOCS are pointed out
throughout the chapter where appropriate. The major difference between HOS and
HOCS is that HOS has been developed and applied within the probabilistic frame-
work of (stationary) stochastic processes, whereas HOCS has been developed and
applied primarily within the fraction-of-time probability framework. Whenever the
theory of HOS is applied to problems in which only a single data record is avail-
able, the question of ergodicity is of primary importance. And when the single data
record is itself polycyclostationary—which is quite possible even when the stochastic
process from which it arises is strict-sense stationary (cf. Chapter 1)—the theory of
HOCS presented in this chapter is required to obtain correct results for single-record

d
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processing—it is not optional. Specific ways in which the absence of ergodicity
can cause erroneous resufts in applying the theory of HOS are discussed in Section
7.6.

1.3 Two Motivating Examples

To motivate the development of the theory, two sample problems are presented. These
problems are especially difficult to solve by using the theories of SOCS or HOS, and
the classical theory of statistical inference and decision is intractable. Consider the
signal model

M
x(t) = 5() +m () + Y in(®)
k=1

where s(¢) is a signal of interest, {i,(¢)} are non-Gaussian interfering signals that
temporally and specirally overlap s{¢), and m, (¢) is broadband noise. All the signals
and noise are statistically independent of each other. The signal of interest s(¢) is
polycyclostationary of order » but is not polycyclostationary of order two. We assume
that the power level of the noise is unknown and is varying within the observation
interval, and that the interferers can be turning on and off within the observation
interval. The first of the sample problems is to detect the presence of s(f).

Methods of detecting s(¢) that are based on measuring the power spectrum are
ineffective because the power level of the noise and interference is unknown and
time-varying: Setting a threshold for energy detection is difficult. Detection methods
that are based on measuring the cyclic spectrum are not applicable because the signal
of interest is not second-order polycyclostationary: There is no spectral correlation to
measure. Detection methods that are based on measuring the (stationary) higher-order
statistics of x (¢} (e.g., the bispectrum) can fail for the same reason that the energy
detection methods do: All non-Gaussian signals contribute to the HOS. Nevertheless,
ag explained in Section 8.1, the theory of HOCS provides a practical solution to this
problem provided that s{¢) possesses a unique nth-order cycle frequency.

Next let’s assume that we have data available from another receiver:

M
Y(t) = aps(t — do) + my() + Y arin(t ~ do),
k=1

where the @, and d, are the attenuation factors and delays, respectively, relative to
the corresponding signals in x (¢}, and all the signals and noise in y(¢) are statistically
independent of each other. The second of the two sample problems mentioned previ-
ously is to estimate ag and dy. This estimation is difficult to accomplish by computing
the cross-correlation between filtered versions of x (¢) and y(¢) (known as generalized
cross-correlation [GCC] methods) because the signals are spectrally overlapping and
cannot be separated by linear time-invariant filtering. Thus, each signal will con-
tribute a peak to the GCC output function. SOCS-based estimators cannot be used
because, as in the detection problem, there is no SOCS to exploit, and HOS-based
methods suffer from the same problem as the GCC: All signals contribute a peak.
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However, as explained in Section 8.2, this problem can be solved by using the theory
of HOCS, provided only that s(f} possesses a unique nth-order cycle frequency.
The remainder of this chapter is organized as follows: In Section 1.4, the his-
tory of the cumulant is traced, starting with the original contributions from the late
nineteenth century and ending with the recent workshops on higher-order statistics
sponsored by the Institute of Electrical and Electronics Engineers, The time-domain,
or temporal, moments and cumulants of polycyclostationary signals are defined in
Section 2, where a complete introduction to curmnulants is provided. The frequency-
domain, or spectral, moments and cumulants are the subject of Section 3. These
spectral moments and cumulants are shown to be related to the temporal moments
and cumulants by Fourier transformation. In Section 4, the utility of the theory of
moments and cumulants for solving statistical inference and decision problems is
discussed. The theory of HOCS is developed further in Section 5 by accommo-
dating complex-valued signals and by determining the effects of signal-processing
operations on the higher-order moments and cumulants of polycyclostationary sig-
nals. The moments and cumulants of the complex envelopes of digital QAM signals
(which includes real and complex pulse-amplitude-modulated (PAM) signals as spe-
cial cases) are derived in Section 6 for arbitrary orders. Nonparametric estimation
of the moments and cumulants of arbitrary polycyclostationary signals is discussed
and illustrated with examples in Section 7, and the two motivating examples dis-
cussed in this section—weak-signal detection and interference-tolerant time-delay
estimation—are studied in Section 8. Concluding remarks are given in Section 9.

1.4 Relevant Previous Work

In this section, relevant work in the areas of higher-order statistics and second-order
polycyclostationarity is reviewed. In addition, since cumulants are assumed to be
unfamiliar to the reader, a complete history of the development of the concept of the
cumulant is included.

1.4.1 Cumulants and Polyspectra

The history of the cumulant is traced in this section. A concise history, to
begin with, is that the cumulant was born in mathematical statistics, developed in
the probabilistic theory of stochastic processes, and after nearly one hundred years
found its way into electrical engineering through the field of higher-order statistics
as applied primarily to problems of time-series modeling and system identification.

In 1903, Danish astronomer Thorvald Nicolai Thiele published a book called
The Theory of Observations [113] in which he tried to quantify the statistical nature
of measurement errors. Thiele developed functions that he called laws of presump-
tive errors, which are probability density functions. By expressing these functions
in Maclaurin series form, he found that they could be characterized by moments or
by cumulants, which he called Aalf-invariants, because cumulants are invariant to
additive constants in a random variable, but not to multiplicative constants. Thiele
recognized that the half-invariants provided an easy way to test for the normal dis-
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tribution: The higher-order half-invariants are zero for Gaussian random variables.
Although Thiele’s introduction of cumulants was practically motivated, he did not
arrive at them as the solution to a particular problem. Thiele gave no indication that
he was aware of any other work on curnulants, and he did not use any term other than
half-invariant to describe cumnulants. Cramer [16], A. Fisher [28], and Graham [73]
each claim that Thiele discovered cumulants. .

Cumulants were introduced into the theory of sampling distributions, that is, the
theory of the probability distribution of sample statistics, largely through the work
of R. A. Fisher, Kendall, and Wishart, [14, 29, 68, 118]. The basic problem here
is to determine the distribution of statistics such as the sample moments or sample
cumnulants by, say, determining the moments or the cumulants of the sample statistic.
Fisher knew that the mean of a statistic does not necessarily equal the corresponding
population parameter. In the case of the sample variance &2, the mean is

1 N 1 N N
N-1 ud 1
= TE{ZX?] —ﬁE{ Z x,—xj]

it}

where o? is the population variance. Fisher proposed a new set of cumulant statis-
tics, called k-statistics, for which the expected value is equal to the corresponding
population cumulant. This set of statistics greatly facilitated work in sampling dis-
tribution theory. A detailed treatment of this topic is given in [68]. In 1937, Cor-
nish [14] attributed the term cumulant to Laplace, without referencing a particular
work of Laplace’s, because Laplace called the logarithm of the characteristic function
the cumulative function (CF), and cumulants are the coefficients of this function in
Maclaurin series form. The cumulative function gets its name from the property that
the CF for a sum of independent random variables is the sum of their CFs: The CF
is cumulative. However, in 1928, Wishart [118] called the CF the kappa generating
function, and called the cumulants cumulative moment functions. The terms cumulant
and log-characteristic function are used today.

In the early 1950s, cumulants were used in an engineering context for the first
time by Kuznetsov, Stratonovich, and Tikhonov in a study of the passage of stochastic
processes through linear and nonlinear systems [75, 76]. Apparently without moti-
vation, the authors decided to characterize the output stochastic process by using the
logarithm of the joint characteristic function of samples of the output. They were
therefore faced with a function that contaimed cumulants that were parameterized by
the specific values of the sampling times. They called these cumulants generalized
correlation functions because they were equal to the familiar correlation function for
order two (the covariance). The main result in these two references is that the gener-
alized correlation functions for the output process are related in a simple way to those
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for the input process. The authors also used the generalized correlation functions
to characterize the degree to which the output process deviated from normality. A
more general form of the relation between moments and cumulants than that given by
Thiele in [113] is given in [76] apparently for the first time, but without proof, and is
not central to the work therein. The authors of [75, 76] used none of the terminology
described here in the previous paragraphs.

In the late 1950s and early 1960s the theory of cumulants, which are sometimes
called semi-invariants (or seminvariants), was put on a firm theoretical foundation
by Shiryaev and Leonov [78, 103]. In [78], the cumulants of the output of a polyno-
mial nonlinearity are obtained in terms of the cumulants of the input process, thereby
formalizing the earlier work in [75, 76]. Also, a combinatorial proof of the relation-
ships between moments and cumulants is given for arbitrary order. This appears to
be the only published proof of these relations. The results of the work in [103] are
essentially the probabilistic counterpart of the material presented in Sections 2 and
3 herein, restricted (for the most part) to stationary processes; [103] is a measure-
theoretic approach to understanding higher-order moments and spectra of stochastic
processes. Shiryaev defines the polyspectrum as a cumulant with respect to the loga-
rithm of a spectral characteristic function, which is the characteristic function of the
spectral increments of the process, and also shows that the polyspectrum is equal to
the Fourier transform of the time-domain cumulant function for generally nonstation-
ary as well as stationary processes. Shiryaev does not specialize his results to the
case of cyclostationary or polycyclostationary processes for which cumulants take on
a special meaning that leads to special applications, which is explained in subsequent
sections of this chapter.

In the 1960s the properties of cumulants, both temporal and spectral, were inves-
tigated [9] and measurement techniques were developed [10, 11]. It is here that the
term polyspectrum is introduced (which Brillinger attributes to J. W. Tukey) for the
spectral cumulants or, equivalently, the Fourier transform of the temporal cumulants,
and a case for the superiority of cumulants over moments for use in the theoretical
development of HOS is made in [9]. The processes involved in [9] are assumed
to be nth-order stationary, which means that all moments up to and including or-
der » are translation invariant. In [9-11], polyspectra are defined to be the Fourier
transforms of time-domain cumulants, but are also recognized to be spectral cumu-
lants. .

The 1970s saw minimal application of polyspectra and cumulants. The focus was
on the third-order polyspectrum, called the bispectrum; the application was to the area
of detection of phase-coupling in sinusoids [61, 69, 70, 84, 96, 97]. Three sinusoids
with frequencies { _}',-};'.Ll and random phases {9,-}?=l are said to be phase-coupled if
Ji+ /2 = f2 and the sum 8; + &, is statistically dependent on 5. This can be the case,
forexample, in the output of a linear-plus-quadratic system with the sum of sine waves
with frequencies f; and f; at the input. Some progress in this area was made, and
a corresponding interest in the statistical properties of estimates of the bispectrum
was piqued. (Interestingly, this work has nothing to do with statistical inference
based on single-sample-path processing since the phase coupling can be measured
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from a single sample path if and only if the phase is time-varying and the coupling
that can be measured in this case is correlation—or more general dependences—over
time, which has nothing tc do with correlation over the ensemble unless the phases
are ergodic stochastic processes. A time-invariant random phase is a nonergodic
stochastic process.)

In the 1980s a sector of the electrical engineering commumnity became interested
in HOS as a tool that could be used to perform system identification. Since the au-
tocorrelation (and power spectral density) of a second-order stationary process does
not contain phase information, it cannot be used to identify nonminimum-phase sys-
temns. Researchers were led to higher-order statistics because higher-order moments
and cumulants do contain phase information. Many researchers in the area of HOS
claim that second-order statistics cannot be used to obtain phase information, but
this is incorrect since the cyclic autocorrelation, which is a second-order statistic, is
sensitive to phase for cyclostationary and polycyclostationary signals, and this fact is
currently being exploited for nonminimum-phase system identification (cf. Chapter 3
and Articles 4 and 5 in this volume). Nevertheless, if the signal is stationary, or does
not exhibit SOCS, then third- or higher-order statistics must be used to obtain phase
information. System identification is still the dominant application area in HOS, as
can be seen by noting that over half of the recent HOS tutorial paper by Mendel
[81] is concemned with paramelric system identification, that is, determining the co-
efficients of AR, MA, and ARMA system models (see references in [81]). Other
recent applications include synchronization [6, 26], random signal detection [54, 71],
image reconstruction [90], tests for the Gaussian property and linearity of stochastic
process [59], neural-network based estimation [115], radar signal processing {25],
equalization [91], and direction-finding (source location) [12, 31, 60, 92, 121]. In
most of these applications, the signals of interest are modeled as stationary stochastic
processes (the exception is synchronization), and in many cases the highest order
employed is three. There are good reasons for the latter restriction. For example,
if the input signal-to-noise ratio (SNR) for a signal in noise is below 0 dB, then the
output SNR is approximately proportional to the input SNR raised to the nth power
for an nth-order nenlinear transformation, such as a measurement of an nth-order
moment or cumulant. Thus, the output SNR decreases as the order » increases for a
given data-record length. Also, computational complexity of algorithins that exploit
HOS can grow rapidly as the order increases.

The subject of cumulants has been largely neglected by the authors of the classic
(or at least popular) texts in probability theory, mathematical statistics, stochastic
processes, and time-series analysis. This is largely because of the long-standing em-
phasis on the correlation theory of processes and time-series wherein only the first and
second moments are of interest. This theory is very powerful because it is sufficient
for the explanation of the behavior of Gaussian processes, handies linear transfor-
mations of data easily and elegantly, and is computationally simpler (more tractable)
than higher-order theories. The limited treatment of cumulants and polyspectra in
the most well-known texts is discussed next, followed by a brief description of three
modern texts that treat the topic of cumulants and polyspectra in some detail.
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The texts considered in time-series analysis are [4, §, 58, 64, 67, 74, 93]. The
book [93] by Priestley contains the most material on cumulants. There is a short
history that starts with Shiryaev's contribution [103], and then cumulants are defined
through the cumulative function (CF). Polyspectra are defined to be the Fourier trans-
forms of these cumulants. Brillinger [8], on the other hand, defines cumulants in terms
of their relation to moments and lists several of their elementary properties. The other
books in the area of time-series analysis offer little (such as the moment/cumulant
relations for n = 1, 2, 3, 4) or nothing on cumulants.

The texts considered in the area of stochastic processes are [7, 23, 24, 33, 57,
65, 66, 82, 86, 88, 95, 112, 114, 119, 120]. These texts pay very little attention to
cumulants and polyspectra. The three texts [82], [95], and [112] each define the
cumulant through the series expansion of the CF, but do little with them. The other
references in the area of stochastio processes do not even mention cumulants.

References [15, 27, 28, 79, 80, 87, 89] are the texts considered in probability
theory. Parzen [89] and Papoulis [87] both define the cumulant through the series
expansion of the CF, although Parzen does it in an exercise. Neither theory nor
application of cumulants is developed in either of these books. A. Fisher essentially
reproduces Thiele’s work in his 1923 book [28]. The other references in the area of
probability theory do not mention curnulants.

Finally, the texts considered in mathematical statistics are [16, 30, 68, 77, 98,
117]. Both Fisz [30] and Cramer [16] define the cumulant through the sertes expansion
of the CF in the usual way, but go no further with the theory. The unique book by
Kendall and Stuart [68] devotes a great deal of attention to cumulants, mostly in the
context of sampling distribution theory (as mentioned previously). The authors are
not concerned with stochastic processes nor time-series analysis and do not define
polyspectra. The other texts in mathematical statistics do not mention curnulants.

Three modermn texts do treat the topics of cumulants and polyspectra for time-
series and stochastic processes. The first is by Rosenblatt [99]. The material on
cumulants and polyspectra in this text is essentially the same as in the two papers
[10, 11], in which the cumulants and polyspectra of stationary stochastic processes
are investigated, with emphasis on estimating these parameters from finite-length
data records. The book by Priestley [94] contains a chapter devoted to estimation of
the polyspectrum of a stationary stochastic process from a finite-length data record.
The methods considered therein are the same as in [99]. The material in both of
these texts is considered further in Section 7 herein, where the measurement of the
parameters of HOCS is studied, and where an error in Priestley’s description of the
frequency-domain method of estimating the cyclic polyspectrum is brought to light.
The third modern text that treats cumulants is a collection of papers edited by Haykin
[84]. The chapter by Nikias treats the topic of estimation of the polyspectrum, but
the emphasis of the chapter is on the use of such estimates in solving the problem of
parametric (ARMA) system identification.

The nine research papers [40], [42], [51], and [104-109], all of which are from

‘the same research group, address the topic of HOCS directly. In [40], the higher-order
temporal moments of polycyclostationary time-series are introduced and shown to be
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related to the higher-order moments of spectral components of the time-series by
Fourier transformation, and it is established for the first time that the nth-order lag
product of a time-series contains a finite-strength additive sine-wave component with
frequency « if and only if the joint moment of n spectral components of the time-
series is nonzero for some sets of n frequencies that sum to . In [42], the concept
of a pure nth-order sine wave is introduced and is shown to be characterized by the
temporal cumulant function, whose Fourier transform is shown to be a spectral cum-
ulant function, and the relationship between these functions and those that arise in
the theory of HOS for stationary processes is discussed. Higher-order temporal and
spectral moments of cyclostationary time-series are used in [51] to identify Volterra
models of nonlinear systems. New techniques for measuring the higher-order statis-
tical functions (cyclic moments, cumulants, and polyspectra) for polycyclostationary
time-series are presented in [104], and some results on their performance are presented
in [105]. A brief overview of the theory of higher-order cyclostationary time-series
is given in [106]. Finally, the application of the theory of HOCS to the problems of
weak-signal detection and time-delay estimation is considered in [109].

Three research papers by other researchers also treat HOCS directly. One of
these is the recent paper [123], in which the stochastic-process framework is used,
and in which no connection is made to the sine-wave generation idea that is central
to this chapter, nor to cumulants, which are also central to this chapter. The second is
[5], in which a cyclic spectral analysis of the powers of a PAM signal is carried out,
that is, the cyclic spectrum of the output of a nonlinear system with a PAM signal at
the input is calculated. The results herein are more general than those in [5]. The
third is [2], in which the symmetry properties of nth-order polyspectra for n < 6 for
cyclostationary stochastic processes are investigated.

Finally, there are several research papers that deal with HOCS indirectly [17-
22, 55, 56]. These papers, which are the work of a single research group, treat
the problem of higher-order statistical analysis of generally nonstationary stochastic
processes, which includes cyclostationarity as a special case, and present several
applications of the theory to cyclostationary signals, such as system identification
and signal detection.

The strong recent interest in HOS (cumulants) in a sector of the electrical en-
gineering community is reflected in the recent workshops on higher-order statistics,
in the two [EEE Proceedings tutorial papers [81, 83], and in the special sections
on HOS in the July 1990 /[EEE Transactions on ASSP, and the January 1990 /EEE
Transactions on Automatic Control,

1.4.2 Second-Order Polycyclostationarity

The research on second-order polycyclostationarity can be divided into two sets:
that which adheres to the time-average analysis (FOT) framework, and that which
uses the stochastic-process framework, The former is more relevant to this chapter
because the time-average framework is used herein. The basic references for the
theory and application of second-order polycyclostationarity for the time-average
framework are [34, 35, 44, 45] and the references therein and in Chapter 1 of this
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volume and for the stochastic-process framework in [33, 63] and the references therein
and in Chapter 1. Examples of the application of cyclostationarity include weak-
signal detecticn [39, 46], time-delay estimation [49, 50], high-resolution direction
finding [100], blind-adaptive spatial filtering for signal extraction [1, 101], system
identification [41, 517, and frequency-shift filtering for signal separation [48]. A
bibliography on cyclostationarity and its applications, and a detailed overview of
second-order cyclostationarity is given in Chapter 1 of this volume.

2 THE TEMPORAL PARAMETERS OF HOCS

2.1 Moments

Let us consider all nonlinear signal-processing operations that can be represented by

a Volterra series. This includes (but not exclusively) all continuous, time-invariant,

finite-memory, causal systems [85]. The output y(¢) of such an operaticn is expressed
I

as

J’(f)=f hi()x(t + Tl)dr1+f [ ha(ty, T)x(t + T)x(t + ) dudry 4 -+

=Z[ f hn(T)L:(tsT)n dT,

where 7= [z--- 7,1 and L. (¢, T)p 1s the nth-order lag product of the input x(¢)

Li(t,n = [ ]2 + 1. (6)

J=1

We are interested in the finite-strength additive sine-wave components present
in the output but absent in the input, that is, those sine waves that are generated by
the action of the nonlinear cperation on the input x(¢), which is assumed to exhibit
cyclostaticnarity, For example, the strength (magnitude and phase) of the sine wave
with frequency o in y(¢) is given by (assuming the order of £12), 3", and [ can be
interchanged)

(y(t)e—ﬂrrczf)= Z./;mj;mh"(‘r) (Lx(t’,r)ne—-fbrm) dr.

Thus, we need only study the statistical quantities

(Lx (f, T)ne—J'Zna.r) ,

1Strictly speaking, the name Volterra is reserved for causal systems, for which h,(7) = O for any
7; < 0, but this restriction is lifted here. Also, infinile-memory systems, for which the f,(-) have infinite
support, are included here. :
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for arbitrary positive integers n, which are the strengths of the sine-wave components
contained in the nth-order lag products of x(z).

The nth-order lag product is an elementary nth-order homogeneous polynomial
transformation of x{t). This transformed time-series can be decomposed into a peri-
odic or polyperiodic part and an aperiodic residual part,

L.t’(tt‘r)n = p(tr T)n +m(tv T)Hl

where )

{m(t, Pne ) =0, )
for all real a. The polyperiodic portion of L, (¢, 7), has associated with it the Fourier
series

P, Dn = Z R:(T),, einrcu’ 8)
o
where

RI(Th = {p(t, T)y €7F). ©)
It is assumed herein that the partial sums in the Fourier series (8) converge uniformly
in f foreach 7 to p{¢, 7),. Then p(-, 7), is an almost periodic function, the limit (9)
exists for each 7, and the set of values of the real variable & for which R%(7), #
0 for each T is denumerable [13]. That is, there is at most a denumerable set of
incommensurate periods in the polyperiodic function p{¢, 7, foreach 7. It is further
assumed that the union over all 7 of the sets of values of « for which R¥*(7), # 0
is denumerable. For example, it is shown in [63] that this union is denumerable for
n = 2if p(r, 7); is uniformly continuous in t and 7,

The lag-product time-series can therefore be expressed as

Le(t, Phe =Y RED, €7 L m(t, T, (10)

where the sum is over the denumerable set of real o for which R7(7), # 0. From (7)
and (10), we have

R Ty = {Lo(t, g e 27, (11)

Each vaiue of « in the representation (10) is called an impure cycle frequency of
order n (to distinguish it from a pure nth-order cycle frequency, which is defined
subsequently), and RY(7), in (11) is called the cyclic temporal moment function
(CTMF) of order n. From (11), it is evident that the CTMF arises quite naturally
from a consideration of the finite-strength additive sine-wave components in the lag
product (6). The sum of all such sine waves in L, (¢, 7), is given by the temporal
expected value of the lag product (cf. Section 1.1),

ECN (Lo, 1) = 3 Ry &2,

which is called the temporal moment function (TMF), and is denoted by R, (¢, Dy,
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Ro(t, Tn = EOHL (1, D) = ) RED) 7 (12)

An individual component of the TMF, such as
R;t (1_)" er'2:rru.r ,

is called an nzh-order moment sine wave or an impure nth-order sine wave. Time-
series for which there exists at least one moment sine wave of order n (with e £ 0) are
said to exhibit nth-order cyclostationarity (CS,) in the wide sense (such a time-series
can be nth-order cyclostationary or rth-order polycyclostationary). A potentially
confusing property of CS, time-series is that such time-series are in general CSs,. A
simple example illustrates this fact. Consider the time-series given by

x(t) = cos(wt) + m(2),
where the zero-mean signal m () contains no sine-wave components. The signal x(f)

is CS;. Every second-order lag product contains sine waves as well,

1 1
x(t+x(t+ 1) = 5 cos(2wt + o[ty + ©a) + 5 cos(w[t) — 12]) + residue.

More interesting cases involve random time-series that do not themselves contain
additive sine-wave components, because it is still true that, for example, CS; implies
CS,. This is illustrated in the next section.

2.2 Impure nth-Order Sine Waves

It is often the case that an nth-order moment sine wave is impure in the sense that it
is made up—in part or wholly—of products of & m jth-order moment sine waves with
ELI m; = nand k < n, for various values of k. For example, consider the following
signal, which is an amplitude-modulated (AM) signal with an added carrier tone:

x(t) = a(t) cos(Zm fot +6) + Bceos(Zm fit +6). (13)

The second-order lag product for this signal clearly contains (complex) sine-wave
components with the frequencies 0, 2 £z, and —2 f... Let’s examine the sine wave with
frequency 2 f;:

RY(7)y = [x(t + t)x(t + rp)e™ 720

2
‘I‘RS(T)Z el'(2:ﬁrj:-[t1+t2]+29) —+ B_eiaﬂfc[ﬁ+rz]+29) )

where we have assumed that a(¢) has zero mean,
E¥ @)} =0.

Thus, there are two components that make up the second-order moment sine wave
with frequency 2 f,. The first component
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Z Rg (T)2 & (2n fo[r1+ra]+28) eilrij;r
does not result from the multiplication of any sine-wave components in either of the
factors of the lag product, whereas the second component

BZ
Te

(2 fe[ri+ a1+ 26) Gi2n2 [t

is nothing more than the result of a sine-wave term in x (¢ +7;) multiplying a sine-wave
term in x(¢ + 12).

Identifying the pure and impure components of an nth-order moment sine wave
is not always so easy. Let’s consider the AM signal (13) with B =0,

x(@) = a(®) cos(2m ft +8), (14
and a fourth-order lag product
4
Li(t,ma = [ [x + 2. (15)
J=1

The sine wave with frequency 41, in the lag product (15) is given by

. 1 /4 _ _
R:fe (T)4 er2:rr4ﬁ.r — E ( 1_[ a(t + rj)> el’(z:"l’_fc{'l'1+12+f]+f-€]+4 B)el2ﬂ4ﬁ-l. (16)

J=1

Since
RO(T)2 = {alt + T)alt + 1)),

then the lag product for a(¢) can be represented by
a(t +mat + 1) = Rz, w) + b, 11, ) {17
for which
| (bt, 71, %2)) = 0
RY(z1, 1)z = RY(Th.

By making use of (17} in the fourth-order lag product for a(#), we can begin to see
the pure and impure components of the fourth-order sine wave (16):

R (Pa

1 ;
=16 ([RI(z1, T2)2 + b(t, 71, TOIIRY (13, Ta)z + b2, T3, Ta)]) g PPl mdmstulid®)

1 )
6 [RO(r1, 202 Rz, Ta)2 + (B(E, 71, T2)B(L, T3, 14)) | ORI Rt mtulidd),
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So, there are components of the fourth-order moment sine wave (16) that con-
sist of products of second-order moment sine waves, and there are—potentially—
components that are not. We say potentially because there are other products of
lower-order sine waves, namely those obtained by using a different factorization of
the fourth-order lag product, and we are unsure at this point if these other impure sine
waves are the only components of {b(t, T|, 2)b(¢, 73, T4)).

In the case of the second-order 1ag products of (13), we can purify the second-
order sine waves by operating directly on the data: We simply remove the sine-wave
component B cos(2x f.t + 8) from x(¢). In the case of the fourth-order lag products
of (14) (or (13)), we cannot purify the fourth-order moment sine waves by operating
on the data because there are no sine waves in the data. Furthermore, we cannot
simply subtract the second-order sine waves from the lag products x (¢ + 7,)x (¢ + 1)
and x(¢ 4+ T3)x (¢ + 74) because there are similar sine waves in other factorizations of
the fourth-order lag product. In the next section we show how to properly purify the
nth-order moment sine waves, thereby obtaining the pure nth-order sine waves.

2.3 Pure nth-Order Sine Waves

For low orders #, it is easy to mathematically characterize a pure nth-order sine wave
in a way that matches our intuition. Fer n = 1, the moment sine waves are, by
definition, pure first-order sine waves. For n = 2, all products of first-order moment
_ sine waves can be subtracted from the second-order moment sine waves to obtain the
pure second-crder sine waves, which are denoted by o, (¢, 71, T2)2 »

oult, T )y = BN x( + o)t + w)) - 9 x@ + 7)) 9N x( + 1))

Rx(t' T)Z - R.r(fa rl)l R.t(t, TZ)I-

There are several interesting points to be made concerning pure second-order
sine waves.

1. Since R, (t, t;)1,i = 1, 2,and R, (¢, T); are first- and second-order moments,
then o, (¢, 71, 72)2 is a temporal covariance function.

2. If R, (¢, ); = 0, then there are no lower-than-second-order sine waves, and
the second-order moment sine waves are equal to the pure second-ocrder sine
waves.

3. If the variables x(¢ -+ 7)) and x(¢ + 7o) are statistically independent
(in the temporal sense [35, 45]), then E® {x(t +t)x(t +12)] =
B {x(f + 1)} E@ {x(¢ + 12)) and therefore 0, (¢, 7|, T2)2 = O, that is,
there is no pure second-crder sine wave for this particular pair of lags 7|
and 3.

A recursion can be used to compute the pure third-order sine waves. Eachdistinct
product of lower-order sine waves must be subtracted from the third-order moment
sine waves. Thus, preducts of pure second-order and pure first-order sine waves are
subtracted from the third-order moment sine waves:
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3
o2, )3 =£1® [Hx(t + Tj)]_ oy (1, T1, T2)2 0: (8, 3)1 — 0. (£, T1, T3}z 0: (1, T2 )y
Jj=1

—ox(t, T2, Ta)2 Ox(f, T1)1 — Ox (£, T1) ) Ox (L, T2)1 O (2, T3)1 - (18)

Note that all possible products of pure lower-order sine waves appear in (18). The
terms in the sum of products that are subtracted can be enumerated easily by con-
sidering the distinct partitions of the index set {1, 2, 3}. A partition of a set G is a
collection of p subsets of G, {;}£_,, having the following properties? [3]:

14
6=
=1

v,-nvk =9 for j#k
The set Py of distinct partitions of {1, 2, 3} is

p=1:{1,273)
p=2:{1,2}, {3} (1,3L{2} {2.3}L{1}
p=3:{1} {2}, {3}.

Thus, we can express the pure third-order sine waves o,(¢, T)3 as a sum over the
elements of P;:

p
o (f, T = Ry, T} — Z [ l_[o'x(fa Tu,-)nj :| )
£ L=t
p#EL
where 7,, is the vector of elements of {z;}?_, that have indices in vy, and #; is the
number of elements in v;.

Note that, as in the case of n = 2, if the first-order moment sine waves are
zero, E™®1 {x(£)} = 0, then the third-order moment sine waves are equal to the pure
third-order sine waves. In this case, there are no products of lower-order sine waves
that can be subfracted from the moment.

Because there is a one-to-one correspondence between the set of distinct factor-
izations of a product of n factors and the set of distinct partitions of the set {1, 2, - - -, #}
(as illustrated for # = 3 above), the formula for the pure nth-order sine waves can be
expressed in terms of these partitions,

r
ot Pr = Re(t, Ta = ), [ [Toxtt, 7, } : (19
j=I

Pﬂ
p#EL

The fotal number of distinct partitions of a set is called Bell's number, which must be compated by
a recursion involving Stirling numbers of the second kind [73, 110]. This same recursion can be modified
to yield the partitions themselves.
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where P, is the set of distinct partitions of {1, 2, - - - , n}. The pure-sine-wave formula®
(19) gives all the pure nth-order sine waves associated with the lag vector 7. A single
pure nth-order sine wave with frequency 8 can be selecied by computing the Fourier
coefficient

P (1), @2 = (o {u, ), 2P0, 20)

and can be expressed in terms of pure lower-order sine waves by substituting the
Fourier series for each o,

oxlt, Whe = Y o (W) e, @1)
B

where the sum is over all pure cycle frequencies 8; of order %, into (19). Thus,

r
of =R, =D | 3 [lof x| @2)
Fa ,B*l:ﬁ Jj=1
p#l
where (3 is the p-dimensional vector of pure cycle frequencies [8; --- ,B‘,,]’r and 1

is the p-dimensional vector of ones. Hence, the pure-sine-wave strength 0',‘? (T, is
given by the CTMF Rf (1), with all products of pure lower-order sine-wave strengths,
for sine waves whose frequencies sum to 8, subtracted out.

The next step in the development of the temporal parameters is to introduce the
cumulant function for the set {x (¢ + z)}]_,. Before doing this, a general introduction
to cumulants is provided.

2.4 Cumulants

The references cited in this and succeeding sections dealing with cumulants of random
variables, stochastic processes, and nonstochastic time-series are believed to be the
original sources where these quantities were first introduced.

2.4.1 Cumulants of a Single Random Variable

Let the real-valued random variable X have probability density function (PDF)
fx(u) and characteristic function ¢y (w):

() = f fre du.

1tis well known that the moments of X can be obtained from the characteristic function
by differentiation,

n

E(X") = =iy

¢
g 2X (@)

= m,.
w=0

3This approabh to obtaining pure nth-order sine waves can break down in some special anomalous
cases involving degenerate time-series, which are described in the Appendix.
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The nth-order moment of X is, therefore, the coefficient of the term corresponding
to (iw)”/n! in the Maclaurin series expansion of the characteristic function:

(fw)"
—.

n:

o0
Dylw) =y my (23)
n=0
The characteristic function is a useful tool in the study of random variables, but it
does have a drawback. If ¥ is the sum of two independent random variables X7 and
X
Y=X+ X

then the PDF for Y is the convolution of the PDFs for X and X,

frlw) = f = 2 fa () dA,

which implies that the characteristic function for ¥ is the product of characteristic
functions for X; and X3,

$r{@) = Cx, () Py, (@). (24)

By using (23) in (24), it can be shown that the nth-order moment of ¥ is explicitly
dependent on the moments of X) and X of all orders » and lower.

If we transform the multiplication in (24) to addition by applying the natural
logarithm, we obtain the relation

in®y(w) = In Py, () + In Dy, (w). (25)

These new functions are called cumulative functions [14], a term that is due to Laplace,
and the coefficient of the term corresponding to (fw)"/n! in the Maclaurin series
expansion of the left side of (25) (provided that it exists), is called the nth-order
cumulant of the random variable ¥ [14]. The nth-order cumulant for ¥ is, therefore,
the sum of the nth-order cumulants for X; and X5. Note that if X is a Gaussian random
variable, its cumulative function is a second-order polynomial in & and, therefore, all
higher-order {greater than two) cumulants of this random variable are zero:

a

In Py(w)=0, n=3.
dew

2.4.2 Cumulants of a Set of Random Variables

The multivariate PDF for the set of r random variables {X;}7_, is given by

r

a ¢
Sx(x) = mFx(x)' (26)

where Fx(x) is the multivariate distribution function defined by

Fx(x) = Prob [ (x; < x,-]] :

j=1
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The multivariate characteristic function is the multidimensional conjugate Fourier
transform of (26):

Oy (w) = f f fx(x)e"“’*‘ dx.

The nth-order moment corresponding to the product

)

4
[1%
Jj=1

where

Zq,- =n, g;=1 forallj,
j=

is given by the coefficient of the term corresponding to

.n r g
Pl @

in the multidimensional series expansion of the characteristic function. We need only
consider the case where r = » and therefore g4; = 1 for each j. This is so because if
some of the g; are greater than one, we can simply consider a larger set of variables
{X}};-,, where some of the X are identical according to the values of g;.

The cumulants are given by the coefficients in the series expansion of the cu-
mulative function In $x(w). Since we consider only r = n, the resulting cumulants
are called simple curmulants. Thus, the nth-order simple cumulant for the variables
[JI:,-];;1 is defined by

an
Cx 2 (—i)" —————— In ®x(w) (27
dwy - - 0w, w=0)
2.4.3 Multivariate Moment and Cumulant Relations
For the set of random variables {X;}7_,, the simple moment is given by
n
Rx=E [ 1% (28)
j=1

Let vz be some nonempty subset of the set of indices {1, 2, - - -, n}. Then the moment

of order n; = Jv;] for those variables with subscripts in v is

Ry, =E ]_[X,l

Jewm
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The rth-order simple cumulant for {X;};_, can be expressed in terms of the simple
moments Ry, by using the distinct partitions £, of the index set {1, 2, - - -, n} [78]:

P
Cx=) [(—1)*’-‘(1: -1 H Rx.uj} : 9
=

£y

Similarly, the nth-order simple moment Ry can be expressed in terms of lower-order
simple cumulants [78]:

P
Ry=Y" [ ]'[Cx,u,} . (30)
Py J=I1
where Cy,,, is the simple cumulant of the variables {Xt}tey,- The relationships
between simple moments and cumulants (29) and (30) are valid for both real- and

complex-valued random variables [9, 99, 108).
An important and useful property of multivariate camulants is the independence
property. Consider the set of variables

Zalpoy =1 =1 i Yitk=15), n=ras,

where the X; are independent of the ¥;. The nth-order joint PDF for these variables
factors

Siy@ = fx@ A, z=[x1 % y -yl
which implies that the characteristic function is the product of characteristic functions
forXand Y:
Oxy (w) = Px(w:)Py(w,).
Therefore,
In Pyy(w) = In Py (w,) + 1In Py(wy)

and the n-fold derivative in (27) is zero. Thus, if there is a subset of variables in the
set {x;}7_, that are independent of the remaining variables, then the simple cumulant
for this set is equal to zero.

Another important property of multivariate cumulants is the following addition
rule. Suppose the set {Z,, )] _, is given by

Zp =X+ Y, m=12--.n, (31)

where (X, ] is statistically independent of {¥,]. Then the cumulant of {Z,} is given
by the sum of the cumulants of {X,,} and [¥,,}:

Cy =Cx+ Cy. (32)

Finally, if the variables [ X; };— are jointly Gaussian, then the cumulative function
In &y (w) is a quadratic function of w and, therefore, the simple cumulants are zero
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for n > 3. Thus, multivariate cumulants can be used to measure the dependence
between random variables, and to test for the Gaussian property [59].

2.4.4 Cuml.ilants of a Time-Series

The relations (29) and (30) are more accessible than the log-characteristic func-
tion expression (27) and are, therefore, used for the cumulants and moments of time-
series. Comparing equations (19) and (30), it is apparent that the relationship for
{x(t+ 1:1,-)]3,?=1 between the pure-sine-wave function o, (¢, 7), and the temporal mo-
ment function R, (¢, T}, is equivalent to that between the simple cumulant and moment
for {X;}j_,. By using the sine-wave-extraction operation, which is an expectation
operation, we can reexpress the TMF in terms of lower-order simple cumulants:

Re(t,Dm =3 [ ﬁ Cilt, n,.),,,] (33)

7 L =l

where Cy (¢, Ty,)s, is the simple cumulant of the #; variables [x(t + Ta))eey, that is
obtained by using the sine-wave-extraction operation £ {-}. Moreover, the relation
(29) can be used to obtain an expression for the simple cumulant in terms of the
lower-order simple moments:

P
Celt. D= [(—1)*’-1@ — 1] &, n,)n,} : (34)
f=1

Fa f=

The function C, (t, T), in (34) is called the zemporal cumulant function (TCF). Using
the equivalence between (19) and (33), we obtain

Celt, D =02 (i T - (35)

That is, the pure nth-order sine-wave function oy (¢, T)» is identical to the nth-order
temporal cumulant function! The Fourier coefficient of this polyperiodic function of
t is given by

CEDn £ (Calt, ) e PP

=Y |-t Y ﬁRf!’(n,)n,. (36)

Py atl=g j=1

and is called the cyclic temporal cumulant function (CTCF) [42]. An individual
component of the TCF, ct (T)ne™™ is called an nth-order cumulant sine wave 10
distinguish it from an nth-order moment sine wave. It can be seen from (20) and (35)
that the CTCF is identical to the (complex-valued) strength of the pure nth-order sine
wave with frequency J that is contained in the nth-order lag product L. (¢, 7),.

This instance is the first (to the best of our knowledge) in which cumulants
have arisen as the solution to a practically motivated problem, namely the problem of
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pure nth-order sine-wave generation [42], rather than as a mathematical observation
concerning the characteristic function [14, 68, 76, 113].

2.5 Properties of the Temporal Parameters of HOCS

We have seen that the TMF can be constructed from all of the CTMFs (cf. (12)),
that the TCF can be constructed from all of the CTCFs (cf. (22)), that the TMF can
be constructed from all of the lower-order TCFs (cf. (33)), and that the TCF can be
constructed from all of the lower-order TMFEs (cf. (34)). Thus, any CTCF can be
obtained from all of the appropriate CTMFs, and vice versa. In other words, the set
of moment functions for orders 1 through n contains the same information as the set
of cumulant functions for orders I through n. How then should we determine which
set of functions to work with in the study of sine-wave generation? To assist us in
making the correct choice, we consider some important properties of these functions.

2.5.1 Signal Selectivity

Suppose our time-series x{¢) consists of the sum of M mutually independent
time-series,

M
HOEDISHOY (37)
m=1
Then, from the addition rule for cumulants, the TCF for x (¢) is the sum of TCFs for
{¥m ()},

M
Ce(t, ha = D Cy, (8, D (38)
m=l
Thus, the pure nth-order sine waves in the lag products of each of y, (¢) add to form
the pure rth-order sine waves in the lag product of x(#). The TMF does not obey this
very useful cumulative relation.
To illustrate how (38) can be applied in practice, consider the situation where
{3 ())¥_, represent M interfering signals that overlap in time and frequency, but
which possess some distinct pure nth-order cycle frequencies, say {8,)*_,. Then it
follows from (38) that

Clr (g = Clr(D)y, m=1,2,---, M.

This indicates that the presence or absence of each of the signals y,, (¢) can be detected
by measuring (estimating) the CTCFs of x (¢) for the cycle frequencies {8, }, and that
parameters of each of the signals (on which these CTCFs depend) can be estimated.
As illustrated in [1, 35, 39, 41, 4650, and 100] for second order and in Secticn 8
for higher order, this signal-selectivity property can be exploited in numerous ways
to accomplish noise-and-interference-tolerant signal detection and estimation.

As another application, let M = 2, »;(?) be non-Gaussian, and y;(#) be Gaus-
sian. Then Cy, (¢, T)» = 0 for n > 3 and, from (37), we have

Cx(t, Tih = Cyl(r: T)m n=3
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which indicates the detectability of v () with no knowledge about y;(¢) except that
it is Gaussian.

2.5.2 Mathematical Properties

It can be shown that both the CTMF and the CTCF are sinusoidal jointly in the
n variables T:

CHr+14), = CE(1),e7P2, (39)
RE(T4+1A), = R¥(T)e™™2. (4D

Hence, these functions are not absolutely integrable with respect to 7. The periodicity
of these functions suggests that we might reduce the dimension of these functions
without loss of information. Reducing the dimension by one yields*

CPu), 2 CL(lut 01D,
REw), & RE(ul OJD),,

(where u = [u; - - - 4, ]"), which are not sinusoidal in general. The value of Cf (D
(R¥(7),) for any 7 can be obtained from the value of Cf(u),, (R%(u),) by using
(39) ((40)). This leads us to ask if these re_duccd-dimension (RD) functions are
integrable. We shall show that the function RS{(u), (RD-CTMF) is not in general,
whereas the function C_‘i(u),, {RD-CTCF) is in general for time-series possessing an
asymptotic independence property. That is, consider the arbitrary two-set partition
T = [7p 7] and assume that the FOT density for the set of variables

x(1) = &+ 1)) = [x() 1)}
factors asymptotically:

Sy () = Srey (¥od Srn () as 1o — 00,

where 79 — 0o means that all of the elements of Ty are tending to infinity. This
asymptotic factorization implies that the TMF, which is a moment corresponding to
the PDF f((-), is asymptotically factorable as well,

B Lyt a} = EH{Lo(t, Toduy Lx(t, Ty}
— EW L.t To)n | ECH Lot 7i)n )} asTo - 00
Thus the TCF is asymptotically zero

Celt, s > 0 asmp — 00,

4The reason for this particular choice of dimension reduction is made clear in Section 3.
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because of the independence property of cumulants (cf. Section 2.4.3), which implies
that each CTCEF is asymptotically zero. Generally, then, the CTCF is asymptotically
zero as long as at least one of the » lag values—say t,—Iis fixed, since the set
of variables associated with L, (¢, 7p),, is asymptotically independent of the set of
variables associated with L(¢, T1)y,, where 79 = [7,--- 1,17 and 7 = [1,]. On
the other hand, the cyclic temporal moment becomes

R:(T)n —> (Rx(t. TO)m;Rx(f, Tl)nl e—iZJ'rw) as Ty — 00
= D RY(To)ny RV (T,
¥

which is not necessarily zero. In fact, it is often nonzero.

If the rate of decay of the RD-CTCF is sufficiently large (e.g., O(||ull"%),
then c'g (u),, is absolutely integrable and, therefore, Fourier transformable. The RD-
CTMF is not, in general, Fourier transformable except in a generalized sense that
accommodates {products of) Dirac delta functions, because it does not in general
decay as its arguments grow without bound, but rather it oscillates. We shall see in
Section 3 that the Fourier transforms of the RD-CTCF and RD-CTMF can be very
useful in characterizing a signal’s higher-order statistical behavior in the frequency-
domain, Before leaving the subject of temporal parameters, however, an example
that illustrates the temporal parameters is presented.

2.6 Example: Sine Waves in Noise

Let x(¢) be the sum of two sinusoids in broadband noise
x(t) = s(t) +m{t)

2
= ) djcosQmgit + ) +m(r).
Jj=!

Since the sinusoids are statistically independent of the noise m(¢), the nth-order
cumulant for x(¢) is

Cx(tl T)n = Cs(ti T)H + Cm(tl T)n-
Forn = 1, the TCF is given by
Co(t, T = R, )y = s + 1) + E¥ pm e + 1)),

whereas for n > 1, C,;(¢, 1), is identically zero. This is proven next.
It is sufficient to compute the rth-order TCF for the time-series that consists of
only a single sine wave
y(t) — eiz.rr_f,l+i9

because if y(¢) consists of the sum of M sine waves, then the nth-order TCF is the
sum of the nth-order TCFs for each of the M sine waves. This results from the fact
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that a sine wave is statistically independent of every time-series, including itself [35]
and, therefore, the addition rule for cumulants can be used. The first-order TCF for

) s )
Cylt, vh = E¥ {y(r + 1)
=yt +1)
— eiz:'rf,(r+r)+i9_
The second-order TCF is the second-order TMF with the product of first-order TMFs
subtracted off,

Cyit, Dz = B (p(e + 1)yt + )} — E®H (¢ + 1)} E¥ {3t + 1))
= B [ + )} ¥ {30 + ) — E¥ {0 + 1)) ¥ (30 + )
=0.

From (19), the nth-order TCF is given by

P
Cylts D = Ry(t, D = Y { [ Tu,),,j] :

£y =1
p#l

For n = 3, all the terms in the sum are zero except for the one that corresponds to
p = 3 because the pure first- and second-order sine waves are equal to zero. Thus,

3
Cylt. M3 = Ry(t, s — [ [ Colt. o

i=l

3 3
= gl l_[y(l+'rj)] l_[ EH ¢t + 1)

i=1 Jj=1

= 0.

By induction,
Cyt, D=0 n=2

We can further conclude that the nth-order cumulant for any polypericdic function
¥(t) is zero for » > 2 because all such functions obey

EW L, (¢, P)n) = Lylt, D
Now, back to our example. Forn > 1,
G, D =C(t, My, n> 1L

Ifm(¢) is Gaussian, then Cp, (f, 7}, = Oforn > 2. The nth-order moment R, (¢, 7), is
difficult to compute by straightforward calculation, but it can be more easily computed
by using the lower-order curnulants as in (33). Assuming that m (¢) is a zero-mean
Gaussian signal, the third-order moment is given by
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Re(t, 73 = Z[Hc «, n,),.]

p L=t
pP#EL

= Cu(t, 11, T2)25(t + 13) + Ca (¢, 71, T3)2 5t + T2) (41)
+Cnlt, 12, 13)2 50 + 11} + L2, Da.
If m(¢) is also stationary and white, then
Cn(t, Ty w2 = Mob(T; — 1),
and

R.l.'(t' T)J
= No[8(t1—12)s(t + 13) + 8(z1 —13)s(t + ) + 8(r2—ma)s(t + T)] + Ls (2, Pa.

The impure third-order cycle frequencies forx (¢) forthism (#) are £ gy, £ g, £+ 2,
and tg; + g; + g for any choices of i, j, k € {1, 2}. There are no pure third-order
cycle frequencies, which means that the set of impure cycle frequencies {«] is quite
different from the set of pure cycle frequencies {8}. The CTMF for o = 3g; is given
by

R (13 = (Re(t, )pe 272007

2 “2)
_ _lei(2n3gl[r1+rz+r3]+36'|)_

Alternatively, if the broadband noise m(#) is a Gaussian polycyclostationary signal
[35), then it will contribute its second-order cycle frequencies to the TMF in (41) by
mixing with the cycle frequencies of s(¢) in the first three terms on the right side.

3 THE SPECTRAL PARAMETERS OF HOCS

The Fourier transform of R%(u); is the power spectral density (PSD) of x(¢) and the
Fourier transform of 6‘2 ()7 is the PSD of the centered version® of x(f) (this is the
Wiener relation [116], cf. Section 4.2.1 and [35]). The Feurier transform of a sym-
metrized version® of R (u), for nonzero « is the spectral correlation function (cyclic
spectral density function}, and the Fourier transform of a symmetrized version of
C% (u)3 is the spectral correlation function for the time-series x(¢) with its first-order
sine waves removed (this is the cyclic Wiener relation [35], cf. Section 4.2.1). There-
fore, the spectral parameters of HOCS could be defined to be the Fourier transforms
of R%(u), and C%(u),, whenever such transforms exist. These transforms are indeed

Sx(r) — Bl (x()}
é(x(f +u/2)x"(t — "/z)e—izzmr)
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the central spectral parameters of the theory of HOCS, but it is more natural to derive
them from a consideration of spectral moments and spectral cumulants; that is, from
limiting versions (as bandwidth approaches zero) of moments and cumulants of nar-
rowband spectral components of x (), and then to show that they can be characterized
as Fourier transforms of temporal moments and cumulants,

3.1 Moments

It is assumed that x(¢) is absolutely integrable on finite intervals. We consider. the
complex envelope of the spectral component of a segment of x () that is centered at
t and has width T':

+T/2

Xr(t, f)= f x(v)e T gy, (43)

1-T/2
The temporal moment of the set of n variables { X7 (z, j})};;] is defined by’

Ser(Fn = (HXT(:, f,—)>, f= Al
=t :

1 pzn n (44)
= lim — Xr(t, f)dt
Jim ﬁmg r(t, [,
and is assumed for the time being to exist. If the integration time T in {(43) is now
allowed to tend to infinity in (45), the spectral moment function (SMF)

S(f)a = Am Se (F)n

| pZn (45)
= lim lim — .
T—eo0 Z—I{rc%o Z -Zz/2 1_[ XT(I, fj) at
Jj=1
is obtained. However, this limit exists only in a generalized sense that accommodates
products of Dirac deltas (impulse functions). We shall see that Dirac deltas can be
avoided by working with the cumulant counterpart of this moment.
To see that the SMF (46) is composed of preducts of impulse functions, we
proceed as follows. The function (45) can be expressed in terms of the CTMF as
follows

n

72 T/2 .
Sxr (fn = s f Hx(t + v}.)e—‘ZFﬁ(Hw) dv>

-T2 T/2 j=1

o - . (46)

= f f wr (B} R (), e ¥ dv,
—00 —00

It would be more consistent to use £ {-} in place of (-} in the definition of Syy (f)n, but it is
easy to show that these two operations lead to the same function (45). Thus, we start with the time-average
operator {-).
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where

w= Y =1,
i=I

wr (e & [ rect(y;/T),
=l

N ERTESY!
rect(t) = { 0, Itl>1/2.

Thus, S, (f). is nonzero only if the sum oy of the frequencies is equal to an im-
pure nth-order cycle frequency o of x(¢). Now, assuming that RY (#), is absolutely
integrable on the hypercube of size T on a side, we see that the Fourier transform
(47) exists and that (45) therefore exists. Assuming for the time being that RS (#),, is
Fourier transformable on the entire space

S 2 f CL f " R (e T dr 7
(46) yields
Solhn=[ o [ smer-n [ Tsinetanyag,
- —oa k=1
where .
sinc(fy & H0GS).
nf

Thus, the finite-time spectral moment Sy, (f), converges to

o0 cQ n
S0 2 fim S (P = [ oo [ ser-pn ] [se0de
T-ro00 —oo 00 il
(48)
= S52°(fns
where 8(-) is the Dirac delta. Let us investigate this hypothetical Fourier transform

(47). Using the fact that R (1), is sinusoidal in the translation variables (cf. (40)), it
can be shown, formally, that

S5 On =S —), f=[fi-r fiall (49)
where §2(f"), is the Fourier transform of the RD-CTMF
5 A ] oL f " R, e g, 50)
Thus, we have the formal result
| ST — ), fTl=0,
S:e(f)n = [ 0 Mota (51)
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for all cycle frequencies o of x(¢). The SMF can, therefore, be reexpressed as

Se(fn =Y SEFMS(fT1—w), (52)

which reveals that the SMF is a sum of components with impulsive factors. Moreover,
it is shown in the next section that 51"' (). can also be a sum of components with
impulsive facters and even preducts of impulses. Thus, neither the SMF nor the
reduced-dimension SMF (RD-SMF) (50) are well-behaved functions.

3.2 Cumulants

The spectral cumulant function (SCF) is better behaved than the SMF. To establish
this fact, we proceed in a manner analogous to that used for the SMF to obtain a
characterization of the SCF in terms of the Fourier transform of the RD-CTCE. The
simple cumulant of the variables { X+ (¢, _]:.-)}_'}=l is given by

P (f)s = Cumulant {Xr(z, Sl
(53)

= {( D7 p— 1! H Sx; (f,,,)n,]

I j=1

This function is well defined for finite T since each moment Sy, (-} is finite. The
spectral cumulant functicn is defined to be the limit

P(f)a = Him Pe(f)n. (54)

Equation (47) can be used to reexpress Py, (f). in terms of lower-order CTMFs:

Px;— (fin= Z k(p) l_I f f wT(”Vj)n_, R (”V,)nj —iamft ¥ dﬂ ;

"j

where k(p) = (—1)71{p — 1)! and

2 Y e

key;

From this expression we see that if for every partition in the set P, (except that for
p = 1), there is some «; that is nor a cycle frequency of order n; = |v;|, then the
function P (f), is equal to the function S, (f),. If there is at least one partition
such that all the «; for that partition are cycle frequencies of order ny;, then the
function Py, (f), differs from S, (f),. This is important when considering methods
for measuring Py, (f),, as in Section 7.
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The function Py, (f), can be expressed more compactly as

B (P = .[ .[ zk(P) [ Hw?‘("v;)n; R (ﬂv;)njil —Jerf‘f,,d

w-Pn

(55)

o 0o P
| [ [Z Ko ]] Ri’f'(vv,)n,] ettt gy,
—0  J-co 7, =1

By using (47), it can be shown that this last expression is equivalent to the Fourier
transform of the CTCF on a hypercube of size T on a side:

[e0] (o] . t
Botfa= [ [ wr,Coa, e (56)
—0o —00
By analogy with the preceding argument for the SMF, the SCF is given by
P(f)n =3 PEUMa(f11-p), 6N
B

where o -,
Pt [ [ e s8)

—00 —0a

is defined to be the cyclic polyspectrum (CP). The transform (58) does exist (in the
strict sense that excludes Dirac deltas) in general for time-series with asymptotically
independent variables such that the reduced-dimension CTCF decays sufficiently
rapidly in all directions so that €% (w), is absolutely integrable and, hence, Fourier
transformable (cf. Section 2.5.2).

It is now easy to show that the RD-SMF S (f"), can itself contain impulses.
The decomposition of this function in terms of lower-order CTCFs can be obtained
by computing the Fourier coefficient of the TMF given in (33):

P
R =+ | Y []cP e, |- (59)
}:21 ,ﬂTl=a J=1
p

Setting 7 = [u 0] and Fourier transforming in # yields

- P—l -
S5 = P+ 2| 2 P [ 22 (ms0N, - B) | ©60)
i=1

P, | Bl1=a
pEL

where it is assumed that the partitions in (59) are ordered so that v, always contains
n. In (60), each coefficient Pf’ (-) is well behaved so that there are no hidden impulse
functions on the right-hand side. For the case in which there is no cyclostationarity
of order less than » associated with {x(t + Tj)};=1, the sum over P, in (60) is zero for



124 Spooner

nonzero values of ¢, If x(¢) exhibits cyclostationarity of order less than # such that
there is at least one 3 such that 371 = o, then the sum cannot be identically zero as a
function of f'. Since it is known that P;‘ (f'), is well behaved (contains no impulses),
then the RD-SMF must contain impulses or products of impulses and, therefore, so
must the SMF.

Because of the characterization (57) of the SCF, we see that the SCF is nonzero
only on the hyperplanes specified by 11 = 8, where B is a pure nth-order cycle
frequency of the time-series x ().

In this section we have seen that the CP is, in general, the only well-behaved
spectral function in the theory of HOCS. The SMF and its reduced-dimension version
S (f")n in general contain products of impulses and are, therefore, not well-behaved
functions. However, in the special case where the lowest order of cyclostationarity of
x(¢t) is n, the impure nth-order sine waves (with strengths given by the CTMFs) are
identical to the pure nth-order sine waves (CTCFs) for nonzero « and, as a result, the
nth-order SCF is identical to the nth-order SMF, which results in equality between the
CP and the RD-SMF. In addition, there can be many values of the frequency vector
J' for which the RD-SMF and the CP are equal even when x(¢) exhibits lower-order
cyclostationarity. For these f', the CP can be measured by measuring the RD-SMF.
This is explained more fully in Section 7.

3.3 Example: Sine Waves in Noise

We reconsider the example of Section 2.6, The third-order RD-SMF for the signal
consisting of two sinusoids in noise,

2
x(t) = Z Ajcosrgit 4+ ;) + m(t)
i=1
= s(() +m(),

for @ = 3g, is given by the Fourier transform of the RD-CTMF
- AS
R: (u)3 = -—8lei(2”3§1 [t +er2]4380)

obtained by setting 73 = 0 in (42). This Fourier transform is
4

@U%:Tﬁ%m—%mm—m)

which demonstrates that the RD-SMF can be multiply impulsive. For Gaussian m({),
the nth-order CP for x{¢) is identically zero for n > 2. If m(f) is not Gaussian, then

PE(fn=P2(fN,, n=2,

which must be nonzero for some 8 and ».

Higher-Order Statistics for Nonlinear Processing of Cyclostationary Signals 125

4 DISCUSSION
4.1 Utility of the Theory

The theory of HOCS and, in particular, the theory of temporal and spectral cumulants,
is expected to be useful because it possesses the following attributes:

1. It characterizes the sine-wave components present in the output of nonlin-
ear transformatiens (both with and without memory) of polycyclostationary
signals.

2. It characterizes the statistical dependence between the amplitude and phase
fluctuations in distinct spectral bands, which can be useful for polyperiodi-
cally time-variant nonlinear filtering.

3. The cyclic curnulants and cyclic polyspectra are signal selective in the same
way that the second-order parameters, the cyclic autocorrelation and cyclic
spectrum, are signal selective.

4. The cyclic parameters depend (explicitly in some cases) on the phases or
timing references of the signal (for example, carrier phase and/for clock
timing).

5. The cyclic cumulants and polyspectra are well-behaved mathematical quan-
tities for signal models that are physically appropriate.

The theory is expected to be useful in the following specific ways:

1. Design and analysis of detection and parameter estimation algorithms for
polycyclostationary signals with weak or nonexistent second-order polycy-
clostationarity (cf. Section 8).

2. Performance analysis of any detector, estimator, or other signal processor
that operates nonlinearly on a polycyclostationary signal.

3. Study of the effects of unintentional or unavoidable nonlinearities in system
elements on polycyclostationary signals.

4. Optimization of sine-wave generation devices for synchronization purposes.

5. Modulation classification and recognition based on frequencies of generat-
able sine-wave and the orders at which the sine waves occur (cf. Section 8).

4.2 Special Cagses of the Parameters

4.2.1 HOCS, the Cyclic Spectrum, and the Power Spectrum

In this section we examine the relationship between the parameters of HOCS
for n = 2 and the well-established parameters of second-order polycyclostationarity
(SOCS), which include the {(nonprobabilistic) autocorrelation and power spectrum as
special cases.
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The autocorrelation function for a real time-series x(¢) is defined to be
R (1) = (x(t +t/Dx(t — 1/2)}, (61)
which is obtained by using the time-averaging operation {-}, that is,
Re(z) = EOx (s + v/2)x(t — £/2)}.

This function does not in general describe the second-order polycyclostationarity (if
any exists) of x(¢). To do that we need to use the sine-wave extraction operator to
obtain the second-order TMF for 1, = 1/2 and 72 = —1/2,

Re(t,7) 2 E@ {x(t + t/)x(t — 1/2)}. (62)

For a stationary time-series, (61) and (62} are identical, but for a polycyclostationary
time-series we have

R.(f,7) =) R¥(z)e’™™ (63)
where
RE(0) = (x(t + t/2)x(t — 1/2)e” &) (64)

and, therefore, R,(z) = RE(T:). Equations (63) and (64) define the central time-
domain parameters of SOCS for real time-series [35]. The function (64} is called

the cyclic autocorrelation function. We can easily relate the cyclic autocorrelation
function to the RD-CTMEF for n = 2. Since

Rg(u)z = (x(z + u)x(r)e—ﬂrmt)
= (x(t +u/2)x(t — u/2)e"'2"“’) gron.

then the RD-CTMEF for »n = 2 is related to the cyclic autocorrelation by a sinusoidal
factor: _ )
R (u)2 = RS (u)e'™™. (65)

The spectral correlation function or cyclic spectrum is the limit as the bandwidth
tends to zero (T — oo) of the time-averaged product of spectral components with
approximate bandwidth 1/ T and frequency separation o:

1
S5 = Jim ( TXr S+ e/DXR S - a/z)) : (66)
This function is the Fourier transform of the cyclic autocorrelation function (64},
oo .
SX( ) = f RE(T)e ™/  dr. (67)
—00

The relation (67) is the cyclic Wiener relation, and it reduces to the Wiener relation
between the power spectrum and the autocorrelation for ¢ = 0,
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00 =
S0y = f RU(rye /T gz, (68)
-0

Combining (50), (65), and (67) yields

0 ] ,
RS (u)2 e~ gy
o0

SE(f = f

(69)
(s o} . 3 .
= f R (u)e'™ ™ e/ gy

= 57 (f —a/2),

which implies that the Fourier transform of the RD-CTMF, S‘;( 12, is related to
the cyclic spectrum by a frequency shift of a/2. Note that the function §7( /"), can
contain impulses that are due to the first-order sine-wave components contained in
the data x(¢). In the development of the theory of SOCS, it is most natural to assume
that the data does not contain such finite-strength additive sine waves. In this case,
the moments and cumulants are equal, and S‘f ()2 does not contain impulses,

R2(u)y = C¥u),
PX(f)2 = 8 (M
= S/ —a/2)

Thus, in this special case, the CP is equal to the shifted cyclic spectrum, and the CP
for @ = 0 is equal to the PSD, PY(f"); = SP(f"). We conclude that the parameters
of HOCS that are defined in this paper are consistent (to within a frequency shift)
with the previously developed second-order parameters for polycyclostationary time-
series, and are consistent with the notions of autocorrelation and power spectrum and
are therefore properly referred to as generalizations of the second-order parameters.
The same can be said of the parameters of HOCS and SOCS generalized from real
time-series to complex time-series as done in Section 5.1 for HOCS and in [35] for
SOCs.

4.2.2 HOCS and Higher-Order Stationarij:y

A signal is called kth-order stationary (in the wide sense, cf. Chapter 1) if its nth-
order moments (stochastic or FOT) forr = 1, - - -, k are translation invariant. Such
signals, within the stochastic-process framework, are the subject of the literature on
higher-order statistics [81, 83]. The cyclic polyspectrum for such signals is zero
except for B = 0. Thus, the stochastic (FOT) HOCS parameters of an nth-order
stationary signal match those of stochastic (FOT) higher-order statistics. But, there
is not, in general, a match between the same types of statistics from the two different
frameworks (cf. Chapter 1).
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Consider a zero-mean polycyclostationary ergodic stochastic process X(¢). If we
compute the theoretical FOT power spectrum for a sample path of the process and the
theoretical stochastic power spectrum for the stationarized stochastic process obtained
by phase randomizing (cf. Chapter 1), then we get the same function provided that
the phase randomization is done properly [36]. But the phase-randomized process is
not cycloergodic. In other words, it is possible for a polycyclostationary time-series
o be a sample path of a stationary stochastic process: if the power spectrum is the
only quantity of interest, this modelling discrepancy is not apparent. This is so simply
because of ergodicity: The @ = 0 component in the FOT second-order moment (63)

Re(t, 1) =) RY(z)e™ (70)

must be equal (with probability one) to the stochastic second-order moment R x(1):
R%z) = Rx(r) = ELX( + t/DX(t — t/2)).

This actually occurs often in the literature on communications theory, Because of
this correspondence, the @ = 0 component in (70) is sometimes referred to as the
“stationary component” of the second-order moment.

Can this be generalized to higher-orders? What is the interpretation of the e = 0
component of the nth-order TMF (12) or the 8 = 0 component of the nth-order TCF
{34)? The answer is that neither can be interpreted as a stationary component because
the & = ( and § = 0 components of the moment and cumulant, respectively, are not
in general equal to the moments and cumulants of a stationarized process. This is a
result of the fact that each of these quantities depends explicitly on lower-order cyclic
moments and/or cumulants (cf. (36) with g = 0). This is demonstrated in Section 7.

The relationships between all the parameters of higher-order cyclostationarity
are shown graphically in Fig. 1. In this figure, the labels on the lines represent
functional relationships between the quantities at the arrowheads. The portions of the
figure that correspend to the special cases of second-order stationarity, second-order
cyclostationarity, and higher-order stationarity are as indicated in the figure caption.

5 DEVELOPMENT OF THE THEORY
5.1 Complex Time-Series

To allow for arbitrary conjugations in the lag product of a complex-valued time-series
x(¢}), we use the following notation

Let, D = [ [x*7 ¢ + 1, (71)
Jj=1

where (%); is either a conjugation * or nothing, that is, (*); is an optional conjugation
of the jth factor x(¢ + t;). For each of the 2 different choices of conjugations in

Higher-Order Statistics for Nonlinear Processing of Cyclostationary Signals

Temporal Moment

Spectral
Moment

Spectral Cumulant
KEY:

FT  Fourier Transform

FC  Fourier Coefficient

M/C  Moment/Cumulant Relationship
RD  Reduce Dimension

Figure 1: A pictorial representation of the relationships between the parameters of
higher-order cyclostationarity. The parameters of higher-order stationarity as Lhey are
typically defined correspond to the inner diamond (bold arrows) because in this case
the translation invariance of Lhe lime-demain quantities suggests the reduced-dimension
quantities. The guantities in Lthe boxes A and B are equivalent for zero-mean signals
and n = 2 and 3 because in this case moments and cumulants are equal, Thus, box A
(or B) contains the relation between the cyclic spectrum and the cyclic autocorrelation
for zero-mean polycyclosiationary signals, and as a special case contains the Wiener
relation (bold arrow).

(71) we define the CTMF by
RE(Mn 2 (Le(t, Pne™ ),
and its reduced-dimension counterpart by
R{n = R¥(Dy, T=[u0],

as in Section 2 for real time-series.

129



130 Spooner
In general, the 2" functions RY (7), are distinct. This is immediately clear in the
case of n = 2, where we have the functions
RE (1)y = {x(t + T)x(t + 1)e” ),
RL(P2 = [* (¢ + 1)t + T2)e ™2™},
RL(Dz = {x(t + 1)x* (¢t + 1) 2™),
R:t (1) = (I"(t + T)x*(t + rz)e—r'Znar) )

For real time-series these four functions are equivalent provided that n = . For
complex time-seriés they are not, and instead the following relations hold:

Ry (11, 12)2 = R (11, 123
RI (11, 12)2 = R5,' (71, 72)3.

For certain complex-valued signal types and values of n, the cycle frequency sets that
are associated with each choice of conjugation are distinct, as illustrated in [35] for
the case of n = 2.

For an arbitrary collection of time-series translates {y;(¢ + 7;)}]_,, the cross
(joint) CTMF is defined by
n
RS (T = ( Hyj(t + tj)e_'z"‘"> \ (72)
j=l
and the cross SMF is defined by
n

Sy = lim ( H Yirdt, m) : 73)

We know from Section 3 that (73} can be nonzero oniy if f 1 = @, where a is an
impure nth-order cycle frequency of {y;( +;)}j_, (i.e., (72) is not identically zero as
a function of -+ for this &), in which case (73) is the n-dimensional Fourier transform
of (72),

For the choice of y;(t + 7;) = x™¥ (¢ + 1), the following is obtained,

4772 )
Bt ) = [ 5O we o
=172
1+T/2 ),
= |:f x(u)e‘fz”(_)ff}" dui|
=72

= X7, () ),

where (—); is the optional minus sign asscciated with the optional conjugation (x);.
So, the SMF for (y; (¢ + 7;)} can be expressed in terms of Xr (-, -) by

8y(f)n = ggmm< [[x7e (—),-JG-)>, (74)
1

Jj=
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which is nonzero for f 11 = @. The RD-CTCE can be constructed in the same manner
as in Section 2 for real time-series, that is, by combining lower-order CTMFs. The CP
is the (n — 1)-dimensional Fourier transform of the RD-CTCF, and is nonzero only for
I 1= B where B is a pure nth-order cycle frequency for {x*% (£ + rj)}:,!: ;- Justasin
the case of the SMF (74), the SCF can be thought of as the limit (as T — oo)of the joint
simple cumulant of the set {¥; (¢, f;)}}..;. Thus, the CP for the set {x® (¢ +7;)}}_, is

characterized by the limit (as T — oo) of the cumulant of the set [X(; (e, (=) I RE
analogous to the characterization for real time-series in Section 3.

5.2 Signal-Processing Operations

In this section we obtain input-output relations for the higher-order moments and
cumulants of time-series subjected to the signal-processing operations of addition,
multiplication, convolution, and periodic time-sampling. The derived relations can
help in the calculation of higher-order parameters of modulated signals if such signals
can be represented as a series of operations on a simpler signal, for which the higher-
order parameters are known or are easily determined.

5.2.1 Addition

Let z(¢} be egual to the sum of two statistically independent time-series x (¢) and
¥,
2(t) = x() + y(1)-

In this case, the TCF for z(¢) is given by
C:(t, T = Cut, D + Cy(t, Tha, (75)
which implies that the CTCF is given by
CE(D)n = CE@n + CE(a, (76)
and the RD-CTCEF is given by
CE(u)s = CEu), + Ch (), (77
The CP is, therefore, given by
PR = PE(fn + PRUS (78)

No equally simple additive relations hold in general for the CTMF and SMFE. The
results (75)—(78) can be extended by induction to the case in which z(¢) consists of
the sum of M statistically independent time-series.

5.2.2 Product Modulation

Let the time-series z(¢) be the product of two statistically independent time-series
x(t) and y(¢)
z(t) = x () ().
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The statistical independence [35, 45] of x(¢) and y(f) implies that
gt Hx(")f +1) Hy(*)* @+ vk)]
j=1 k=1
= Flu) l Hx(*),v(t + T )] Elel [Hy(*)x([ + Uk)’

J=1

for all values of #, m, 7, and ». The TMF (12) for z(¢) is simply

Ri(t, )y = E [ [[="¢ +Tj)]
j=1

= f) [ TTx @ +np™e + Tj)]
j=1
= Re(t, ™)y Ry(t- -

Using (12), the TMF can be expressed in terms of CTMFs,

Rty Dy = ) RE(),e ™™

= |:Z R} (T)ne"z””’] |:Z R;(T)ne"z””'] :

m 14

which implies that the CTME for {z(z + 1))}, is given by

R:(T)n = (Rz(t; T)ne_nm")

79
= R;—J (T)n Ra_n(T)n ( )
i g
n

=) REY(1),RY (D, (80)
Y

which are discrete convolutions, where @ — # is equal to an impure nth-order cycle
frequency for y(f) in (80), and @ — y is equal to an impure nth-order cycle frequency
for x(f) in (80). The TCF and CTCF for {z(¢ + rj)} —; can be constructed by using
(34), (36), and (80) or (80). The SMF can be obtamed from (80) using the convolution
theorem for the Fourier transform,

Sza(f)n =Z[ f S;——y(f"g)nS;(g)ndg| (81)
y “-00 —00

which is a joint continucus and discrete convolution. No equally simple input-output
relations hold for the CTCF and CP if both x (¢) and y(¢) are random. However, if one
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of these time-series is nonrandom (which in the FOT framework means it is constant,
periodic, or polyperiodic [35, 45]), say x(¢), then its lag product is identically equal
to its TMF:

Ret, Dy = E¥NLy (¢, Tn} = L (t, D

In this case, there is a simple formula for the temporal and spectral moments and
cumulants for z(¢), which is obtained next. Expressing the TCF for z(¢) in terms of
the TMFs for x(f) and y(t) yields

b
Colt, Dy =Y [(—1)?“(1: -] R0, n,)n,}

P, Jj=1
7
= E[( 1P (p — 1! { [T&¢. 'r,,}),,’] HRy(I,Tvk)nk]:l.
Jj=1 k=1

Because x(¢) is nonrandom, the product of lower-order TMFs for x (1) is equal to the
nth-order TMF for x(¢) for every partition and can, therefore, be factored out of the
sum, which ieaves the cumulant of y(¢):

Colt, The = L.(, T)ncy(t: Th = R.(z, ’T),,Cy(l, Thn-

Thus, in the special case where x(#) is nonrandom (polypenodlc) the formulas (80)—
(81) hold with R,, §,, Ry, S replaced by C,, P., Cy, PJ,, respectively.

5.2.3 Linear Time-Invariant Filtering

Let z(#) be equal to a filtered version of x (¢},

z(t) = j‘oo R(A)x(E — A)ydA,

00

where the impulse-response function #(-) is assumed to be absolutely integrable. It
is easy to show that the CTMF for [z(¢ + 7))} is given by

o= [ [ []‘[h‘*’f(m} RET—NpdA, AL [y-ooal
—00 —00 j=l

Assuming that it exists, the spectral moment function can be obtained by using the
convolution theorem for the Fourier transform,

S:(f)n = [ I1 H“”((—);JS—)} S:(fn (82)
i=1

where

H(f)y= fm h(t)e /1 gy
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is the transfer function of the filter. The input-output relation (82) is intuitively
pleasing since the effect of filtering x (¢) is to scale the spectral component in x () with
frequency v by the complex number H (v). Thus, the individual spectral components
that are averaged to form the SMF are each scaled by the appropriate value Hy ¢ )’ e
It follows from (34) and (54) that the effect of filtering on the CTCF and the Ci’j
the same as that for the CTMF and SMF:

@h%:f h]wwhq@w—»mx (83)

=1
and
n—1
PR = [H‘*)ﬂ (I8 -1F D] H‘*’f((—)jﬁ):] PE(fy (8D
j=l1
Thus, the effect of filtering is conveniently represented in terms of both curnulant and
moment functions.

5.2.4 Periodic Time-Sampling
Let z(¢) be the product of an impulse train and the time-series x (r):
2(t) = y({Hx (1),
20
Yoy = ) 8¢ —mT),
m=—00
where T is the sampling increment, and f; = 1/7; is the sampling rate. Since »(t)
is periodic it is statistically independent of x (¢}, and the results of Section 5.2.2 can
be used to find the nth-order statistical parameters for z(f). The nth-order RD-CTMF
for z{¢) is given by (cf. Section 5.2.2)
R =Y R ) RS ().

Y

By using the formal identity
o0 oo .
Z a(t__mn)zfy Z e(i:rrmrj;,
m=—00 m=-0a

it is straightforward to show that the RD-CTMF for y(¢) is given by
R(w), = f7" Z [exp{i2n fuim'} e (m'1 £ — 1))

where
m= (my--mall W my-eoman ]l
and
I, x=0,
“”—[o,x¢&

Thus, the RD-SMF for z(7) is given by
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S5 =11 [Z ,@'Lf; —a + NSL(f - m’fs)n} . (@)
14 m
Because y(f) is periodic, the cumulant for {z{z + 1'_,)}_';_ is given by (cf. Section
5.2.2)
C:(t, Dn = Ry(t, nCr(t, Ty,

and therefore the analysis above for the RD-CTMF holds also for the RD-CTCF,

C_'f () = Z C_'g (u)n R?—ﬂ (u)n [
n

and for the CP,

Y

PR(fa=fY [Ex(nﬂ 16 -B+y)PU(f - m’f;)n} . @6

The formulas (85) and (86) show that there are two kinds of aliasing effects due to
sampling: (i) frequency aliasing, which is due to the overlapping of images of the
CP (RD-SMF) with the same cycle frequency that occurs when y = 8 (¥ = ) in
the sum and, (ii) cycle aliasing, which is due to the overlapping of images of the CP
{RD-SMF) with cycle frequencies other than g (cr).

6 DIGITAL QUADRATURE-AMPLITUDE
MODULATION

6.1 Cumulant Formulas for QAM

In this section, we present the higher-order parameters for real- and complex-valued
pulse-amplitude-modulated (PAM) signals, which provide useful models for the
classes of digital baseband and quadrature-amplitude-modulated (QAM) signals. The
PAM time-series is given by

=)

X0 =) awplt +mTy+1), (87)

m=—00

where {a,,} is an independent and identically distributed (IID) symbol sequence, 1/ Ty
is the symbol rate, 7 is an unknown constant that represents the absolute timing of
the waveform, and p(¢) is the pulse function with Fourier transform given by P(f),

o0
P = [ pe s ar
—0
It is desired to calculate the CTCF and CP for [x® (¢ + L)
The higher-order cumulants for PAM time-series can be dcnvcd by using the
results of Section 5. This derivation is sketched next. The cumulants for arbitrary
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PAM signals can be derived from the cumulants for PAM signals that have rectangular
pulses (or any other pulse with duration limited to an interval with length equal to
the reciprocal of the symbol rate). These latter cumulants can be shown [110] to be
given by

C(t, Tn = Cumulant {x™ (r + Yo

o (88)
= Ca.n Z HP(I +MT0 +Tj)1
m=—00 j=]
where C, , is the nth-order cumulant of the symbol sequence, and is given by
Can = 3 [(—1)‘”"(11 -] Ra,u,} .
F, i=l
in which
1 = )
. & lim %, (89)
Ra, 4 K- 2K+ 1 k;l{q];!j k
The RD-CTCF and CP follow directly from (88):
~B C"‘" i i —iZnpt i2n By o
Cl)e = == | p) ][] PG+ up)e @ dee o, (90)
TO —0c =1
B(fy = S - PB- 1if’ )1‘[ P(fe?Pe, 1)

=1
for g = k/ 1. _

An arbitrary PAM time-series (87) can be represented as a filtered product of an
impulse train with a time-seri¢s a(f):

o

() = Y anplt+mTy+1o)

m=—0Q

[a(r) PG +mTo)i| ® plt +10)

m=—00

y(1) @ plt + 1),

where ® represents the convolution operation; and a(f) is a rectangular-pulse PAM

signal of the type just analyzed. The cyclic cumulants and cyclic polyspectra for y{¢)

can be determined by using the results of Section 5.2.4, and the results of Section 5.2.3

can then be applied to determine the effect of filtering on these cyclic parameters.
The CP for y(¢) follows from (86):

PO =13 [ZK(MTI/TO - B+ VP - m’/To)n} .02

Y
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where m = [my---m,l, m' = [my---mn_;], and «(-) is the Kronecker delta
function. The form of (92) implies that the pure nth-order cycle frequenmes for y(t)
are {§ = k/Tp) for all integers k. It can be shown that the function Py( f.isa
constant function:
Ca,n
T

P(f N =

The effect of filtering the time-series y(¢) is easily determined by using (84) with the
filter transfer function :

H(f) = f P(f -+ t(})e_iznfr d! = P(f)eiznfrﬂl

(=]

Thus, the nth-order CP for x (¢) is given by

PE(fn = ‘“‘P(( )u[ﬁ—le])‘*’"HP(( ) )R, (93)

j=

which reduces to the following simpler form for real-valued time-series (no conjuga-
tions):

PR(pY, = Sor .- P(6 — Uy’ )H P(f;)e/¥Ph, (94)
i
Inverse Fourier transforming (93) yields the RD-CTCF for PAM:

_ Ca oo ne1 . )
Clw), = To f PO ] Pt + up)e P dr ¥ B — ki Ty, (95)
—0

j=1
6.2 Real-Valued PAM

In the case of binary symmetric real PAM, the symbols take on the values 4-1 with
equal FOT probability. For # = 2, the cumulant for the symbol variables is

Ca.2 =1
Therefore, the second-order RD-CTCF is given by

_ 1 oo ; .
Crz = Fof POPE + w)e= 2B dr 20 g — /T,
—o0

and the second-order CP is given by

_ 1 .
PE(fy) = FUP(ﬁ — FYP{f)e'* o,

which for 8 = 0 reduces to the well-known formula for the PSD of a unit-power
PAM signal,

= 1
Pi(f = ZIPUNHIE
0
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For n = 4, the cumulant for the symbol variables is given by
Cas = Rap —3R2, —4R, 3R, 1 + 12R,2R2 | — 6R} |
= Re4— 3R, = -2,

where R, ; is given by

1 X
- i
= 1 .
Rop = Jim 2K +1 m;Kam
Thus, the fourth-order RD-CTCF is given by

- -2 ] 3 ] .
Cf(u)4 = ?f p(t)l_[ Pt + u}-)e_‘z”ﬁ’ dt 2B
0 J-x =l

The magnitude of this function for #3 = 0 is shown in Figs. 2 and 3 for § = 0 and
B = 1/ T for two different pulse shapes. The pulse shape for Fig. 2 is rectangular,

1, |1 = R”/2,
0, otherwise,

pi) = {

and the pulse shape for Fig. 3 is the inverse transform of the bandlimited pulse

transform
1, |f1=1/20,

P = { 0, Ifl>1/20,

which is a sin(x)/x shaped pulse.

6.3 Complex-Valued PAM

(96)

Consider the complex PAM signal (87) with symbol constellation {11, i} (equally
probable), and a pulse with transform given by (96). This is a model for the complex
envelope of a bandwidth-efficient quaternary-phase-shift-keyed (QPSK) signal. This
signal has no second-order cyclostationarity because for r = 2 and the choice of no
conjugations (or for two conjugations) C, » = 0, and for the choice of one conjugation,
Cs,2 = 1. But because of {96), the RD-CTCF is zero:

oo
| s rnea

(s o]

= f P(N)P*(f — Bye~ /4 d P =0, §=q/Ty, q #0.

v o]
Nevertheless, this PAM signal exhibits fourth-order cyclostationarity for two choices
of conjugations. In the first case there are no conjugations and therefore
Cas = Raq —3R2; —ARs3Ra1 + 12R,2R2 | — 6R} |
= Roa—3R};=Rea=1,
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2T,

2T,

2T, 2Ty

B=1T 2Ty

2T,

2T,

2T, 2Ty

Figure 2: Surface and contour plots of the theoretical RD-CTCF for a real-valued
binary PAM signal with a rectangular pulse shape.

which implies that

o 3
pO [ ] plt +upe ™ dre?™, g = k/ T,
Jj=1

Chwre =7 [

—o0

In the second case, two variables are conjugated, that is, the ser of variables under
consideration is

@+ +)x* ¢+ ) x* 0+ 1))

In this case, the cumulant for the symbol variables simplifies to C, 4 = —1, and the
cumulant for the PAM time-series is given by



140 Spooner

2T, 2Ty

Figure 3: Surface and contour plots of the theoretical RD-CTCF for a real-valued
binary PAM signal with a Nyquist-shaped pulse.

= -1 [ —i i
Cf(u>4=7- f PO P Fu) p(t +u) PP +uz)e TP dre? P B =k/Ty.
0 J—x

Note, however, that a different symbol distribution (e.g., uniform over the 8th roots
of unity) could render C, 4 = 0 in both of the preceding cases, but some higher-order
cumulant (e.g., n = 8) would be nonzero.

-7 MEASUREMENT OF THE PARAMETERS
OF HOCS

7.1 The Flavor of the Measurement Problem

The measurement of HOCS parameters from a single finite-length data record is
considered in this section. This study is motivated by the need for such estimates that
is demonstrated by the applications of the theory that are considered in Section 8.
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The measurement problem as formulated here may be somewhat confusing be-
cause the ideal parameters to be measured are all mathematically derived from a
single infinite-length time-series, whereas the more familiar estimation problem in-
volves using a single finite-length data record to estimate an ideal parameter (e.g., a
stochastic polyspectrum) of a stochastic process of which the single data record is
assumed to be a sample path. The estimation methods described here can be viewed
as the result of “backing off” from the limits that define the ideal parameters (e.g.,
FOT cyclic polyspectrum) and then manipulating the resulting expressions to derive
various estirnators.

Measurement of the polyspectrum for strictly stationary stochastic processes
is considered in detail in [11, 94, 99, 122], and to some extent estimation of the
cyclic polyspectrum is similar, Because a natural first step in constructing estimators
for HOCS parameters is to generalize this work, especially if the stochastic-process
framework is used, it is important to understand the estimation methods outlined in
these references and to compare them with the methods that are natural in the time-
average framework. To do this it is required to understand the conditions under which
the RD-SMF is equal to the CP because the methods of [11, 94, 99] use estimates of
the stochastic counterpart of the RD-SMF to estimate the stochastic polyspectrum. It
should be emphasized that the objective is not to estimate the RD-SMF because it is
generally impulsive and can contain products of impulses. However, it is desired to
estimate the RD-SMF wherever it is equal to the CP, because it is the well-behaved
CP that we are interested in.

The conditions for equality between the RD-SMF and the CP can be determined
by expressing the RD-CTMF in terms of the RD-CTCF and lower-order CTMFs (cf.
(36)),

P
RE@Dn=Cl@mn =D | 0 p—1 Y ][R Gn |, O
Py atl=g j=1
p#l
where 7 = [uy - -u,_ 0], and Fourier transforming in the u; variables to obtain

AT
SE(f' Y = PE(fn

(98)
ol P_l =t 4
=21 KD) 3 S, [[SE o (fi1—ap |
P;é"l atl=8 j=1
P

where k(p) = (—I)P‘l(p — 1), To derive (98), it is assumed that the partition
elements (members of P,) are ordered such that v, always contains n in (97), and
(49) is used to transform each of the CTMFs in the products in the qum over F, in
(97), except for the one with reduced dimension (corresponding to the partition ele-
ment v,), for which (50) is used.
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1t is clear that §2(f"), is equal to #£(f"), only if the sum over F, in (98) is
zero, which will happen if one or more of the impulse functions is zero (cf. (60)).
This is the case for all f* except those that lie on a -submanifold. 8-Submanifolds
are simply the f’ vectors for which there is at least one partition with p > 1 for
which there is at least one < in (98) such that the argument of each associated im-
pulse function is zero, in which case that impulse is nonzero®. 1t is important to note
that the function Sx (f), is not impulsive at a value of £ that lies on a 8-submanifold
unless all the lower-order coefficients Sy ( fuj),U of the impulses are themselves
nonzero.

Note that if x(¢) is strictly stationary, then the set of impure {(and pure) mth-order
cycle frequencies is either the null set or {0} for each m, and our condition for equality
between the RD-SMF and CP (for @ = § = 0) is that there does not exist any proper
subset of f such that the frequencies in this subset sum to zero, which is exactly the
condition stated in [99] for the equality of the stochastic RD-SMF and polyspectrum
for a strictly stationary stochastic process.

The method of estimating the polyspectrum for strictly stationary processes that
is proposed in [11, 99] is based on the higher-order periodogram defined by

19,0 = —XT(:( Jal—11F ])‘*’n]‘[xr(t (=) .

i=!

The idea is to smooth this function over the n — 1 variables ' with an (n — 1)-
dimensional window W (f") while avoiding the inclusion of values of 19 ¥ @ J o for
S’ that lie on a O-submanifold. 1t is shown in [99] that this method is asymptotically
unbiased and consistent provided that the window function, which depends on the
data-length 7" and on », satisfies certain conditions related 1o its rate of decay. This
frequency-smoothing method is also presented in Priestley’s book [94]. However,
Priestley does not force the smoothing window to be zero on the 0-submanifoids. His
single example of the method uses a zero-mean time-series and » = 3, in which case
there are no 0-submanifolds to avoid.

In [10, 11, 56, 99], the measurement parameter 7 is coupled with the width of
the window W (f*). In the approaches for estimating the CP discussed in this paper,
the width of the spectral smoothing window is a parameter that is decoupled from
the data-length parameter T. That is, in the methods for estimating the frequency-
domain parameters of RD-SMF and CP, two independent measurement parameters
are explicitly used: the frequency-smoothing window width Af and the data length
T. This is consistent with the theory of second-order polycyclostationarity [35), and
is appropriate because in actual measurement situations, the operator should be able
tochoose T and A f independently, although T Af >3 1is required to obtain a reliable
estimate.

3The f-submanifolds can be defined by using the sum on the right-hand side of (60) as well.
However, since cumulants are generally compuled and estimated from moments, it is conceptually helpful
to assume that the impure cycle frequencies—rather than the pure cycle frequencies—are known.
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7.2 Time-Domain Parameters

Since the CTMF is the simplest of the parameters of HOCS and can be used to build
the CTCF, which in turn can be used to compute the CP, we start by considering its
estimator. ‘
We are given the finite-length portion of a persistent time-series that has length
T and center ¢,
x@):uelt—-T/2,t +T/2].

This ségment of data can be expressed as
(u) rect u—t
x(@)r 7|

where
L, Iz =1/2,

rect(r) = [ 0, Itl>1/2,

and the nth-order lag product for this segment is given by

< U+t —t
Ly (u,t, Ty =gx(u + ;) rect [—T—} .

The estimator for the CTMF R7 (), is simply
1 /= .
R (¢, T)p = _f Loy @, t, Dpe 2™ duy,
Xr T oo

which can be expressed as

T ]‘[x‘*M(U +1;) e 2" gy, 99)

T =1

where 4 =t — T/2 —min{z;}, t, = ¢ + T/2 —max{r;}, and t, > #. If £, < # the
estimate is defined to be zero because in this case the delays are so widely separated
that the shifted data segments do not overlap. The estimate (99) converges to the ideal
CTMF, :

Tliircln Rz,- (f, Ty = R? (T)n

since RY(7), is defined to be the pointwise limit of R} (¢, 7),. A detailed analysis of
the temporal bias and variance of this estimator for arbitrary x (¢} as functions of T is
given in [110] (cf. [62] for the case of n = 2).

The estimator for the CTCF is given by the combination of lower-order CTMF
estimates that is specified by (36),

P
Chmn =Y | =1 Y [[RE¢ )|, (100)

Pa ati=g j=I
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where the second sum is over all vectors ¢« = [a -+ - & ‘,,]'r of cycle frequencies with
orders ny - - - n, that sum to §: afl = g. Since each CTMF estimate converges to its
ideal parameter, the following convergence (assuming that the possibly infinite but
denumerable sum over a can be interchanged with the limit) holds:

lim CP (¢, 7), = CE (7).
T—oo

In order to construct the estimate (100), all impure lower-order cycle frequencies
x(t) must be known or estimated; an algorithm for estimating these frequencies is de-
scribed in Section 8. The CTMF estimator (99) converges pointwise in ¢ to the CTMF
(11) and, therefore, the CTCF estimator (100) converges pointwise to the CTCF (36)
[104, 105, 110]. To estimate the RD-CTMF and RD-CTCF, we set 7= [u; « - - 4,1 0]
in (99) and (100), respectively.

7.3 Frequency-Domain Parameters
As explained in [104, 110], the CP can be estimated by Fourier transforming a win-

dowed estimate of the RD-CTCF:

o0 o0
P8, f)ay = [ o f wiar@CE (¢, w)pe 2™ g, (101)
—o0 —o0

wyar(u) = ]'[ rect(u; Af).
=1
The multidimensional window wy/ar(u) can be replaced by any function with
finite support in (n — 1)-dimensional Euclidean space such that its Fourier trans-
form converges (formally) to a product of Dirac delta functions:

n—1

lim F™ {wyyar@)) = [ 8(H)-
j=1

Af—0

The CP can also be estimated by first constructing the nth-order cyclic period-
ogram

n—1
ef % %X*;’" @, (B -1 DX ¢ ()5
j=1

= F"URE (t,w)4},

masking it by a special function Zg( f’), and then convolving with a multidimensional
smoothing window:

P2 6, ar =War(f) @ [I2.(t,f ) Zs(f)]. {102)

In (102), Z#( ') is equal to one everywhere except at those f’ that lie on ,B-.s‘ubmfmi-
folds, in which case it is equal to zero. The vector [g,--- g1 forg, = 8 — 3| &>
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lies on a S-submanifold 1f there is at least one partition [vj}"’ 1 in P, with p > 1
suchsthat each sum e; = Zkev g is an njth-order cycle frequency of x(¢) (for
the conjugations chosen), As mentloned previously, these S-submanifoids must be
avoided in the convolution (102) because the smoothed nth-order cyclic periodogram
converges (formally) to the function $2( f)n, which can contain multiple unpulswe
factors for values of f that He on ,8 submanifolds, but which, for all other f*, is equal
to the nonimpulsive function 2% ( Sn. These impulses are avoided in the method
(101) becausc the additive sine-wave components in the i variables of t.he RD-CTMF
estimate R,T (¢, u),, are removed in forming the RD-CTCF estimate Cx, (t,u),, and
it is these addmve sine waves that give rise to the (smoothed) spectral lines in the
transform Ix, (£.f), of RJch (t u),.

There are several difficulties with this frequency-smoothing method. The first
is that although the impulsive parts of the RD-SMF are avoided by the smoothing
operation, there can be substantial leakage into nearby regions in ', which are exactly
the regions used to compute the CP estimate for f’ that are on the 8-submanifolds.
This can be seen by considering the simple case of » = 2. If the data contains additive
finite-strength sine-wave components, then the spectrum will contain impulses. To
estimate the continuous portion of the spectrum at a point where there is an impulse due
to the discrete portion of the spectrum is problematic when using frequency smoothing
because of leakage. This leakage problem is discussed further in Section 7.4, and
is illustrated with numerical examples in Section 7.5. This leakage problem is not
mentioned in[10, 11, 94] for the case of stationary stochastic processes, norin [56] for
the case of cyclostationary stochastic processes. In addition to the leakage problem,
the frequency-smoothed cyclic periodogram method is computationally costlier than
the Fourier transformed RD-CTCF method for » > 2 even when there are no 8-
submanifolds to avoid [110].

Finally, the CP can be estimated for values of £’ that donotlie on B-submanifolds
by time-averaging the masked higher-order cyclic periodogram

P S yar = er@) @12, (. WZs(F)] (103)

where
_ | /T, 4 = T/2,
grity = [ 0, otherwise.

Unlike the frequency-smoothing method, the time-averaging method cannot produce
estimates of the CP for frequencies f' that lie on -submanifolds without modifica-
tion. An example of such a modification to (103) is to compute estimates of the CP
for values of f' that are near to the B-submanifolds, and then use interpolation to
estimate the value of the CP for the f’ that are on the 8-submanifolds.
The three methods of estimating the CP are consistent [110] in the sense that
PR = fim lim PLG S

(104)

b5
AI}T 11m PE (. f D yars-
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The estimators (101) and (102) are generalizations of estimators of the poly-
spectrum that were proposed by Brillinger and Rosenblatt {511, 99] from stationary
signals to polycyclostationary signals. The three estimators of the CP presented in
this section each reduce to a well-known estimator of the PSD for the case of # = 2
and zero-mean stationary signals. Specifically, (101) reduces to the Blackman-TFukey
method (Fourier transformation of a tapered autocorrelation estimate), (102) reduces
to the Wiener-Damiell method {frequency smoothing of the periodogram), and (103)
reduces to the Bartlett-Welch method (time-averaging of the periodogram) [cf. Chap-
ter 4 in 35]. Similarly, each of the estimators of the CP is a generalization of an
estimator of the cyclic spectrum from second-order to higher-orders {Chapter 13 in
35].

7.4 Leakage from #-Submanifolds

As mentioned in the previous section, a leakage effect exists in the method (102) that
is due to the smearing of the impulses on the -submanifolds to neighboring regions
off the B-submanifolds. To see this, the temporal mean of (102) is computed. From
[110],

(RE (¢, w)) = RE(wnu(w),

where

s | T+uo@)/T, lugw) =T
vr(w) = { 0, otherwise,
and
uo(ey = min{0, uy, -+, tyy) — max{0, uy, - -, ).

Using this result, it is easy to show that the temporal mean of (102) is given by the
convolution

War(FY @ [(SEF 0 @ Vr(f) Zs(£)],

where Fr(f'} is the (n — 1)-dimensional Fourier transform of vr (). The effect of the
convolution with ¥ (f’) is to smear the impulses in §2( S, thus producing spec-
tral leakage into nearby regions, which cannot be removed by the masking function
Zg(f"). ‘

The method (101) also exhibits leakage when the CTMFs (11) are comiputed
using an FFT algerithm, and the cycle frequencies o; are not “on bin center.” This
leakage can be substantially reduced by computing each CTMF by evaluating the FST
(the Fourier series transform, which is like the DFT, but is a function of a continuous
frequency variable) for every o; appearing in the sum in (100), but this can greatly
increase the computational cost of the method [103, 110].

7.5 Numerical Examples

In this section several fourth-order CP measurements are displayed graphically for
the purpose of illustrating the relative performances of the CP estimators (101), (102),
and (103).
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The signal of interest is a binary pulse-amplitude-modulated signal with keying
period Ty = 77, and IID symbols. Both rectangular keying pulses rect(/ T) and
Nyquist-shaped pulses (96) are simulated. For the purposes of the simulations, only
the second-order cycle frequencies &/ Ty for |k| < 3 were used to compute the lower-
order CTMFs and find the B-submanifolds for the case of rectangular pulses because
the higher harmonics (Jk| > 3) produce relatively weak features and can, therefore,
be neglected. For Nyquist pulses, the only lower-order cycle frequency is & = 0 for
n = 2. Neither signal has any cycle frequencies for odd values of the order n.

The fourth-order CP for 8 = 0 and 8 = 1/ Ty was estimated for an observation
interval length of 2048 samples using the following methods:

FS: the frequency-smoothing method (102),

FT: the Fourier-transformed RD-CTCF method (101) using FFTs to estimate the
lower-order CTMFs,

FST: the Fourier-transformed RD-CTCF {101) using the FST for estimating the
lower-order CTMFs, and '

TA: the time-averaging method (103).

For the time-domain methods (FT and FST), the RD-CTCF was estimated on the
cubic grid of integers # = [u| wp u3] € [—8, 7, and then Fourier transformed. In
the FS method, the spectral smoothing window width was set equal to 128 samples,
and in the TA method, the block size was chosen to be 32 samples. Thus, each method
uses approximately the same temporal and spectral resolution parameters, and can
therefore be compared fairly.

Because computing the entire CP using (102) is relatively costly and is difficult
to display, only two “slices™ of the CP were estimated. The slices correspond to
5y = {[0.0 1/32 f1]} for the case of rectangular pulses and S,: {{1/32 1/32 £} for
the case of Nyquist pulses for f € {k/32, k = —16, - - -, 15}. Two points in §; lie on
submanifolds for both values of 8, and no points of §; lie on submanifolds for both
values of 8. The value of the TA estimate for £’ on B-submanifolds is defined to be
zero. The ideal CP was computed by numerically evaluating the formula (94).

The CP estimates for ten independent realizations (with the same timing pa-
rameter £ in (87)) of the signals were averaged to produce the final set of estimates.
The magnitudes of the estimates are shown in Figs. 4-7. Generally speaking, the
FST method delivers the best performance because it suffers the least from the afore-
mentioned leakage effect. However, it is not the best method from a computational
cost point of view [110]. All of the methods produce results that are reasonable
approximations to the theoretical fourth-order CP.

7.6 Cycloergodicity and Measurement of Cumulants

We illustrate here the kind of error that can result from modelling a signal as a
stationary stochastic process when the sample paths are actually polycyclostationary
time-series, and then measuring higher-order parameters from a single sample path.



148 Spooner
160

140
120
100 r
80
60 r
40 |

20

0 Lt

-05 04 -03 -02 -01 0 0.1 02 03 04 05
f

Figure 4: Estimates of the fourth-order CP for binary PAM with reclangular pulses
for B = 1/ Ty, acollect time of 2927, and 1 € §).
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Figure 5: Estimates of the fourth-order CP for binary PAM with rectangular pulses
for g = 0, a collect time of 29275, and f € ;.

Specifically, we consider a zero-mean, noiseless binary PAM signal with rectangular
pulses, 8 = 0, T = 512Tp, and n = 4. If the signal is thought of as stationary
{e.g., by making the pulse timing parameter #, random and uniformly distributed over
[0, Ty] in the stochastic-process model, a stationary process is obtained [32]), and the
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Figure 6: Estimales of the fourth-order CP for binary PAM with Nyquist pulses for
B =1/ Tp, acollect time of 2927y, and f € ;.
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Figure 7:  Estimates of the fourth-order CP for binary PAM with Nyquist pulses for
B =0, acollect time of 292Tp, and f € 5.

theoretical RD-CTCF is computed, the following result is obtained:

F
HOEDY [(—1)!’-1@ -] RS(TV,),,,} . T=u,7=0. (105)

B j=1
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Hence, it is explicitly assumed that there are no lower-order sine waves associated with
x(t). A portion of an estimate corresponding to this cumulant formula is represented
by a dotted line in Fig. 8. The oscillatory portion of the estimate does not die out
for large #. This oscillation is due to the interaction of second-order sine waves that
have not been subtracted out of the fourth-order mornent term in (105). On the other
hand, if the cyclostationarity of the sample path is recognized and, therefore, the
second-order sine waves are taken into account, the following RD-CTCF is obtained:

i
Cg(u)4 — Z (_I)P—l (p - 1)1 Z H R:J (TVJ')H] ¥ rl' = ufv T4 = 0' (106)

P, atl=o j=1

A portion of an estimate corresponding to this curmulant formula is represented by
the solid line in Fig. 8. Note that both graphs are estimates obtained from the same
data record. The CP estimates that correspond to the two different assumptions are
shown in Fig. 9. The size of the peak in the curve obtained by assuming stationarity
grows with collect length T because this peak is due to the oscillatory portion of the
RD-CTCF estimate, which does not die out with increasing .

1 T T T

08 Cyclostationarity ——
Stationarity -

20 40 60

Figure 8: The fourth-order RD-CTCF fora binary PAM signal under the assumptions
of stationarity and cyclostationarity.

Note that this phenomenon is not observed in the case of n = 2 because we
typically consider zero-mean signals that do not contain finite-strength additive sine-
wave components. Thus, the PSD estimates agree with the calculated formula based
on a stationary stochastic model, even when the sample paths are polycyclostationary,
because there are no lower-order sine waves to deal with (cf. Section 4). This example
illustrates the fact that the theory of HOCS is important even in the case where
cyclostationarity is not of direct interest.
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Figure 9: The fourth-order CP for a binary PAM signal under the assumptions
stationarity and cyclostalionarity.

8 APPLICATIONS

In general, the applications of the theory of HOCS are similar to those for the theory
of SOCS and/or the theory of HOS, namely weak-signal detection, signal parameter
estimation, signal waveform extraction, system identification and equalization, and
array-based direction finding and blind-adaptive spatial filtering. The use of cyclic
cumulants or cyclic polyspectra rather than conventional cumulants or polyspectra
can be advantageous when the corrupting signals are not Gaussian (man-made signals
are rarely Gaussian), and the use of higher-order cyclic parameters rather than second-
order cyclic parameters can be advantageous when the signal does not exhibit second-
order polycyclostaticnarity, or when there are no cycle frequencies unique to the signal
of interest for order two, but there are unique cycle frequencies for a higher erder.

8.1 Weak-Signal Detection

In th_is section, we consider the problem of detecting the presence of a desired signal
(or signals) s{¢) in a received data set x {¢) with noise and interference n(t),

x()=s@) +n@), -T/2<t<T/2

Several versions of the detection problem are of interest. The first is called the
general search problem, in which a data set is analyzed to determine if there are
any polycyclostationary signals present. No information about the received data is
assumed in the general search problem. In the second problem, called the krown-
cycle-frequency problem, a specific pure cycle frequency/order pair (8, ng) is given
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and the data set is analyzed in an attempt to determine if there is a signal present in the
data corresponding to this pair. In the third problein, called the known-modulation
problem, the modulation format of the signal of interest is known, and hence the
cyclic cumulants of the signal are known (in principle); the problem is to determine
if that particular signal is present in the data.

Motivation for using HOCS, instead of SOCS or HOS, to detect the presence
of a signal is provided by the situation in which this detection cannot be reliably
accomplished using these other signal properties. This can be the case, for example,
when a signal has very weak SOCS and is weak with respect to the noise and interfer-
ence background (low SNR), which is changing unpredictably during the observation
interval. It can also be the case when the signal of interest does not have a unique
cycle frequency for order two, but does for a higher order. An example of this is a
communication system wherein all the signals are specirally overlapping QPSK and
have the same symbol rate, but each has a distinct carrier frequency.

Since the computational complexity increases and the output SNR decreases
(when the input SNR is less than 0 dB, see Section 1.4.1) with increasing order n of
nonlinearity, it is always desirable to use the smallest possible value of ». This typi-
cally corresponds to the lowest order of (substantial) cyclostationarity of the signal.
Accordingly, it is often the case in the known-modulation problem that the CTCF
and CTMF are (approximately) equal for the chosen value of n, RT (7}, = CZ(T)a.
In addition, if the noise and interference (hereafter referred to as the environment)
is such that R? {(T)y = 0, where B is the pure cycle frequency of interest in s(¢), in
which case Rf (D, = Cf (7)n, then any detection method that requires an estimate
of the CTCF for s(¢) can be implemented by using an estimate of the CTMF for
x(¢}, thereby reducing the coniputational complexity of the method. However, if
the environment is unknown, it is best to use estimates of the CTCF so that potential
lower-order sine-wave interactions can be avoided. I.et us now turn to an examination
of each of the three detection problems.

8.1.1 The General Search Problem

In the general search problem there is a maximum order & that is to be used for
processing. The goal of the processing is to produce a list of pure cycle frequencies
{B.} for each value of r from 1 to N. The list {8,} should characterize the detectable
cyclostationarity of order # (and only #) that is associated with x{¢). Thus, these
lists should not be contaminated by entries that are due to lower-order sine-wave
interactions. To accomplish this task, the TCF for x(¢) is estimated for each order n.
From this estimate, the cycle frequencies {5,}, which are needed for the estimate of
the TCF for order # + 1, can be found. More explicitly, the general search probiem
can be tackled using the following algorithm:

0. Letn=1
P
1. Compute C',{f, D = L {t, Ty — Z, ch(t, Tyl
P J=l
P#L
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2. Compute ¥{f) = FFT, {é‘; (¢, Dn}
3. Threshold detect the bins of ¥ to find {8,)}

4. Compute Gk e = (C‘; ¢, Dn e—r'2rrﬁ,,r)

5. Compute C, (¢, ), = 3 5, Clr ()i 2Bt
6. n—>n+1; ifn < Nthengotol.

In step 4, the interval over which the average {-) is performed is determined by the
amount of data x (¢) available. If any of the detected cycle frequencies are of particular
interest, a cyclic polyspectral analysis can be performed from which the modulation
type can possibly be determined. Also, a simple analysis of the relationship between
the estimated cycle frequencies for the different values of # can be used to advantage
for modulation recognition,

8.1.2 The Known-Cycle-Frequency Problem

In this problem, one or more of the signal’s modulation frequencies are known,
such as a symbol rate or carrier frequency, but the shape of the CTCF is unknown.
The environment is still assumed to be unknown and, therefore, the general search
algorithm is still of interest. However, it can be improved for the known-cycle-
frequency problem by combining it with a least-squares estimation technigue. Let
(B, ng) be the cycle frequengylorder pair of interest. Use the general search algorithm
up to order ng — 1. Form C/ (¢, 7),,, and use a least-squares estimator to detect the
presence of the signal of interest using the statistic

Y = (ﬁ:*é‘; (8, Thng €27
= ";’Téf("')nm
where
i = T 1
€10 Ty = [ €4t Tdng -+ Cot, TiIm |
CEen. — [ Ap f
E2 (P, = [CETny+ CETiOMG

and where W is the unit-norm version of the least-squares weight vector

W = arg min (|w16'; (t, Thny — €77
W

2
). {107

The solution to (107) is R
W =R"'CE(D)y,
where . .
R= (C;(r, PalL (2 T)f;;),

in which H denotes conjugate transpose. Thus, the detection statistic is

Y = CEDERCE (1),
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This detection statistic is obtained by forming the particular linear combination of data
sets C” (& Tnys - C (¢, T )n, that optimally combines the regenerated sine waves
with frequency ,B present in each set, and then correlates this composite regenerated
sine wave with the stored sine wave e27F".

8.1.3 The Known-Modulation Problem

In this problem, the data is analyzed to determine if it contains a signal with
known modulation type. In particular, we know the CTCF of s{¢) for n = ny and
pure cycle frequency B. The general search algorithm can be used to remove all
lowcr—order sine waves up to order ng — 1. Then, from C’ (¢, Tn, the CTCF estimate

xT (#)n, for cycle frequency 8 can be determined. The proposed detection statistic
1s the correlation of measured and ideal CTCFs

oo o0 _ _
= [ [ C# (), CP ()}, du.
—0 —00

The primary justification for this particular Stﬂtlsth is that when no signal is present
with nth-order pure cycle frequency B, then CxT (#),, — 0, which implies that
¥ — 0; when the signal of interest is present, then

Y—>[ [ |2 w),|* . (108)

Thus, ¥ is an asymptotically noise-free statistic on both the signal-present and signal-
absent hypotheses. (Furthermore, the integral (108) is finite [107].) Hence, this
statistic is the natural generalization of the single-cycle detector that exploits second-
order polycyclostationarity [35]

o0 [+=]
Y= [ R @RI dr = [ snszgyan aoy
—0Q —o0

which has several optimality properties [39] and has been shown to outperform
radiometric (energy) detectors for weak polycyclostationary signals in time-varying
environments [46]. In (109}, R¥(t) is the cyclic autocorrelation for s(¢), Ry (r)is
the cyclic autocorrelation estimate (cyclic correlogram), Sy (f) is the cyclic period-
ogram, and SF( f') is the cyclic spectrum for 5(z) [35].

The detection statistic ¥ can be generalized to include only a portion of u-space,
denoted by G C R™,

Y= f C (), Cl(w)} du.
G
Choices for G might include those values of u for which the RD-CTCF C? (),

1s particularly large, or for Wthh the coefficient of variation (variance divided by
squared mean) of the estimator CJrr (1), of the RD-CTCF is particularly small.
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8.2 Time-Delay Estimation
The received signal model for the time-delay estimation problem is given by

x(£) = s() +n(t)

y(@) = As(t +dYy +m(2).

It is desired to estimate the time-delay parameter 4, which is sometimes called the
time-difference-of-arrival (TDDOA) for s(#). Itis assumed that s(¢) is nth-order poly-
cyclostationary with cycle frequency 8. The time-series »(¢) and m(¢) consist of
arbitrary noise and interfering signals, except that it is assumed that neither () nor
m(¢) is nth-order polycyclostationary with the pure cycle frequency 8.

Conventicnal approaches to this problem (those that do not exploit cyclostation-
arity) can be collectively referred to as generalized cross-correlation (GCC) methods
{72]. In the GCC metheds, filtered versions of the sensor outputs x(¢) and y()
are cross correlated, and the estimate of 4 is taken to be the location of the peak
in the cross-correlation estimate. These methods suffer when n(¢) and m(f) con-
tain signals common to both, each with its own TDOA, because each such signal
contributes a peak of its own to the cross-correlation function. This causes two
problems. The first is a resolution problem which, to be solved, requires that the
differences in the TDOAs for each of the signals be greater than the widths of the
cross-correlation functions so that the peaks can be resolved. The second problem
is that it is difficult to correctly associate each peak with its correspending signal.
Both of these problems arise because the GCC methods are not signal selective; they
produce TDOA peaks for all the signals in the received data unless they are spectrally
disjoint and can, therefore, be separated by filtering. Signal-selective methods that
exploit the SOCS of the desired signal, which is assumed to be unique to that signal,
are studied in [49, 50]. These methods have been shown te outperform the GCC
methods and have been shown to produce unbiased TDOA estimates with variance
that is smaller than the Cramer-Rao lower bound on the variance of TDOA estima-
tors that are based on the assumption that the signal and environment are stationary.
However, these methods do not apply when there is no SOCS to exploit. In this
case, we can tum to HOCS in order to develop signal-selective TDOA estimators.

Following the approach in {49] for SOCS, the general methodology considered
here for HOCS is least-squares estimation. The following two examples illustrate
the methodology. To keep the notation simple only real-valued signals are consid-
ered.

Let us define a cross cumulant as follows

Cey(t, Dn = Cumulant {x{¢ +71) -+ - x{¢ + Ta—t) Y + W)}

The cyclic component of this cross cumulant for the signal-specific cycle frequency

Bis
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ClMn = {Coylt, e 7#)
= ACE(T+ 6,d),,

where 6, is the unit vector along the nth coordinate. It is easy to show that the
following relaticns involving RD-CTCFs hold:

Cly )y = ACE (u — 1d),e™#,
C_'g (s = C-f (&)

Thus, we can do a least-squares fit of a measurement of C_,‘fy to a measurement of C2
over a region G of u-space of interest:

mir}f
Aad Je

This leads (cf. [49]) to the following estimator of the delay 4:

_ PR ~ . -2
CE, r(wy — ACE, (u — 1d),e™*|" du

dy = arg m‘?.xf}i {[ Cfr(u),,éfyr(u 4 1dy? 284 du] ,
G

where arg max means the value at which the maximum occurs, and R{-} means the
real part. This estimator is a higher-order generalization of the spectral coherence
alignment algorithm for TDOA estimation [49], which exploits second-order polycy-
clostationarity and has been shown to possess several optimality properties [47]. If
the data is complex, the estimator d; is modified by replacing the operation R{-} with
the magnitude operation.

As an alternative, we can avoid using cross-sensor measurements entirely by
noting that

C‘g (@) = A" C_'f (1) einr,Bd,

and _ _
CE(w), = CE(u),,

which suggests the following least-squares approach:
. - _ L2
d, = arg min [ €, ) — A"CE, (e du.
Ad Je

The estimator for 4 is given explicitly by

dy = H;mglc I fG C8 () CE (u): du},
which is a higher-order generalization of the second-order cyclic phase difference
algorithm for TDOA estimation without cross-sensor measurements [49]. This al-
gorithm has the drawback that the TDOA can be properly estimated only if it has
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magnitude smaller than ﬁ because the TDOA estimate is a function of an angle
estimate.

9 CONCLUSIONS

The theory of the higher-order statistics of polycyclostationary signals, called higher-
order cyclostationarity, holds greatest promise for applications involving statistical
inference and decision using data from a multiple-signal environment. This is because
the higher-order cyclic cumulants possess the property of signal selectivity, which
means that these cumulants can be used to extract information about each of the
signals in turn, without (that is, asymptotically) interference from the other signals.
This can be accomplished if each signal in the environment possesses a unique cycle
frequency, for instance, a baud rate, chip rate, or carrier frequency.

The theory also shows promise as a general theoretical framework for perfor-
mance analyses of signal-processing systems that employ second- or higher-order
nonlinear transformations of polycyclostationarity input signals.

Finaily, since the theory is fundamentally concerned with sine-wave generation,
it holds promise for fruitful application to problems in the area of symbol and carrier
synchronization.

The primary difficulties with higher-order statistics are computational in nature.
First, for a given data set, higher statistics require more operations to compute than do
second-order statistics. Second, the relevant estimators often have larger variance for
the same amount of data when compared to estimators of lower-order statistics, and
so need more data to achieve acceptable levels of estimation accuracy. The severity
of these difficulties may be lessened in the future as hardware speed increases and
more efficient estimation methods are found.
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APPENDIX PURE SINE WAVES AND TEMPORAL
CUMULANTS APPENDIX

In Section 2.3, the temporal cumulant function is derived by considering the problem
of pure sine-wave generation. That is, it is found that the strengths of pure nth-
order sine waves are characterized by the CTCE. However, we have found that some
time-series possess a degeneracy such that, for certain values of the lag vector T, the
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CTCF is nonzero when there are no pure sine waves present in the lag product. This
degeneracy is illustrated and explained here for the case of n = 4.
Consider the fourth-order lag product

L.{t,Da=xt+T1)x(+ Tz){(f + T)x(t + 14) (110)
for the binary (1) PAM signal (87) with rectangular pulses,

_J L =2
p) = { 0, otherwise.

There can be sine waves associated with the factors
S8 = x( + mdx(F + 12),
and
@) =x@ + ta)x(t + 1a)
that make up L, (¢, T)4, and if so, the product sine waves

EC ) B {fo(n))

are subtracted, along with product sine waves corresponding to all other unique factor-
izations of L (¢, 7)a. from the moment £} {L (¢, 7)4} to obtain the pure fourth-order
sine waves (cf. (34)). Thus, a pure fourth-order sine wave contains no products of
lower-order sine waves, and cannot be equal to such a product; this is simply the
intuitive notion of a pure fourth-order sine wave. To make clear the degeneracy that
we have alluded to, T3 = 74 is chosen in (110),

Lo(t, Da = x(t + 1)x(t + 2)x*{ + 13). (1
In this case, since x2(f 4+ 13) = 1, we have the equivalence
Lot 7ha =[x + r)x(t + )[1] = L (f, 71, ©2)2.

Thus, L,{¢, T4 contains nothing other than products of second-order sine waves,
namely the sine waves in x(¢ 4 t1)x (¢ + 2} multiplied by the second-order sine wave
with frequency zero given by x2(t + 1) = 1. Consequently, L, (¢, T)4 can contain
no pure fourth-order sine waves. However, from (95) we have the CTCF

Coa ™ . .
Cl(m)y = T4_[ P+ 1) plt + )P + e TP dr TN B = k)T,
0 —00

which is not zero for all 7|, 72, r3. Another way to see that the cumulant is nonzero
is to use (34) to compute the TCF:
Celt, Pa = B L0 Pl = E® (x( + 2dx( + 1)} ¥ (@ + m)x(t + 1)
— B (e + 1)x (e + )} BY (¢ + m)x( + )
—E® (x4 2)x @ + ) E® (20 + 22 + 1))
= —2E x( + v)x( + )} B (r( + m)x(t + 1))
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It is, in fact, reasonable to expect a nonzero result for the fourth-order TCF of the set
{x(¢ + 71}, x(¢ 4+ ), x(t + 13), x(¢ + 73)} since it contains no proper subset that is
statistically independent of the remaining elements (cf. Section 2.4.3).

However, since there is a repeated factor in (111), we can treat the lag product
as the product of three, rather than four, factors {x{¢ + 1;), x (¢ + 12), x2(! + 12)}. In
this case, there is an independent subset among the three variables and

E® x(t + w)x(t + X0 + )} = E® (x(t + m)x (e + )] B {22 + )}

The third-order cumulant for these three variables is zero. However, the presence
of a repeated factor in the lag product is not in itself the cause of the failure of the
pure-sine-wave interpretation of the TCF to hold. It is the fact that the repeated factor
is degenerate:

x2 t+m)=1.
This fact leads us to conjecture that the cnly degenerate time-series (these for which
the nth-order TCF is not zero, yet there are clearly no pure nth order sine waves) are

those piece-wise constant signals with all values equal to the mth roots of unity (to
within a single factor, that is, the roots of K will do). In such a case,

x"(t + 1) =1 forall 1o,
and the same fix applies: The (n — m + 1)th-order cumnulant for the variables
{x(+7), x@t+ 1), X0+ Tym), X" + Taom+1))

is zero, which is in agreement with the absence of any pure sine waves.
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Abstract

The three primary goals of this overview are the following: 1) to describe in a brief
but tutorial manner the state of the art of processing cyclostationary signals with
sensor arrays and the performance of the current methods, 2) to show how the un-
derstanding of these methods can be used in the design of communication systems
to increase capacity andfor improve signal quality relative to existing systems, and 3)
to describe several open research problems in sensor array processing for cyclostation-
ary signals. Whereas the first goal is intended to speed the self-education of colleagues
who are knowledgeable about cyclostationary signals or sensor array processing but
not necessarily both, the last is intended to speed the involvement of colleagues who
are already knowledgeable about both but are simply interested in another perspective
and additional ideas on important and challenging research problems. The middle
goal provides one possible bridge between the first and last goals: by demonstrating
the advantages of understanding sensor array processing for cyclostationary signals,
by identifying problems to be solved in the communication system design presented
here, and by pointing out that the role of cyclostationarity-exploiting methods in the
design of communication systems is itself an open problem.
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1 INTRODUCTION

Arrays of sensors such as radio antennas are useful in the process of detecting the
presence of propagating signals, estimating their directions of arrival and other pa-
rameters, and estimating the signal waveforms themselves. Application areas include
radar, sonar, commercial communications monitoring, signals intelligence, biomed-
ical signal processing, geophysical exploration, communication systems, and others.
However, in some of these applications the prior knowledge required by conventional
methods for performing these tasks is difficult, costly, or simply impossible to obtain.
Furthermore, conventional methods that are derived for sine waves or stationary Gaus-
sian noise cannot exploit many of the statistical properties of structured man-made
signals, especially those used in communication systems.

More specifically, almost all man-made communication signals exhibit a sta-
tistical property called cyclostationarity. A key point is that this property can be
exploited in signal processors to favor desired signals and to discriminate against
undesired signals, interference, and noise. This signal selectivity offers appealing
benefits: post-processing that determines which signals and their parameters are of
interest can sometimes be reduced or eliminated, and applicability to some difficult
environments is enhanced. In addition, many cyclostationarity-exploiting algorithms
offer these benefits while using much less prior knowledge of signal characteristics
than conventional methods. In particular, some methods of direction estimation and
adaptive spatial filtering that exploit cyclostationarity require only knowledge of the
baud rate, carrier frequency, or other frequency that characterizes the underlying pe-
riodicity exhibited by the desired signals. It is explained in this overview how this
knowledge is used to avoid the need for training signals, estimates of directions of
arrival, and array calibration data in spatial filtering schemes, and to avoid the need for
knowledge of noise characteristics and to soften the strict requirements on the number
and angular spacing of signals in direction finding schemes. It is also explained how
the cyclostationarity of bauded digital communication signals can be used to blindly
identify and equalize a distortive channel.

An application of this understanding to the design of a cellular communication
systemn is also presented. The current demand for telecommunications exceeds current
capacity in some markets and may increase sharply as more bandwidth-intensive
commercial services such as multimedia-based conferencing, information retrieval,
and electronic banking and shopping are introduced. In this overview, it is shown
how understanding of sensor array processing methods for cyclostationary signals
can be used in the design of a scheme that substantially increases capacity relative 1o
existing systems.

Throughout the overview, open problems are identified by the appearance of
[ O] These problems range from highly applied, such as efficient implementation of
these signal-processing methods and design of communication systems, to relatively
theoretical, such as statistically optimum detection and estimation of cyclostationary
signals and analytical performance prediction.
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The remainder of the overview is organized as follows. In Section 2, the math-
ematical models for the sensor array data are described. In Section 3, notation and
basic results on the measurement of spatial characteristics of cyclostationary signals
are summarized, and their implications for the basic problems of spatial filtering,
direction finding, and estimating the number of signals are briefly discussed. In Sec-
tion 4, algorithms for blindly adapting (i.e., without using a training signal) a spatial
or spatio-temporal filter to extract high-quality estimates of signal waveforms are
summarized, including the class of SCORE algorithms. Also in this section, two
possible applications of blind adaptive spatial filters to problems in commercial com-
munication systems are summarized. Although the material in Section 5 on blind
chanrnel identification and equalization is closely related to Section 4, its primary
focus is on simultaneously adapting a spatial filter and demodulating a bauded digital
communication signal. In Section 6, algorithms for finding the directions of arrival
of cyclostationary signals at a sensor array are summarized. In Section 7, the prob-
lem of estimating the number of cyclostationary signals arriving at an array, which
must often be solved prior to or jointly with estimating the directions of arrival, is
addressed. Finally, in Section 8 a few brief conclusions are drawn and the chapter is
briefly summarized.

2 MODELING DATA FROM SENSOR ARRAYS

In this section the mathematical model for the signals at the output of a sensor array
is developed from basic physical considerations. The general model for wideband
data is derived by assuming that a single sinusoid arrives at the array and then apply-
ing superposition to build up the expressions for multiple nonsinusoidal signals. An
extremely useful simplifying approximation is then justified and applied to yield a de-
scription referred to in the sensor array signal-processing literature as the narrowband
model. Extensive use is made of this model in this overview.

2.1 General Wideband Model

Consider the analytic signal exp(j2r f¢) corresponding to a real sine wave having
frequency f and arriving at the array from angle . For simplicity, assume that the
sensors in the array and the signal source are coplanar so that ordered pairs and a
single angle suffice to describe the positions of the sensors and the direction of arrival
of the signal, respectively, and assume that the wavefronts impinging on the array are
planar. If the propagation medium does not significantly affect the signal as it prop-
agates from one end of the array to the other, then the signal received at one sensor
differs from the signal received at another sensor only by a delay. As suggested by
Fig. 1, the dependence of the delay on the locations of the sensors and on the angle of
arrival can be determined by using elementary geometry. Specifically, if we assume
that the coordinates of the M sensors are (g1, 1), .. ., (. rar), then it can be shown
that the delay £, of the signal at the mth sensor relative to the signal at the origin of
the coordinate system can be expressed as,; = —[g,, sin(f)+r, cos(@)]/c, where cis
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the propagation speed and 4 is measured clockwise from the r axis. Since the signal
is sinusoidal, the propagation delay ¢, is equivalent to a phase shift by the amount
Y¥m = —27 ft,, which is in turn equivalent to multiplication by exp(j ). Thus, the
signal received by the array can be expressed in the vector form

x1(t) exp(j (0, f))
x(1) = : = : e/, (1)
xp(t) exp(f¥u (@, 1))
where
VB, ) = [gm sin(@) + rm cos(@)]2r f/c. (2)
rh
o) R A,
.
array origin q

Figure 1: Plane waves propagating from angle ¢ toward the array origin.

More generally, the sensors can have differing directional and frequency-depen-
dent characteristics, which can be modeled by applying differing gains and phases to
the elements of the vector in (1). Denoting the gain and phase of the mth sensor by
gn(0, /) and ¢, (8, f), respectively, the analytic signal at the outputs of the sensors
can be expressed as

x(1) = a8, fe*/* 3

where a,,(0, f) = g6, f)exp[i(¥n @, f)+ ¢n (B, f))] is the mth element of
the vector a(f, f), which is referred to in this overview as the array response vector,
although the terms aperiure vector, array vector, array manifold vecior, DOA vector,
direction vector, and steering vector also appear in the literature. The collection of
array response vectors for all angles € and all frequencies f of interest is referred to
as the array manifold.

In the more general (and interesting) case in which multiple nonsinusoidal sig-
nals arrive at the array, the data can be modeled by decomposing it in the frequency
domain (temporarily assuming that the signals are Fourier-transformable) and using
linear superposition:
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L
X(f) =Y a6, Nsi()+if)
=1

= (@61, ) -+ B, NIsi(N) -+ s (D +if) ®
= A(®, Ns(f) +i(f),

where L signals si(f), ..., s (f) arrive from angles 81, .. ., 8, and i( ) represents
interference and noise components (e.g., thermal noise from the sensors and associated
electronics, background noise from the environment, and spatially diffuse sources of
man-made interference such as cities). That is, the array data is linear with respect to
the signals and is linear (in the frequency domain} with respect to a(@, f).

2.2 Narrowband Model

The general wideband model is needlessly complex if only a relatively narrow fre-
quency band is of interest {e.g., if prior knowledge regarding the center frequencies
and bandwidths of the signals of interest is available to select the narrow band of
interest). For example, in some applications the data may be channelized into very
narrow bands which are then processed individually. Alternatively, if it is known
that the signals of interest occupy a certain frequency band then it is advantageous
to reject interference components and noise that lie cutside the band. If this band is
sufficiently narrow that the array response vector a(@, f) is approximately constant
with respect to f over the band of interest for all angles 0 (e.g., if the reciprocal of
the bandwidth of the signal is much greater than the time required for the signal to
propagate across the array, and if the sensor characteristics do not vary significantly
across this bandwidth), then the dependence on f can be dropped and the array data
can be modeled in the time domain as the analytic signal

L
x() = ) al@)si(e) +i(0)
=1

= [a®) «-- a(@)]1[si (&) - -~ s.(O1 +i() (5)
= A(®)s(?) + (1),

where s(¢) and i(¢) are analytic signals. Although the signals s;(z) are not sinusoids,
the spatial characteristics of the array response can be approximately modeled as if
they were. This observation is the essence of the narrowband model.

A more detailed discussion of the conditions under which this assumption is
valid, as well as a detailed investigation of the representation of wideband array data,
can be found in [16]. However, some justification can be offered here without undue
complexity. Consider a single signal s(r) having flat power spectral density over the
band [ fo — B/2, fo + B/2], and arriving at a uniform linear array (ULA) for which
(9m. *m) = (dm, 0) where d is the sensor spacing. The spectral density of x(z) is
See(f) = a{f, e, f)for | f— ja| < B/2,and the autocorrelation atlag v =0
can be expressed as
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[Rex(0)],, » = B exp (—jZH%(m —n) siné‘) sinc (rrBTd(m — n)sin 9) .

The total average power P, of x(t) is P, = tr{R..(0)} = M B, and the average
power Py in x(¢) that can be represented by the narrowband model a(®, f) s(¢) can
be expressed as

Py = tr{Page, iy Rux(0))

% i sinc (?(k— n) s'me)

k,m:l

where n = B/ fp is the relative bandwidth, fp is the frequency chosen for use in the
narrowband model (it can be any frequency in the reception band), and P, denotes the
orthogonal projection matrix for vector v. Thus, the ratio y = P /P is a measure
of the degree to which x(¢) admits a narrowband model:

a Pp 1 & wn )
pE = e snnc(—(k—m)31n9).
P = 0,223

Clearly, the narrowband model is exact (P, = F) for n = 0 but degrades as the
relative bandwidth increases, as shown in Fig. 2. For example, at the worst-case
value of # ( = 90 degrees), the narrowband model for the 4-element ULA accounts
for 99% of the received power for n = 10%, and 90% of the received power for
n = 30%.

[ @] Despite this justification for the narrowband model, a more thorough investiga-
tion of the sensitivity of narrowband sensor array processing methods to deviations
from the narrowband model is needed.

In this overview and in much of the literature on direction finding, the sam-
pled complex envelope of the array data is used in the description and analysis
of the various algorithms because the algorithms are typically implemented on a
digital computer and therefore operate on sampled data. Since the complex en-
velope of a bandlimited analytic signal can be obtained by performing a com-
plex down-conversion (i.e., by multiplying the data by exp(— j2x f) for some ap-
propriate ), the corresponding model for the sampled complex envelope is essen-
tially the same as in (5), except that x(¢), s(¢), and () denote the complex enve-
lopes of the array data, the signals, and the noise, respectively, and ¢ is replaced
with n:

L
x(n) =Y a(@)si(n) +i(n) = A(®)s(n) + i(n). (6)

=1
Almost all of the algorithms discussed in this overview are based on this model.
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0

Figure 2: Accuracy of narrowband model versus relative bandwidth  and angle of
arrival & for a 4-element ULA.

3 CYCLOSTATIONARITY

In this section the relevant results from the theory of cyclostationary signals are briefly
summarized in the context of the sensor array processing problem. First, notation
used in the rest of this overview is summarized. Second, recent results from [69] on
the mean and covariance of the cyclic correlogram matrix, which is an estimate of
the cyclic autocorrelation matrix, are summarized. These results generalize those in
[43]. Finally, the implications of these results are stated for the sensor array signal-
processing tasks of waveform estimation, direction finding, and estimating the num-
ber of cyclostationary signals arriving at the array.

3.1 Notation
The following abbreviations are used throughout this overview:

SOI: Signal of interest

SNOI: Signal not of interest

STF: Spatio-temporal filter

DF: Direction finding

DOA: Direction of arrival

LCL-PTYV: Lincar-conjugate-linear polyperiodic time varying
SNR: Signal-to-noise ratio

SINR: Signa!-to-interference and noise ratio

MSE: Mean-squared error
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RMSE: Root-mean-squared error
BPSK: Binary phase-shift-keyed

Withreference to the abbreviation LCL-PTYV, itis noted that the term linear-conjugate-
linear multiply-periodic time-varying (LCL-MPTV) is used in an earlier work [81] to
denote the same concept. The new term is chosen for consistency with the terminology
used in [32]. The following definitions are used throughout this overview:

D-1 The notation {f(n))y denotes the time average of f(n):(f(n))y =
| —N-l
N Zn:l] f(n)

D-2 The notation f(N) = OQ(g(N)), where g(/) is a monotonically decreasing
positive function of N, means that limy_, o f(¥)/g(¥) = c for some
constant ¢,

D-3 The function Zy(f, ) is defined as

Nel—1

al —jemfn _ 1 TNSIRSESN —7)) _orneon
Zy(fit)= N ; e’ - (1 N) sinc(r f) ¢’

and is O () for fixed f 5 0 and 7, where sinc(x) = sinx/x.

D-4 The superscripts *, T, H, +, and L dencte conjugation, matrix transposi-
tion, matrix conjugate transposition, pseudo-inversion, and the orthogonal
complement operation, respectively. Furthermore, » and ® denote the con-
volution and Kronecker (tensor) product (cf. [41]) operators, respectively.

D-5 The expectation operation is denoted by E {} and can denote either the
ensemble-averaging operation for which the argument is typically a stochas-
tic process, or the sinewave (or polyperiodic component) extraction opera-
tion based on time-averaging. In this paper, this operation can be interpreted
in either way with complete equivalence of the results, provided that under-
lying assumptions of cycloergodicity and so forth are properly attended to.
Extensive discussion of these two philosophies can be found elsewhere in
this volume [32]. '

D-6 The time-variant cross-correlation R,y (m, ) between x(m) and y(n) is de-
fined as
)
Ryy(m,n) £ E {x(m)y" (n)} .

D-7 If R,y(n + t,n) has a Fourier series representation in », it is given by
Ry(nt1,n)= ZRfy(r)eﬂ"ﬂ"
B
where the sum is taken over all § for which the cyclic cross-correlation
RE (7), defined by
RE,(1) = Ry(n + 1, me™ /2P,

is not identically zero as a function of t.
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D-8 The symbol ﬁfy(r) denotes the cyclic cross-correlogram of x(r) and y(r)
at cycle frequency & and lag t:

5 N T x(n + Ty @) e, fore >0,
R (m) = "

i N Zn_—r x(n + 1)y (ny e~ /2o, forz <0,
Va.nd it is useful to note that R"' (1) = ﬁ;"”'(_t)eﬂmr_

D-9 The cyclic cross-correlation cocfﬁcient between u(n) and v(n) for cycle
frequency « and lag 7 is defined as

P20 2 B [VRWuORWO)

where it is noted that |p%,(t)| < I for all @ and 7 (e.g., [30]). The mag-
nitude of p% (1) is sometimes referred to as the feature strength (at cycle
frequency o and lag t) of the signal s(r). The feature strength is a nor-
malized measure that can be interpreted as indicating the degree to which
a signal is correlated with a frequency-shifted and delayed copy of itself.

D-10 The singular value decomposition of the cyclic correlation matrix R7,(z)
is denoted by

R, =S G][ 0 20 ][Vs Vel = S5V,

where [S @] and [V V] are unitary, the diagonal elements of the di-
agonal matrix Zs are nonnegative, and Lg = 0. The SVD of the cyclic
correlogram matrix R () is denoted similarly except that all quantities
have hats (*) on them

3.2 Mean and Covariance

Here, three results on the mean and covariance of cyclic correlation matrices are
summarized. More detailed discussion can be found in the appendix of this overview,
where the assumptions under which these results are true are given,

First, ﬁg,(r) is found to be asymptotically unbiased.

Result 1 The mean of I‘ézy(r) Jfor T > 0 can be expressed as
ElR@) = Y REmZy@—£0)

= (1 L (r)+Z:R‘B @) Zn(e— B, 1)

= R(1)+ 0 (F) .

Second, the covariance is found.
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Result2  Given two arbitrary vectors g and w, then

" ” 1
cov [ngﬁ(r)g, R_:yT(r)w'] =h+hH+0 (ﬁ)

where
J = _Z Z wTRﬂH(k)gRﬁ h(k)eﬂn'ak —j2mpBr
k=—00
_&_: _E E RA- 2a(k_t)wgrRﬁ;(k+t)ejzmkejzzz(ﬂ—za)r_
k=—00

Result 3 Given two arbitrary vectors g and w, then

cov [ﬁgyﬁ(r)g, I@;’f(r)w] =K1+ K+ 0 (%)

where
K = _Z Z wHRﬂH(k)gR (k)ej2nake—j2frﬁr
k=—c0
Ky = — Z Z ,.(k - r)w*gTRf_:.(k + 7)e 2Tk gi2upt
k=—0cc

Under the assumptions given in the Appendix, itis easily shown thatR“ 5 (T) converges
in mean square to RY, () since its bias and covariance are both O (% )

3.3 Implications for Sensor Array Processing

Under the assumption that the narrowband model holds well and L, signals of interest
(80D s1(n), ..., sz, (n) having cycle frequency o arrive at the array,

Ly

x(m) = Y a®) si(n) +in),

=1
then the results on the mean and covariance of ﬁ;‘x(r) imply that

R%.(z) — A(O)R%(1)AY(©)
R2.(1) — A@RE.(1)AT(®)

with bias and covariance O (4). This in tum implies that a measurement of the
spatial characteristics (the vector space spanned by the SOIs’ array response vectors)
of the L, SOIs can be made, even if the SOI waveforms and directions of arrival are
unknown, and even if i(n) has completely arbitrary and unknown spatial characteris-
tics. However, note that additional restrictions on the ambiguity of the manifold and
on the rank of R (7) are needed to determine © and/for A(@) from RZ.(1).
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In subsequent sections it is shown how this signal selectivity can be exploited to
solve waveform and parameter estimation problems in sensor array processing.

Furthermore, Results 1-3 are needed, for example, in the analytical performance
evaluation of direction-finding methods that exploit cyclostationarity, as summarized
in Section 6.4.
[ @] Another implication of these results is that error in the knowledge of the cycle
frequency manifests itself as cycle leakage in the sense that the regenerated spectral
line at the true cycle frequency ap leaks into the estimate at o with weight 2y (g — a).
Thus, the aliowable error in the estimated cycle frequency should be less than 1/2N.
Methods for estimating the cycle frequencies of a signal are available, although they
are either computationally intensive (requiring computation of the cyclic spectrum
over apotentially large portion of the ( f, o) plane as in [451) (cf. [65] in this volume for
efficiently implemented cyclic spectrum analyzers), or they are somewhat susceptible
to error and require a potentially large number of data samples [13, 75]. However, it
has been observed in some cases [68] that the CRLB on the variance of cycle frequency
estimates decreases as 1/ N2 (in contrast to 1/N for estimates of direction of arrival,
carrier phases, and so forth), so there it may be possible to develop extremely reliable
cycle frequency estimators. Even in the case of scalar data this remains an open
problem.

4 SPATIAL FILTERING

In this section the problem of using a sensor array to spatially filter the received signals
without knowing a training signal or direction of arrival is addressed.

4.1 Structures for Spatial Filtering

Spatial filtering is used for purposes similar to those of temporal filtering: to enhance
desired signal components, to attenuate undesired signal components, and to minimize
noise.

The simplest spatial filter considered here linearly combines the signals from the
sensors to yield an output signal §(r):

1) = wix(n).
If the narrowband model (6) holds well then

Ly

§my = [w"a@)] si(n) + witn),

=]

which clearly shows that the gain applied to a signal arriving from angle 8 is w¥a(8).
Thus, wa(@) is analogous to the transfer function (Fourfer-transformed impulse
response) of a linear time-invariant (LTT) finite-impulse-response (FIR) temporal filter
and is referred to as the spatial transfer function or antenna pattern of the spatial
filler. 'When multiple signals arrive from different directions, a carefully chosen
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spatial filter can extract one of these signals while rejecting the others, as depicted by
the antenna pattern in Fig. 3, where w has been chosen to extract the signal arriving
from 30 degrees and to reject (or null) the signals arriving from —20 degrees and 0
degrees.

20 T T T T T T : T T T

10

L

—

=]
T

»

[ 3
(=
T

Antenna Gain (dB)
o \
=
T
1

b
=]

_5p}- 4

60} §

L 1 1 i 1 : L 1 L
Moo %0 -60 40 20 ¢ 20 40 60 80 100
Angle of Arrival (degrees)

Figure 3: Antenna pattern of a spatial filter to extract a SOI arriving from 30 degrees
in the presence of signals at -20 and 0 degrees and while noise that is uncorrelated from
Sensor to sensor.

More generally, a spatial filter can include an LTI filter on each sensor to perform
spatio-temporal filtering (STF)

M
§n) = Z wh (1) * X (1) = wi (n) x x(n),

m=I

for which the antenna pattern is now a function of frequency (i.c., w” (— f)a(@, f)),
and the frequency dependence of 2(f) is included to emphasize that the STF is ap-
propriate even if the narrowband model does not hold.

‘Yet more generally, a spatial filter can include a linear-conjugate-linear polyper-
iodic time-variant (LCL-PTYV) filter on each sensor to perform LCL-PTV STF, which
is the generalization to multiple inputs of the scalar LCL-PTV temporal filter. An
extensive discussion of LCL-PTYV filters appears in [23] where they are referred to as
polyperiodic linear filters. As discussed there and in [31], the LCL-PTV filter struc-
ture can implement the Cyclic Wiener filter, which is the generalization of the Wiener
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filter from stationary to cyclostationary signals. The fractionally spaced equalizer
structure that is ubiquitcus in digital communication systems is also a restricted im-
plementation of an LCL-PTV filter. Since LCL-PTV filter structures have been shown
to be capable of separating two cyclostationary signals even if they are completely
overlapping both temporally and spectrally, it is reasonable to expect there to be
substantial benefits of LCL-PTV STFs over LTI STFs in some cases.

In addition to the preceding, LCL-PTV STFs can be motivated simply by ob-
serving that they make it possible to simultaneously exploit multiple cyclostationarity
features. For example, a digital communication SOI having baud rate fpa.. exhibits
uscful cyclostationarity at muitiple cycle frequencies, such as & fpq,g (and harmonics
thereof if the SOI is not bandwidth-efficient), and the cyclic autocorrelations at these
cycle frequencies contain useful information at multiple values of the lag parameter .

Thus, the LCL-PTV STF can be interpreted as linearly combining multiple
frequency-shifted and filtered and possibly conjugated versions of the received data,
or as simply providing a signal, which when correlated with the original data, al-
lows muliiple cyclostationarity properties to be manifested simultaneously in a single

measurement, That is,
$(n) = wiy(n) )]

where

[ (x(n) x hy(n)) /27"

| ey w k() e
)’(") - (I(n)* = h_,r+1(71)) ej?.rra;+1n

8

L (x(n)* * hx(m)) o maxn

and hz(n) for k = 1,..., K are the impulse responses of arbitrary LTT filters, and

oy for k = 1,..., K are typically related to the cycle frequencies of the desired.

cyclostationary signals (and possibly undesired interfering signals) s(n) (e.g., doubled
carrier frequencies, baud rates and their harmonics, and sums and differences of these).
Figure 4 depicts an implementation of (7), without the branches that use conjugation.

¥(n) sty

e J2mon

Figure 4: Block diagram of an LCL-PTV STF. The conjugate branches are omitted
for simplicity.
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[ ] Several open problems relate to LCL-PTV STFs. In particular, practical methods
of adapting them, their convergence time and SINR at convergence, methods for
blindly adapting them (i.e., without the use of training signals), and their use in
such applications as equalization and/or demodulation of severely corrupted digital
communication signals (e.g., see Section 5) and interception (blind despreading) of
spread spectrum communication signals are of significant interest.

4.2 Performance Criteria

The performance measures most commonly used to evaluate waveform estimators
such as spatial filters are summarized here.

Perhaps the most obvious of these measures is the mean-squared error (MSE)
of the estimated waveform relative to the desired waveform,

MSE(§, 5) = (Ilf(n) - s(n)||2) ®

v
A closely related measure is the signal-to-interference-and-noise ratio (SINR) which
can be expressed as

» power of desired signal components in §

SINR(S, s) - —
power of everything else in §

/s 2
[Ra s
- 12 - - -~ 2"
Re /RH 1 — |Bs]

The SINR increases without bound as § becomes arbitrarily highly correlated with s
(i-e.,as |As| — 1). All three of these measures (MSE(S, s), SINR(S, s), and | Bss |2)
are applicable to single time-series, but are often averaged over multiple realizations
(e.g., sample paths of a stochastic process) or multiple data segments of length &
comprising a much longer time series,

Minimizing MSE (g§, s) with respect to the complex scalar g and estimated
waveform § is exactly equivalent to maximizing SINR(3, s} and then computing
g = Rs¢/Rss.

In this overview SINR is distinct from SNR, which is used here to specify the
power levels of received signals relative to the power of Gaussian noise.

Finally, in the special, though increasingly important, case in which the desired
signal is a digital communication signal, the ultimate goal is typically to obtain a
good estimate of the underlying bit or symbol stream. Thus, the relevant performance
measure is the bit error rate (BER), which is strongly dependent both on the type of
interference, noise, and channel distortion that corrupts the signal at the input to the
demodulator and on the demodulator itself. Simple expressions for BER as a function
of SNR (relative to white Gaussian noise) in the absence of channel distortion are
well known and can be found in any standard text on digital communications (e.g.,
[60D).

‘ﬁ- (10}

Ry -
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4.3 Conventional Methods

Conventional approaches to adapting a spatial filter have been well understood for
more than two decades, and a tutorial that includes them and more recent advances
can be found in [95]. Comprehensive treatments can also be found in [20] and [54].
For the purposes of this overview, three of the most popular methods are summarized
here.

The most direct method simply minimizes M SE (S, 5) to obtain the minimum
MSE (MMSE) solution o

wumse = R Rys, 1
for which the corresponding SINR (referred to in this overview as the maximum
SINR SINR,,, attainable by a memoryless time-invariant spatial filter) is given by
(11) with

|ﬁ.§.r|2 = R;H_;R;,;]R.t.r/ﬁs:-
As can be inferred from (11), a spatial filter attaining this maximum SINR can also be
found by maximizing ]3;|*. For applications in which it is undesirable, expensive,
or impossible for a known training signal to be sent by the transmitter and a Iocal
copy of it used by the receiver for adaptation, this method is unsuitable.

An alternative to the MMSE method makes use of prior knowledge of the direc-
tion of arrival (DOA) of the signal of interest (SOI) to form a beam on the SOI and to
null any interferers. This method is referred to in the literature as minimum variance
distortionless response (MVDR} beamforming and is a special case of a more general
framework called linearly consirained minimum variance beamforming. Yet more
general variants exist which accommodate quadratic, derivative, and eigenvector con-
straints {cf. [95]). The spatial filter weights are chosen so as to minimize the average
output power while maintaining unity array gain in the direction &g of the SOI, since
doing so necessarily minimizes the contributions of interferers that arrive from other
directions:

max I%;_; — max wﬂﬁxxw.
w S.t. wagy)=1 ws.t. wha(g)=1
It can be shown (e.g., via the method of Lagrange multipliers) that the solution is
given by

~ -1 ,
wpvDR = o GoRla@) | Rila@o). 12)

If the SOI arrives only from angle &, then ﬁ,,s converges to a(fy) R;;, which with
(11) and (12} implies that the output SINR of the MVDR spatial filter converges
to SINR,,,... For applications in which it is impossible to know 8 and difficult to
estimate it {e.g., using one of the direction-finding methods described in Section 6),
this method is unsuitable.

As yet another alternative, when neither a known training signal nor a known
direction of arrival is available, a direction-finding algorithm can be applied. For
example, given known array calibration data, the method of [55] estimates the di-
tections of arrival of all signals and then uses these to compute the weights of the
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spatial filter for each signal. However, in some applications, the computational load
of estimating all of the directions of arrival and post processing the spatially filtered
signals to select those of interest may be prohibitive. Also, accurate array calibration
data can be difficult or impossible to obtain in some applications.

4.4 SCORE Algorithms

@ The general problem of blind adaptive filtering is by nature lacking in specificity,
since it is desired to extract a good quality estimate of a signal by exploiting whatever
knowledge (if any) is available in the event that conventional methods are unsuitable.
This lack of specificity requires investigation of possibly numerous approaches, each
tailored to a different set of knowable facts about the SOI, the interference, the noise,
the channel, etc.

This section describes a class of algerithms for one such set of facts, namely
knowledge that the desired signal exhibits cyclostationarity, where it is assumed
that the specific cyclostationarity properties are either known at the receiver or can
be estimated. The spectral coherence restoral (SCORE) algorithms, which exploit
cyclostaticnarity properties, require neither a known training signal nor knowledge of
the spatial characteristics of the SOIs, interference or noise, and don’t require array
calibration data (i.e., knowledge of the array manifold). The SCORE algorithms
are explained in this section from several different perspectives with the intent of
demonstrating that there are multiple approaches to the blind adaptive spatial filtering
problem, and that some of the approaches yield identical algorithms. Finally, the
SCORE framework is generalized to exploit other signal properties.

4.4,1 Least-Squares SCORE

The challenge of blind adaptive spatial filtering is to minimize M SE(§, s) with-
out knowing s, without knowing a(fp), and without resorting to methods based on
direction finding which require knowledge of the array calibration data. At first this
challenge may seem insurmountable. However, if s arrives from only one direction
(i.e., no multipath or smart jamming is present), then R, converges to a(fp) R,
indeed, any vector that converges to a vector that is proportional to a{fp) can rea-
sonably serve as a substitute for Ry, in (11). In particular, if u(#) is any signal that
is correlated with 5(n) but uncorrelated with the remaining signals comprising x(n),
then R,,, = a(GU)Rm + R,,, converges to a(GO)Rm, which is clearly proporticnal to
a(fy) as desired. This implies that w = R_u R, might be a suitable adaptive spatial
filtering algorithm. If possible, the convergence time should be reduced by choosing
the signal u(n) so as to maximize the ratio of the desired contributions a(Bo)ﬁ,u to
the residual contributions ﬁ;u.

If it is known that s(n) is cyclostationary with cycle frequency o, but i(n) is not,
then a reference signal u(n) can be derived directly from the received data,

u(n) = cx(n — v) /", (13)

where ¢ is any vector of spatial filter weights such that c7a(fy) # 0 (e.g., ¢ =
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[1, O,..., 0]7), and 7 is chosen so as to maximize (if possible) R¥ (7). The key
observation is that u(#) is correlated with s(n) but uncorrelated with #(n). This
observation leads directly to the Least-Squares SCORE (LS-SCORE) optimization
problem

I (14)

min MSE(§, 1) <= max |ps
W W
which has solution o o
w=R_'R,, =R R (v)c (15)

referred to as the LS-SCORE spatial filter. Altematively, if s(n) exhibits conjugate
cyclostationarity, then u(n) is given by

u(n) = c'x*(n - 1) /2, (16)
which yields o N
w=R_ R, =R RL.()e.
4.4.2 Cross-SCORE
The preceding derivation of the LS-SCORE algorithm leaves some questions
unanswered, one of which is “How is ¢ chosen so as to minimize convergence ‘time?”

Without resorting to prior knowledge of the spatial characteristics of s(n}) or i(n), 2
direct method is to maximize | 5, |2 with respect to both w and c,

R 2

, |w”R§_,(r)c|
max lﬁfu| = max - . an
w.e w.e [w”Ruw] [CHR,,_,C]

for which the solutions are the dominant eigenvectors w; and ¢, respectively:

EL(T)E_IR?LH(T)wm = J‘-mié.:;'.vcwm

XX

(18)

RAORIRE (1)em = AnBoxCm,

XX

wherem =1,...,.Mand Ay = --- = Ay.

Since this algorithm maximizes the cyclic cross-correlation coefficient (or cross
spectral coherence) between §(n) and c¢x(n — 1), it is called the Cross-SCORE algo-
rithm. Loosely speaking, it adapts w and ¢ to maximize the degree of cyclostationarity
exhibited by § at cycle frequency ¢ and lag 7.

Another question unanswered in the discussion of L§-SCORE is, “How can
multiple SOI waveforms be estimated (i.e., when more than one signal has the chosen
cycle frequency @)?” In the following, assume that L, SOIs have cycle frequency a.
In [7] it is shown that the L, most dominant eigenvectors wy, ..., Wy, in (19), which
correspond to the L, highest stationary points of | ﬁ;u|2 (i.e., locations at which the
gradients with respect to w and ¢ are both equal to zero), are spatial filter weights that
can be used to obtain estimates of the L signals having cycle frequency « and lag
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7. Itis also shown that each of these signal estimates has nearly the same SINR as
the corresponding MMSE signal estimate, provided that a sufficient number of data
samples are available for adaptation, that input SNR is not too low, that fewer signals
than sensors arrive at the array, the array response vectors are linearly independent,
no multipath is present, and that each signal has a different feature strength. The
condition: on the feature strengths can be easily derived in the absence of noise and
effects due to finite-averaging by simplifying (19} to yield

RE(OR;IRZH (1)g = ARyg (19)

where g = A(®)7w and it is assumed that the Z, columns of A(®) are linearly
independent, and noticing that perfect signal separation implies that the eigenvectors
[&'1 - g L.,.] are a permutation of the identity matrix I, which occurs only when R
and R? () are diagonal and |pZ ()| # 0%, (v)| for all m % n. Thus, the SOTs
must be uncorrelated and have distinct feature strengths for perfect signal separation
in Cross-SCORE. In practice, noise is present (so (19) does not apply}, and thus signal
separation is less than perfect. Nonetheless, signal separation has been observed in
simulations to be adequate, provided that the input SNR (but not necessarily the input
SINR) is positive.

Alteinatively, as in LS-SCORE, conjugate cyclostationarity (e.g., doubled carrier
features) may be exploited by solving

ﬁ?r(f)ﬁ;;‘l?ﬁf(r)wm = lmﬁn-w,,,
(20)
RHORIR. )en = AaRlitn.

Int practical terms, Cross-SCORE avoids the need for a known training signal,
albeit at the expense of increased convergence time relative to the MMSE method.
The benefits of this to cellular communication system design are discussed in Section
4.5.1. For example, using only the knowledge of the baud rate of desired bauded
digital communications signals {e.g., PSK, QAM, etc.) or only the doubled carrier of
communications signals that exhibit cyclic conjugate correlation at the doubled car-
rier frequency (e.g., BPSK, DSB-AM, NBFM), the Cross-SCORE and conjugate
Cross-SCORE algorithms, respectively, can nearly achieve the maximum SINR at-
tainable by an LTT beamformer [7].

A brief illustration of the performance of LS-SCORE and Cross-SCORE is
given here. In the computer simulations, 100 independent trials are performed and
the average SINR at the output of the SCORE processor is computed as a function of
the number N of time samples used for adaptation. In each trial, independent BPSK
signals having baud rates 0.25 and 0.2, carrier frequencies 0 and 0.1, and angles of
arrival 0 and 20 degrees, respectively, arrive at a 4-element ULLA in the presence of
additive white Gaussian noise that is uncorrelated from sensor to sensor. Both signals
use Nyquist-shaped pulses with 100% excess bandwidth and have SNR equal to 10
dB. LS-SCORE and Cross-SCORE are both applied to the data, first with @ = 0.25
and then using the conjugate form with ¢ = 0; that is, first the baud-rate feature
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and then the doubled-carrier feature of the first signal is exploited. Similar results
are obtained using the cycle frequencies of the second BPSK signal, As shown in
Fig. 5, Cross-SCORE adapts more quickly than LS-SCORE because Cross-SCORE
adapts both w and ¢, Convergence is much quicker for doubled-carrier features than
for baud-rate features because the feature strength at the doubled carrier is much
stronger than at the baud rate; a stronger feature enables more reliable discrimination
between the desired signal and the interference, thus reducing convergence time.
This is analogous to the fact that the MMSE method adapted with a slightly noisy
training signal converges more quickly than the same method adapted with a very
noisy training signal. Indeed, the results in Fig. 5 show that Cross-SCORE, using
the doubled-carrier feature, converges at nearly the same rate as the MMISE method,
which uses perfect knowledge of the signal waveform.
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Figure5: Average output SINR of LS-SCORE and Cross-SCORE for different feature
choices.

Other performance results are given in Section 4.4.8, and in [3, 6, 7, 72], where
it is also shown that, in certain environments in which a baud-rate feature is being

used, Cross-SCORE can converge much more guickly than LS-SCORE, in contrast
to the results shown in Fig. 5.

4.4.3 A Maximum-Likelihood Interpretation

In [81] a constrained conditional maximum-likelihood (CCML) STF is found
for unknown cyclostationary signals in stationary zero-mean complex white Gaussian
noise having arbitrary unknown spatial covariance matrix. Since the publication of
[81], a more complete interpretation, described here, has been developed.

The derivation of the algorithm consists of two steps: 1) the CCML STF is
developed to obtain a set of optimal (in the CCML sense) data-derived training signals
for the SOIs; and 2) the resulting estimates of the training signals replace the ideal
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training signal in (11) to yield the spatial filter weights used to estimate the SOI
waveforms. The two-step procedure is adopted because it will be seen that the data-
derived training signals cannot be high-quality estimates of the SOIs, but they can be
effective training signals.

Step 1: CCML Data-Derived Training Signal Before becoming embroiled
in the details of the algorithm, the justifications for the qualifiers constrained and
conditional are presented.

The STF can be constrained to be LCL-PTV to directly generalize the single
cycle frequency transformations {13} and (16) used in LS-SCORE. The general LCL-
PTV structure provides a way (o exploit multiple cyclostationarity properties sinul-
taneously. Another motivation for using LCL-PTV structures is that it is known that
this structure, when properly adapted, yields the minimum MSE for scalar cyclosta-
tionary signals in noise [31] (and it’s conjectured to yield the MMSE for vector-valued
cyclostationary signals). Also, the LCL-PTV filtering structure is both tractable to
work with analytically and feasible to implement.

However, other signal properties could also be exploited by simply choosing
y{(n) to be scine other transformation of x{r). For example, either of the Kronecker
products x(n) ® x(n — 1), x(n) @ x(n — 1) ® x(n — ™), variations of these in-
volving conjugation of somne terms, and further variations in which frequency shifts
are included, could be useful transformations of x{n) that yield data-derived training
signals. These examples could be appropriate for exploitation of higher-order sta-
tionarity or higher-order cyclostationarity. These statistical properties are discussed
in depth in [87].

‘The ML problem is conditional (on the unknown waveforms of the cyclosta-
tionary signals) because noise can often be accurately modeled as being stationary
and Gaussian, whereas communication signals of interest are almost never Gaussian
nor stationary, and their probability distribution functions are typically unknown or
virtually intractable to work with. In particular, in some signal interception and sig-
nal classification applications, almost nothing might be known about the signals of
interest. Also, the conditional ML problem easily admits the user-programmable
constraints just described.

The vector of sampled complex envelopes at the output of an M-element sensor
array is denoted by x(n), which can be modeled under the narrowband assumption
by ’

x(n) = As(n) + i(n)

where s(n) denotes the vector of L unknown signals, A denotes the M x [ matrix
of unknown array response vectors of the signals, and i(n) denotes the noise, The
estimates of the data-derived training signals are constrained to be the linear combi-

nations .
d(n) = Wf)'(n) (21}

where y(n) is almost any specific realization of the general LCL-PTV form in (8) or an-
other suitable transformation as discussed previously. It is necessary to constrain the
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processor structure to something other than the usual linear processor a(n) = Wx(n)
since the resulting solution for W in this case could be any arbitrary matrix having
column-rank equal to L, as will be seen in Section 4.4.6. Furthermore, for the same
reason, x(n) cannot appear in unmodified form in y(n). Thus, a(n) cannot in general
be a high-quality estimate of s(n), but it will be seen to be a useful training sxgnal
The constrained conditional ]Lkelxhood function for the estimates A D, and R,,
of A, 8§ = {st):1<n=<N}LandR; = (:(n)t(n)”)oo, respectively, is given by

~ ~

LA,D, Ry = |JTR,-,- _chp [—N(e(n)HﬁEIe(n))N ]

where e(n) = x(n) —AA&(n).
By application of results from matrix calculus [41] and complex gradients of
nonanalytic functions [14], it can be shown that the CCML estimates are given by

H H
p{ML) _ p 1MLy pH 5 .| 4(ML) AML D | A(ML)
RMD = Reo — AMORE — R g [4W0]7 4 A0 Ry [domn]
AMLY _ p Pl
A = R SR,

and a(n) is given by (21) where W has L columns given by any full-column-rank
linear combination of the L most dominant eigenvectors E of the matrix T, defined
by

T, =R'RIRIR,,. (22)
That is, W, = EQ for any full-rank L x L matix Q.

If, in addition to the constraint on the processor structure, it is required that
the estimated signals be uncorrelated, Wfﬁy,Wy = I, then the log-likelihood is
maximized only by the L most dominant eigenvectors of T, instead of any linear
combination thereof; that is, W, = E. A mathematical result related to the solution
(22) was proposed in [112] and proven in [86]. Also, the result of this section includes
that in [4] as the special case for which one signal is present (L = 1) and y(n) = x*(n).

An alternate proof of (22) can be obtained by noting that maximizing
L(A(‘w‘) D R(M )) is equivalent to maximizing

M
Sy =[] 2 WIRE RS R W, WIR W),
=1

where A, (-, *) denotes the mth generalized eigenvalue of the matrix pair (-, %), and
then applying the Poincaré Separation Theorem for generalized eigenvalues of a
pair of Hermitian matrices {(e.g., [62]). In any case, the additional constraint that
the estimated signals be uncorrelated yields a unique solution W, that can also be
obtained from a different perspective as discussed in Section 4.4.4.

Step 2: Using the Data-Derived Training Signal In this step, d(x) is used as
a training signal to minimize M3 E (8, d).
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Direct substitution of d = (EQ)"y(n) into

W =RR;
and algebraic manipulation reveal that W, can be any full-rank linear combination of
the L most dominant eigenvectors of T,
T. =RR R RE. (23)
As before, if the elements of §(n) = Wf x(n) must be uncorrelated, then the addi-

tional constraint Wfﬁ,,Wx = I implies that W, is exactly the L most dominant
eigenvectors of T,.

4.4.4 Canonical Correlation Analysis

In this section the processor derived in Section 4.4.3 is derived, from a different
perspective, as the solution to a canonical correlation analysis (CCA) problem.

The CCML beamformer maximizes the conditional likelihood of the received
data subject to the constraint that the training signal estimates of the unknown signals
are obtained by means of an LCL-PTV processor (or possibly other processor, as
discussed previously). An alternative interpretation is that the CCML beamformer
obtains optimal (in the CCML sense) estimates of the unknown signals appearing in
the received data set as functions of another data set (which happens to be derived from
the received data set in a constrained optimal way). That is, the CCML beamformer
obtains estimates of the signals that are common to both the received data x(n) and
the derived data y(n). In multivariate statistics, this task is referred to as canonical
correlation analysis (e.g., [15, 48, 86]).

In the canonical correlation analysis of two data sets x(n) and y(n) that are
believed to share some number L of signals jointly denoted by s(x), it is desired to
minimize the mean-squared error between the estimates of s{#) linearly obtained from
x(n) by a processor Wf x(n) and the estimates of s(n) linearly obtained from y(n) by a
processor W;’ y{n), subject to the constraints that Wfﬁnw,, =Tand Wfﬁ_.,yWy =1I
Mathematically, this can be accomplished by minimizing

(|| WHx(n) — Wiy(n) ||2)N @4)

subject to the constraints that W#R, W, = I and Wfﬁyywy = 1. The resulting
weight matrices W, and W, are given by the L most dominant eigenvectors of

T, = RiR RRY (25)
and o

T, =R, RIR_R,,, (26)
respectively.
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4.4.5 Contrast Between CCML and CCA

Clearly, T, in (26) and T, in (22) are identical, which shows that the CCML and
CCA frameworks yield identical algorithms when the signal estimates are constrained
to be uncorrelated. Thus, a primary utility of having these two approaches is simply
a cenceptual one, providing the engineer with some flexibility in how the application
of interest is modeled or conceptualized.

The CCML conceptual framework is obviously applicable when the spatiai co-
variance of the interference and noise i(n) is unknown, but it requires that i(n) be
stationary, white, and Gaussian. Incontrast, the CCA conceptual framework is not ob-
viously optimum when R;;(0) is unknown (although from its equivalence with CCML
we know it is), but its simple [east-squares formulation does not require that i(n) be
stationary, white, or Gaussian.

The other contrast of interest here is that CCML can be formulated without the
constraint that the signal estimates be uncorrelated, whereas CCA cannot so easily
admit this flexibility. In many applications, uncorrelated signal estimates are required.
However, in the presence of multipath it is conjectured (based on results for Cross-
SCORE in [7]) that multiple signal estimates, one for each propagation path of a
S0OI, are obtained by CCML. In this case, the desired action of the processor is first to
reject other SOIs, interference, and noise from the multiple signal estimates of a single
SOI, and then to linearly combine these multiple estimates to mitigate the multipath.
Thus, a benefit of the CCML framework, without the constraint that signal estimates
be uncorrelated, is that linearly combining the multipath estimates is the optimal
type of processing (in the CCML sense). Note, however, that the CCML framework
does not suggest kow to choose the weights in the linear combiner. Another adaptive
processor (e.g., one of the blind equalization algorithms reviewed in [21], or either
of the algorithms in Section 5) could be configured to perform this task.

4.4.6 Special Cases of CCML/CCA

The Cross-SCORE and conjugate Cross-SCORE[ 7] blind adaptive beamformers
are specific realizations of the CCML/CCA beamformer. Two special choices of y(n)
merit consideration. The first choice is y(n) = x(n — 7)e/Z™*" for which each of
Wix(n) and Wiy(n) is a CCML and CCA beamformer. Also, Wx(n) in this case
is exactly the Cross-SCORE blind adaptive STF (19). The block diagram of the
signal processor for this case is shown in Fig. 6, although the general CCML/CCA
processor can be obtained by replacing the dash-boxed section with the diagram for
the appropriate LCL-PTV transformation of x(¢) (i.e., the relevant part of Fig. 4).

Similarly, the second choice is y(n) = x(n—1)*e/2** for which each of Wf x(n)
and Wf," y(n)is a CCML and CCA beamformer. Also, Wf x(r) in this case is exactly
the conjugate Cross-SCORE blind adaptive beamformer (21).

The observation that Cross-SCORE and conjugate Cross-SCORE are CCA beam-
formers was first made in [74] where it was used only to motivate the Cyclic Corre-
lation Significance Test for estimating the number of signals having a specified cycle
frequency (see also Section 7.2.1).
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Figore 6:  Block diagram of Cross-SCORE processor.

4.4.7 Programmable CCA

Here the restriction on the choice of y(n)} mentioned earlier is discussed, and itis
noted that the CCML/CCA framework can exploit a wider variety of signal properties
than just those related to cyclostationarity.

From (24} it can be seen that y(n) should not contain x(») as a literal element,
since any solution of the form

W= ]

would minimize (24); this observation implies that this CCML/CCA framework can-
not directly yield a blind Cyclic Wiener filter.

As alluded to earlier, the CCML/CCA framework need not use an LCL-PTV
transformation to obtain y(n). Indeed, the transformation is entirely up to the user,
provided that the restriction just discussed is met. To emphasize this flexibility,
the programmable canonical correlation analyzer (PCCA) is proposed, wherein the
transformation used to obtain y(n) is completely programmable by the user. Thus,
the PCCA can use many types of signal properties to distinguish between desired
signals and interference. A nonexhaustive list of transformations is proposed here:

1. y(n)isafrequency-shifted (by o) and delayed (by r) version of x(n} or x* (n),
which yield the Cross-SCORE and conjugate Cross-SCORE algorithms,
respectively; this defines as SOIs those signals that exhibit cyclostationarity
or conjugate cyclostationarity with cycle frequency &, and can be generalized
to multiple frequency shifts, multiple delays, and prefiltering.

2. y(n)is the output of a band-stop (or band-pass) LTI filter applied to x(n); this
defines as SOIs those signals that have spectral support outside (or inside)
the stop-band (or pass-band}, and can be generalized to more complicated
regions of spectral support.

3. y(n) is a delayed version of x(n); this defines as SOIs those signals for which
the coherence time is greater than or equal 1o .
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4. y(n)is the output of a temporal interval-stop (gating) device applied to x(n};
this defines as SOls those signals that are active outside the stop intervals.

5. y(n) is the narrowband {or wideband) output of an adaptive spectral-line
enhancer applied to x(n); this defines as SOlIs those signals that are relatively
narrowband (or wideband).

6. y(n) is the enhanced (or degraded) output of a spectral-correlation enhancer
(a blind adaptive LCL-PTV filter) applied to x(n); this defines as SOIs those
signals that exhibit (or don’t exhibit) cyclostationarity at a specified cycle
frequency c.

7. y(n) is the constant modulus (or nonconstant modulus) output of an
LTI filter (or LTI cancelier) adapted by the constant modulus (CM) algerithm
(CMA); this defines as SOIs those signals that have (or do not have) constant
modulus.

8. y(n) is the output of a demodulation/remodulation device that is applied to
x(n) and is structured to select FM, PM, FSK, or PSK signals.

9. y(n) is the output of a nonlinear transformation such as x(n) ©® x(n) ©
x(n), x(n) @ x(n) © x* &), x(n) @ x(n) @ x(n), x(n) @ x(n) @ x*(n), or
time-variant nonmemoryless generalizations thereof, where © denotes the
elementwise product and ® denotes the Kronecker product; this defines as
SOIls those signals that have the higher-order stationarity or higher-order
cyclostationarity properties selected for by the chosen transformation.

(] Although empirical results on the performance of Cross-SCORE for finite nurni-
bers of time samples are available in [5, 6, 7, 35, 72, 811, no analytical results are
available, such as the mean and variance of the output SINR as a function of the num-
ber N of time samples. It is likely that existing results in the multivariate statistics
literature on the behavior of canonical correlation analyzers could be applicable to the
performance analysis of Cross-SCORE and the CCML/CCA, generalizations thereof.
Also, as mentioned, it is of interest to determine whether the coherent combination
of W x(n) and W y(n) is uscful as an LCL-PTV STE.

4.4.8 Simulation Results

Here the performance of the CCA beamformer is briefly illustrated via computer
simulations as in [81].

In the simulated environment, a 4-element ULA having half-wavelength sensor-
spacing receives 2 BPSK signalsin the presence of stationary complex white Gaussian
noise. The two signals are spectrally overlapping and have equal signal-to-noise ratios
(SNRs) but arrive from different directions (0 and 20 degrees) and have different baud
rates (0.25 and 0.33 times the sampling rate). The average output SINR was obtained
by averaging the output SINRs from one hundred independent trials. Two different
input SNRs (0 dB and 10 dB) are considered. In each case, the average output SINR
is evaluated for different numbers of cycle frequencies ¢ and filters A4 (n) = 8p_q,
in (8). In particular, 6 combinations of one or two values of « (0.25 and —0.25)
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and 3 values of 7 (0, 1, and —1) are considered; since these values of & correspond
to cycle frequencies of the BPSK signal with baud rate 0.25 (because the cyclic
autocorrelations at these cycle frequencies and lags t are nonzero), this signal is
extracted by the spatial filter. If & were chosen to be 0.33 andfor —0.33, then the
other BPSK signal would be chosen. If only one value of ¢ and one value of 7 are
used, then the CCA beamformer is equivalent to the Cross-SCORE beamformer. As
seen in Figs. 7 and 8, the use of multiple values of « and 7 substantially improves
convergence, with between one-half and one-eighth as many data samples required
to achieve the same performance as Cross-SCORE.
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Figure 7:  Average output SINR for different numbers of cycle frequencies and lags.
The input SNR is 0 dB.
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4.4.9 Phase-SCORE

One very important occurrence of multiple spectrally overlapping SOls having
the same cycle frequency « is in modem communication networks based on code-
division multiple-access (CDMA). In CDMA, multiple signals can share the same
spectral band because each has the unique code used by the transmitter to spread
the message signal across a wide spectral band which is also used by the receiver
to despread it. However, this code does not despread the signals of other users but
instead spreads them even further. Depending upon the choice of spreading codes, the
feature strengths of the CDMA signals of the multiple users can be identical. Thus,
in this application, Cross-SCORE’s requirement that each SOI has a different feature
strength (to enable signal separation) is especially restrictive. However, unless the
network is synchronous (i.e., all users are synchronized to a single symbol clock), the
cyclic correlation coefficients gf , (t) will have different phases even if the feature
strengths are the same. This result follows because the phase of pf . () is linearly
dependent on the phase of the symbol clock when ¢ is a harmonic of the symbol rate.
Thus, the task of signal separation may be viewed as one of designing a SCORE-like
algorithm that preserves this phase information.

An ad hoc solution can be obtained from the noiseless infinite-time analysis (19)

by simply deleting R_;!R%# (7) from the lefi-hand side to obtain
R%(t)g, = MRug; for I=1,..., Ly. @n

Here, perfect signal separation (i.e., [gy, ... , gp,] is a permutation of I) occurs
only when the SOIs are uncorrelated and pf | (1) # pg, (7) for all m 3 n. That
is, the phase information of the feature at « 1s preserved and is used to distinguish
each signal from the others. Working backwards from (27) yields the Phase-SCORE
algorithm

Ii_':,’x(r)w = AR ow. (28)

As shown in [7] and [72] via computer simulations, Phase-SCORE can separate

SOIs having the same feature strengths but different feature phases (e.g., caused by
the signals having different timing of their symbol clocks).
[[@] As with Cross-SCORE, analytical results for finite-time performance of Phase-
SCORE are desirable but currently unavailable. Unlike Cross-SCORE, which has
been reinterpreted as a particular instance of the canonical correlation analyzer, or
as the solution to a particular constrained conditional maximum-likelihood problem,
no link between Phase-SCORE and existing methodology in multivariate statistics
has been found. Furthermore, it is unclear (at least to the author as of this writing)
whether Phase-SCORE is the solution to an optimization problem or it is a purely ad
hoc algorithm. Also, itis not clear if Phase-SCORE can be extended to accommodate
multiple cycle frequencies or if it can exploit features associated with the cyclic
conjugate correlation (e.g., features at the doubled carrier frequency).
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4.4.10 Wideband SCORE

SCORE can also be applied to wideband environments in which the received
data x(¢) can be modeled in terms of finite-time Fourier transforms (FTFT):

La .
e f) & Y a6, NEG 1)+, )

=1

= A@©, Nie, fr+ie £, (29)

where (¢, f) = (1 /JZ) ,’_T /’;_2 x(ye 727/t g is the FTFT of the received data,
d(@, 1) is the transfer function of the array for a signal arriving from angle @, 5{¢, 1)
is the FTFT of the L, cyclostationary signals impinging on the array from angles
81, ..., 81, 1espectively, and having cycle frequency «, and i(¢, f) is the FTFT of
all other signals and noise that do not have cycle frequency «. The approximation
in {30) holds well if the FTFT integration time A is greater than the duration of the
impulse response of the array. Similarly, the FTFT of the Ith extracted signal is given
by (¢, ) =w(t, T, fyforl=1,..., L.

Application of the SCORE concept to this problem can be pursued by reexpress-
ing it as a CCA problem. Notice that the FTFT y{(¢, £} of the auxiliary signal defined
by y(£) = x(£) e/2™ is given by

F(t»f) = f(tsf_a)

=A@, f—a)§(t, f—a) +i(t, f —a). (30)

Since s(¢) is cyclostationary with cycle frequency «, §5(¢, f — «) is correlated (shares
a common component) with §(¢, /). Consequently, a solution based on canonical
correlation analysis can be found for each value of f:

SN S Sl W) = A (N8 (FIB1(S) 31
S ()8 S (UNE) = APNSHNE), (32)

where S‘,,.( f) is the estimated cross-correlation matrix of x(¢, /) and ¢, /) (and
can also be interpreted as the cross-periodogram matrix of x(¢) and r(¢)).

Other details of the method, including the regions over which w, (/) and &/ ( /) are
defined, are given in [79]. Also, as discussed in [79], Wideband SCORE differs from
the frequency-dependent SCORE method presented in [3], which typically requires
that a complicated set of coupled matrix equations be solved, which hinders practical
application.

4.5 Application Examples

In this section two specific applications of blind-adaptive spatial filtering to digital
communication systems are summarized. In the first application, the Cross-SCORE
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algorithm forms the basis for a completely new architecture for a land mobile digital
cellular radio system that accommodates a substantially greater number of users than
existing or proposed systems. In the second applicaticn, the Wideband SCORE
algorithm is applied to a direct-sequence spread spectrum communication system to
reduce the amount of processing gain required from spreading alone, thereby allowing
an increase in channel capacity and/or a decrease in bit error rate.

[ @] Both of the examples to be presented here are based on the results of computer
simulations. A standing open problem in this regard (and, indeed, in the case of many
signal-processing algorithms in sensor array processing) is to test the algorithms on
real data from an actual sensor array.

4.5.1 Digital Celilular Radio

Demand for mobile communication continues to increase as it becomes easier
to use, is more widely available, and offers a greater variety of services. The need for
new mobile communication systems having increased spectral efficiency relative to
current systems is compounded by increasing demand for radio spectrum allocations
from other communication services. Various temporal processing schemes have been
proposed for increasing spectral efficiency, including time division multiple access
(TDMA) and frequency division multiple access (FDMA), although code division
multiple access (CDMA) might offer the greatest potential increase in capacity (e.g.,
see [37, 51, 57]) in addition to inherently mitigating the effects of multipath, However,
except for modifications of these schemes that use fixed multibeam or multisector
antennas to further increase capacity, which is roughly equivalent to subdividing each
cell into smaller cells, none of these schemes fully exploits the multiplicity of spatial
channels that arises because each mobile user occupies a unique spatial location.

All schemes use a large-scale form of space division multiple access (SDMA)
by dividing a large geographic area into cells. The mobile users within each cell are
served by a base station, shown in Fig. 9 as being at the center of each cell.

Some proposed schemes use SDMA via spatial filtering within each cell to sep-
arate spectrally overlapping signals from different users, and have potential increases
in spectral efficiency over conventional analog FM-FDMA schemes of a factor of 30
or more (cf. [35, 90]). These schemes adapt the antenna array either by estimating
the directions of arrival of the specirally overlapping signals and then using these
estimates to compute appropriate weights for the spatial filter [8], or by minimizing
the time-averaged squared error between a known training signal and the output of
the spatial filter [42, 90, 105, 111]. In cither case, the properly adapted array at the
base station can spatially separate spectrally overlapping users in the same cell, as
shown in Fig. 10 (where multipath is neglected for clarity).

The schemes based on direction estimation have numerous disadvantages, in-
cluding computationally intensive algorithms, poor performance in the presence of
multipath signals arriving from different directions, the need to measure, store, and
update array calibration data, and considerable sensitivity to errors in the array cali-
bration data. The schemes that require a training signal have different disadvantages,
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Figure 10:  Antenna pattern of array at base station extracting one of several spectrally
overlapping signals from mabile users,

including the need to use capacity to periodically transmit the training signal, the
need to synchronize the received and locally generated copies of the training signal,
and the need to adaptively increase or decrease the duration of the training signal to
accommodate varying levels of interference.

The scheme proposed in [35] and described here uses spatial, temporal, and
frequency-division multiplexing to allow multiple users to communicate simultane-
ously, and so is referred to here as a space-time-frequency division multiple access
(STFDMA) scheme. This STFDMA scheme has some things in common with the
scheme proposed in [42], but the former does not require any reference (training)
signal because Cross-SCORE is used instead to adapt the array. Unlike schemes that
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rely solely on frequency, time, or code division multiplexing and thus use only one
spatial channel, the proposed scheme exploits space as well as partial time and fre-
quency division multiplexing and thus uses multiple spatial, temporal, and spectral
channels.

An adaptive antenna array at the base station separates the temporally and spec-
trally overlapping received signals of different users in the cell and transmits direc-
tively to each user, exploiting multipath when present. Users whose signals arriving
at the base station are spatially separable can be assigned to spectral bands that are
completely spectrally overlapping, and users whose signals arriving at the base sta-
tion are spatially inseparable can be assigned to disjoint spectral bands. In practice,
channel assignments might be made without determining spatial separability; detec-
tion of substantial interference in another user’s signal could trigger an automatic
reassignment. Also, signals coming from the individual users can be assigned to time
intervals that are interleaved with those assigned to signals coming from the base
station. Under the assumption that users are sufficiently well distributed throughout
the cell, all available spatial and spectral channels can be used effectively. Since the
number of multiple spatial channels that can be separated from each other by the
antenna array is approximately equal to the number of antenna elements in the array
(which can be quite large), overall capacity can be much greater than schemes using
a single spatial channel. Also, unlike adaptive array schemes that require direction
estimation processors or known training signals, the proposed scheme uses the con-
jugate Cross-SCORE algorithm (cf. Section 4.4.2), and thus does not require array
calibration data or computationally intensive multidimensiona! searches nor does it
waste channel capacity by transmitting a training signal.

4.5.2 The Proposed STFDMA Scheme

As shown in Fig. 11, the scheme uses TDM of reception (Rx, or uplink}) and
transmission (Tx, or downlink) frames for a given user so that a spatial filter adapted
during reception can be used for transmission. Thus, spatial directivity is preserved
for both. Up to 10 users share the same carrier frequency and are separable by the
TDM scheme shown in Fig. 11. Thus, the data rate of each user’s vocoded speechis 8
kb/s, which must then be doubled due to TDM of Rx and Tx, and multiplied further by
a factor of 10 due to TDM of 10 users, to yield an instantaneous data rate of 160 kbys.
The signals are BPSK using 100% excess-bandwidth Nyquist-shaped pulses, for a
signal bandwidth of 320 kHz. This data rate is high enough that a sufficient number
of independent time samples can be collected for adaptation of the spatial filter over
a period of roughly 500 s, which is short enough that the propagation environment
is approximately stationary, given a typical fast fading rate of 100 fades/s for land
mobile radio. .

As shown in Fig. 12, carrier assignments for different groups of 10 TDM'd users
can be such that their signals are almost completely spectrally overlapping, provided
that the users assigned to the first TDM time slot in different groups are spatially
separable, and similarly for the users assigned to the second through the tenth TDM
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Figure 11: One complete TDM cycle for the uplink (reception) and downlink (transmis-
sion) phases at the base station for 10 mobile users sharing the same carrier frequency.

time slots. Since only one user having a particular carrier frequency is active at
any given time, conjugate Cross-SCORE is used to adapt a spatial filter to separate
that user from all other users. -The number of spatially separable users is limited by
the number of antennas in the array, which in turn is limited by convergence-time
considerations.

Figure 12: Frequency allocation in the proposed scheme. The spectrum of TDM
group number one is shaded to enhance clanty.

In general, for a total system-bandwidth B,, single-user channel-bandwidth B,,
frequency-reuse factor r, and minimum carrier separation f,,, the maximum number
L of users that can be accommodated in one cell by the frequency allocation scheme
in Fig. 12is L = 10(8,/r — B}/ f;ep + 10. The number M of antenna elements
required to separate these signals is bounded from below by the number X of users
whose signals are spectrally overlapping with any given user’s signal, where A >
K = 2(B./fsep — 1). Using B, = 320 kHz and f;.,, = 10 kHz, at least 63 antenna
elements (which can be omnidirectional) are needed to separate the signals of all
users, assuming that the energy from each user arrives at the base station from a
single direction, and assuming that the users are uniformly distributed throughout
the cell. In practice, more antenna elements might be required to achieve adequate
performance at full capacity in the presence of spatially separable multipath, although
fewer antenna clements can suffice if a lower capacity is opted for and appropriate
channel allocation is done. Also, adaptive equalization should follow the spatial
filtering to mitigate the time-smearing effects of multipath.

4.5.3 Capacity Example

For the purpose of comparing the potential increase in capacity due to the
proposed SCORE-STFDMA scheme relative to the analog FM-FDMA, TDMA,
and CDMA schemes as considered in [51], consider a total system-bandwidth of
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B, = 12.5 MHz. In the following comparison, the number of channels needed by
each userin the FM-FDMA, TDMA, and CDMA schemes is two {one for transmission
and one for reception), and one channel is needed by each user in the proposed scheme
because transmission and reception are multiplexed in time. With FM-FDMA, using
a channel bandwidth of 30 kHz, 2 channels per user, and a frequency reuse factor of
7 yields 30 users per cell. With TDMA, using a channel bandwidth of 30 kHz with
three time slots for TDMA, 2 channels per user, and a frequency reuse factor of 4
yields 150 users per cell. With CDMA, using 2 channels per user, a frequency reuse
factor of 1, sectorization of 3, and voice activity factor of 3/8 yields 1200 channels
per cell [51] or 600 users per cell. With the proposed SCORE-STFDMA scheme,
using a channel bandwidth of 320 kHz, 1 channel per user, a frequency reuse factor of
3, and a carrier separation of 10 kHz yields up to 3850 users per cell. Decreasing the
carrier separation to 5 kHz allows up to 7700 users per cell at the expense of doubling
the number of antennas. If future evaluations of SCORE-STFDMA show that the
spatial directivity at the base station allows the frequency reuse factor to drop from
three to one, then the capacity of SCORE-STFDMA would triple.
These results are summarized in Table 1.

Table 1: Summary of capacity and relative efficiency.

Scheme SCORE-STFDMA
FM-FDMA TDMA CDMA Ssep = 10kHz
Users/cell 30 150 600 3850
Rel. Eff. 1 5 20 128

4.5.4 Performance

In this section results of computer simulations of the proposed SCORE-STFDMA
scheme illustrate its potential.

The antenna array consists of 64 omnidirectional elements spaced one-half wave-
length apart on a circle that is coplanar with the mobile units (i.e., the elevation angle
is assumed to be negligible). This would require an array diameter of 3 meters for
a system center frequency of 1 GHz, which is reasonable for a base station. The
noise is zero-mean complex temporally-white Gaussian noise that is independent and
identically distributed for each sensor. The signal-to-noise ratio (SNR) of each signal
is defined to be the power of this signal received along the direct path divided by
the power of the noise on a single sensor. The signal-to-interference-and-noise ratio
(SINR) of the output is defined to be the power of the desired signal components in
the output divided by the power of everything else in the output. The signals from
the mobile units are independent BPSK signals having Nyquist-shaped pulses with
100% excess bandwidth and baud rate of 160 kb/s. The carrier separation fsp is 10
kHz, and the data collection interval is 500 us. The average output SINR is com-
puted for the signal having zero carrier offset, which is referred to hereafter as the
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desired signal. Although the direction of arrival of the desired signal is 0 degrees in
these simulations, anty direction of arrival is allowable since SCORE does not require
knowledge of the directicns of arrival of any of the signals.

Fifty independent trials are performed for each combination of one and two
multipath reflections having nominal angular separation of one and five degrees from
the direct path. The direct-path signals and multipath reflections of 48 spectrally
overlapping users are present, with each of the direct-path signals having SNR of
10 dB. The directions of arrival of the direct-path signals from the mobile units
are nominally equally spaced on the interval [—180, 180] degrees with a random
perturbation in each direction of up to 2 degrees to more accurately model a typical
environment. The multipath reflections each have SNR 0 dB (10 dB less than the
direct-path signal) and have phases that are independent and uniformly distributed on
the interval [0, 2] radians. Bach reflection is nominally separated by 1 or 5 degrees
from its direct-path signal with a random perturbation of up to 1 degree to more
accurately model a typical environment. Even in the presence of this multipath, the
SCORE algorithm attains a high average output SINR as shown in Table 2. The re-
sults in Table 2 demonstrate that SCORE coherently combines the direct and reflected
paths of the desired signal to increase the output SINR. A typical antenna pattern of
the spatial filter in this environment that extracts the desired signal and rejects the
signals of other users is shown in Fig. 13. More extensive results showing the bit
error rate of this scheme can be found in [82].

Table 2: Average cuiput SINR of SCORE-SDMA scheme for
different numbers of multipath reflections and angular separa-.
tions. Forty-eight spectrally overlapping users are present.

# of multipath reflections 0 1 2

Angular sep. of multipath — 1 3 L 5
Average output SINR (dB) | 19.3 | 19.6 200 | 21.0 203

[ @] Much work remains to be done on the use of SCORE-adapted antenna arrays for
increasing capacity in wireless communications. In particular, simulations are needed
that use more realistic models of the propagation envirocnment (i.e., to properly model
the multipath “seen” by the base station as it receives the signals from the mobile
units, and to account for cochannel interference from nearby cells), and that evaluate
the bit error rate (BER) after spatial filtering and equalization is performed. It also
remains to be investigated whether SCORE could be applied to a preexisting standard
such as the North American standard IS-54 [22] (cf. [40]) for digital cellular TDMA
to either increase capacity or improve signal quality. Further work evaluating and
improving the methods of Section 5 for use in existing and proposed systems is also
needed. And, the more general problem of purposely designing a communication
system to exploit LCL-PTV STF remains open.
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Figure 13: Typical antenna pattern of spatial filter found by SCORE. The desired
signal arrives from Q degrees and the signals of the remaining 47 users are roughly
equally spaced on [—180, 180) degrees..

4.5.5 Performance Improvement for a Spread Spectrum System

In this example, the Wideband SCORE method of Section 4.4.10 is used to
extract a low-SNR BPSK direct-sequence spread spectrum signal of interest hidden
beneath five high-SNR narrowband BPSK signals.

The array is linear and consists of four identical equi-spaced omnidirectional
sensors; the sensor spacing is equal to one-half of the wavelength correspending to
the highest frequency in the receiver band. The lowest RF frequency is 0.75 times the
highest, yielding a relative bandwidth (defined here as the ratio of the width to the
center frequency of the receiver band) of about 28%. The noise consists of stationary
complex white Gaussian noise that is uncorrelated from sensor to sensor. The signals
not of interest (SNOIs}) are identical BPSK signals having bit rate 1/10 (normalized
to the sampling rate) and independent and identically distributed (i.i.d.) random bit
sequences and Nyquist-shaped pulses with 100% excess bandwidth. Five such SNOIs
having carrier offsets (relative to the center frequency of the receiver band and nor-
malized to the sampling rate) —2/5, —1/5, 0, 1/5, and 2/5 arrive from —20 degrees,
10 degrees, —10 degrees, 40 degrees, and 0 degrees, respectively. Eacli SNOI has
inband SNR (defined here as the ratio of the signal power to the power of the noise
within the band occupied by the signal) equal to 15 dB. The signal of interest (SOI) is
a BPSK signal having chip rate 1/2 with chip sequence modeled as an i.i.d. random
bit sequence, and rectangular chip pulses; it has zero carrier frequency offset and
arrives from 25 degrees. The SNR of the SOI is —5 dB, for a total SINR of —20dB.

One hundred independent trials are conducted in which the Wideband SCORE
algorithm is applied using & = 1/2 to extract the SOI. The wideband data is decom-
posed into data from eight spectrally disjoint subbands using an FFT channelizer,
such that each subband closely follows the narrowband model. These subbands are
spatially filtered by Wideband SCORE to obtain a channelized estimate of the SOI
The average SINR (averaged over the 100 trials) of the extracted signal in each of the
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eight subbands is plotted in Fig. 14 for different numbers N of data samples used to
compute the weight vector.

5 T T T
Maximum SINR
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Figure 14: Average SINR (averaged over 100 trials) in each of the 8 subbands of

. SCORE processor output, plotted for different numbers N of data samples: 128, 256,
512,..., 8192. The input SINR at the first sensor and the maximum-attainable cutput
SINR are shown at the extreme bottom and top of the graph, respectively.

These results indicate that the use of a sensor array for this cochannel interference
problem could be exploited in the design of a spread spectrum communication system
to accomplish either of two objectives without requiring a training signal or other
potentially troublesome prior knowledge: 1) reduce the bit error rate in the despread
SOI while keeping the spreading factor constant, or 2) allow a much smaller spreading
factor to be used at the transmitter while keeping the bit error rate constant. For
example, in a typical application a spreading factor (processing gain) of about 1000
might be needed without the use of the array to overcome the —20 dB SINR of the
spread signal. In contrast, the increase in output SINR of between 10 dB and 20 dB
due 1o the SCORE processor implies that a much lower spreading factor between 100
and 10, respectively, would be needed.

The results also indicate that in signal interception applications, the SINR of
the SOI at the output of the SCORE processor could be sufficiently high that a blind
despreading technique might be applied successfully.

4.6 Summary

Several blind adaptive spatial filtering algorithms are available, although their per-
formance is not thoroughly understood and none appears to be statistically optimum
and devoid of undesirable behavior. Nonetheless, their performance and capabilities
suggest that blind adaptive spatial filtering and blind adaptive LCL-PTV STF may
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significantly improve the performance (i.e., signal quality and capacity) of commu-
nication systems relative to that obtained from conventional methods.

5 SPATIAL AND FRACTIONALLY SPACED
TEMPORAL EQUALIZATICN

In this section two alternatives to the existing SCORE framework are discussed. Both
alternatives directly address the problem of blindly adapting a fractionally spaced
equalizer (for either a single channel or for multisensor data) for bauded digita! com-
munication signals such as PAM, QAM, ASK, and PSK. However, the emphasis here
is on using spatio-temporal degrees of freedom to compensate for channel distortion
rather than multiple SOIs, SNOIs, and noise.

Fractionally spaced equalizers (FSE) (cf. Section 7.4 of [38], or any standard
text on digital communications) for single-sensor data are widely used in digital
communication systems to compensate for channel distortion. FSEs filter the received
data (typically sampled at two or four times the baud rate) and then sample the filtered
output at the baud rate to obtain a stream of estimated symbols. Provided that the
LTI filter in the FSE is chosen properly, it can be shown that this structure is the
optimum linear receiver for PAM signals corrupted by linear channel distortion and
additive stationary noise. The FSE structure can also be understood in terms of LCL-
PTV filtering (also called LCL frequency-shift filtering or LCL-FRESH filtering), as
discussed in [23, 32].

Tutorial overviews of equalization in digital communication systems can be
found in [59, 61], and additional discussion of blind equalization can be found in
[21] and references therein. Most of the blind channel identification and equalization
methods studied to date have exploited the fact that well-equalized baud-sampled
data should have samnples drawn from a finite alphabet, or that the higher-order statis-
tics of the baud-sampled data can be used to infer the effective channel seen by
the symbol stream as it propagates through the modulator, transmitter, propagation
channel, and receiver. In contrast, the methods considered in [21, 94] and the new
method proposed in Section 5.2 exploit only the second-order cyclostationarity of the
fractionally sammpled data, a property which is destroyed by the baud-sampling typi-
cally perforined prior to application of most blind equalization methods, Unlike the
second-order statistics of stationary data, the second-order statistics of cyclostation-
arity data have been shown to be sufficient to perform identification and equalization
of nonminimum-phase channels [21, 94].

5.1 The Blind FSE of Tong, Xu, and Kailath

In this section the blind channel identification and equalization method of Tong, Xu,
and Kailath, referred to here as the TXK method for the sake of brevity, is reinterpreted
here as the solution to a least-squares problem. The method and an algebraic derivation
is presentedin [93] and is generalized in a straightforward way in [94] to accommodate
multiple sensors. It accommodates arbitrary time-limited pulse shapes and channel
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distortion but requires that the noise be spatially and temporally white (i.e., it has no
interference rejection capability).

The TXK method performs blind adaptive temporal equalization of a noisy
distorted QAM signal,

x(m)= Y h(n—kT)s(k) +1(n) (33)

k=—o0

received at a single sensor, where {s(%)} is the stream of independent symbols, T
is the symbol period, and #(n) is the unknown distorted pulse. In [93, 94], the
TXK method is derived by expleiting various signal subspace properties of the ideal
correlation matrices of the received data to yield an algebraically motivated solution.
In [94], the straightforward extension to sensor array or multichannel data is proposed
by replacing x{-) in (33) by the received data x(-) at the output of the sensor array, and
replacing k(- by the multisensor impulse response &(-). This general case is used in
this section.
The method operates on the vector-stationarized data

x(kT)

z(k) = : = Hs(k) (34)
x(kT+ KT —1)
where
h(—(kg +O)T) h(—(kp+d —1)T)
H= : :
R(KT — 1 — (kg + OOT) (KT —1— (kg +d—1)T)
and

sCko + k)
sthy=1 ,
stho+k+d—-1)

with K equal to any integer, ko equal to an arbitrary integer (e.g., zero for simplicity),
and 4 equal to a best guess of the number of symbols that contribute significantly to
any given sample of the signal (i.e., the estimated number of samples in the distorted
pulse k(n), divided by T'). In addition to reexpressing the data as the stationary output
of a multidimensional LTI system, this representation is useful because the autocor-
relations R,{0) and R,,(1) exhibit a special structure, namely R,,(0) = HHY + o
and R, (1) = HIH" + o7, where the superscript T here temporarily denotes ex-
ponentiation, not transposition. This structure is exploited by the TXK method as
described in [94].

The objective is to identify the channel h{n) through which the symbols are sent,
equalize the channel, and estimate the symbol values. The equalization structure is



206 Schell

constrained to be linear, with the estimated symbols §(k) given by
§(k) = WHz(k).

Thus, not only must & be long enough that the estimated channel can be a reasonable
approximation of the true channel, but X must be large enough that the equalization
filter W can adequately compensate for the distortion.

Here, the TXK method for blind adaptive spatio-temporal equalization is
rederived as the solution to a least-squares problem for a finite data set:

(“z(k) Aik) || ) (35)

N/T
where the time average (-} is taken over the symbol index k, the estimated symbols
are §(k) = W¥z(k), and the autocorrelations of § are restricted to obey Ra(@ =1
and ﬁ'g;(l) = J, with

01 0 --- 0
0.1 :

J= .'0
0 1

0 0

Reexpressing the cost function (35) in terms of estimated correlations and minimizing
with respect to W yiclds the solution

o/ onp Ay ]

w=A(A"A)

Substituting this solution into (35) and minimizing with respect to H can be shown
to lead to the maximization problem

max tr [P,—,ﬁu(O)}
[
3 e Il _l o * .
where Py = H (H " H) H¥, which in turn is equivalent to
m#x tr {Pw l?,_, (V)] } ;

Expressing the problem in terms of the SVD of W = U V¥ yields the constrained
optimization problem
max tr lU (i Ru}

subject to

l
Sy

VEUIR  (OUzVH

VEUAR (OUSV? = .
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Straightforward manipulations reveal that maximization subject to the first constraint
requires that U equals the & most dominant eigenvectors of Ry and % equals the
reciprocal of the square root of the corresponding eigenvalues. The second constraint
then defines V.

This derivation leads to the same algorithm as obtained in [93, 94] by a different,
algebraically motivated argument for the single-channel case. However, the second
constraint can be satisfied only if the matrix EUHﬁa(I)UE has Jordan form J, which
occurs with probability zero due to finite averaging time. A possible solution to this
dilemma is given without proof (but motivated by standard practices in the sensor
array processing literature} in [93, 94].

5.2 Another Blind FSE

Partially motivated by the least-squares derivation of the TXK method, another algo-
rithm that blindly adapts an FSE is proposed here.
As before, let

x(kT +n) = Z h(n —IT)s + k) +itkT +n)

=—0

be a bauded communication signal distorted by an unknown multisensor channel
having impulse response k(xn), where T is the baud period, s(k) is the kth symbol
(unknown), and i(#) is unknown noise. Provided that /z(n) decays sufficiently fast as
[n| = o0, x(kT + n) can be approximated by

L
(kT +n)~ Y h(n —IT)s(l + k) +i(kT + n). (36)
I=—1
For most physical channels of interest, this simply means that L is sufficiently large,

or equivalently, that only 2L 4 1 symbols contribute significantly to any particular
baud period of the signal. Defining

x(kT) h(—KT)
xkT + 1) . R(—ET 4+ 1)
¥k = . , hiky = : ,
x(kT+T —1) h(—lc-T +T-1)
ikT)
. kT + 1)
i(k) = : .
i(kT '+ T-1
and
sth) =[s(=L+£&), s(—L+1+k), -, s(L+B],

(36) can be expressed as
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y(k) = Hs(k) + i(k), 37

where H 2 [A(-L) R(-~L+1) --- R(L)]. 1t is noted that H as defined here is
unstructured because y(k) contains only a single baud period of the signal, whereas
H as defined in the TXK method is a block Toeplitz matrix. .

The signal is filtered by an FIR filter of length (2K + 1)T samples to yield an
estimate of the symbol strearn,

H

w_k yk - K) y(k - K)
o | T se—K+1 |l - :K+ D g
w‘K ¥y(k + K) yk + Ky
and thus the vector §(k) of symbol estimates is given by
yk—-K-1L)
s =we | TETETETD N g, 39)

yE+ K+ L)

where z(k) is defined in the obvious way and W is a block Toeplitz matrix of dimension
(2(K + LY+ 1) x (2L + 1) with block size T x 1 (or MT x 1 if x(n) comes from
an M-sensor array) and first column equal to [w/ w -+ wx 0--- 01 and first
rowequal to fw_g 0---01.

In a vein similar to (35) but having different constraints, a least-squares mini-
mization problem can be posed,

2

min ( || y(k) — FS(E) “ ) , (40)
W.H N/T

subject only to the constraint that W is block Toeplitz. Note that there is norequirement

that the symbols be uncorrelated with each other or that the noise be spatio-temporally

white (although these assumptions might be needed to insure consistency; this is an

open problem). Equivalently,

mintr {R,y — AR — Ry A" + ﬁRggHH] . @1)
W.H
Alternatively, if #(n) is zero-mean stationary spatio-temporally white Gaussian
noise, then it is easily shown that (40)—(41) maximize the conditional likelihood
of the received data, with H being an unknown parameter matrix to be estimated and
the conditioning performed over the unknown symbol values, whose estimates are
then constrained to be given by (38)«39). _

Minimization of (41) with respect to H is a standard problem whose solution is
well known. However, in preparation for the subsequent optimization with respect
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to W which does not seem to be a standard problem, the basics of complex matrix
calculus are summarized here. It is shown in [14] that an appropriate definition of the
complex gradient of a real-valued function with respect to a complex matrix and its
corjugate can be found simply by treating the matrix and its conjugate as independent
variables. This step is necessary because the usual definition of differentiation with
respect to acomplex variable is not valid unless the function is analytic. Consequently,
itis also shown in [14] that the stationary point of a real-valued function of a complex
matrix can be found by setting the complex gradient with respect to the conjugate of
the matrix equal to zero (equivalently, the gradient with respect to the matrix could
be equated with zero). Then, it is easily shown that

Vau{BA} =4 and vy [7af} = anr
Consequently, the gradient of the cost function in (41) is

Vi (cost func) = — Ay_{- + ﬁﬁﬁ-

- Equating to zero and solving yields the standard solution,

H=R;R. (42)
Substituting (42) into (41) yields
mintr |&,, — R R3'RE, @3)
which can be reexpressed as
- .-
mex tr [W”R;;Ryzw (wik.w) ] : (44)

Itis crucial to note that W is a block Toeplitz matrix. However, (44) can be reexpressed
in terms of the unstructured vector w as follows. Note that the (m, #)th element of a
quadratic form of W can be expressed as

X

X
[WHRW], = 3" 3" W/ Rismisni (45)
I=—K k=K

where R, i+, is the block element (matrix) at block-row [ + m and block-column
k+ninR,and/ 4 m and k + n each range from —(X + L) to (K + L). Denoting

Ru—kn-x -+ Rm_gnix
R™A — .
Rovkn-x - Rm+I-(.rr+K
(45) can be expressed as
(WHiRW], = w/R™"w. (46)
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Thus, (44) is equivaient to
max tr {A(w) [B(w)]™'] 47}

where

m.n

AW, = W [ﬁﬂﬁyz]m'" wand [BOWn,=w"[Ra] w

with m and » each ranging from — L to L. As of this writing, no further simplification
of (47) has been found, except in the special case where L = 0 (i.e., no symbol’s
contribution outside its own symbol period is deemed to be significant). In this special
case, A(w) and B(w) are scalars, and the standard solution for w is simply the most
dominant eigenvector w,,,, of the system

R;iﬁyzwmaz = lmaxﬁuwm,,x. (48)

This special case provides some hope that (47) can be solved without resort to a
gradient-based search method, However, this remains an open problem.

5.2.1 Algorithm Summary

In general, the algorithm can be summarized in the following steps:

1. Estimate R,.z and Ry,

2. If L =0, then solve (48) and exit.

3. I L £ 0, initialize the weight vector w with a Kronecker delta function,
or prior knowledge of a suitable equalizer for the multichannel impulse re-
sponse {¢.g., in single-channel communicatien systems for which the trans-
mitter filter has transfer function equal to the square root of the raised cosine
function, the initial guess for w could be the impulse response of this filter).

4. lteratively update the guess w(®) at the kth iteration using the simple gradient
method

w® = = 4 V.. (49)
where V. is the gradient with respect to w* of the objective function in (47)
evaluated at w*~1 and can be shown using results in [14, 41] to be equal
to the following,

Ve = 3 [c,,l,,, Apy W — (wHA-m',,w) ;:C,,‘ p Bpow c,,,.,,] (50)

mn

where each summation index ranges from —L to L and

~ ~

A,,,,,,:[Rj;’R,z]""", Em,,,=[ﬁu]m'", and C=[BWI™. (1)
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@ Cauchy’s method (cf. [9]) could be an alternative to the simple gradient method
(49), and consists simply of (49) with u replaced by a scalar variable over which
maximization occurs at each iteration. Another alternative is a limited-step Newton’s
method, although this requires that the Hessian matrix be computed and inverted at
each iteration, which significantly increases the computational load at each iteration.
These issues are left as open preblems, as are those concemning the choice of the
values for the parameters L and X.

5.3 A Simulation Example

Here the TXK method and the method of Section 5.2 are simulated in the example
environment considered in [94]. That is, the transmitter filter and the propagation
channel together have impulse response (c(#) — 0.8¢(n —0.5) + 0.4e(n — Nugr(n),
where c(n) is a Nyquist-shaped pulse having 11% excess bandwidth and usr(n) is
a rectangular window of duration 6 symbol intervals. The symbol stream is binary,
and the sampling rate is 4 samples per symbol. The TXK method is implemented
according to the description in [94], with the parameter settings d = 10 and X = 5.
The new method is implemented as described at the end of Section 5.2, with X =
L = 0 chosen to enable the simple optimization based on the eigenvalue problem
{(48). One hundred independent trials of each method at each SNR were performed.
In each trial, 100 symbols were collected and used to adapt the equalizer, and the
performance of this equalizer was then measured by processing 1000 symbols. As
shown in Fig. 15, the BER of the new method is significantly less than the BER of
the TXK method over a wide range of SNRs in this environment.

5.4 Summary

A comprehensive evaluation of these second-order cyclostationarity-exploiting meth-
ods and the higher-order/finite-alphabet methods referred to at the beginning of this
section has yet to be performed, so no firm conclusions can be drawn as to theirrelative
merits. Issues such as relative convergence time, robustness to deviation from under-
lying assumpticns, and computational complexity must all be considered. However,
neither approach by itself can be optimum since the signals in question exhibit both
properties, collectively described by their nth-order cyclostationarity properties for
n=23,....

[ ¢&¢] Many open problems exist in blind spatio-temporal equalization, even if the
scope is restricted to a single, distorted, digital communication signal in noise. For
example, the consistency properties of the method of Section 5.2 remain to be de-
termined. Finite-time analyses and complete simulation studies of the two methods
considered in this section remain to be done. Also, more computationally efficient
methods of solving (47) need to be found. Both the TXK method and the new method
of Section 5.2 could be easily extended to constrain the estimated symbols to be real,
which is appropriate for signals such as BPSK and ASK having real constellations.
On the speculative side, extension of these algorithms to the new capability of simul-
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Figure 15:  Bit emor rate after blind equalization by the TXK method and the new
methed.

taneously separating and equalizing multiple spectrally overlapping signals could be
used to increase communication capacity in wireless cellular networks. Except for
the temporal equalization step, such a scheme based on Cross-SCORE has already
been proposed in [33, 82] (cf. Section4.5.1).

6 DIRECTION FINDING

In this section the problem of estimating the directions of arrival of signals received at
an array of sensors is addressed. Several existing algorithms that exploit cyclostation-
arity to simplify this task and/or to outperform conventional methods are summarized.

6.1 Objectives of Direction Finding

The objective of direction finding (DF) is the estimation of the directions of arrival
(DOAs) of signals of interest at the sensor array. With reference to Fig. 1 and sur-
rounding discussion in Section 2, the array manifold maps these DOAs to vectors
of gains and phases that determine the spatial structure of the received data x(n).
Restated, the objective is to determine the DOAs for which the comresponding array
response vectors best describe the received data. Desirable performance attributes
of superior algorithms include the resolution of DOAs of closely spaced signals and
the accommodation of correlation between signals, which can arise from multipath
propagation or smart jamming, Thus, in addition to the usual parameter-estimator
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performance measures such as bias and MSE, the probability of resolution is also
used to characterize performance. However, because this probability can be difficult
to'calculate, one convention is to declare that estimators ) and #, of DOAs 8, and

&7 resolve the DOAs if
- i
VMSEB,,6) < §|91 — 6|
~ 1
VMSE(D,, 02) < 5|91 — bl

6.2 Conventional Algorithms

The Multiple Signal Classification (MUSIC) algorithm [83, 84, 85] is perhaps the
single most popular DF algorithm in existence, at least from a research standpoint.
In the literature it is shown to exploit the signal and/or noise subspace structure
(eigenstructures) of the autocorrelation matrix R,,, under the following assumptions:

1. The autocorrelation matrix R;; of the interference and noise is proportional
to the identity matrix: R; = of.

2. L < M signalss(n) = [s)(n), -+, s;(n)]7 arrive at the array with unknown
DOAs ® = [91, ey, BL]T.

3. The columns of the array response matrix A(@) = [a(6,), -- -, a(8.)] are
linearly independent.

Under these assumptions, it can be shown that the M — L smallest eigenvalues
found from
Bicen = Apen

are all equal to o2, and that the M — L corresponding cigenvectors [ef 41, - - -, €]
are orthogonal to the columns of A(®). The MUSIC algorithm is implemented by
simply replacing the ideal correlation matrices with their estimates:

1. Estimate Ry, = (x()x (m)},,.
2. Solve R, e, = A, e,,and let 62 = ﬁz,‘f:,_ﬂ Ko
3. Find the L minima of ||[ez41,---,ex]¥a(@)|? or the L maxima of

ey, -+, er1¥a(8)|?, whichever is casier.

An alternative formulation in [80] (cf. Section 4.1 of [67] for related material) shows
that MUSIC finds the set W = [wy, - - -, w.] of orthogonal spatial filters that maxi-
mize the total average power of the spatially filtered data, and then finds the L DOAs
corresponding to the peaks in the resulting antenna gain pattern. Equivalently, MUSIC

. finds the set W = [WL+| A wM] of orthogonal spatial filters that minimize the total

average power of the spatially filtered data and then finds the L DOAs corresponding to
the nulls in the antenna pattern. Thus, it is clear that there is no inherent disadvantage
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to using beamforming or null-steering as the basis of a high-resolution DF method,
provided that both are used in the generalized sense that applies to multiple signals.

Other popular DF algorithms include ESPRIT [56, 66, 67] and conditional max-
imum likelihood (cf. [88, 113]), which together with MUSIC, are special cases of
weighted subspace fitting (WSF) methods [97, 681, All of these methods have been
shown to have low (or no) bias, low MSE, and high probability of resolution under
the three assumptions listed above for MUSIC.

However, in some applications there may be more signals present than sensors
in the array, or the number and angular separation of signals may be such that the
methods cannot resolve the signals in a reasonable number of time samples (cf.
[24]). Also, if only a subset of the signals are SOIs, then resources are wasted
on SNOIs, and postprocessing may be required to classify each estimated DOA as
belonging to a SOI or a SNOL Unknown spatial characteristics of the noise also
degrade performance and/or cause these methods to fail, although this can be partially
mitigated [52, 63, 91, 102, 106, 108].

6.3 Cyclic DF Algorithms

The four primary aigorithms for DF of cyclostationary signals (as of this writing)
are described here. Three of them have interpretations based on subspace fitting and
its usual complementary perspective of least-squares optimization (cf. [80]), and 2
different three of them can be understood, loosely, as cyclostationarity-exploiting
versions of conventional algorithms.

In the following, the notational convention employed is that s(r) contains only
the L, signals that have cycle frequency o, and all of the remaining signals (of which
there are L — L,) and the noise are lumped into i{z).

6.3.1 Cyclic MUSIC

As shown in [29], MUSIC can be simplified if it is known that exactly one signal
arriving at the array has cycle frequency «, and RS, () is analyzed instead of R,..
This observation can be generalized to accommodate multiple signals having cycle
frequency e, yielding the Cyclic MUSIC algorithm [73] (cf. (68, 71, 75, 76, 80]).
In the subspace-fitting interpretation of Cyclic MUSIC, it is noted that RZ (1) =
A(@)R?‘S(T:)AL‘Llr (@) has the same column space as A(®) and its left null space is
orthogonal to A(®). For a finite number of time samples, the algorithm can be
implemented as the following:

1. Estimate ﬁ;‘r(r) = (x(n)x”(n —1) e—jzrran)N_

2. Compute SYD

R (1) = [A é][ %S )i(‘)c; }[‘73 ‘?G]H:

é] and [\'75 \}7(;] are unitary, and the diagonal elements of the

a

where [
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diagonal majriccs ﬁs and £ are nonnegative and appear in decreasing
order, with Xz — 0 as N — 00.

3. Find the L, minima of [|G¥a(8)|? or the L, maxima of ||$¥&(8)||2, which-
ever is easier.

Cyclic MUSIC (and other cyclic DF methods to be discussed in the next subsections)
can be less complicated than MUSIC and other conventional methods because: 1)
R;; need not be known or estimated; 2) the number L, of DOAs for Cyclic MUSIC
to estimate is never larger than the number L of DOAs for MUSIC to estimate (and
L, « L in some cases); 3) the need for postprocessing and classification of DOAs
is inherently reduced by signal selectivity; and 4) if closely spaced signals have
different cycle frequencies, then the purely spatial resclution problem confronted by
a conventional algorithm is replaced by the easier (potentially much easier) problem of
resolving jointly in space and cycle frequency. Brief illustrations of these capabilities
are provided in Section 6.4.

6.3.2 Generalizations of Cyclic MUSIC

[ @] Several generalizations of Cyclic MUSIC have been proposed and are
summarized very briefly here. This entire subsection is designated as being de-
scriptive of open problems because some of the generalizations are not yet well
understood and others may be suggested.

Just as Wideband SCORE extended SCORE to wideband data, Cyclic MUSIC
can be generalized in much the same way. As suggested in [29] and pursued in [53],
cither the cyclic autocorrelation matrix or the cyclic spectrum matrix contains the
desired signal-selective measurements of the SOIs’ spatial characteristics. Applying
this suggestion to the Cyclic MUSIC algorithm of Section 6.3.1 requires some care
because the appropriate array response vector to use with the left singular vectors of
57 isa(8, f+ a/2). This association follows because

$9.0N) — A, f+a/2)5%(NHAR(O, f - a/2).

A more sericus complication arises as in wideband generalizations of conventional
methods (e.g., [104]) because the algorithm vields a set of DOA estimates for each
value of f. Potentially complicated postprocessing and classification may be needed
to yield a single DOA estimate for each signal whose spectral support extends over
multiple values of f. Nonetheless, a simulation-based study [53] shows that Wide-
band Cyclic MUSIC exhibits promising performance.

In addition to this possible wideband method, a promising method [110] is
summarized in Section 6.3.4. Alternate cyclic DF methods for wideband data may be
obtained by generalizing existing conventional methods for wideband data, including
those in [17, 49, 99, 100].

In [73] the Phase-SCORE algorithm for signal extraction was applied to the
DF problem by recognizing that the M — L, least dominant eigenvectors of the
Phase-SCORE eigenvalue equation converge to spatial filters that null the SOIs and,
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therefore, could be used instead of the least dominant left singular vectors of Iii’_,(r)

in step 3 of the Cyclic MUSIC algorithm. Another extension [3] uses all of the
eigenvectors of (28) and searches for minima of the function

Wi - war]” a@®|
"

[[wr - WL,]HG(Q)":Z ,

although simulation results in [68] show that these two Phase-SCORE-based Cyclic
MUSIC methods do not perform as well as Cyclic MUSIC in many cases.

In [110], a modification to Cyclic MUSIC is proposed, whereby ﬁ:x(r) is re-
placed by a matrix containing contributions from multiple lags:

[Re) - Reoo]

for some suitable number X of different lags 7, ..., tx for which ﬁix(tk) are all
significant. In general, in light of the developments in Section 4 and {81], Ii;’x (z) in
Cyclic MUSIC could be replaced by R xy Where y(#n) is any LCL-PTV transformation
given by (8). This gives added flexibility and may substantially improve performance
(e.g., reduce bias and MSE) of the Cyclic MUSIC DF method, just as convergence
time of Cross-SCORE is reduced by the same technique {cf. Section 4.4.8 and [81]).
However, no empirical or analytical results are currently available for this general-
ization of Cyclic MUSIC.

Finally, in [13, 75], three extensions of Cyclic MUSIC for estimating the cycle-
frequency parameter « are proposed. The rudimentary method in [75] simply searches
for significant peaks in the FFT of the lag-product waveform x;(n)xf(n — 1) to
determine the frequencies at which quadratically regenerated sine waves are present.
These cycle-frequency estimates are then vsed to compute the corresponding cyclic
autocorrelation matrices, to which Cyclic MUSIC is then applied one at a time. Two
more sophisticated methods are investigated in [13].

6.3.3 Method of Izzo, Paura, and Poggi

The method described in [47] can be interpreted as a cyclic version of the method
discussed in [12, 58]. That is, since R%.(r) has rank L, in the absence of perfectly
correlated signals, its (Ly + 1) x (L, + 1) principal submatrix has a one-dimensional
null space that is orthogonal to the array response vectors of the cyclostationary
signals. This observation also applies to R}, (7) and forms the basis of a method for
estimating the number of cyclostationary signals arriving at the array, as summarized
in Section 7.2.3.

However, because the correlations involving the remaining M — L, — 1 sensors
are ignored, this DF method is not expected to perform as well as Cyclic MUSIC.
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6.3.4 Method of Xu and Kailath

In [110], a method that analyzes the signal-subspace of a collection of cyclic
autocorrelations is presented as a solution to the wideband DF problem. This method
is based on a data model in which uncorrelated signals s,(n), - - -, 57, () arrive at the
array, yielding

Ln'
Xn(n) =3 gui 511 — dn(6)),
=1

where d,,(#) = (g /c) siné, and qy, is the ccordinate of the mth sensor as in Section
2. A key observation is made, which shows that the vector of cyclic autocorrelations
follows an induced narrowband model,

R2, (7) R, (1)
R¥*(1) = : = [a"1) --- a*(6L,)] : .
R:M-"M (t) R:Lasl.u (t)

where af (61) = |gpt [2 exp(—j2mwady, (6r)). That is, even though x(#) need not follow
the narrowband model, the vector R® () does follow a narrowband model having
induced manifold {a*(¢)}. Standard signal-subspace methods can then be applied te
estimate the DOAs from the matrix

[R*() -~ R*(zx)].

where the K values of t should be chosen such that RS (1), . . ., RS.(tx) are signifi-
cant.

As noted in [110], the signals must be uncorrelated (i.e., no multipath or smart
jamming), and the true sensor responses a,, (6, ) must be factorizable as a, (6, f) =
&m () an (0) in order for the method to operate properly. Also, it is important to note
that the induced manifold {a” (@)} collapses to a single vector which is independent of
@ and of the true DOAS in the limit as (¢ ¢,,)/¢ — 0. That is, if the array is designed
for high-performance signal extraction in which the sensors are separated by half the
wavelength of the highest frequency in the band, and « is equal to a fixed value (e.g.,
a baud rate), then the method’s performance degrades toward complete failure as the
carrier frequency increases without bound. An example of this degradation appears
in [53]. Alternatively, for a fixed set of sensor separations, ¢ must be sufficiently
large that the induced manifold varies appreciably cver the allowable range of 6.

As discussed in [110], this difficulty can be avoided by exploiting conjugate
cyclostationarity by using R} .. (7), although this is naturally limited to those signals
that exhibit such features (e.g., BPSK or SQPSK, but not QPSK or QAM).

Another requirement of this method, noted recently in [53], is that the sequence
of cyclic autocorrelations R‘;njm (1), -+, BT (zg), from the mth signal must not be
a linear combination of the corresponding sequences from the other signals having
cycle frequency o. Otherwise, the “signals™ (i.e., these sequences of cyclic autocor-
relations) in the induced narrowband model are perfectly correlated, which requires
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that multidimensional subspace-fitting techniques be used. This requirement may
help to explain the rather odd choice of pulse shapes used for the two SOIs in simu-
lations in [110].

Simulations in [110] show that the method can outperform Cyclic MUSIC (ie.,
exhibit less MSE) over a large range of relative bandwidths (the ratio of bandwidth
to carrier frequency ranged from 1% to 40%), provided that the aforementioned
requirements on sensor spacing for the method of Xu and Kailath are met. Since
the model assumptions for the method are met in these simulations, whereas those
for Cyclic MUSIC are not met exactly, this result is reasonable. However, it is
unknown whether the performance advantage would be maintained if Cyclic MUSIC
also exploited X multiple lag values as summarized in 6.3.2. It is also interesting to
note that the performance of Cyclic MUSIC in these simulations is insensitive to the
relative bandwidth, which supports the claim of Section 2 that the narrowband model
may still be acceptable even at large relative bandwidths (e.g., 40%).

Finally, it is noted that an alternate formulation of this method is obtained by
posing the least-squares minimization problem

~ ~ 112
R“C—A“(@)”F,

min ’
c.6
where || - || r denotes the Frobenius norm (cf. [35]). This problem leads to the SVD-
based solution of [110]. One benefit of this formulation is that it shows that the
method can be interpreted as an M-sensor generalization of the 2-sensor Cyclic Phase
Difference (CPD) time-difference-of-arrival (TDOA) method of [34].

6.3.5 Cyclic Least Squares

Although Cyclic MUSIC and the method of [47] can accommodate partial cor-
relation among signals (e.g., arising from multipath propagation or smart jamming),
they fail in the presence of perfect correlation (although in practice high correlation
is sufficient to cause failure) because the rank of RY T (T)or R" (7) is no longer equal
to Ly. Also, the method of {110] cannot accommodate any correlation.

One alternative that addresses this problem is the Cyclic Least Squares (CLS)
method,

min ( ”r(n) — A©)i(n), || Z)N (52)

where §(n) = Wix(n —1) exp(j2man). Clearly, the CLS method can be interpreted
as a cyclic version of the conventional least squares method. In particular, if #(n) is
white, stationary, and Gaussian with Rz o I and s(n) is unknown, then (52) with
= 0 is the conditional maximum-likelihood DF method (cf. {88, &9, 113] and
references therein). The solution to CLS can be shown [68] to be given by

W=RIR 04 (47 ©a®)
(53)
ming tr { P (G)Rs, (DR ReH (r)} ,
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where PAl(G-")) is the orthogonal complement of the projection matrix for A((:)). An-
alytical and simulation-based results in [68, 76] show that CLS retains all of the
benefits of signal selectivity exhibited by the other cyclic DF methods, in addition to
operating properly in the presence of perfectly correlated multipath.
[ @] As with Cyclic MUSIC, CLS can be generalized to exploit multiple cyclostation-
arity properties by replacing §(n) with §(n) = WHy(n), where y(n) is any LCL-PTV
transformation (8), yielding

-1

W =R REA®) (A” (é)A(é))
(54)
< tr [Pj(é)ﬁ,,ﬂ;ylﬁg} .

However, no simulation results or analytical performance evaluation are available yet
for this generalization.

As reported in {68], a minor computational simplification of CLS can be obtained
by simply deleting R‘1 from the argument of the minimization in (53) without any
significant performance degradation. A similar result may be expected to hold true
for the generalization, in which ﬁy_yl would be deleted.

In all cases, the L,-dimensional search can be implemented using the method
of [113] solely, or as an initialization for the modified variable projection method
described in [96, 98].

6.4 Cyclic DF Performance

As with the SCORE algorithms, numerous simulation results are available [1, 13,
18, 68, 71, 73, 75-78, 109, 110]. However, unlike SCORE, analytical results are
available for Cyclic MUSIC [71], based on the results summarized in Section A and

the method of proof used in [88]. )
In addition to the assumptions A-1-A-4 listed in Section A.1, additional assump-

tions discussed in [71] are used to obtain simple expressions for the asymptotic mean
and covariance of Cyclic MUSIC DOA estimates:
A-6 A cycle frequency o of the signals of interest, a suitable value of the lag
parameter 7, and the number L, of these signals are known.
A-7 The narrowband model x(n) = As(n) + i(r) is assumed to hold exactly.
A-8 The array manifold is unambiguous; that is, any M x L matrix A(®) of
array response vectors has rank L if L < M.
A-9  The cyclic autocorrelation matrix RS () has rank L.
A-10 A-10 Nocomponent of i(n) exhibits conjugate cyclostationarity: R ~(k) =
0 for all g8, £.
A-11 No two cycle frequencies of i(n) differ by 2a.
A-12 The process i(r) is substantially temporally white in the sense that

> Z gl RS (m)g RE (n) e/ = gf Ru(0)gR2:(0),

Ba n=—cc

where g, are the least-dominant left singular vectors of RT, (7).
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Of the several results in [71], one is especially useful for it describes the behavior
of Cyclic MUSIC in the presence of SNOIs. In particular, assume that the SOls
s(n) are independent and that i(#) consists of spatially white noise plus SNOIs g(n)
having DOASs @, ..., ¢z, and denote B = [a(¢1) --- a(¢pr-.,)]. A = A(®),
D = [d®) --- d(6,,)] where d(8) = 8a(0)/36, and h(8) = d"(9)GG"d(®).
Remaining symbols follow the notation of Section 3.1. In [71] it is shown that the
bias and MSE of Cyclic MUSIC DOA estimates are given by

E [é,- _ a,-}
Re Lga [RE(t)'A*BRS (1)B7P.D],, Zn(a - B, 1:)] .
- 7(6,) +o\
and
£{é. -0y}
_ 1 Hpl Ry(0) o] oo
= G [D P; [I+B—02 B :|PADL

1+ (474),' [ sNR;

R )|2 SR + o2 [RZF () 'AYBR,(OB7ATHRE ()]
P5is(T f

i

1t should be noted that in the absence of SNOIs these expressions reduce to

E[é,—-a,-]:()(%)

and

. 1 @afa)'7 1 1
E{@; — 6 =~ 1+ L +o(—).
[ } 2N |, (v)|° SNR; [ SNR; | k() N

These expressions in turn reduce to the expressions for conventional MUSIC in [88]
when a = 0, and thus, when SNOIs are absent and the noise is spatially white, the
ratio of MSEs is given by

e{@ -0y}
Cyelic MUSIC

£lé -6

=2
=, @7 =1,
MUSIC

which implies that MUSIC is preferred over Cyclic MUSIC in this type of environ-
ment. Since the cyclic correlation coefficient, evaluated at the baud rate, for most
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signals such as PAM, M-ary QAM, and various PSK signals is 1/3 or less, the
preference of MUSIC over Cyclic MUSIC in these simple environments (that is, all
signals have cycle frequency « and the noise is spatially white) can be strong.

On the other hand, when SNOIs are present, Cyclic MUSIC may be strongly
preferred over all conventional algorithms, This is predicted by the analytical results
because the MSE of Cyclic MUSIC remains bounded as the DOAs of the SNOIs
approach those of the SOIs (i.e., as the smallest nonzero singular value of the matrix
[A B] approaches zero), whereas the MSE of MUSIC approaches infinity. This be-
havior is demonstrated in this simulation, in which the dependence of MSE on angular
separation between a SOI and a SNOI is investigated. The SOI, which is a Gaussian
PAM signal (i.e., the symbol stream is Gaussian) having 100% excess bandwidth,
arrives from 0 degrees, and the SNOI, which is also Gaussian PAM with 100% excess
bandwidth but has a different baud rate than the SOI, arrives from a different angle.
The SNR is 10 dB, and the number of data samples is 8192. The Cramér-Rao lower
bound (CRLB) for the cyclostationary case was computed using the method of [77],
although the proposed generalization of Whittle’s Theorem to cyclostationary signals
[70] could also be used.

As shown in Fig. 16, the RMSE of Cyclic MUSIC is nearly insensitive with
respect to the angular separation, as predicted, and it should be noted that these re-
sults are nearly identical to those obtained for non-Gaussian signals (i.e., BPSK),
The RMSE of Cyclic MUSIC using & equal to the baud rate of the SNOI is com-
parable and is not shown. The results show that MUSIC performs much worse than
Cyclic MUSIC when the signals are close together (e.g., 3 degrees apart or less), and
better when the signals are farther apart. No data on the RMSE of MUSIC is shown for

1000 , |
MUSIC (measured) o
MUSIC (predicted)
100 Stat. CRLB -~ 3
7 Cyclic MUSIC (measured) °
g Cyclic MUSIC (predicted) -~
g 10r Cyclic CRLB -~~~ 3
=
0
Z ]
E .-
m s
01 ]
0.01 . ,
0.1 1 10 100

Angular Separaticn (degrees)

Figure 16: RMSE as a function of angular separation for one SOI with 10 dB SNR
in the presence of 1 equal-powered SNOI and complex white Gaussian noise.
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angular separation less than 2 degrees since MUSIC obtained two DOA estimates
in fewer than 10% of these trials. Extrapolating from these results, it is interesting
to note that conventional MUSIC would require more than 10° times as many data
samples as Cyclic MUSIC to achieve the same RMSE when the angular separation
is (1.1 degrees. It should also be noted that it was shown empirically in [68, 77] that
conjugate Cyclic MUSIC and conjugate Cyclic Least Squares nearly achieved the
CRLB for double-sideband suppressed-carrier amplitude modulation (DSB-SC AM)
signals.

Recent results in [78] show that Cyclic MUSIC can operate properly in the
presence of much more error in the knowledge of the array manifold than MUSIC
can when two signals having different cycle frequencies are present. This capability
may prove to be significant in practical applications, where sensor positions and
characteristics may be perturbed by vibration, thermal expansion, drift in the values
of electronic components, and so forth.

6.5 Summary

As with the spatial filtering methods of Section 4, several cyclic DF methods are
available. Analytical and simulation-based results demonstrate their supericrity over
conventional methods, especially those in which the number of signals exceeds the
number of sensors but the number of signals having cycle frequency « is less than
the number of sensors, or those in which noise is unknown, or those in which signals
having different cycle frequencies have similar DOAs.

[&f] Significant open problems remain, including the development of statistically
optimum cyclic DF methods (e.g., maximume-likelihood or WSF), implementation and
testing of algorithms on real data, and development of better methods for wideband
data.

7 ESTIMATING THE NUMBER OF SIGNALS

7.1 Conventional Algorithms

Of the conventional algorithms that detect the number of signals arriving at the array,
the method of [103] is summarized here as an easily implemented, high-performance
detector. Also, its performance shows clearly the power of the minimum description
length (MDL) principle of [64]. This principle yields a criterion

MDL(k) = —1log f(x(0), .-, x(N —1)|2) + %klog]\’,

that selects the model (parameterized by k unknown values Z) having the minimum
length, where f(x(0), ---,x(N — 1) | Z) is the likelihood function of the observed
data given a guess z of the parameter values. For independent stationary temporally
white Gaussian signals arriving at a sensor array in the presence of white noise, it
can be shown that the estimated number L of signals is the value of & that minimizes
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]—[M _II(M—IE) 1
MDL) = —(M — )N log [—f—"ﬂ—M—} + k(M —K)log N
WoF Dicil M 2

overk=0,..., M — 1, where Ay > --. &) are the eigenvalues of ﬁn. More recent
methods that perform joint detection and DF are described in [98, 101, 107] and
references therein. To address the degradation of these methods in the presence of
unknown neise, more robust methods are described in [19, 102, 108] and references
therein.

7.2 Algorithms for Cyclostationary Signals

[@] In this section the problem of estimating the number of signals having par-
ticular cyclostationarity properties is discussed. In any practical implementation or
simulation of the spatial filtering methods and direction-finding methods discussed
in this overview, this number must be either known or estimated. The algorithins
developed to date attempt to estimate this nuinber either by estimating the rank of
the cyclic autocorrelation matrix of the received data or by estimating the number of
signal compenents that are common te the received data and a frequency-shifted and
delayed version therecf. Given the lack of theoretical justification for some parts of
the algorithms and the less-than-cutstanding performance, all of the algorithms for
cyclostationary signals discussed here seem to be suboptimal solutions, and much
remains to be done toward finding superior methods.

7.2.1 Canonical Correlation Significance Test (CCST)

Asnoted in Section 4.4.4, the task of estimating the waveferms of signals having
cycle frequency o can be posed as a canconical correlation analysis problem. This
observation suggests that the metheds from multivariate statistics for estimating the
numnber of common signals between two data sets may be useful in the present prob-
lem. However, the standard methods [10, 11, 50] use sequential hypothesis testing,
which requires the subjective setting of thresholds and related parameters.

Following the success of information-theoretic criteria such as MDL, summa-
rized in Section 7.1, work on applying these criteria to the canonical correlation
significance problem has appeared recently (e.g., see [25, 92], although no empirical
evaluations of algorithms are provided there). In [74] the MDL principle is (loosely)
applied to this problem to yield the canonical correlation significance test (CCST), in
which the estimated value of L, is declared to be the value of & that minimizes the
expression

M
1
—Nlog [T (1 —x)+ k@M — B)logN
2 2
i=k+1
where A| = .- > Ay are the eigenvalues of the Cress-SCORE equation (19).
Although several simulation results of CCST appear in [74], the figures there
are incorrect. A very brief simulation-based study of MDL, CCST, and the methods
to be summarized next appears in Section 7.2.5,
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[ @] The development of CCST makes the usual assumptions of canonical correla-
tion analysis, namely that two jointly stationary, jointly Gaussian, temporally white
time-series are being analyzed, when in fact the time-series in question are certainly
not stationary and are typically neither Gaussian nor white. Thus, CCST is neces-
sarily suboptimal. A more rigorous application of the MDL principle, in which the
cyclostationarity is properly accounted for in the likelihood function, should yield a
superior method.

7.2.2 Canonical Correlation Test (CCT)

In [19], canonical correlation analysis is applied to detect the number L of
unknown signals arriving at two spatially separated arrays in the presence of unknown
neise and is based on the same test statistic as CCST. In [19] the data are assumed to
be stationary, Gaussian, and temporally white, in which case Bartleit’s test statistic

[11]

M
Cy=—=2[N—M—1/2]log[ J(1 = &)

i=k
is approximately distributed as x? with 2(M — k + 1)2 degrees of freedom if there
are k — 1 signals present. Thus, C(k), fork = M — 1, M — 2, ..., 0 is tested
against a sequence of threshold values 7 (k). As described in [19] the threshold values
can be chosen to yield a constant probability of false detection and these values can
be obtamed from a table of percentage points of the x2 distribution {cf. [2]). The
estimate L is declared to be equal to the first value of k such that C(k) > (k).

Itis proposed here that CCT be applied to the problem of estimating the number
of signals having cycle frequency o by using the eigenvalues A, - - -, A obtained
from the Cross-SCORE equaticn (19). The performance of this ad hoc method is
evaluated in Section 7.2.5.

7.2.3 A Determinant-Based Method (DBM)

. Inthe method of [47], the sequence of determinants of principal submatrices of
RY,.(7) is analyzed to estimate the probable rank of the matrix and thus the number
of cyclostationary signals. This methed is referred to here as the determinant-based
method (DBM). Let Dy denote the determinant of the k x & principal submatrix of

1R (1), where
- >

I'_f—

2@

is a normalization constant. Alternately, Rﬁr(r) could be analyzed to estimate the
number of signals exhibiting cyclostationarity rather than conjugate cyclostationarity.
Based on the observation that Dy,---, Dy # Oand Dy_,1,--, Dy — 0 as the
averaging time N approaches infinity, the method attempts te find the “edge™ between
the significant and insignificant determinants. This detection is accomplished in DBM
by declaring L, equal to the value of k that maximizes
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Simulation results are available in [47] (where a very large number of data samples
was required due to the very narrow bandwidth of the SOI) and in Section 7.2.5 (where
the method is shown to perform comparably to the other cyclic DE methods).

7.2.4 Variable Coefficient-Based Method (VCBM)

, where Dy = 1.

In the method of [36], the singular values &y > -+ > gy > 0 ofR (1) are
analyzed to estimate L,. This method is referred to here as the variable coefﬁqent—
based method (VCBM). Theoretically, VCBM should be superior to DBM because
it is known that the kth-largest singular value of an arbitrary matrix equals the mini-
mum 2-norm distance of this matrix to the set of all matrices having rank k—1 [39], and
thus a superior rank estimator could be constructed by analyzing the singular values.
The open question remains “How small should the k-th largest singular value be for
it to be declared as insignificant and the rank of the matrix as £ — 17" In VCBM this
question is answered by declaring L, equal to the value of k that maximizes v;/m?,
where

1 <IN
e I

1 - 2
v = M——k-i—l ;(0’: M)
Simulation results in [36] and Section 7.2.5 show that VCBM can be superior to both
DBM and CCST in some environments, although it is very sensitive to differences in
the received power of the SOIs.

7.2.5 Performance

The simulated environment duplicates one of those used in [74]. In addition to
correcting erroneously plotted results, the results presented here also include eval-
uations of the other methods discussed in this section. Three BPSK signals hav-
ing Nyquist-shaped pulses with 100% excess bandwidth are received at a 4-clement
ULA. Two of these signals have baud rate 0.25 and arrive from 10 and —15 degrees,
and the third signal has baud rate 0.2 and arrives from O degrees. The CCST, CCT
(using thresholds determined by a probability of false alarm equal to 0.1), DBM,
VCBM, and MDL methods are evaluated. The cyclic methods are applied using the
baud rates of the desired signals. For the case in which all three signals have equal
SNR of 10 dB, the numbers of correct estimates are tabulated in Table 3. For a differ-
ent case in which the two signals having baud rate 0.25 have SNRs of 10 and 5 dB,
respectively, and the SNR of the signal having baud rate 0.2 is 10 dB, the numbers of
correct estimates are tabulated in Table 4.

As can be seen from these results, only MDL performs consistently well. Among
the cyclic methods, VCBM is superior when SNRs are equal but degrades severely
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Table 3: Number of correct results in 100 trials for 3 signals having equal SNR
of 10 dB. Two signals share the same baud rate,

1signal: &« = 0.2 2 signals: o = 0.25

N | CCST CCT VCBM DBM | CCST CCT VCBM DBM | MDL
64 78 4 81 55 12 0 59 37 91
128 78 7 92 59 20 0 93 62 100
256 75 10 95 71 26 1 100 66 100
512 96 43 100 76 65 53 100 80 100
1024 100 95 100 88 100 98 100 92 100
2048 95 95 100 94 100 98 100 95 100
4096 99 95 100 95 100 97 100 99 100
8192 97 96 100 98 100 | 100 100 100

Tabled: Number of correct results in 100 trials for 3 signals having unequal SNR.
Two signals share the same baud rate and have SNRs of 10 and 5 dB, respectively.
The SNR of the third signal is 10 dB.

I'signal: @ = 0.2 2 signals: @ = 0.25

N | CCST CCr VCBM DBM | CCST CCT VCBM DBM | MDL
64 30 4 92 62 6 0 3 18 69
128 80 8 95 72 8 0 6 25 100
256 78 13 98 74 8 2 13 26 100
512 94 45 100 90 38 33 22 43 100
1024 100 93 100 97 96 93 32 46 100
2048 99 94 100 98 100 98 67 80 i00
4096 100 94 100 100 100 97 85 95 100
8192 100 96 100 100 100 92 100 98 100

when the SNRs differ. CCST outperforms CCT in all cases considered. Also, al-
though DBM occasionally outperforms CCST for some smaller values of N, CCST
generally outperforms DBM, especially for longer averaging times N.

However, MDL fails in the presence of more signals than sensors or when spa-

tially correlated noise is present (e.g., see [74] for simulations). Also, if a cyclic DF
method is to be applied, then the number of signals having a given cycle frequency o
is needed, and this cannot be supplied by the conventional MDL for stationary signais.
In contrast, the cyclic methods are relatively insensitive to the spatial correlation of
the noise, and can accommodate more signals than sensors (L > M) provided that
the number of signals sharing a cycle frequency of interest is less than the number of
sensors (L, < M),
[ @] Nonectheless, the high performance of MDL when its requirements are met,
and recent extensions to perfectly correlated sources and unknown noise suggest that
application of the general MDL principle to the case of cyclostationary signals may
be successful. Similarly, correct generalization of other high-perforinance algorithms
for stationary signals may also yield superior methods for cyclostationary signals.
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7.3 Summary

In contrast 10 recent work on methods for stationary signals, it is clear that all meth-
ods currently available for cyclostationary signals are ad hec and exhibit undesirable
performance attributes such as long convergence times and sensitivity to small dif-
ferences in received signal power. Rigorous formulation of the likelihood function
for cyclostationary signals arriving at an array, followed by careful application of
principles applied to stationary signals, such as MDL, should yield superior detectors
having better performance than existing methods.

8 CONCLUSIONS

Work on algorithms for spatial filtering and DF of cyclostationary signals has shown
that expleitation of cyclostationarity can offer substantially improved performance
over that of conventicnal algorithms in some signal environments and can offer rea-
sonably good performance in other environments where conventional algerithms fail
completely. However, some of these signal-selective algonthms are suboptimal and
exhibit undesirable performance attributes. Thus, numerous open problems, some
of which are identified in this overview, exist and range from application-oriented to
more fundamental theoretical problems. These technical challenges and the growing
appreciation ameng industrial, federal, and military organizations for the benefits of
cyclostationarity exploitation in sensor array processing bode well for researchers
and engineers in this area.
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APPENDIX MOMENTS OF CYCLIC CORRELATION

MATRICES
Recent results from [69] on the mean and covariance of cyclic correlation matrices are
summarized. Although the results were derived in the stochastic-process framework
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where E{} denotes the ensemble average, they are also true in the nonstochastic
time-series framework where E{} denotes the polyperiodic component extractor [32],
Relevant results can also be found in [44].

A.1 Assumptions

First, the assumptions about the processes x(z) and y(x) to be used at various points
in the derivations are listed. A brief discussion of these assurnptions follows.

A-1 The time-variant means of x(n) and y(n) are identically equal to zero,
Efx(n))=E{y(n)) =0

A-2 The time-variant correlations of x(n) and y(n) have Fourier series Tepre-
sentations consisting of a finite number of finite-magnitude terms; thus, for
all 7, [RE®)], [RE- ()|, [RE,@)], [RS. (@), [RE,(0)], ana R ()| are
all finite for all § and each is nonzero for only a finite number of cycle
frequencies 3.

A-3 The processes x(n) and y(n) satisfy the mixing condition

ZZ [Rfu(k+r)R;’q(k -1)|<x

m=0k=m

forall possible choices of elements u(n), v(n), p(n), and g(nyofx(n),x*(n),
»(n}, and y*(n), and all cycle frequencies 8 and y, and all lag-values t.
A-4 The processes x(n) and y(n) are complex and jointly Gaussian.

Some comments on the appropriateness of these assumptions are in order. A-1
is true for many communication signals such as DSB-SC AM, and most digital sig-
nais such as BPSK, QPSK, M-ary QAM, FSK, and spread spectrum signals. A-2
is true for most persistent communication signals {e.g., see [28, 30] for explanations
of this from the stochastic-process and nonstochastic time-average frameworks, re-
spectively; see also [27, 33]). It is straightforward 1o verify that A-2 implies that
the processes x(n) and y(n) are uniformly almost periodically correlated (UAPC) in
the sense of [46]. Also, as originally explained in [26] using the alternative termi-
nology almost cyclostationary, most communication signals are UAPC because their
time-variant autocorrelations are expressible as Fourier series having a finite num-
ber of.terms (each of which corresponds to a cycle frequency such as a baud rate or
a doubled-carrier frequency). A-3 can be easily shown to be true if, for example,
|Ruy(t + 7, )| < ce™™ forall choices of elements u(n) and v(n) of x(m), x*(n), y(n),
and y*(n) and for all ¢ and some choice of positive constant ¢; loosely speaking, it
requires that the statistical dependence between any two time samples of the processes
decays fast enough as the temporal separation between them increases. If x(n) can be
shown to be a phi-mixing process, which is simply a process for which the statistical
dependence between two time samples is uniformly controlled by a function solely of
the temporal separation (cf, [46]), and A-2 is true, then it is proposed that the estimator
Ii;’y(t) is strongly consistent and asymptotically normal (the comparable result for

An Overview of Sensor Array Processing for Cyclostationary Signals 229

the continuous-time case was proven in [46] under the assumptions that the process
was phi-mixing and UAPC, the latter of the two being implied by A-2). A-4is true for
x(n) and y(n) each consisting of, for example, sums of Gaussian noises, DSB-SC AM
signals having Gaussian basebands, and/or PAM and QAM signals having Gaussian
symbol sequences.

A.2 Moments of Cyclic Correlation Estimates

The mean and second-order moments of the cyclic correlogram ﬁ;y(t) of the cy-
clostationary processes x(n) and y(n) as derived in [69] are summarized here under
the assumptions A-1 through A-4 described in Section A-1. Additionally, in light of
the last part of D-8, only expressions for T > 0 are derived directly. These results
generalize (and make a typographical correction to) those in [43] (cf. [44]).

A.3 Mean
Lemmal Given A-2, the mean of ﬁfy(r) for v = 0 can be expressed as

AL XOTE Zﬁ:Rfy(r)ZN(a — B,7).

Corollary 1 Given A-2, the cyclic correlogram ﬁfy(t) is an asympiotically
unbiased estimator of Rf),(r):

Elfnm) = (1-5)Re@+ p;Rﬁy(t) Zy(@—B,7)

1
= R;,(I') + 0 (R’H) .

A.4 Covariance

The covariances of the elements of ﬁﬁy (t) are derived here by first considering the
covariance cov [ﬁﬂv(t), R\;q (‘L’)] where each of u(n), v(n), p(n), and g(n) is any
element of x{n), x*(n), y(r), or y*(n).

Lemma?2 GivenA-I,A-2,A-3, and A4, then
n ~ 1
cov [RZU(I'), R;q(t)] =L+5+0 (ﬁ')

where

=

1 ) » |
— Z [ Z pr(k + 17— t)Rl(,ng—'J+l)t(k)e _;lmqk} ej-‘ﬂﬁf

=—00

vp

z|

[ i RE.(k+ ) RETT e — z)e-ﬂ”"k} i

B
1
>
B

k=—00
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Asnotedin [69], Lemma 2 is a generalization of the result obtained in {43], where
the latter is derived for the cyclic autocorrelogram of a real-valued continuous-time
scalar process for which all cycle frequencies are integer multiples of a fundamental
cycle frequency, whereas the former is derived for the cyclic cross-correlogram of
complex-valued discrete-time processes having cycle frequencies that need not be
integer multiples of a fundamental. However, with reference to results and notations
in [43], namely Lemma 1 and equations (42a) and (45) of Proposition 3, a minor
correction is obtained by careful application of Lemma 1 to equation (45) which
yields

o0
Fl,t,m) = ), Bplut 11— 1) Bjmp p(w)e ™ 2m U2/

p=—00

rather than F(u, 7, 72) as defined in (423). With reference to Lemma 2 of this
overview, in the special case in which all cycle frequencies are harmonics of a fun-
damemal cycle frequency, u(n) = v(n) = p(n) = g(n) are real, and noting that
qu k) = (k) for all 8, k when g(n) is real, it is easily verified that Lemmas 1
and 2 of l'hlS overvxcw yield a covariance that is identical in form to that obtained
from Proposition 3 (after the minor correction) in {43].

The next two corollaries, which follow directly from Lemma 2 after algebraic

substitution and rearrangement, characterize the covariances cov [ﬁfy"" ()g, I@fyr {(r)w* }

and cov [ﬁfy"" (De, fegy” (r)w]. These covariances are needed, for example, in the

expressions for the second monents of the singular vectors of ﬁfy(r) which arise in
the performance analysis [71] of the Cyclic MUSIC direction-finding method (see
also Section 6.3.1).

Corollary 2 Given A-1, A-2, A-3, A-4, and two arbitrary vectors g and w,

then
o] Do * 1

cov R (@)g BT @w*} =+ B+ 0 ( NZ)
where

=5 Zkz W REE (k)gR0* () e/ ok g~ 7276

=—00
— ,B—Zu T pf i2nak , j2n(f—2a)T
k= Zk;mR — ©)wg  RE! (ke + T)e ek g/2n(A—2)
Corollary 3 Given A-1, A-2, A-3, A4, and two arbitrary vectors g and w,

then

cov [ﬁgyﬂ(t)g, ﬁfyﬁ(r)w] =K+K:+4+0 (%)

where
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K = —E 3 WHREH (0gRE, (e ok et

k=—co
KZ — _E Z: x.(k_r)wthRf;.(k_I_.c)ejZJrakejm'rﬂr'
k=—c0

Clearly, ft’i’y(r) converges in mean square to Ry (v) since its bias and covariance are
both O (1)

It should be noted that Coroliaries 2 and 3 simplify in the following two special
cases: 1) If y(n) = x(n) and x(n) does not exhibit conjugate cyclostationarity
(fo.(k) = 0 for all B), then J; = K; = 0; and 2} If y(n} = x*(n) and x{(nn) does
not exhibit nonconjugate cyclostationarity (fo (k) = 0 for all  # 0), then only the
B = 0 terms remain in J; and K.
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I INTRODUCTION

This chapter evolved frem a tutorial lecture presented at the 1992 Workshop on Cy-
clostationary Signals. The lecture addressed the basic theory of periodically- and
polyperiodically-time-varying linear systems and, as such, was complementary to
the presentations on cyclostationary signals, which censtituted the main thrust of
the workshop. Time-varying systems are extensively employed as signal extraction
and parameter estimation filters for such signals as well as models for the genera-
tion of cyclostationary processes. We shall consider various forms of input/output
and state-variable descriptions of the systems and the nature of the implementation
configurations suggested by these descriptions. Inasmuch as periodicity is a certain
form of constancy, or persistence, in time, we expect periodically-varying systems
to exhibit more similarities to time-invariant systems than time-varying systems in
general. We show that all the system descriptions lead to implementation config-
urations having an embedded time-invariant component. The periodically-varying
component consists solely of zero-memory operations; i.e., multiplications by peri-
odic waveforms on an instantaneous basis. We refer to the devices for performing
these multiplications as modulators. From a historical perspective, the earlier work
in electrical periodically-varying systems dealt primarily with circuits such as the
parametric amplifier, which contained reactive elements, such as a capacitor, which
were “pumped” by a local oscillator. Thus the prevailing view of the configuration of
such systems was that of a few variable-parameter elements located at various points
within a predominantly time-invariant system. The practical utility of such devices
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inspired a great deal of research into the basic properties of periodically-time-varying
linear systems, leading to cancnical realizations which today form the basis for design
of signal processors having the desired signal transformation characteristics,

We first discuss system configurations based on Fourier series expansions of
system respense functions. Then we consider systems that are characterized by a
finite-order differential equation, or equivalently by a finite-dimensional state vector.
This approach gives the designer more control over the overall complexity or imple-
mentation cost of the filter. It also reveals classes of systems that yield equivalent
responses so that a certain degree of design flexibility is afforded. Finally, we present
a discussion of optimum linear filtering for cyclostationary processes with simple
examples that illustrate how pericdic filtering can provide signal extraction results
that could not be cbtained using purely time-invariant signal processing.

2 PERIODIC AND POLYPERIODIC
LINEAR SYSTEMS

A continuous-time, linear, time-varying system A is characterized, in general, by the
integral transformation,

[+,2]
y(t) = Hox(f) =f h(t,s)x(s)ds for —o0 <t < 00, (1)

—od
relating the input signal (continuous-time waveform) x (¢} to the output signal y(z).
Since we are interested here in the signal-transforming properties of the system, we
consider only the zero-state response; that is, the part that depends linearly on the
input signal as in (1). The kemel function in the integral transform is called the

impuise response of the system.

Much of the theory of filter design, or of system analysis in general, is limited to
time-invariant systems. Such systems are characterized by how response is affected
by time shifts of the input. Let Dr denote a T-second time-shift (delay) operator;
x(t — T) = Drox(#). A system A is said to be time-invariant if and only if it
commutes with the delay operator foreach value of the T parameter: Dro(Hox(£)) =
H o (Dr ox (). It is well known, of course, that for a time-invariant linear system,
the impulse respense function in (1) depends only on the single variable ¢ — s, and the
integral transform becomes a convolution integral. For a periodically-time-varying
(PTV) system, on the other hand, Dy commutes with /£ only for specific values of the
T parameter. If commutativity holds for a particular value of T, then it also helds for
any integer multiple of that value. Hence The Pericdicity of the system is designated
as the smatlest positive value of T for which the commutative relation holds. Itiseasy
to show that the commutativity condition for the PTV system implies the following
joint periodicity of the impulse response function:

h(¢t +T,s+T)="h{,s5) foralls,s. 2

For some purposes, it is convenient to define an altemative impulse response
function by means of a simple change of time variable. Let
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p(‘tlt)=h(!:t—t); (3)

then p(¢, 7) is periodic (T) in ¢ and is assumed to have a Fourier series expansion so
that we can write

kit 5) = Z Dt — s)e/THiIT, (4a)
k
where
1 7 )

Pl = - fo h(t, t — T)e /2 RIT gy (4b)

and we have o
OES Zeﬂ”k"rf Dt — s)x(s)ds. (4c)

k —o0

Equation (4c) gives our first canonical configuration for the PTV system by direct
inspection. Each term in the sum represents a time-invariant system, with impulse
response pi{ — s), followed by an exponential-type modulator, Hence the overall
system is a parallel bank of subsystems, each driven by the common input signal, and
the output signal is formed by summing the outputs of the subsystems. A shorthand
graphical representation for this parallel configuration, which will be generally useful
for all configurations, is shown in Fig. 1.

x(t) \

Pi(f)

el2nktT

y(t)&

Figure 1: Graphical representation to be used to portray parallel-path configurations.
For this particular example, the k-th path consists of a time-invariant filter, with transfer
function P¢(f), followed by an exponential modulater having a frequency of k/ 7.

The periodicity expressed in (2) would also permit another kind of Fourier ex-
pansion, in s rather than ¢:

Rt sy =Y qu(t — s)e/2™IT, (5)
k

which leads directly to an equivalent parallel-path configuration involving expo-
nential input modulators followed by time-invariant filters, with transfer functions
Oc(f) = B(f —%/T). A convenient general equivalence between systems that
use modulators of the exponential type is shown in Fig. 2. This equivalence can
be used in a variety of ways to derive alternative configurations. For example, if a
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particular analysis technique results in a configuration using both input and output
exponential modulators, then it can easily be converted to a configuration using only
input modulators or only output modulators.

|

G(If) = g [eniot

o l2not Gif - f,)

$

Figure 2: Input/output equivalent subsystems that employ expenential modulators.

An important generalization of the PTV system is the polyperiodic linear system
wherein the restriction that the exponential functions all have harmonically related
frequencies is removed. If the set of frequencies {m/ T'; m integer} for the PTV system
is replaced by an arbitrary discrete set { f;}, then p(z, ) in (3) can be regarded as an
almost-periodic function in ¢, which leads to the expansion

B, 8) = pult — 5?7, (62)
m
where
. 1 [% “nfat g 6
Pn(T) = Th_rgcz—n " h(t,t —t)e z. (6b)

An example of a common situation where the polyperiodic filter response is
required arises in the extraction of a bandpass carrier signal at frequency f, carry-
ing a baseband synchronous digital data signal with a symbol rate of 1/7. Such
a signal is most naturally regarded as polycyclostationary since there is usually no
practical reason to regard f, and 1/ T as harmonically related; they could possibly be
incommensurate nunibers.

The class of polyperiodic systems corresponds closely with the concept of “sta-
tionary linear time-varying” systems introduced by Claasen and Mecklenbrauker
[1]. They define this class of systems as that which maps almost-periodic inputs
into almost-periodic outputs. They show that such systems are partially charac-
terized by a set of frequency-mapping functions { f(A}}, which reflects the fact
that each input of the form exp[j2mAt] is mapped into a linear combination of the
set {exp[j2m fm(A)t]}. They then proceed to show that the constraint of causality,
h(z,5) = 0 for t+ < s, implies that each of these frequency-mapping functions is
linear; thatis, f, (A) = A + Aom for each m. Then we have

kit,5) = Z D (t — 5)g/?™omd N
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so that, with the constraint of causality, the impulse responses have the same form as
that in (6) for the polyperiodic filter.

Another useful application for the Fourier-series type representations examined
here is in the analysis of PTV systems that are designed to implement a time-invariant
{convolution) signal-processing operation. This approach is used because of the
unique implementation advantages that can result. Important examples are analog
integrated-circuit switched capacitor filters, the N-path filter for realization of mul-
tiple passband (comb) filters [2], and digital filters using PTV subsystems to eliminate
expensive multiplier circuitry [3, 4]. We can say that any PTV system has a time-
invariant component given by the ¥ = 0 term in (4) or (5). The overall system
would exhibit a time-invariant input/output relationship if transmission through all
other paths is suppressed by some means. One way to accomplish this, in a2 manner
independent of the particular path properties, is 1o bandlimit the input and output
signals to the frequency range | f| < 1/2T. Thus, using the appropriate antialiasing
filters at the input and output of a PTV system makes it equivalent to a time-invariant
system.

3 FINITE-ORDER PTV SYSTEMS

The previous configurations are not physically realizable unless the Fourier series
expansions (4) or (5) can be replaced by finite sums, or unless suitable bandwidth
constraints can be placed on the input and output signals. For example, if p(7, 1)
in (3) exhibits discontinuities in ¢, then an infinite number of time-invariant flters
(and modulators) would be required for an exact realization. Even considering a
finite series, the number of terms in the series is not necessarily a useful measure
of implementation costs. Note, for example, that it is much casier to implement
multiplication of a signal by a square wave than to implement multiplication by a
sine wave. For a discrete-time system, the expansions corresponding to (4} or (5)
will be finite, that is, L terms (L parallel paths} for a system having a period L.
However, the parameter L can also be regarded as a characterization of a limited
stgnal bandwidth since it must be chosen large enough to avoid aliasing in the sampling
process.

For many purposes, the order of the ditferential equation (or difference equa-
tion for the discrete-time case) describing the system dynamics is a more accurate
indication of implementation complexity. It is certainly more closely related to the
number of components in the time-invariant subsystem of the overall PTV filter. For
a digital system, the system order is a direct indication of memory requirements for
the processor.

The general M-th order, single-input, single-output, linear, continuous-time sys-
tem is described by an M-dimensional, first-order state equation and an output equa-
tion,

w(t) = AQ)W(t) +B()x () (8a)
() = COW() +D()x (1), (8b)
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where w(?) is the M-dimensional state vector, w(z) is its time derivative, A(¢), B(r),
C(), D) are Mx M, Mx1,1xM,and | x I time-varying matrices, respectively. For
the PTV system, they will vary periodically with time. Inthe following discussion, we
assume D(¢) = 0 because it simply represents a parallel input/output path consisting
only of a single modulator.

The zero-state response of the system (assume w(—o0) = 0) is given by

2O = f COB, )BE)x(s)ds, ©

where @z, 5) is the M x M state transition matrix for the system [5, 6]. Its columns
are the M linearly independent solutions of the homogeneous part of (8a); that is,

%(I)(t,tn) = AP, 1) (10)

having the transitional properties

B(t, 1) = B, 1) B, 1) (11a)
®(t.6) =1 (the M x M identity matrix) (1ib)
(1, 1) = By, 1). (11c)

For the PTV system the transition matrix has a very special form. We can use (10)
and the periodicity to show that it can be expressed as the product of two matrices:
one nonsingular, periodic matrix and another matrix having the typical exponential
form of the transition matrix for a time-invariant system,

B¢, 0) = J@)e®, (12)

where J(¢) is periodic (T} with J(0) = J(T) = I and R is a constant matrix [6].
Now if J(¢) is used as a state transformation matrix, the system equations {(8) can be
rewritien to reveal that the overall PTV system can be implemented as a configuration
consisting of an M-th order, M-input, M-output time-invariant subsystem with banks
of M-element input and output modulators (but not necessarily of the exponential
form) [7]. Define a new state variable by

(6} = I 1 (Ow(e); (13)

then (8) becomes
() = Rz(t) + I (OB()x (1) (14a)
y(@) = CENDz() (14b)

where J~1{£)B(¢) is a column matrix whose elements are the input modulators and
C(#)J(#) is a row matrix giving the output modulaters. An additional state transfor-
mation permits the time-invariant subsystem (characterized by R) to be implemented
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as M paralle] (uncoupled) paths, thus minimizing the complexity of the system. Let
K be the M x M matrix that diagonalizes R,

K~ 'RK = A = diag{r,,)!". (15
Then with
v(i©) = K 'z(1) (16)
the system equations become
V() = Av() + B (O)x(1) (17a)
y(t) = C'(t)v(n), (17b)

where B'(2) = K™ 7' (/)B{) and C'(¢) = C({#)J(£)K give the modified input and
output modulators, respectively. Using (9) for the state-transformed system, we see
that the impulse response of any M-th order PTV system has the separable form,

M
3 fiogs) fortzs

i=]

0 otherwise

h(t,s) = (18a)

where

JOETAG S
&i(s) = bi(s)e™™

and ¢{{#) and b;(¢) dencte the i elements of the transformed matrices C'(¢f) and
B'(¢), respectively, in (17). For each of the real eigenvalues (poles) A; of the system,
the corresponding path is a first-order (single integrator with feedback) system with
periodic input modulator &;(¢) and periodic output modulator ¢; (). For each complex
eigenvalue there is a corresponding conjugate eigenvalue and these can be paired in
(18a) and implemented as a second-order subsystem. Typically, when this diago-
nalization procedure is applied in the analysis of a time-invariant system to put the
system in its “normal” or “state-variable” form, the complex poles are implemented
with two cross-coupled first-order systems. The PTV system affords an attractive al-
ternative that avoids the ¢ross-coupling. This is often a significant practical advantage
when the eigenvalue has a large imaginary part in comparison to the real part (high- 0
poles). To show this alternative, consider the typical complex eigenvalue pair @ + j8
and ¢ — JjB, along with the associated input modulators b(¢) and 5*(¢) and output
modulators ¢(z) and ¢*(¢). From (18a), the impulse response of this subsystem is

(18b)

k(z, s) = 2Re [c(t)e®HA=Ip(s)]
= 2Re [c(t)e/P =) e=iBp(s) | (19a)
=2Re [c’(t)e"(’ ")b’(s)]

where _ .
) =ce®)e and b)) = b()e /. (15b)
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Hence by appropriately modifying the modulating functions, the entire M-th order
PTV system can be implemented by M parallel paths as shown in Fig, 3. Each path
contains a first-order system with a pole given by the real part of the corresponding
eigenvalue in (15). Since the frequencies §/2r and 1/ T are not necessarily harmon-
ically related, we have here an example of how a polyperiodic system can be used to
advantage 10 realize a periodic system. The situation is analogous to using a periodic
system to realize a time-invariant system, as discussed previously.

x(1) i \
cG'(t)
\M v

Figure 3:  Canonical configuration for M-th order PTV system.

4 PERIODIC FILTERING OF CYCLOSTATIONARY
SIGNALS

When dealing with cyclostationary signals, various signal representation schemes
help to characterize linear signal processing operations. These representations tend
to be of a mixed discrete/continuous nature and they can be useful to reveal the time-
invariant aspects of periodic filtering of cyclostationary signals. One such scheme
is the Harmonic Series Representation (HSR) whereby an arbitrary continuous-time
signal is represented by a sequence of bandlimited signals [8]. We can write

X)) = xn(t)es?mT, (202)

where

oo
Xa () = f v(t — 1) T Ty (1) dt (20b)
—o0

and v(¢) = (1/T) sinc(?/T) is the impulse response of an ideal lowpass filter with
passband in | f| < 1/27. The nature of the decomposition (20a) is quite transparent
in the frequency domain. The Fourier transforms of the x,(¢) signals are simply
contiguous segments, of width 1/ T, of the Fourier transform of x(¢). Since ¥ (/) = 1
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in | f] < 1/27T and ¥ (f) = 0 elsewhere, we can write

X(fy=> X(f—n/T), (21a)

where

X (f)=V{NX(f+n/T) (21b)

and taking inverse Fourier transforms of (21} gives (20) directly.

Another useful representation scheme is the Translation Series Representation
(TSR) which is the time-frequency dual of the HSR [8]. In the TSR, the continuous-
time signal is decomposed into contiguous segments (or “chips™) of T-second width,
This type of representation has been extensively used in a variety of fields. One
notable example in the field of digital communication is presented in [9], where the
chip D-transform is used for analysis of maximum-likelihood sequence estimation.

‘We now show how a linear PTV system of period 7 maps an input HSR {x, (¢)}
into the output HSR {y,(¢)}. Starting from

y(t) = Z ¥ (e T = f h(t, s) Z Xm ()€’ T dg 22)

“and using the impulse response expansion of (4),

hit,s) =Y plt — s)e/>™ /T (23)
k

and the HSR for each of the terms in (23), we obtain

pelt —5) = Z Pim (t — )/ Pm =T (24)

which gives a double Fourier expansion of k(¢, s):

R(t,s) =3 Y hup(t — s)e/ 2T gmi2mmsiT, (25)

where A
hnm (t) = Pln—m)m (t)

Now since both the x,, (¢) and the %, (t) functions are bandlimited, the result of
substituting (25) into (22) can be greatly simplified. Equating terms having the same
exponential factors, we get the convelution

ROESY [ " ham(t = xa(s)ds forall 26)

or, taking Fourier transforms and using matrix notation,

Y (/) =H(HX(f), @7
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where X(f) = col{X,{( N}, Y(f) = col{¥,(f)}, and the elements of the H(f)

matrix,
Hyp(f) = Pow(f+m/T) forall|f| =1/27, (28)

are transfer functions of lowpass filters (bandlimited to the frequency range | f| <
1/2T). This representation leads to an implementation configuration consisting of
a bandlimited (lowpass) time-invariant subsystem with banks of input and output
exponential modulators. A physical interpretation of the signal processing is that the
input modulators perform frequency shifting of various portions of the input spectrum
to a set of “baseband” signals in the band | f| < 1/2T. Then lowpass filtered versions
of these signals are linearly combined and the output modulators perform frequency
shifting back into various spectral regions to form the output signal. This configuration
is easily converted to the parallel-path (but not bandlimited) configuration of Fig. 1
using only output modulators. From (24) and (25), we have

PAf) =Y Hutiym(f —m/T) (29)

for the transfer functions of the filters in the parallel-path/output-modulator configura-
tion. The equivalence shown in Fig. 2 can be used to convert to a parallel-path/input-
modulator configuration.

For a cyclostationary random process, the HSR exhibits a very useful kind of
stationarity. If x(¢) is cyclostationary with period T, then its autocorrelation has a
periodicity expressed by

Elx(1)x*($)]) = kux(t,5) = kst 3+ T, 5+ T) foralls, . (30)

The HSR for x(¢) has elements that are jointly stationary (in the wide sense) [8].
Hence, a scalar cyclostationary process can be treated as a stationary vector process.
Let the cross-correlations of the elements of the HSR be denoted by

Fum(# — 8) = Elx, ()x2 ()] 3D
Then the autocorrelation for x(t) is expressed as a double Fourier series,

kxx (t, .S') — Z Z Frm (f _ S)ejzﬂnf/re—jﬁn'ms/f. (32)
n m

Assuming that x(¢) is a zero-mean process, we note from (32) that it is wide-sense
stationary (WSS) if and only if the HSR elements are uncorrelated; that is, {ram, ()}
is a diagonal matrix. In fact, the diagonal entries of this matrix form the HSR for
the stationary autocorrelation function. The off-diagonal entries represent the cor-
relation between spectral components in nonoverlapping frequency regions that is
characteristic of cyclostationary processes. If the signal process is subjected to severe
bandlimiting, or if phase randomizing parameters are introduced, then the spectral
correlation is reduced or eliminated and signal recovery schemes that take advantage
of the spectral correlation will suffer in performance.



250 Franks

To illustrate how the HSR is used 1o solve signal recovery problems, we consider
the class of problems known as minimum mean-squared-error continuous waveform
estimation. We seck the optimum linear filter to produce an output waveform y(¢),
which is nearest (in a mean-squared-error sense) to a desired waveform w(¢). The
input signal z(¢) is frequently a received signal that results from modulation of a
periodic “carrier” signal by a message process w(t) and subsequent transmission
over a noisy and dispersive communication channel. The receiver is diagrammed in
Fig. 4.

desired
signal
-w(t)
error signal
received

signal
Figure 4: Continuous waveform estimation for reat signals.

To minimize E[|¢(¢)[?], for each instant ¢, we select the filter that satisfies the
orthogonality condition, which says that the correlation between the error and all of
the observed data should vanish [10].

El{yt) —w®)}z*(s)] =0 forallys,s. (33)

The resulting condition on the impulse response of the optimum filter can be obtained
directly from (33):

[+ e]
f ht, Vhea(, $)do = kst 5) forall 1, s. 34)
-0

This is the orthogonality condition for the case of real signals. For complex signal-
processing problems, typical of bandpass carrier-type signals, the orthogonality con-
dition needs to be extended. This is discussed later in Section 5.

Now use representations of the form (25) for the impulse response h(t, s), and
the form (32) for the autocorrelation &, (¢, s) in (34). Using the fact that both the
hpm(¢ — o) and the r,,, (o — 5) functions are bandlimited to the interval [ f| < 1/2T,
the LHS of (34) can be simplified and written in terms of the Fourier ransforms of
these functions as

o0
ZZ Zf Hop (f)R,,,k(f)eﬂ"ﬂ'—’)dfeﬁ""'/Te_ﬂ”k’/T. (35)
n om g V0

Using the same format for the cross-correlation of w(¢) and z(¢), the RHS of (34) can
be written as

buz(t,8) =3 3wt — 5)e 2/ Tem12mbs/T, (36)
a ok
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Since the condition is to hold for all ¢ and s, we can equate factors of corresponding
exponential terms. Then taking Fourier transforms of the functions of (¢ — s), we get

> Hun(f )R (f) = Wi (f)  foralln, k @7

or, in matrix notation, the solution for the optimum PTV filter is
H(f) = W(ORT() (38)

which closely resembles the form of the solution for the Wiener filter for stationary
signals. In fact, it is simply a multiinput/multioutput Wiener filter for the HSR
representor vector [8].

We illustrate the application of this result by considering a familiar problem
in digital data communication. The problem is to recover a synchronous pulse-
amplitude-modulation (PAM) signal which is received with additive, zero-mean, sta-
tionary noise u(t), characterized by the power spectral density function K. (f). A
baseband carrier pulse g(f) is used to transmit the stationary data sequence {cy}.
Hence the optimum filtering problem can be stated in terms of the quantities shown
in Fig. 4 as

z(t) = x() + u(®) (39a)
wt) =x() =Y _e.glt —nT). (39b)

The relevant correlation functions are
kzz([v S) = kxx (tn S) + kuu([ - S) (403)
byt 8) =k (2, 8) = kee(t, 5)

— Z Z W (E — S)ejZJrnl/Te—jZers/T
nom

where, using (20) for the HSR [x, (1)} for x (¢},

(40b)

Wam (¢t — 8} = Elx, (I)I;(S)]

and some straightforward calculations give the Fourier transform of the HSR cross-
correlation matrix elements for PAM as

Wan (/) = MG +1/TIGS +m/ TV (), @)

where ¥ ( f) is the rectangular bandlimiting factor used in (20) and (21). The M N
factor in (41) is the power spectral density of the discrete-time data sequence; that is,

M(f) =) Elcisnctle™ 2T/ (42)
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Note that M(f) is periodic (1/T) in f. The key step in solving for the optimum
filter is inversion of the autocorrelation matrix R ) for the received signal z(f) in
(38). Although the R{ '} matrix is, in general, of infinite dimension, its inversion is
simple because the matrix has the form of the sum of a diagonal matrix and a rank-one
matrix. To see this, we define the following matrices in terms of the HSRs for ko ()
and g(r), respectively,

K(f) = diag{Ku,(f+n/T)}
G(f) = co{G(f +n/T)}.
Then from (40} and (41), we have

(43)

R(N=K(H+ %M( NGUNHGT(f) forall|f] < 1/2T. (44)
Now, using the Matrix Inversion Lemma [11], we get
RN =K'

KNG | 37T+ TR (16

1
G'T(NHKI(N.

M)
(45)
In (45), G*T (K™ (f)G(S) is a scalar,
GTNKT(NG) = TL(, (46)
where L({f) is defined as the periodic (1/7) scalar function
1 - IG(f+n/TH?
Lify==Yy > /-7
D=5 X T @n

Now premultiplying (45) by the matrix W( ), as in (38), and performing the matrix
multiplications, we express the solution to the problem as

_l G(f+n/TGHf+m/T)
Hum(f) = TD(f)[ Rl +m/T) ] forall | f] < 1/2T, {48)
where we define the periodic (1/7) function D(f) by
M(f)
D ="
D =T mHIn @

To convert this solution to the parallel-path structure of Fig. 1, we use (29) to get

PASY=3" Honrom(f ~m/T)

() (50
K,,,,(f)G(f+ &/ T).

{
= 7D
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For this example, a great deal more simplification can be accomplished. First, extract
the common factor D( f)G*(f}/K,,(f) in (50) as an input filter preceding all the
parallel paths. Next, use the equivalence shown in Fig. 2 on each path, giving an
exponential modulator followed by a time-invariant filter G ( £}. This filter is common
to all the paths, hence it can be extracted as an output filter following the path summor.
Now the separate paths contam only modulators, which can be summed to give a
single-path modulator equal to

% D ePHIT = N (¢ —nT); (51)
k n

that is, the sum is an impulse modulator (IM) with impulses occurring every T seconds.
The simplified result is shown in Fig. 5, where MF denotes the classical matched
filter for the pulse g(r) in additive noise u(#) [10]. The block marked TDL represents
a tapped-delay-line filter having transfer function D(f). Since D(f), in general,
will not be a polynomial in exp[— j2r T f], the TDL realization might require an
infinite number of taps;, however, a finite structure using delay lines in a feedback
configuration could be used to realize a more general D{ f) transfer function.

(a)

z(t) y(t)
—= MF TDL M G(f)

“(f
K (()f) b
(b) ) sampler alt)
z(t) y()
=« MF o™ DF PAM

Figures: Optimum PTV filter forrecovery of baseband PAM waveform. {a) Matched-
filter/tapped-delay-line/impulse-modulator implementation. (b) Equivalent Matched-
filter/digital-filter/PAM implementation. ’

The TDL/IM combination in Fig. 5a can be replaced by a sampler and digital
(discrete-time) filter (DF) combination as shown in Fig. 5b. The discrete-time signal
at the output of the DF is used to formn a new PAM signal using the carrier pulse
g(r) at the output of the continuous waveform estimator. The optimum PTV filter for
the PAM signal can be interpreted in terms of known results for the optimum linear
receiver/demodulator for PAM [10]. This result states that the sampled output of a
time-invariant receiver filter, H(f) = G* () D( )/ Ku. (f), provides the minimum
mean-squared-error estimate of the data sequence [c,}. Given that the pulse shape
g(¢) is known, it is clear that reconstruction of the PAM signal from these estimates
gives the best output waveform. Other equivalent structures can be obtammed when
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the carrier pulses are bandlimited (usually to a frequency that is some fraction in
excess of the Nyquist bandwidth, 1/27). Then the received signal can be sampled
at its Nyquist rate, or higher, and the ME/TDI. combination can be implemented as a
single digital filter operating at the elevated rate; a result which corresponds to the use
of “fractionally-spaced equalizers” for the data channel. This is discussed in more
detail in [12].

As a second example to illustrate continuous waveform estimation on a cyclosta-
tionary signal process, we consider a spread-spectrum communication system where
a stationary message signal process x (¢) is multiplied by an arbitrary periodic spread-
ing signal e(#). The resulting signal is transmitted over an additive white-noise chan-
nel. The receiver filter is required to transform the received signal z(¢) into 2 minimum
mean-squared-error estimate of the original waveform x(¢). Thus, the problem can
be stated as

z(t) = c()x(t) +n(t) (52a)
w(t) = x(t) (52b)
and |
c)=cit+T)= Z Cpe/2m T, (53)
P

which results in the following expressions for the correlation functions:
ko (2, 5) = ()™ (ke (t — 5) + NG — 5) (54a)

kuwz(t, 8) = " (Hker (t — 5). (54b)

Consider first the very simple case where x(¢) is bandlimited to frequencies in the
interval | f]1 < 1/2T. In this case, the HSR for e(#)x(¢) is simply {C,.x(f)], so that
we have

Rum (f) = KXI (f)CnC:, + Noanm (55.’:1)
Wai( f) = 8n0Ci Kex (). (55b)
The solution for the H matrix in (38) has only a single nonzero row, and
C*K,
Hon(f) = ke ) (56)

No+ P Ko )

F, = ZIC-'|2

T

where

is the power in the spreading function. Then using this solution for H in (25) and
performing the summation, we see that the entire PTYV filter is simply

ht,s) = (), (t — 5), (7))
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where

Ko ()
No+ PoKsx (f)

That is, multiplication of the received signal z(¢) by the conjugate of the spreading
function ¢(t), followed by time-invariant filtering with a filter that corresponds to
the optimum (Wiener} filter for »/Pox(¢) in additive white noise. As signal-to-noise
ratio increases (Ny — 0), this filter becomes independent of the particular shape
of the signal spectral density function and approaches an ideal lowpass filter with a
cutoff frequency that does not exceed 1/27. The simplicity of the solution in this
case can be attributed to the fact that we assumed x(z) to be bandlimited to the extent
that the spectrum of ¢(¢f)x(¢) consists of translated nonoverlapping versions of the
spectrum of x(¢), as shown in Fig. 6. Considering, for the moment, that x(¢) has a
Fourier transform and that it is represented by the triangular shape in the figure, we
can interpret the spread signal as a set of double-sideband (DSB) signals centered
on each of the harmonics of ¢(¢). Since the individual DSB signals do not overlap
in frequency, we could use a normal DSB demodulation technique, regarding one
of the harmonics as a carrier, and x(¢) could be recovered without interference from
aliased versions of itself. However, this approach would not realize the processing
gain inherent in a spread-spectrum system. Assuming J,(f) to be an ideal lowpass
filter of bandwidth 1727, the output signal-to-noise ratio (SNR) of the optimum filter
of (537)is P, P,(T/N,), where P, is the power in the x(f) signal. On the other hand,
if DSB recovery of x(¢) from the carrier at frequency n/ T was used, the SNR would
be P;|C,1*(T/N,). In other words, the optimum receiver provides a processing gain
equal to the ratio of the total power of the spreading signal to the power in its n-th
harmonic.

Hy(f) =

i
0 T 2T 3T f
Figure 6: Spectrum of spread signal.

For a more general treatment of this example, we consider a wider bandwidth
signal x(¢} (or a longer period T for ¢(¢)) such that there is some degree of spectral
overlap (aliasing) of the DSB components of the spread signal. Let {s5,(-)} be the
HSR for the autocorrelation of the message process x(¢), that is,

ke (1) = Y sp()e/ /T (58)

so that
S:(f) = Kex(f+n/T) forall |f]| < 1/2T. (59)
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Then the more general expressions for (55a) and (55b) become

Ran(f) =Y CuctCh_¢Se(f) + Nobym (60a)
£

and
W () = G, Sa( ). (60b)

The form of the orthogonality condition can be simplified by taking a hint from the
previous result and assuming a general solution of the form

h(t,s) = c*(s)g(t, 5). 61

Then (34) can be reexpressed for this problem as

o0
[ le@itet. outo — 1o + Nogt, ) =kt =5). ()
—00

At this point, the asymptotic solution for low SNR (N, — co) can be easily seen for
the general case of arbitrary spectral overlap of the signal components. In this case,
the second term on the LHS of (62) dominates and we can solve directly for g(¢, s).
The asymptotic result for low SNR is

hit,s) = Nic"‘(s)kn (t —s). (63)

So the optimum PTV filter is a ¢*(¢) multiplier followed by a time-invariant filter
with transfer function K. (f)/N, which is simply the low-SNR Wiener filter for the
original signal in white noise.

To continue with the general solution to (62), it is helpful to use a frequency-
domain approach. Make a Fourier series expansion of jc(£)[2,

)P = Pe™™T  where P, = Y CrynCh, (64)
" m

and use an expansion like (25) to represent the part of the filter following the input
multiplier. Then, using (58) for &.,(z), the expression equivalent to (37) for this
preblem is

D PaiGrn(IS(f) + NoGrie(f) = Se(f Yot (65)
or, in matrix notation,

G(PS(f) + N.G(f) = 8(f), (66)

where
S(f) = diag{8,(f)} and P={F,_n].

We illustrate the solution of (66) by considering the case where there is spec-
tral overlap only between adjacent DSB components of the spread signal, that is,
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K, (f) = 0for |f] = 1/T. In this case, S,(f) = O for [#] > 1 and the diagonal
matrix on the RHS of (66) has only three nonzero entries. Hence the solution is easily
manageable without a computer. In fact, solving (66) separately in the regions f < 0
and f > O requires inversion of only 2 x 2 matrices. As in the simpler case examined
previously, the solution for the optimum filter becomes independent of the shape of
the message spectrum as Ny — 0. Noting that P_, = Py since [e(2)|? is real, the
solution can be expressed as

RU(f) —PIU(S) 0
G(f)=m —PIU(f) PaV(f) ‘PFU(—f) ’ 67)
0 -PUf) FRUES)

where we have defined the rectangular filtering functions

1 in0< f<1/2T

0 otherwise (68)

U(f)=[
and

VN =U(N+UEN.

This solution represents a structure having multiple paths between the three inputs and
three cutputs (G(f) is not diagonal). It can be converted to a parallel-path structure
using a summation as in (29). Finally, the equivalence shown in Fig. 2 can be used
to make all the path filters symmetric about f = 0 and the implementation shown in
Fig. 7 is the optimum receiver filter at high SNR. Note that the time-invariant (center)
path has an ideal lowpass filter with twice the bandwidth of the filters in the other two

paths.
—P/A
(X Vi) () S
Q b 7

gi2mv2T g-i2m/2T

o
i V(H/2) WA C|_>_.

-®

c*(t}
o [y I S s <
T T L7
gl2nt/2T el2nt2T

Figure 7: Optimum demodulation filter for spread-spectrum signal at high SNR.
A=F}—iP
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Calculation of the time-averaged mean-squared error for the optimum filter gives

1/2T

1 T 2
- fo BlleP1dt = 8, 3 f_ Gl )df 69)

1/2T

indicating that the aliasing error is completely eliminated as &y — 0 and the output
SNR approaches
P[P = | PI%Y/ P)(T/2N,).

5 POLYPERIODIC FILTERING
OF POLYCYCLOSTATIONARY SIGNALS

As a final example of a waveform extraction or signal recovery problem, we consider
optimum linear demodulation of a bandpass carrier signal when one or more inter-
fering carrier signals are present, each having significant spectral overlap with the
signal of interest, as well as additive noise. This example introduces two important
aspects of signal recovery that have not been addressed so far: 1) Some situations
are best modeled in terms of polycyclostationary processes, leading to polyperiodic
filters, for which some of the foregoing analysis techniques are inappropriate. In this
example, the carrier frequencies of the various bandpass signals need not be harmoni-
cally related to each other, nor to the possibly cyclostationary message processes {e.g.
digital data) which modulate the various carriers; 2) complex envelope representation
has many advantages for dealing with signals of a bandpass nature; however, unlike
the case of time-invariant bandpass filtering, a general time-varying signal-processing
operation cannot be characterized by a single complex transformation on the complex
envelope.

Addressing the second issue first, we observe that a transformation like 1) with
a complex impulse response /(¢, s) operating on a complex signal x(¢) can also be
regarded as a 2 x 2 matrix of real operators {given by the real and imaginary parts
of h{¢, s)) which operates on a 2-dimensional real vector signal composed of its real
and imaginary parts. The limitation of this complex operator is that this 2 x 2 matrix
has only two independent entries, whereas signal recovery problems often require the
more general transformation that would be provided by a matrix of four real operators,
each of which can be independently specified. Brown [13] shows how the general
transformation can be expressed as the sum of a complex linear transformation and
a conjugate linear transformation. Any conjugate linear (CL) transformation can be
realized as a conjugator followed by a complex linear transformation. It can also
be realized by a complex linear transformation followed by a conjugator, simply by
conjugating the impulse response, that is,

fg(t, s)x*(s)ds = [j g, s)x(s)ds] ) 70)

Hence, for the analysis of optimum filtermg in terms of processing a complex enve-
lope signal z(¢}, we use a transformation characterized by

Polyperiodic Linear Filtering 259

ye) = fm[h(t, 5)2(s) + g(t, s)2*(s))ds, (71)

—o0
which is implemented as the two-path structure shown in Fig. 8. Such a transformation
is referred to as linear/conjugate linear (LCL} [12-15].
The conventional definition for the complex envelope z(¢) of a real bandpass
signal x(¢), relative to a “center” frequency f, is {10]

x(t) = Relz{t)e/ /] (72a)
2(1) = [x(0) + jR()]e 2 (72b)

where £(¢) denotes the Hilbert transform of x (¢#). Thus we see that the transformation
{72a) from z(¢) to x(¢) is LCL, while the transformation (72b) from x(z) to z(t)
is simply complex linear and can be characterized by the single impulse response

function _
c(t, §) = u (t — s)e” 2k, (73)

where the transfer function of the time-invariant part is the step-function
Ul f)=1+Jj(—jsgn f)=1+sgn f

and the output of U,(f) is often called the “analytic signal” or “pre-envelope” for
x(f) [10]. Typically, a bandpass time-varying filtering problem will be solved in
terms of the operations on z(1), then the result can be combined with the structure
for forming the complex envelope, shown to the left in Fig. 8, to form the overall
processor operating on the real bandpass signal.

x(t} z(t) yit)

Figure 8: Complex envelope transformation followed by LCL processing.

For optimum filtering problems based on complex envelopes, the impulse re-
sponse A(t, s) in Fig. 4 must be replaced by the LCL transformation in Fig. 8 and the
orthogonality condition needs to be restated to reflect the requirement that the error
€(¢) should be orthogonal to both z(s) and z*(s) for all # and s in order to achieve
minimum mean-squared-error. Hence the orthogonality condition requires that the
following pair of equations be simultaneously satisfied:

o0

fm h(t, o)k, (o, s)do +[ g(t, o)k (o, 5)Ydo = ky (¢, 5) (74a)

—o0 —00

[W h(t, o)k (o, s)do + f g{t, o)k (0, 5)do = ky (1, 5), (74b)
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where we have used the facts that
ko (t, s} = E[2" (02" (5)] = .. (¢, )

and
ooz (2, 8) = E[2°(8)2(s)] = K} (¢, 5).

We now examine the nature of the orthogonality condition when z(¢) is a poly-
cyclostationary process, that is, its autocorrelation can be expressed in terms of an
almest-periodic function in s

ker(t, 8) = E{z()2*(9)] = ) e (1 — 5)e/™ ", (752)
where
; o — J2met
¢ (1) = Tanolo o » koo (t + 7, )e™ /o dt (75b)

for some set of cycle frequencies {o,]. The coefficient functions ¢*{-) are called
cyclic autocorrelation functions, although Gardner, who originated the terminology,
uses a slightly different definition involving time variables r + 7/2 and ¢ — 7 /2 instead
of ¢t and s in (75a) [16, 17]. The Fourier transforms of the cyclic autocorrelations,
which will be used in this approach to the satisfaction of the orthogonality condition,
are known as cyclic spectral density functions. These functions characterize the spec-
tral correlation exhibited by polycyclostationary signals, which has a straightforward
physical interpretation. Let %(t) be the impulse response of a lowpass analysis filter
having a bandwidth parameter A f. Then it is easy to show that the cross-correlation
of the signals A(f) ® (z(t)e™/*™/*) and k() @ (z(t)e />"/+@!) is proportional to
AfC*(f)as Af — 0, where “®” denotes a convolution operator [16, 17].
The orthogonality condition also requires expressions for

kype (£, 5) = E[z()z(s)] = Zd“m (t — 5)el2rens (76)

m

and similar expressions for k,,(:,-) and k.- (-, -), which will be characterized by
the cyclic cross-correlations {e®~ ()} and { f®~(-)}, respectively. We assume that the
set {ay}, called the cycle spectrum, is closed under all additions and subtractions.
Then the optimum filter can be represented by frequency-shift operations followed
by time-invariant filtering using this same set of cycle frequencies, that is,

h(t,$) = gay (t — 5)e/>m (77a)
k

g(t,5) =) ot — s)e??, (77b)
k

Substituting all the above series expansions into the orthogonality condition
(74a,b), equating terms with like exponential factors, and taking Fourier transforms
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of the result gives the new expressions to be solved for the optimum filter [12, 14, 15,
17]:

3 Qu(NCE(f —ap) + Y 0 (N)DTHH(— f + ) = E*(f) (78a)
k k

D (NHDPTE(f —a) + Y D (FICTPY(— f + o) = FP(f) (78D)
k k

for each 8; € {o]-

We illustrate the solution of (78a,b) by an example simple enough to be worked
out without the aid of a computer. Consider the situation, shown in Fig. 9, where
two DSB signals, with carriers separated by frequency f;, have the same bandwidth
and total overlap of one sideband. Let z(¢) be the complex envelope relative to
the carrier frequency of the signal of interest, which is modulated by a real WSS
process x(¢), bandlimited to | f| < fp. The interfering carrier signal is modulated
with an independent real WSS process v(r), having the same bandwidth. There is
an additional interference caused by additive white noise with spectral density Np.
Therefore we have

z{r) = x()e® + v(H)e/te/N 4 () (79a)
w(t) = x(1), (79b)

where ¢ and ¢ are the known phases of the signal of interest and the interfering
signal, respectively. For this case the relevant correlation functions are

ozt 8) = kex(f — 8) + ko (t — 5)&/2 U= L AN 5(¢ — 5) (80a)

by (8, 8) = kox(t — 82 + kyy (¢ — 5)e /2 T2 Sol1F) (80b)
ks (2, §) = ket — S)e_jo (80c)
kuwzalt, §) = ke (t — 5)e. (80d)

Note that no noise term appears in (80b) since n() is the complex envelope of a
WSS real process, and so E[n(f)n{s)] vanishes [10]. The cyclic spectral densities
are obtained directly from (80a)-(80d). Taking Fourier transforms, we have

C°f) = Kax (M) + Ko (f = fo) +4N,
DO(f) = Kex(f )e/®
D¥e(f) = Ku(f = fo)e/® (81)
E°(f) = Kee (e #
Fo(f) = Kux(f)e”®
and all other cyclic speciral density terms vanish. This means that only three terms

appear in each equation on the LHS of (78a,b). Using 8, = 0, —2f,, and 2 f;, we
find that the equations can be satisfied by
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Kulf) K p{Ffo)

] I I
0 fo 2, f

Figure 9: Example involving two interfering DSB signals.

Qo(f) = [Qo(- T
1

= -A—(ﬁ
x(szu(f-l' fb) + 4N9)U('_f) + (4N0 + Kvu(f_ f;?))U(f)]

Oaf(f) = [Qap (=T

[4N, Ko (e %)

1 .
= ——[—4N, Ko () Koo (f — f)e7O2NU(),
A(f)[ (KW — Sfoe W) .

where

A(f) = AL (DU + AL(-NUES

A () = 12N, Kex (N Kua (f = fo) 4+ 32ZNZ(Kax () + Ko (f — SO) + 641:’53)
and U (f) is the nonsymmetric rectangular filtering function: U(f) =1in0 < f <
fo and U(f) = 0 otherwise.

Of course, the solution is greatly simplified as N, — 0 and also the mean-
squared-error approaches zero as N, — 0, indicating that perfect canceliation of the
interference from the other carrier signal can be attained. If the complex envelope
transformation shown in Fig. 8 is combined with the asymptotically optimum LCL
filter for high SNR, we can display the entire receiver filter in terms of real processing
operations. This is dene in Fig. 10, where G(f) = U(f) + U(—f) is an ideal
lowpass filter with a cutoff frequency of f, and H(f) = —jIU(f) — U(= /)] isthe
corresponding bandlimited Hilbert transformer.

The fact that cochannel interference can be completely eliminated in this simple
example is easily understood by noting that one of the sidebands in Fig. 9 is free from
interference from the other carrier signal. Therefore, for example, a highly selective
bandpass filter could be used to extract the lower sideband of the signal of interest
and coherent demodulation used on the resulting single-sideband signal to recover
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Figure 10: Optimum linear demodulator for DSB signal with upper-sideband co-
chanrel interference and high SNR.

the message process x(f). Alternatively, a bandpass filter could extract the upper
sideband of the interfering signal and coherent demodulation used to recover a noisy
version of v(¢) for later cancellation from the demodulated signal of interest. The
solution given by (82) and (83) uses both these techniques in the proper combinaticn
to minimize the total effect of additive noise and cochannel interference.

The complexity of the solution to (78a,b) grows rapidly as the problem is made
more interesting by increasing the amount of spectral overlap, by increasing the
number of interfering carrier signals, and by letting the message process have its own
cycle frequencies that might also be different from the cycle frequencies modulated
onto the other carriers. Finding the optimum filter becomes extremely tedious or
even impossible without some form of bandwidth constraints. This has led to the
investigation of constrained optimum receivers, where the number of frequency-shift
operations permitted by the receiver is set to some prescribed value. Even with a
limited number of frequency shifts, there still is the problem of determining which
set of frequency shifts will produce the best results. The problem has been examined
in detail for a number of situations of practical interest. Results are reported in [12,
14, and 15]. We reproduce here some of the results presented in [14], where the
computed minimum mean-squared-error is shown graphically as a function of the
allowed number of frequency shifts, as shown in Fig. 11. In this example there is a
single interferer with a carrier frequency offset by f, = 0.2257 from the carrier of the
desired signal. Both carriers are modulated with synchronous digital data, eitherin a
binary phase-shift-keyed (BPSK) or quartemnary phase-shift-keyed (QPSK) format.
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The bandwidths of both signals are limited and maintained at a constant value for all
cases shown, hence the amount of spectral overlap is fixed for a given value of Jo-
‘The bandwidth of the desired signal {for both sidebands) is normalized to a value of
1.0 while the bandwidth of the interferer is set equal to 0.753. The data rate in both
desired and interfering signals is changed to see the effect of various amounts of excess
bandwidth relative to the Nyquist bandwidth. Figure 11 shows results for e = 0.25,
1.0, and 3.0; where (1 + €)/T is the total bandwidth and 1/7 is the baud rate. An
additive white noise giving a SNR of 20 dB is also present for this example. The
results show that increased excess bandwidth affords better performance because of
the increased amount of spectral correlation in the cyclostationary message process.
Also, BPSK always outperforms QPSK, at the same excess bandwidth, because it
yields more spectral correlation in the carrier signals [14].

0 T T T T
4 BPSK 100% 6~
54 st QPSK 100% -—
M BPSK 300% S
I -10 QPSK 300% =« -
N BPSK 25%
M 15 L QPSK 25% == _|]
S
E o a0l —
B AR RAAEA
o5 |k ]
_30 1 ! | I
0 5 10 15 20 25

Number of frequency shifts

Figure 11: Performance of frequency-shift filtering to extract a desired signal from an
interfering carrier signal and additive noise. Both signals are bandlimited and modulated
with digitai dala at rates corresponding to excess bandwidth of 25%, 100%, and 300%.

6 CONCLUSIONS

We have examined a variety of input/output and state-variable characterizations for
periodically- and polyperiodically-time-varying linear filters. The state-variable de-
scriptions have the advantage that, unlike the Fourier series methods, the filter com-
plexity does not depend directly on the harmonic complexity of the time-varying
parameters. On the other hand, the Fourier series methods are more adaptable to
the solution of optimum filtering problems. In this paper we have investigated such
problems by applying the crthogonality condition, which expresses the optimum
filter response implicitly in terms of the autocorrelation of its input and the cross-
correlation between input and desired output. We consider some simple examples to
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illustrate how the orthogonality condition is solved for problems invelving extraction
of a cyclostationary signal process from a received signal having stationary and/or
cyclostationary interference. We also present an extended form of the orthogonality
condition for processing of complex-valued signals.
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1 INTRODUCTION

Recent years have witnessed a spate of research devoted to cyclostationary (CS) pro-
cesses and their application in several fields, including telecommunications, signal
processing, biomedicine, natural sciences, and economics, see e.g., [1-4] and ref-
erences quoted therein. Starting with early investigations in the late 1950s, most
contributions have focused on frequency domain and input-output descriptions. Only
a few contributions were made to the state-space theory of such processes [5-9]. In
this framework, a CS process is modeled as the output of a linear dynarmical system
with periodic coefficients excited by white noise inputs (state-space Markovian or
simply Markovian model). This kind of description is well suited to clarify many
important issues related to the representation, prediction, and identification of CS
processes. Consider for instance the optimal linear prediction problem. As is well
known, in the stationary case this issue is intimately related to spectral factorization
theory and can be tackled either in an input-output context (by Wiener-Kolmogorov
techniques) or in a state-space one (by Kalman-Bucy theory). Now, among other
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things, spectral factorization calls for the notions of poles, zeros, stability, minimum
phase representation. At present, a full characterization of these notions for CS
processes relies on state-space concepts, the necessary technical background being
provided by the recent developments in the theory of deterministic linear periodic sys-
temns [8]. Furthermore, state-space models for CS signals are particularly useful in
dealing with control problems in the presence of cyclostationary disturbances. In fact
many existing control design techniques take advantage of a state-space description
of (possibly nonstationary) disturbances affecting the controlled plant, see e.g., [10],
where a problem of active control of vibrations in helicopters is tackled by means of
LQG (Linear Quadratic Gaussian) methods,

This chapter offers an extensive view of state-space theory of Gaussian CS pro-
cesses in discrete time (some partial results in continuous time are given in [5] and
[6]). The connections among the three alternative descriptions depicted in Fig. 1 are
investigated: (i) jointly periodic autocovariance functions, (ii) state-space stochastic
models (Markovian representations), (iii) Autoregressive Moving Average models
with Periodic coefficients (PARMA). In particular, we focus on the links (i) (i} and
(ii)«>(iii). First, it is shown that, under the stability assumption, a linear periodic
system fed by white noise asymptotically generates a CS process, whose statistics
are independent of the initial conditions ((i)«(ii)). The inverse problem of auto-
covariance generation, i.e., the problem of finding a state-space model yielding a
prescribed autocovariance ((i)— (ii)) is far more involved. In particular, we show

that the derivation of a Markovian model from covarjance data calls for the solution -

of a deterministic realization problem and the computation of the periodic solution of
a suitable Riccati equation. To the authors’ knowledge, this periodic stochastic real-
ization problem has not been adequately dealt with in the previous literature. As for
the relationship between PARMA models and State-space representations, it is easy
to derive a state-space model equivalent to a given PARMA ((ii)«(iii)). We exploit
this fact to introduce the notions of poles and zeros of a PARMA from the analogous
state-space concepts. The passage from state-space to input-output {(ii)— (iii)} is
more intriguing. It turns out that a given linear periodic system admits an equivalent
PARMA representation of the same order if and only if the system matrices can be
put in the so-called Observer Canonical Form. This is possible only if a suitable
observability condition is fulfilled. When this is not the case, the transformation from
stal¢-space to input-output can still be performed, but the order of the PARMA is
greater than that of the original state-space model.

Another topic treated here is the classification of the main state-space represen-
tations. A first family is given by innovationslike representations. In some sense,
these are the most parsimonious Markovian representations, since they are the only
ones whose input is a white noise vector of the same dimension as the CS Pprocess.
The canonical innovations representation enjoys the additional property of being
minimum-phase, i.e., all its zeros belong to the open unit circle. Finally, prediction
error representations are special innovationslike representations and are obtained
from the equations of the Kalman filter. A main result is that, given a generic Marko-
vian model and the associated Riccati equation for the prediction problem, a bijective
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Figure 1:  Altemative representations of CS processes.

correspondence exists between the innovationslike representations ;?.nd the sym.met—
ric periodic soluticns of the Riccati equation. Moreover, under mild _assumpt.lon.s,
the unique canonical innovations representation corresponds to the maximal periodic
solution of the same Riccati equation. o

In the last part of the chapter, canonical factorization, optirmal predl(.:tlon, and
identification of PARMA models are tackled by state-space tools. In particular, we
show that, if a given CS process admits a nonminimum-phase PARMA representation,
a canonical minimum-phase PARMA representation can always be computed under
the assumption that no zero of the original PARMA lies on the unit circle. Ag for
the prediction problem for PARMA models, in the minimurn-phase case the optimal
predictor is given an explicit formula, which extends the well-.kr.lown formula for
stationary ARMA models. This solution applies also to the nonmmlmum_-phas; case,
provided that the original model is replaced by its canonical representation. Finally,
it is shown that canonical factorization methods are essential in order to guarantee
stability of the filtering operations involved in iterative identification of PARMA
models. . )

The chapter is organized as follows: Section 2 is devoted to the 1nlIoduct{on
of the necessary background regarding deterministic periodic systems. In Section
3, the properties of state-space representations are investigated. In particular, state-
space and covariance representations are related to each other. Mc.)reov'er, a n:ither
complete classification of the various types of state-space reprcsentatlfms is p}'owded.
In Section 4, PARMA models are investigated from a state-space point of view. We
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address the equivalence between input-output and state-space representations, the
linear prediction problem, the canonical factorization of PARMA models, and its role
in identification. The last section provides some concluding remarks.

2 BASICS OF LINEAR PERIODIC SYSTEMS
The basic state-space model for discrete-time linear periodic systems is

2@+ 1) = Fi)x@) + Gu(r) (1a)
¥ = HOx () + D(Hu(t), (1b)

when.e u(t) € R™, x(t) € R”, y(¢) € R?, are the input, state, and output vectors re-
spectively, and (), G(-), H(-), and D(-), are real T-periodic matrices of appropriate
dimensions.

2.1 Monodromy Matrix and Stability

The state evolution from time  to time ¢ is given by the Lagrange formula

xX(t) = Wr(t, TIx() + Y Wr(t, DG — Du(j — 1)
Jj=1+1

where We(t, T) = F(t — 1) F(f — 2) ... F(1) is the transition matrix of the system
over the interval [z, ¢]. It is easily seen that periodicity entails:

Ve +T, v+ T)=We(t, 7). (2)
The transition matrix over one period, viz.
Cr(ty=Vr+T,0),

is named monodromy matrix at time ¢ and is T-periodic. Apparently, this matrix
determines the system behavior from one period (starting at £) to the subsequent one
(starting at ¢ + 7). In particular, the 7-sampled free motion is given by x (¢ + &T) =
® £()*x (). This indicates that the system or, equivalently, the matrix sequence F(.)
is asymptotically stable if and only if the eigenvalues of @ ¢(¢) belong to the open
unit disk. Such eigenvalues, referred to as characteristic multipliers, are independent
of ¢, see e.g., [8]. Thus, the characteristic muitipliers can be regarded as the periodic
equivalent of the poles of a time-invariant system.

2.2 Reachability and Observability

In the state-space theory of linear systems, the notions of reachability and observabil-
ity play a major role. As is well known [11]; reachability deals with the possibility of
driving x(#) to any desired point in the state-space by using a proper input sequence,
while observability is connected with the possibility of uniquely determining x ()
from the observation of the subsequent outputs. When any state at any time can be

Representation, Prediction, and Identification of CS Processes—A State-Space Appreach 271

reached [observed] in an interval of length &, we speak of k-step reachability [k-step
observability]. Moreover, a system is said to be reachable [observable] if it is k-step
reachable [k-step observable] for some k. If not all points in the state-space can be
reached [observed], one can define the reachability [unobservability] subspace as the
set of states that are reachable [unobservabie]. For periodic systems, a thorough body
of results regarding these notions is available, see e.g., [8] and references quoted
therein. We also refer to [8] for more precise definitions of the reachability and
unobservability subspaces. Among the various characterizations, the following are
worth mentioning.

Reachability Criterion. System (1) is k-step reachable iff rank [Ri(t)] = n
Yt, where

Re(t) =[Gt —1) Yp(,t—1GE—-2)... Ve, t —k+1G(E —K)].

Moreover, system (1) is reachable iff it is nT-step reachable.
Ohbservability Criterion. System (1} is k-step observable iff rank [0, (t)] = n
Vt, where

O =[HEY Yr@+ 1L, 0YHE+1Y .. Uit +£ _ LeYHE+45-1)].

Moreover, system (1) is observable iff it is nT-step observable.
For time-invariant systems, R,(t) and @,(t) become the celebrated Kalman
reachability and observability matrices [11]:

R=[GFG...F"'G]
O=[H FH .. (FYy~'H.

In the periodic case, even if R,y (t) [or Q,7(¢}] has maximum rank for some ¢, it may
fail to exhibit the same property at a different time point. This corresponds to the fact
that the dimensions of reachability and unobservability subspaces of system (1} are,
in general, time-varying.

It is also said that the pair (F(-), G(-)) is reachable [( F(-), H(-)) is observable]
to mean that system (1) is reachable [observable].

An alternative characterization of reachability and observability of periodic sys-
tems refers to the characteristic multipliers as follows.

Reachability Modal Characterization. A characteristic multiplier A of F(:) is
said to be (F (), G(-))-unreachable at time t, if there exists n 7 0, such that

@p(z¥n=2in and G(j—~ 1YVp(r, n=0 Vje[t—-T+1r1l

System (1) is reachable if no characteristic multiplier is unreachable.
Ohservabhility Modal Characterization. A characteristic multiplier A of F(-)
is said to be (F(-), H(-))-unobservable at time ©, if there exists £ # 0, such that

@p(z) =x& and H(Ve(j.1)5 =0 Yielr,t +7T-1].

System (I) is observable if no characteristic multiplier is unobservabie.



272 Bittanti, Bolzemn, Piroddi, and De Nicolao

These “modal” notions are the periodic counterpart of the so-called PBH (Popav-
Belevitch-Hautus) characterization of reachability and observability in the time in-
variant case, see e.g., [12]. For the following developments, it should be noted that,
if a characteristic multiplier A # 0 is unreachable at time ¢, it is also unreachable at

any time point. Somewhat unexpectedly, the same is not true for null multipliers, as
discussed in [13].

2.3 Zeros

Asis well known, the zeros of time-invariant systems can be characterized in terms of

the so-called blocking property: Associated with any zero there is an input function

such that the output is identically zero for a suitable choice of the initial state. A

consistent definition of zeros of discrete-time periodic systems has been first given

in [14]. In this respect, it is advisable to introduce the following Time-Invariant

E:p{'esentation (TIR) of the periodic system (1), which dates back to 1959 [15].
tting

FT = ¢F(T),
Ge=¥r@+ T, v+ DG(x) Yrx+ T, 7 +2DG+1)...G + T - )],
He =[H@) Vet + 1L, oY H@+1) . Vet + T — 1,7V Hx + T — 1YT.,

D‘E:{(Dt)fj}v i:j=112|---|T1 (3)
0, i<j
(Do)ij=y D(x+i-1), i=j

Hz+i-1) Vet +i- 1L+ NG +j-1), i>j
ur(k) =fu(c +&TY u(t + AT+ 1Y .. . u(r + (k + DT - 17,
where F; € R, G, € R, H, € RF™™" and D, € R™*"T consider the
time-invariant system
xr(k + 1) = Frxr (k) + Grur (k) (43)
Ye(k) = Hexo (k) + Dou. (k). (4b)

It is easy to see that, if u. (-) is constructed according to (3}, and x; (0} is taken equal
to x(t), then

x:(K)y =x(r +kT)

Yy = [y +ATY e+ kT + 1) . .3z + (k+ DT — 1)'T.
Therefore, the time-invariant system {4) can be seen as a state-sampled representation
of system (1), fed by an augmented input vector and producing an augmented output

vector. Such vectors . (k) and y; (k) are obtained by stacking the values of the input
u(-) and the output y(-) over each period. This kind of representation is also named
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lifted representation. For an extension of lifting techniques to periodic continuous-
time systems the interested reader is referred to [16].

The definition of zeros of a periodic system relies on the TIR defined above. For
what matters herein, we restrict consideration to the case m = p.

Definition 1 (Zeros of a Periodic System) [14]): Assume m = p. Then z is
a zero at time 7 of system (1), if it is a zero of the corresponding TIR (4), i.e., if
detN{(z) = 0, where
| 2 -F -G,
N@) = [ A, D, ]

is Rosenbrock’s system matrix [17] for system (4),

As discussed in [14, 18], the nonnull zeros together with their multiplicities are
in fact independent of . In [14] it has been proven that one can associate to any zero
of the system a suitable initial state and an input function that result in the null output
(transmission-blocking property). Precisely, given a zero Z # 0, there exists an initial
state x (0} such that, for any T'-th root m of z, there exists a T -periodic function a(¢)
such that the input #(¢) = a(t)m’ yields y(t) =0 ¥t .

When all zeros and poles belong to the open unit disk, system (1) is said to be
minimum phase, in analogy with the corresponding notion for time invariant systems.

An important property of zeros is their invariance with respect to output injec-
tion, as precisely stated in the following lemma.

Lemma 1[19] Consider the following periodic system generated from system
(1) by means of a periodic output injection

e+ 1) =FOx)+ GWu) + E)y)
) = Hx () + DQ@u(),
where E(-) is an arbitrary periodic matrix of suitable dimensions. The zeros at time

T of this system coincide with the zeros at © of system (I).

2.4 Change of Basis

A change of basis in the state-space amounts to transforming the state vector x(¢) into
a new vector (1) = S(t)x{(s), where S(¢) is T-periodic and nonsingular for each ¢.
In the new basis, the system is characterized by the 4-tuple (F (), G(-), H(?), D()):

F(2) = St + DF @Sy,

G@) = S+ 1DGE),

A@) = HOSO™,

D) = D).

The original and the new 4-tuple are said to be algebraically equivalent. A given
system admits infinitely many algebraically equivalent state-space representations
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sharing the same input-output behavior. Furthermore, stability, reachability, observ-
ability, poles, and zeros are not affected by a change of state-coordinates,

When comparing different models, we also make use of the weaker notion of
equivalence to indicate that two representations yield the same input-output behavior.
Of course, two algebraically equivalent models are also equivalent, but the converse
is not true in general. In particular, equivalent models may well have different orders.
For more details on reachability, observability, change of basis, equivalence, etc., the
interested reader is referred to [20, 21].

3 STATE-SPACE REPRESENTATION
OF CYCLOSTATIONARY PROCESSES

3.1 Stochastic Periodic Systems

We now focus on the state-space representation of stochastic periodic systems, i.e.,
systems of the type ation

x(t+1) = F(Ox@) + G@v() | (5a)
y) = HOx () +w(t), (5b)

where v(-) and w(-) are m- and p-dimensional white noises with Gaussian distri-
bution and T -periodic moments. Precisely, denoting by

[ 5(0) } o [ v(®) ]
wt) w(t)
the expected value and by

gy S0 | ger v(s)
= Var .

S¢Y RQ@) w(t)
the covariance matrix, we assume that 9(¢) = (¢ + 7), w(t) = w{t + T), Q) =
Q(t4-T), S(t) = S¢+T7T),and R(t) = R(t+T), ¥t. The initial state x () is assumed
to be independent of v(-) and w(-}, and normally distributed with E [x ()] = %, and
Var [x(z}] = %;.

Throughout this chapter, we make the following assumptions:

e F(.) is asymptotically stable.
e (F(-), H(-)) is observable.
We show that the stability assumption implies the convergence of the state and output

processes to CS processes. The observability assumption is useful to avoid unneces-
sary redundancy in the state-space representation.
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3.2 Evolution of the Moments of a Stochastic Periodic
System

3.2.1 Periodic Mean

The expected values x(r) and p(¢) of the state and output processes trivially
satisfy the following deterministic equations:

i+ 1) = FOI) + GO)i) (62)
) = HOIW) + 9(). (6b)

Since F(-) is asymptotically stable, it is easy to see that there exists a unique X, such
that

{
X+ T)=@p(t)x; + Z Wret, NGG - Dv(j— 1
J=t+1
is equal to x;. With such an initial condition, the state and the output of system
(6) are T-periodic. Due to the stability assumption, such a cyclic equilibrium turns
out to be globally attractive. Consequently, given any initial condition x., the cyclic
equilibrium is asymptotically recovered for 1 - —oo.

3.2.2 Periodic Variance

We denote the state and output autocovariance functions by
o(t, ©) =E [(x() —x(Nx(x) — 2]
v, ©) = E [(y(1) — 7)(¥(z) — F(T)'].

Moreover, for the sake of conciseness, the covariance matrices o (¢, ¢) and y (¢, t) are
respectively denoted by () and I"'(#).

It is easy to see that the covariance matrix X (-} of the state of system (5) obeys
the periodic Lyapunov equation (PLE)

T+ )= FOZOF + GHOMGEY, €]

with initial condition Z{zr) = X.. Now, it is straightforward to verify that the solu-
tion of the PLE is given by

() =Yrlt, O)BZE@VRE, 1) + W (L, 1),
where
!
W= ) Wit NG — QG — DG — 1Y ¥s(t, j)
J=t+1

is the reachability Grammian matrix. Imposing the periodicity constraint £(r 4+ 7T) =
Z(r) yields
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B(r) = r(DE@PR(zY + W(zr, T+ T). (8)

Equation (8) is a discrete-time Algebraic Lyapunov Equation. Since F(-) is stable,
all the elgenvalues of @ p(z) lie in the open unit disk, so that (8) admits a unique
solution %, (which is in fact positive semidefinite). Such a solution 3, acts as a
periodic generator for the PLE, i.e., the solution X () of the PLE with initial condition
E(z) = T, is T-periodic. Moreover, it is easy to see that

() — () = Wr(t, ©) [B(z) = B Wrlt, T,

where E(-) is any solution of the PLE. Obviously, the stability of system (5) implies -

the convergence of the difference % (¢)— % (¢) to zero regardless of the initial condition
(7).
Turning now to the state autocovariance function, it is easy to see that

o(t,7)=V¥et, 0)2(T), t>r1.

Sinceot+ T 1+ T)=Yr(t+ T, 7+ TNE(z+T)and o (t, t) = Ve, T)E(T),
equality (2) together with E(z + T) = X(t)implyo (¢ + T, 1 4+ T) = o' (¢, 7).
As for the systemn output, an easy computation shows that

vy, 1) = H)We(t,t+ 1) [F(r)E(t)H(r)’ + G(r)S(r)] , t>1 (92)
@) =y.) = HOZWH®) + R(¢). (9b)

Therefore, 2(z + ') = Z(r) implies T"'(zt + T) = T'(x), sothat y ¢ + T, 7+ T) =
y¥(t, ), as well.

To summarize, under the stability assumption of systemn (5), whatever the ini-
tial condition, the stochastic process y(-) asymptotically tends to a process with the
following characteristics:

i. The expected value j(-) is T-periodic.
ii. The autocovariance function y(t, t) is jointly periodic in its arguments,
ie., it possesses the property y (¢ + T, + T) = (¢, T) V¢, .

In other words, the output (and also the state) of system (5) asymptotically converges
to a CS process. Furthermore, the asymptotic CS process is independent of the initial
condition.

3.3 Markovian Representation
of a CS Autocovariance Function

The periodic stochastic realization problem consists of finding a state-space model
whose output asymptotically exhibits a given expected value 3(t) and a prescribed C$
autocovariance function y (¢, t) (see arrow (i)—>(ii} in Fig. 1). Whenever this hap-
pens, the stochastic system will be said to be a Markovian representation or a Marko-
vian realization of the specified CS process. Since the expected value requirement
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can be trivially fulfilled by a suitable choice of w(¢), without any loss of generality
we consider only the zero-mean case, y(r) = 0 Vr.

Obviously, not ali CS processes admit a finite dimensional Markovian represen-
tation. For this reason, we focus on rational CS processes, according to the following
definition. A CS process with autocovariance ¥ (¢, 7) = y(¢+ T, T+ T) is said to be
rational of order n if there exist T-periodic matrices F(.), G‘(-), H(), of orders
n X n nxm,pxHn,suchthat

e F(-) is asymptotically stable
e (F(-), G()) is reachable and (F(-), H(-)) is observable
o y(t, Ty = HOWE(, T+ DE(T), £ > 1.

Now, the stochastic realization problem can be split into two steps. The first one con-
sists of finding a triple (F(-), G(-), H(:)) from a given y(¢,1); the second
one consists of passing from this triple to a complete Markovian model, As for the first
step, notice that y (¢, ) = H{H)WVr (¢, T+ I)G(r) can be interpreted as the impulse re-
sponse of a linear deterministic system characterized by the triple (F(-), Gy, H().
In the systems and control literature, the problem of associating a state-space triple
1o a given impulse response is known as the (deterministic) realization problem. A
complete treatment of such a problem in the periodic case has been recently provided
in [22], where a realization algorithm is given, provided that a certain Hankel matrix
associated with y (¢, ) satisfies some rank requirements.

Turning now to the second step, given the triple (F(-), G(). H (-)), a complete
Markovian representation can be found by looking for a periodic 4-tuple (Z(-), ¢,
§(-), R(-)), with =(#) = 0 Vz, such that

B+ 1D - FOZOFE) = Q@) (10a)
G — FOZOH(®) = 5¢) (10b)
ey — HOZHOHG) = R(t) (10c)

[ ?(t) 5 ] >0 V.. (10d})
S R

Indeed, from (7), (9a), and (9b), it is easy to see that if (10a—d) are fulfiiled, system
(3) with G(t) = I, Q@) = Q(), S(t) = S(¢) is a Markovian representation of the

CS process whose autocovariance function is y (¢, 7).

A direct inspection of {10a—c) reveals that, once a periodic matrix X(-) is se-
lected, the remaining matrices Q(-), S(-), R(-) of the 4-tuple are uniquely determined.
However, there is no guarantee that condition (10d) is met. We denote by S the set
of Symmetric Periodic Positive Semidefinite (SPPS) matrices T.(-) such that (10a—d)

‘hold. A significant characterization of such a set is given by the following lemma.

Lemma 2 (Periodic Positive Real Lemma)  Ler y(t, ) be any function such
that
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o y(t.7)=y(z,t)
s Y, T)=y(+T,t+7T)
e there exists a triple (F(.), G(-), H()) satisfying

v, o) = HOVe(, T+ DG, t > 1.

Then y (¢, T} is the autocovariance function of a CS process if and only if the asso-
ciated set S is not empty.

The “if”” part of the lemma is easily demonstrated in view of the previous discus-
sion. As for the “only if” part, it can be obtained by specializing to the periodic case
the Positive Real Lemma for nonstationary processes (see e.g., [23]). The lemma
owes its name to the fact that, for a function to be an autocovariance, an associated
operator must satisfy a nonnegativity condition (in the stationary case, for instance,
the spectrurn must be nonnegative real).

The computation of an element X(-) of & can be performed by using the fol-
lowing algorithm based on the pericdic Riccati equation

(¢t +1)=FOEOFQ)
HG() - FOZMHWIT() - HOSOHNOT A1)
x[G() — FO)B(H®'T,
where the symbol T denotes the Moore-Penrose pseudoinverse.

Algorithm  Consider the solution of (11) with initial condition (1) = 0. As
T — —00, such a solution tends to a periodic equilibrium denoted by %,(t). It can be
proven that %.,(-) is the minimal element of set S (here minimality makes reference to
the usual ordering of positive semidefinite matrices; in other words, ©(t)— X, (t) = 0,
Jorevery ©(-} € 8).

This procedure can be seen to be a special case of the general algorithm provided
in [23] for the time-varying case. As a matter of fact, again following the ideas of
[23], it can be shown that the set S is convex and that all the SPPS solutions of (11)
are extremal points for such a set.

To make things simpler, it is hereafter assumed that R(¢) > 0 V¢ (regularity
condition), so that (11) can be written as follows:

T+ 1D =FOTWOFQY
HGW - FOEOHENT () — HOSOHE ™ (12)
x[G(t) — FOBH@)T.
3.4 Kalman Predictor

The classical linear prediction problem for a stochastic process y(-) consists of finding
a linear functional of past data yielding optimal estimates of the present and future

Representation, Prediction, and Identification of CS Processes—A State-Space Approach 279

values of the process. When optimality is in the mean-square sense and the process is
given a Markovian representation, the natural framework for the solution of the pre-
diction problem is provided by Kalman filtering theory [24, 25]. Precisely, denoting
by x(¢ + 1|¢), the optimal one-step-ahead prediction of the state x () of system (5)
based on {¥(/), j < ¢}, the optimal predictor is

x(t+ 15 = F@)x(tlt = D+ KO (13a)
yele — 1) = H@x(|e — 1) (13b)
n{t) = y(t) = y(tle - 1), (13c)

with
x(t[t — 1) =x,.
The Kalman gain matrix X (¢) appearing in (13a) is given by
K@) =[GOS@) + FOPOHWIHOPHHE) + RO (14
where P(#) is the solution of the Riccati equation with periodic coefficients
Pt+1)= FQPOFEY + GQWGEY
—[GOSE) + FOYPWHEYI[H@ POYH(EY + RO (15)
x[GSE) + FOPWHW)T,
with initial condition P(t) = E; = Var[x(z)]. Matrix P(¢) is the covariance matrix
of the state prediction error x(t) — x(¢|¢ — 1). Therefore, it is not surprising that, if
E; = 0,then P{) > O Vr.
Using (13b) and (13c) in (13a), it turns out that
x(t + 115 =[F@) — KOH@Ix@) — 1) + K(@)y@).

Hence, the stability of the predictor is determined by the matrix A@) = F ) —
K{t)H{). In particular, when X (-} is T-periodic, the predictor is stable iff all the
characteristic multipliers of Aj‘(-) lie inside the unit circle.

Equation (15) can also be given the equivalent expression

P+ 1)=ABVP@YAQY + B(t) B(tY

~AMPWHEHEOPOHEY + RO HEPOAQY, (1o

where
A(t) = F(©) — GIOSORE) ™ H () (17a)
B(t)B(2) = G(O[Q) — SORE)™'S¢)1G @) . (17b)

This altemative formulation can be associated with the prediction problem relative
to the stochastic system

x(t+1) = ADOx({) + BQ)I() (18a)
y{t) = HOx(t) + (1), (18
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where 1(¢) and &(¢!) = w(t) are independent white noises with zero mean and
covariance matrices given by / and R(¢), respectively.

The asymptotic behavior of the solutions of a periodic Riccati equation can in-
clude a variety of cases, such as asymptotic convergence to a periodic equilibrium
of period T, asymptotic convergence to a periodic equilibrium of period AT or con-
vergence to an almost-periodic solution (see [26] for the continuous-time case). Qur
attention is focused on the first case. Note that, if, as in the present case, the initial
condition P(z) = X, is symmetric positive semidefinite, then, whenever the solu-
tion converges to a periodic equilibrium, it actually converges to a SPPS solution.
Then, the gain tends to a periodic matrix K (-) and the prediction error n(-) defined
by (13¢) converges to a white noise with periodic variance H(-)P(YH{-)' + R(.).
Correspondingly, if in (13) n(¢} is regarded as a stochastic input and y{#) as the output,
we obtain

x(t+ 1)) = FO)x(elt — 1) + K(O)n(t) (19a)
¥y = Hyx(tle = 1) + n(t), (19b)
n() ~ WNQO, HOPOH(Y + R(Y), (19¢)

which can be seen to be an alternative Markovian modei of the CS process y(-).
(WN (-, -) denotes white noise with mean and covariance specified by the first and
second arguments, respectively.) This representation, which is referred to as the
Prediction Error (PE) representation, enjoys the distinctive feature of being fed by
a p-dimensional noise signal r(-), whereas the general Markovian model (5) is fed
by a (m + p)-dimensional white noise [v(-)w(-)'). Summing up, any Markovian
representation of a CS process can be transformed into a PE-representation, via the
solution of the Riccati equation (15).

Before addressing the problem of characterizing the set of PE-representations,
it is useful to overview some basic facts concerning the Riccati equation. For more
details on the properties of this equation, the interested reader is referred to [27, 28,
29].

3.5 Properties of the Riccati Equation

With reference to the predictor dynamic matrix Z(t) = F(t) — K()H(t), where
K(t) is defined by (14), a symmetric periodic solution P(-) of (16) is said to be
o maximal if P(t) < P(t) V¢, for all symmetric periodic solutions P(-}
o strong if the characteristic multipliers of A(-) belong to the closed unit disk
e stabilizing if the characteristic multipliers of AC) belong to the open unit
disk.

In the following theorem, the existence of the maximal, strong, and stabilizing solution
is analyzed. The existence conditions are stated in terms of structural properties of
systemn {18).
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Theorem 1 ([28, 29, 30])

i. If(A(), H(-))isobservable, then (16) admits a maximal symmetric periodic
solution, which is in fact positive semidefinite and strong.

ii. If A() is stable and (A()), H(")) is observable, then (16) admits a unique
SPPS solution, which is in fact stabilizing.

iii. Assume that (A(), H(.)) is observable. Then, (I16) admits a stabilizing
solution iff no (A(-), B(-))-unreachable characteristic multiplier lies on the
unit circle. Moreover, such a stabilizing solution is unique and coincides
with the maximal solution.

It is advisable to reinterpret these resylts in terms of the original stochastic
representation (5). Observe that the stability of F(-) in no way implies the stability
of A(:). However, it is not difficult to see that the assumed observability of the
pair (F(-), H(-)) entails that of (A(-), H(-)) too. Therefore, in our context, one can
conclude from Theorem 1 that the Riccati equation {(16) admits a maximal solution.
However, there may exist other SPPS solutions and the maximal solution itself does
not necessarily yield a stable predictor. To achieve uniqueness of the SPPS solution
and to guarantee predictor stability, additional conditions on the pair (A4 (-), 8(-)) are
to be met, as stated in points (ii) and (iii) of Theorem 1.

As for the numerical computation of the periodic solutions of the Riccati equa-
tion, several approaches have been proposed in the literature, see e.g., [28, 29, 31].
These methods include direct integration, quasi-linearization and time-invariant re-
formulations.

3.6 Periodic Innovations Representation
of CS Processes

Given a Markovian representation (5) of a CS process, one can obtain the alternative
PE-representation (19) associated with an SPPS solution of (16). Below, we go even
farther by showing that there is a one-to-one correspondence between all symmet-
ric periodic solutions (not necessarily positive semidefinite) of the periodic Riccati
equation (16) and a certain class of Markovian representations. Precisely, consider
the stochastic system

x(+ 1) = F@)x(@) + L)) (20a)
we) = H{x(e) +e@), (20b)

where £(¢) is a zero-mean white noise with periodic covariance matrix R(t) =
R+ T7),and L(#) is a T -periodic matrix. If, for some R() and L(), system
(20) is a representation of a given CS process, it will be said to be an innovationslike
(IL) representation of the process. It is immediately seen that the PE-representations
(19) are just a subclass within the family of IL-representations. If the zeros of (20)
belong to the open unit disk, the representation is termed the (canonical) inrovations
representation.
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We have just observed that, for any given SPPS solution P(-) of the Riccati
equation (16), the associated PE-representation (19) is an IL-representation. Below,
we show that a model of the type (19) is still an IL-representation even if the Kalman
gain X () is computed from (14) in correspondence to any (not necessarily positive
semidefinite) periodic solution P(-) of the Riccati equation (16). In this respect, the
problem of whether H{#)P(¢)H(t)' + R(¢) still represents a covariance matrix in
accordance with expression (19¢) arises. In [32] it is shown that, for any symmetric
periodic solution P(-) of (16), H(t)P(t)H{tY’ + R(t) is indeed positive definite at
each time point ¢.

The next results proven in [19] establish a one-to-one correspondence between
all symmetric periodic solutions of (16) and the class of IL-representations.

Theorem 2 [19] Suppose that F(-) is stable and (F(-), H(-)) is observable.

i. Consider any symmetric periodic solution P(-) of (16), with the associ-
ated gain K (-) defined by (14). Then, lesting L(t) = K() and R(t) =
HQ@)YPYH@)Y + R(t), (20) provides an IL-representation of the CS pro-
cess y(-) defined by (5). Moreover, different solutions lead to different IL-
representations.

ii. Assume that (20) is an IL-representation of the CS process generated by
(5). Then, there exists a symmetric periodic solution P(-) of (I6) such
that R(t) = R(t) + H(O)P()H(t) and L(t) = K(t), where K(t) is the
associated Kalman gain.

This theorem tells us that, for system (20) to be an IL-representation, matrix
L(¢) must coincide with the Kalman gain K (#) associated with a periodic solution of
the Riccati equation.

3.7 Canonical Innovations Representation

By adding and subtracting X (¢) () to the right-hand side of (20a) and letting L (#) =
K (t), the IL-representation (20) can be rewritten as
Xt +1) = AO)x(0) + KOy
we)y = H({t)x (@) + e(),
where A(1) = F (#) — K(t)H(¢) is the closed-loop matrix. Regarding y(-) as input
and ¢(-) as output, the following whitening filter is obtained:
x(t +1) = AOx @) + K@) p()
e(ry = ~H@x(t) + y(¢).

We now show that the zeros of the IL-representation coincide with the poles of the
whitening filter, i.e., with the poles of 4(-). Indeed, application of the output injection
— K p() to 20) (wnh L(#) = K (1)) leads to the system

x(t+ 1) = ADOx() (21a)
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() = H(x() + ). (21b)

According to Def. 1, the zeros of system (21) are the complex numbers z such that

I—o:() 0
det|:z A() ]:01
Q =

where E tumns out to be a nonsingular matrix and 2 is a matrix we do not consider
explicitly. Hence, the zeros of (21) coincide with the characteristic multipliers of
A(-), which are the poles of the periodic whitening filter. On the other hand, by
Lemma 1, the zeros of (21} coincide with those of (20).

In view of the above discussion, it is apparent that an IL-representation is canon-
ical (minimum-phase) if and only if 4(-) is stable. This is equivalent to saying that the
canonical innovations representation exists if and only if the periodic Riccati equa-
tion (16) admits a stabilizing solution. In conclusion, by Theorem 1 (iii} a canonical
innovations representation exists if and only if the unit circle is free of (4(-), B(-))-
unreachable characteristic multipliers. Precisely, such a representation is generated
by the unique stabilizing periodic solution of the Riccati equation.

3.8 Mid-chapter Conclusions

As already pointed out in the Introduction, CS processes admit at least three alter-
native representations: (i) jointly periodic autocovariance functions, (ii) state-space
stochastic models, (iii) Autoregressive Moving Average models with Periodic coef-
ficients (PARMA). So far, we have analyzed the connections between (i) and (ii). In
particular, it has been shown that a stable state-space model fed by white noise gen-
erates a process whose covariance is jointly periodic, and explicit formulas for such a
covariance have been given ((i)«(ii)). The inverse problem of finding a state-space
model yielding a prescribed autocovariance ((i)—-(ii}}, is more involved. First of
all, the autocovariance has to satisfy certain “rationality” requirements. When these
are fulfilled, the realization algorithm consists of two nenirivial tasks: the solution
of a deterministic periodic realization problem and the computation of the periodic
solution of the realization Riccati equation. This procedure yields one Markovian
representation of the autocovariance. However, not all Markovian representations
are of equal value: innovationslike representations, for instance, are more parsimo-
nious than others. Rather interestingly, once an arbitrary Markovian representation is
available, all and only innovationslike representations are obtained from the periodic
solutions of the prediction Riccati equation. In particular, the stabilizing solution, if
any, provides the (unique) minimum-phase innovations model.

Two different Riccati equations, {12) and (16), are involved in the derivation
of a staie-space model from the autocovariance function and in the search for the
innovationslike representations, respectively. It is perhaps unsurprising that a strict
connection exists between the periodic solutions of the two Riccati equations. In-
deed, it is a matter of mere computation to show that, in view of (10a)—(10c), Z(-)isa
periodic solution of (12) if and only if P(-) = 2(-) — Z( -} satisfies (16), where 2 ()
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is the periodic solution of the Lyapunov equation (7). Thus, given (-}, the minimal
solution of {16) leads to the maximal solution of (12) and vice versa.

4 PARMA REPRESENTATION
OF CYCLOSTATIONARY PROCESSES

A typical input-output representation of a CS process is provided by Autoregressive
Moving Average models with Periodic coefficients (PARMA):

g1 r(n
YO =Y Ait =Dyt — i)+ Y Cilt — De(t — i) +e(t)
i=1 i=1

where y(¢),¢(¢) € R?, e(-) is awhite Gaussian noise with E[e(r)] = &(¢), Varle(t)] =
Rt), and g (), r (), 4:(-), Ci(), €(-), and R(-) are periodic with period T. Letting

5= max(mra)cq(t), mrax rit)}

be the order of the PARMA model, and putting 4;(t —{}) =0, > qit),Ci¢ —i) =
0,1 > r(1), the above model can be equivalently written as

WO =Y At =yt — i)+ Y Cilt — Delt ~ i) + (). 22)
=1 i=]

The theory of PARMA models has its roots in the early contributions [33, 34]
on PAR (Periodic Autoregressive) models, and has found many applications in con-
nection with time-series prediction and identification. Some examples of real data
analysis can be found in [35, 36, 37].

The purpose of this section is to discuss the connections between periodic state-
space models and PARMA representations ((ii)«»(iii) in Fig. 1), completing the pic-
ture conceming the possible characterizations of CS processes.

4.1 From PARMA to State-Space Model

The first problem we address consists of finding a state-space representation of a
given PARMA model (22). It is easily verified that the system

x(r+1) = Fix(t) + G(te(t), x(t) e R (23a)
y) = HO)x () +elt), (23b)
where
00 0 A1) As(0) + Cs(2)
I 0 ... 0 A1) A () + Co (1)
F(t) = 0 I ... 0 4,5 , G(t) = As2(@) + Cs_a(t) ., (23¢)
0 ... I 4@ A1)+ G
HH =10 0 . 0 I 1, (23d)
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is equivalent to model (22) in that the input-output relationship is the same. Inter-
estingly enough, independently of the PARMA coefficients, the pair (F(-), H(-))
is observable (just apply the observability criterion). On the contrary, there is no
guarantee that (F(-), G(-}) is reachable. Hence, such a state-space representation is
not necessarily minimal, i.e., there might exist equivalent Markovian representations
with a number of state variables lower than ps.

4.2 Poles, Zeros, and Minimum Phase

A simple way of defining the poles and zeros of the PARMA model is to identify them
with those of the associated state-space model (23). The poles of the PARMA are
then the characteristic multipliers of F(-). If all the poles lie inside the unit disk, then
the process generated by the PARMA model asymptotically tends to a CS process.
As for the zeros, observe that by Lemma 1 the zeros of (23) coincide with those of

the system:
x(t+1) = A@)x ()

y(t) = H(@O)x (@) + e(),

with
00 0 —Ci(n)
I 0 0 - s—l(t)
Ay =F)-GmHNH=| 0 1 0 —Csa()
6 0 ... T —C:l(:)

By a rationale similar to that employed in Section 3.7, it is seen that the zeros of the
above system are just the characteristic multipliers of 4 (-}, which will be hereafter
referred to as zeros of the PARMA model. In particular, we say that the PARMA
model is minimum phase if both poles and zeros belong to the open unit disk.

4.3 From State-Space to PARMA Model

As for the transformation from a given Markovian representation of a CS process to
an equivalent PARMA model, we focus, for simplicity, on the zero-mean univariate
case (e(t) = 0 V¢, p = 1). Consider the system

x(t +1) = F(O)x(t) + G(Delt), x(t) € R
y(t) = H{t)x(t) +e(t), »(¢) e R

with F(-) stable and (F(-), F(-)) observable. Denote by & the minimum integer such
that (F(-), H(-)) is k-step observable (n < & < nT, in view of the observability
criterion). Now, two cases are possible. If & = n, it can be shown (see [38, 39]) that
there exists a change of basis in the state-space leading to a representation of the form

(e + 1) = FOR + G®e(n), i eR”
y(t) = HOE(E) + e(t),
with
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00 0 £ ()

1 0 0 fisi() gn_1()
ﬁ(!): 01 0 f;,_z(t) , é(f): gn—2(t)

00 ...1 £ _ g
AHn=[0 0 ... 0 1 1

This is known as the Observer Canonical Form (OCF). Then, an equivalent univariate
PARMA model of order s = n is easily obtained by letting A;{t) = f;(¢) and
Ci(t) = g:(t) — f;(t) (compare with (23c)).

If ¥ > n, it can be shown that the system does not admit any algebraically
equivalent OCF representation. However, it is still possible to find a system of order
k in OCF which preserves the input-output behavior [39]. Then, one can obtain a
PARMA model of order s = k, as above.

In conclusion, an nth-order Markovian representation of a univariate CS process
can always be transformed into a PARMA model, but the order of the PARMA model
can be greater than »,

4.4 Prediction for PARMA Models

The state-space theory for CS processes provides vaiuable insights in connection
with prediction and identification of PARMA models. For instance, the solution
of the prediction problem is better understood if reference is made to the notion of
canonical PARMA representations, to which the first part of the subsection is devoted.
For the sake of simplicity only univariate (7 = 1) PARMA models are considered
(symbols a;(-) and ¢;(-) are used in place of 4;(-) and C;{-) to denote the scalar
coefficients of the PARMA model).

4.4.1 Canonical Representation of PARMA Models

The state-space representation (23) of the original PARMA model (22) coincides
with system (3), provided that F(¢), G(t), H(¢) are defined according to {23c-d).
As for the variances (Q(¢), R(#), and the cross-covariance S(¢) of the disturbances
v(-) and w(-) appearing in (5), one has to take Q(t) = S(t) = R(¢), where R(¢) is
the variance of e(¢). Next, we try to derive the expression for the prediction Riccati
equation (16) associated with (23). Matrix B(¢) defined in (17b) turns out to be the
zero matrix Y¢. Therefore, the prediction Riccati equation relative to the state-space
representation (23) of the PARMA model is given by

P +1)=AQ)PYAQY

24
~AOPOH@ HOPOHWY + ROITTHE)PE)ARY, @9

with A(#} = F() — G{¢) H(¢). Notice that, since B{t) = 0, the pair (A(-), B(")) is,
so to say, “completely unreachable.” Conversely, as already pointed out, observability
of (F(-), H(-)) entails that of (4(-), H{-}).
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If all the poles of the PARMA model lie inside the unit circle, its output converges
to a CS process. However, in analogy with the stationary case, a CS process can be
described by several PARMA representations. Under suitable assumptions, one of
these representations is minimum-phase.

Theorem 3 (Periodic Spectral Factorization Theorem) Consider a PARMA
model having all its poles inside the unit circle and the associated CS process y(-).
Given any symmetric periodic solution P(-) of (24), let ¢;(¢) = ¢;(t) + !Es_,-_H(t),
where k;(t) is the i-th entry of the Kalman gain K (¢):

K(@© = AQOPOHOTHOPOHE + RO (25)

Then, the new PARMA model
YOy =Y alt ~ Dy~ iy + Y &t — D — i) + &, (26)
i=1 =l

where &(-) ~ W N(O, R(-) + H(YP(-YH(.)"), provides an alternative representation
of the CS process y(-).

Furthermore, there exists a minimum-phase representation iff the additional
assumption is made that no zero of the PARMA model (22) lies on the unit circle.
Then, the minimum-phase representation is unique and is obtained in correspondence
of the unique stabilizing solution of (24).

To prove the theorem, consider the state-space representation (23) of the PARMA
model. In view of Theorem 2, letting Rty = R(t) + HOP(H(@) and L) =
K (1), system (20) provides an IL-representation of the CS process y(-). Note, that,
since S(2) = R{f), from (17a} and (14) it follows that K{¢) = G(t) + K(#). Recall
that (22) is the input-output representation of the triple (F(-), G(-), H(:)} given in
(23); by comparing the triples (F(-), G(-), H(-)) and (F(-), G(-) + K(-), H(-)), it is
easy to see that (26) is in fact the input-output representation of the IL-system (20).

Finally, the zeros of the PARMA model (22) coincide with the characteristic
multipliers of A() = F() — K()H() = A(¢) — K()H(). Therefore, the canoni-
cal minimum-phase representation is obtained in correspondence with the stabilizing
solution of the Riccati equation (24). Since (A(-), H(-)) is completely observable
and (A(-), B(-)) completely unreachable, Theorem 1(iii) implies that such a stabiliz-
ing solution exists iff A(-) has no unit-modulus characteristic multiplier, i.e., iff the
original PARMA model has no zero on the umit circle.

From the above theorem it is clear that in order to compute the minimum-phase
PARMA representation one has to find the periodic stabilizing solution of a Riccati
equation. However, a different (possibly more efficient) computational scheme, based
on the multivariate Rissanen factorization algorithm [40], can be pursued asillustrated
below.

First, notice that, in view of Theorem 3, in the derivation of the canonical rep-
resentation only the MA part of the PARMA model is involved. Hence, without loss
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of generality, we restrict our attention to the following periedic MA model:

W)= et — De(t — i) + e(t). @27
i=1
Now, order the parameters of (27) in a matrix as follows:
-1 0 ... 0 T
a0 1 0
es—1(0)  ¢cs—2(1) 1
C=| &0 ea) a -1 |, C g RUFIIxT
0 ¢ (1) (T -1
0 0 (T — 1)
| 0 0 e 0 |

where 7 is the minimum integer greater than or equal to s/ T. Furthermore, partition C
into matrices of dimension T x T : C = [C,C; ... C.], where C; € R7*7. Note that
Cu, Cr-1, and C; have zero entries in some predetermined locations (for instance Cp
is lower triangular). Now, define the matrix polynomial C{g) = Co+Cig~ 1 +...+
Crq™", where g~ is the unit-delay operator. Then the univariate periodic relation-
ship (27) can be reformulated as a multivariate stationary MA model:

yo(k) = C(g)eo(k), (28)

where
yolk) = {ykT) ykT + 1) ... p((k + DT - 1T,

eolk) =[etkT) ethT + 1)... e(tk+ DT — 1)Y.

The covariance matrix of ey (k) is given by R, def Var[eg(h)] = diag{R(0), R(1),...,
R(T — 1)), where R(-) is the periodic (scalar) variance of e(¢). Moreover, it can be
shown that the zeros of the (invariant) MA model (28) (i.e., the complex values g
such that det C(g) = 0) coincide with the zeros of the (periodic) MA (27).

Now, assume that (27), and therefore (28), is not minimum phase. Then, the
Rissanen projection algorithm allows the computation of a Hurwitz polynomial matrix
C@)=I1+Cig7"+...+ C.qg~" and a covariance matrix &, such that

C(q)R,_.C(q-l)’ = C(g)R.C(g™").

As far as the computation of the canonical factor € (¢) is concerned, the actual value of
R, isimmaterial so that an arbitrary diagonal positive matrix can be chosen, e.g., R, =
I. Matrix R, provided by the Rissanen algorithm is not necessarily diagonal. Hence,
the multivariate MA model defined by C(g) and R, cannot be directly interpreted
as a periodic MA model. To cope with this problem, consider the factorization

=C gR CO, where o 18 Jower triangular with unit-entries on the main diagonal
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and ﬁe is diagonal. This is just a standard DU facterization. Then, ¢ (q)= ¢ (q)(f 0
is seen to satisfy all the requirements in order to be reinterpreted in terms of a periodic
MA model and provides the desired canonical factor. The parameters é; (¢} of the
canonical periodic representation are finally obtained from the entries of the matrix
¢ =1C,C.. .G

4.4,2 Optimal One-Step-Ahead Prediction for PARMA Models

The solution of the optimal prediction problem for PARMA models is obtained
by applying Kalman prediction theory to the state-space representation of the PARMA
model. Then the obtained state-space predictor is more conveniently reformulated in
input-output form. Along these lines it is not difficult to derive the following results,
the proofs of which can be found in [19].

Theorem 4 Consider the PARMA model given in (22), and assume that it has
no unit-modulus zero.

i. Ifthe PARMA model is minimum phase, the optimal periodic predictor is

Yelt—1) == alt =Dy —ilt—i=1)
= (29)
+ Y et — ) + e — Dyl — ).
i=l1

Moreover, such a predictor is stable.
ii. If the PARMA model is nonminimum phase, the stable optimal periodic
predictor is

Pl =1 ==Y GU—Dye—ilt—i—1)
'l?i (30)
+ 3 IEE — iy Fa — DIy~ 1),
i=1

where ¢;(t) = ¢;(£) + ko_in1 (), k;(t) being the i-th entry of the Kalman gain E®
associated with the stabilizing solution of (24).

In view of the Periodic Spectral Factorization Theorem, it is apparent that solving
the prediction problem for a stable nonminimum-phase PARMA model is equivalent
to finding a minimum-phase PARMA realization of the associated CS process y(:)
and then applying (29) to such a canonical PARMA model.

4.5 PARMA Identification

Identification of PARMA models from time-series data has been studied from dif-
ferent viewpoints. PAR models do not pose particular difficulties since they can be
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identified by solving a set of linear equations that generalize the well-known Yule-
Walker equations, see [34]. A maximum-likelihood approach for the estimation of
PARMA models was proposed in [37]. In this subsection, we present a prediction-
etror algorithm for the identification of the PARMA model (22) with p = 1, starting

from a set gf data ¥ = {y(1), »(2), ..., y(¥)}. It is assumed that the data have been
pretreated in order to obtain a zero-mean realization of a CS process. For instance, a

nonzero periodic mean could have been removed by means of standard deseasoning
techniques.

. Penqting with a;(-) and ¢;(-) the scalar coefficients of the PARMA model, the
identification problem consists of computing an estimate of the parameter vector:
O=loier ... 011 ... ¥els

where
@; = [ (0) a;(1)...q(T - 1)], i=1,2,...,s

=[e; (O ci(1)...c(T — 1], i=1,2,....,s

For. any valuf.: of @ comresponding to a minimum-phase PARMA model, consider the
optimal prediction rule given in (29). Then, it is easy to verify that the prediction
error £{t) = y(¢) — y{¢|t — 1) satisfies the following recursion:

e == alt =Dt — 1)+ y(0) — Y ailt — )yt — i), G1)
i=1 i=1

According to the general viewpoint of prediction-error identification [41], the esti-

mation of @ is carried out by minimizing with respect to 8 the quadratic performance
index

1 N
J(@) = 5 Ze(t)z.

By analogy with the case of stationary ARMA models, the minimization can be
performed by means of the following Gauss-Newton iteration:

~ poy N - X
GU+n _ Gty _ {Z \y(;)’\p(z)} {Z s(t)lll(t)’} ,
=1 g=4t)

g=g L 1=1
where 6 represents the parameter estimate at the %-th iteration and

de
w0 = 20 (410 BO . A0 610 60 .. 20)

where

Bilt) = [Bir (1) Baalt) ... Bir (O] = { fet) de()) ~ _ 9e(r) }

Aa; (0) da; (1) " 9a; (T — 1)
de(r) de(r) ae(t)
8ci(0) 8c; (1)~ 8ei(T — 1)]

§i@) =[20(8) &) ... &r ()] = [

Representation, Prediction, and Identification of CS Processes—A State-Space Approach 291

As for the elements of vector W (1), in view of (31), they can be recursively com-
puted as

Bi() = =D cilt = DBtt — ) =8, j+k— Dyt — /) (32a)

5

Lip(t) = —Ecr'(! - Dgult — 1) — 87, j+k— Delt = J), (32b)

i=l1

where 87 (i, J) is a T-periodic Kronecker delta, i.e., 87 (/, j) = 1fori = j + mT,m
integer, and 37 (i, j) = O otherwise.

In conclusion, at each iteration, recursions (31) and (32) are needed to compute
e() and W(¢), ¢t = 1,..., N. At each step, the coefficients g;(-} and c;{-) involved
in these computations are _]ust the entries of the current parameter estimate 6.

Observe that such filtering operations are stable if and only if the PARMA model
parameterized by 8 is minimum phase. Therefore, at each step of the identification
algorithm, the minimum-phase property of the currently estimated model must be
checked. In the negative case, the current estimate of the PARMA model has to
be suitably replaced by the corresponding canonical representation according to the
projection techniques discussed in the previous subsection. '

An obvious drawback of the outlined procedure is that the number of unknown
parameters increases linearly with the period T'. For instance, if T = 12 and s = 4,
then 96 independent parameters have to be estimated. In such cases, it might be
more convenient to resort to a (low order) Fourier series expansion of the coefficients
a;(t) and ¢;(¢). In such a case, the minimization algorithm can be easily extended
as shown in [42]. Unfortunately, there is no obvious way of adapting the Rissanen
projection technique to such a Fourier parameterization. A simple heuristic procedure
to overcome this problem is provided in [42].

5 CONCLUSIONS

A comprehensive survey of state-space theory of cyclostationary processes is pre-
sented in this chapter. The assumption of Gaussian processes was made so that
first- and second-order moments suffice to completely characterize a CS process.
However, most results straightforwardly extend to the case of non-Gaussian
(wide-sense) cyclostationary processes. A point to be noted is that in the non-
Gaussian case the Kalman predictor is optimal only within the class of linear prediction
rules.

Attention has been restricted to diserete-time CS processes having integer period.
In particular this corresponds to the case of continuous-time CS processes sampled
with an integer number of samples per period. The extension of state-space theory to
more general models encompassing noninteger periods or multiple incommensurate
periods (polycyclostationary processes) is an open problem.



292 Bittanti, Belzem, Piroddi, and De Nicolao

ACKNOWLEDGMENTS

This work was supported by MURST project Model Identification, System Control,
Signal Processing and CNR Centro di Teoria dei Sistemi and special project Algo-
rithms and Architectures for Identification and Robust and Adaptive Control.

REFERENCES

[1] W. A. Gardner, “Characterization of cyclostationary random signal processes,”
{EEE Trans. on Information Theory, vol. IT-21, no. 1, pp. 4-14, 1975.

(2] IEEE Signal Processing Magazine, Special Issue on Cyclostationary Signals,
W. A. Gardner, ed., April 1991.

(3] Proc. of Workshop on Cyclostationary Signals, W. A. Gardner, ed., Yountville
CA, August 16-18, 1992,

(4] W. A. Gardner, Staristical Spectral Analysis: A Nonprobabilistic Theory, En-
glewood Cliffs, NJ: Prentice-Hall, 1987.

[3] J. Rootenberg and S. A, Ghozati, “Stability properties of periodic filters,” Int. J.
Systems Sci., vol. 8, pp. 953-959, 1977.

[6] J.Rootenberg and$. A. Ghozati, “Generation of a class of non-stationary random
processes,” fnf. J. Systems Sci., vol. 9, pp. 935-947, 1978,

[7] S. Bittanti, “The periodic prediction problem for cyclostationary processes—

an introduction,” Proc. NATO Adv. Res. Workshop, Groningen (NL}) 1986, pp.
239-249, 1987.

(8] S.Bittanti, “Deterministic and stochastic linear periodic systems,” in Time Series
and Linear Systems, S. Bittanti ed., Berlin: Springer-Verlag, LNCIS Series, vol.
86, pp. 141-182, 1986.

[9] S. Bittanti and G. De Nicolao, “Markovian representations of cyclostationary
processes,” inTopics in Stochastic Systems: Modelling, Estimation and Adaptive

Control, L. Gerencsér and P. E. Caines, eds., Berlin: Springer-Verlag, LNCIS
Series, vol. 161, pp. 3146, 1991.

[i0] S. Bittanti, F. Lorito, and 8. Strada, “An LQG disturbance modeling approach
to active control of vibrations in helicopters,” Proc. 19th European Rotorcraft
Forum, Cemobbio, Italy, vol. 2, 914 1-7,1993,

(111 R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System
Theory, New York: McGraw-Hill, 1969.
[12] T. Kailath, Linear Systems, Englewood Cliffs, NI: Prentice-Hall, 1980.

[13] S.Bittanti and P. Bolzem, “Discrete-time linear periodic systems: Gramian and

modal criteria for reachability and controllability,” Int. J. Control, vol. 41, pp.
909-928, 1985,

[14] P.Bolzemn, P. Colaner, and R. Scattolini, “Zeros of discrete-time linear periodic
systems,” IEEE Trans. Autom. Control, vol. AC-31, pp. 1057—1058, 1986.

Representation, Prediction, and Identification of CS Processes—A State-Space Approach 293

[15] E. 1. Jury and F. J. Mullin, “The analysis of sampled-data control systems with
a periodically time-varying sampling rate,” IRE Trans. Autom. Control, vol. 5,
pp. 15-21,1959.

[16] B. A. Bamieh and J. B. Pearson, “A general framework for linear periodic
systems with applications to H* sampled-data control,” JEEE Trans. Autom.
Control, vol. 37, pp. 418435, 1992.

[17] H. H. Rosenbrock, State-Space and Multivariable Theory, New York: Wiley,
1970.

[18] O.M. Grasselli and S. Longhi, “Zeros and poles of linear periodic multivariable
discrete-time systems,” Circuits Systems Signal Processing, vol. 7, pp. 361-380,
1988.

[19] S. Bittanti and G. De Nicolao, “Spectral factorization of linear periodic sys-
tems with application to the optimal prediction of periodic ARMA models,”
Automatica, vol. 29, pp. 517-522, 1993,

[20] F. M. Callier and C. A. Desoer, Multivariable Feedback Systems, Berlin:
Springer Verlag, 1982.

[21] S. Pinzoni, “Stabilization and control of linear time-varying systems,” Ph. D.
Dissertation, Arizona State University, December 1989.

[22] P.Colaneri and S. Longhi, “The realization problem for linear periodic systems,”
Proc. IFAC World Congress, Sydney, 1993, vol. 5, pp. 69-76.

[23] P. Faurre, M. Clerget, and F. Germain, Operateurs Rationnels Positifs, Paris:
Dunod, 1979.

[24] R. E.Kalman, “New methods in Wiener filtering,” Proc. of First Symp. on Eng.
Applications of Random Function Theory and Probability (J. Bogdanoff and F.
Kozin, eds.), New York: Wiley, pp. 270-388, 1963.

[25] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Englewood Cliffs, NI
Prentice-Hall, 1979.

[26] M. A. Shayman, “On the phase portrait of the matrix Riccati equation arising
from the periodic control problem,” SIAM J. Control and Optimization, vol. 23,
no. 3, pp. 717751, 1985,

[27] S.Bittanti, P. Colaneri, and G. De Nicolao, “The periodic Riccati equation,” The
Riccati Equation (S, Bittanti, A. J. Laub, J. C. Willems, eds.), Berlin: Springer-
Verlag, Communication and Control Series, 1991.

[28] S. Bittanti, P. Colaneri, and G. De Nicolao, “The difference periodic Riccati
equation for the periodic prediction problem,” IEEE Trans. Autom. Control, vol.
AC-33, pp. 706712, 1988,

[29] S. Bittanti, P. Colaneri, and G. De Nicolao, “An algebraic Riccati equation for
the discrete-time periodic prediction problem,” Syst. & Control Letters, vol. 14,
pp. 71-78, 1990.

[30] C. E. de Souza, “Existence conditions and properties for the maximal periodic
solution of periodic Riccati difference equations,” Int. J. Control, vol. 50, pp.
731-742, 1989.



294 Bittanti, Bolzern, Piroddi, and De Nicolao

[31] B. Lennartson, “Periodic solutions of Riccati equations applied to multirate
sampling,” Int. J. of Control, vol. 48, pp. 1025-1042, 1988.

[32] S. Bittanti and G. De Nicolao, “A note on the periodic Riccati equation and
innovations representations of cyclostationary processes,” Proc. 31st Conference
on Decision and Control, Tucson, Arizona, Dec. 1992, pp. 1243-1244.

[33] W. M. Brelsford, “Probability predictions and time series with periodic struc-
ture,” Ph.D. Dissertation, Johns Hopkins Univ., Baltimore, Maryland, 1967.

[34] M. Pagano, “On periodic and multiple autoregressions,” Ann. Statist., vol. 6, pp.
1310-1317, 1978.

[35] E.Parzen and M. Pagano, “An approach to modeling seasonally stationary time-
series,” J. Econometrics, vol. 9, pp. 137-153, 1979.

[36] T. P. Barnett, “Interaction of the monsoon and Pacific trade wind system at
interannual time scales. I. The equatorial zone,” Mon. Weather Rev., vol. 3, pp.
756773, 1983.

[37] A. V. Vecchia, “Maximum likelihood estimation for periodic autoregressive
moving average models,” Technometrics, vol. 27, pp. 375-384, 1985.

[38] D. Malah and B. A. Shenoi, “Reduction and transformation of linear discrete-
time-varying systems,” Int. J. of Control, vol. 16, pp. 1127-1136, 1972.

[39] S. Bittanti, P. Bolzem, and G. Guardabassi, “Some citical issues on the state-
representation of time-varying ARMA models,” Preprints IFAC Symp. on Ident.
and Sys. Par. Est., York (UK): pp. 1479-1483, 1985.

[401 J. Rissanen, “Algorithms for triangular decomposition of block Hankel and
Toeplitz matrices with application to factoring positive matrix polynomials,”
Marh. Comput., vol. 27, pp. 147-154, 1973,

[411 P.E. Caines, Linear Stochastic Systems, New York: Wiley, 1988.

[42] S. Bittanti, P. Bolzern, G. De Nicolao, L. Piroddi, and D. Purassanta, “A mini-
murmn prediction error algorithm for estimation of periodic ARMA models,”Proc.
European Control Conference, Grenoble, France, July 1991, pp. 1200-1203.

Chapter 6

Representation and Estimation
for Periodically and Almost
Periodically Correlated
Random Processes

Dominique Dehay
IRMAR, Campus de Beaulieu
35042 Rennes, France

Harry L. Hurd*
Harry L. Hurd Assoc.
and Center for Stochastic Processes
University of North Carolina
Chapel Hill, NC

1 INTRODUCTION

This chapter contains a review of the spectral theory of periodically correlated (PC)
and almost periodically correlated (APC) stochastic processes, and of results con-
ceming the consistent estimation of the Fourier coefficients of the correlation function
and their corresponding densities. We also review process representations and, in par-
ticular, the role of groups of unitary operators in the spectral and representation theory
for these processes. Finally, some topics for future research are given.

The theory of PC and APC processes begun by Gladyshev [37, 38] has developed
along probabilistic lines and the emphasis has been on the underlying structure, but
significant consideration has been given to applications, such as spectral estimation.
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A few years prior to Gladyshev’s initial work, Bennett [4] introduced cyclostationary
(synonymous with periodically correlared) processes in the context of communica-
tions theory. The theory of cyclostationary (CS) and almost cyclostationary (ACS)
processes that evoived from this beginning has emphasized applications but signifi-
cant consideration has been given to the underlying structure.

The CS theory includes probabilistic models as well as nonprobabilistic no-
tions of CS functions or time-series [29] that may be understood as an extension and
generalization of Wiener’s generalized harmonic analysis [84]. Some of the results
obtained by these two paths of development are similar, particularly those concerning
estimation of the coefficient functions (cyclic correlations) and their (spectral correla-
tion) densities, which are discussed later in Section 5 (see [31] for a clear description
of these similarities). The similarities are due to the fact that in both cases, the coeffi-
cient functions are related to spectral densities through Fourier transforms and because
similar estimation formulas are used. On the other hand, the issues of difference ap-
pear mainly to be structural. One deals with random processes and defines correlation
through expectation while the other deals with nonrandom functions belonging to a
certain class and defines correlation through time averages. The understanding of
both views is of value and the existence of this volume will certainly facilitate this
understanding.

In this overview, we primarily use the terms PC and APC.

A random process X (¢} taking values in the L, random variables of a probability
space (2, F, P) and indexed on I = Z or R is called periodically correlated or PC if
there exists a smallest T > 0 such that

) = E(X(O) =ut+1T) (1)

R(ty, o) = E([X(0) —p@)IX() —u@) =R+ T, +T) ()

for every ¢, f|, and & in I ([37, 38]). For discrete time (I = Z) it is required that
T > 1, otherwise the process is stationary. For continuous time (I = R) Gladyshev
also requires continuity of the correlation function.

Similarly, a process X : I — L,(Q) is called almost periodically correlated if

w(t) = E{X ()

and

Rty 4+t +1)y=E{[X(h +8) —puti + D] X2+ ) —ua+0)])  (3)

are almost periodic functions with respect to the variable ¢ (in the sense of Bohr) for
every t; and £ in I [37]. In this case, Gladyshev treats only processes indexed on R
and requires the covariance to be uniformly continuous.

The theory of PC and APC processes reviewed in this chapter is substantially
based on the theory of weakly stationary processes. The spectral theory for stationary
processes began with the spectral theory for the covariance, based on the work of
Khintchine [65] and Bochner [6]. This was followed by the spectral representation
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of the process, based on the work of Cramér [12] and Kolmogoerov [66] (who uses a
theorem of Stone [83] on the spectral representation of groups of unitary operators).
Early contributors to the spectral theory for multidimensional stationary processes
were Cramér [12], Kolmogorov [66], Rozanov [79], Wiener and Masani [85]. A
particularly interesting fact about PC processes is that they can be viewed as stationary
processes that take values in a larger space. For example, second-order PC sequences
of period T are exactly the same (there is a bijection) as 7-dimensicnal stationary
vector sequences. It is therefore of particular interest that Gladyshev worked cn
multivariate stationary processes prior to his work on PC processes [36]. In the case
of continuous-time PC processes, the larger space may need to be infinite dimensional,
thus requiring the theory for stationary Hilbert-space valued random processes (see
Gangolli [24] and Kallianpur and Mandrekar [63]).

Finally, a group of researchers in the former USSR, principally Y. P. Dragan and
his co-workers, have made substantial progress in many of the same topics. The books
by Dragan [21], Dragan and Yavorskii [22] and Dragan, Rozhkov, and Yavorskii [23]
(a1l in Russian) contain a large volume of work that was not reviewed for this survey.
The book by Yaglom [86] contains a review of PC processes and gives additional
references to Dragan’s work.

2 SPECTRAL THEORY FOR THE COVARIANCE
2.1 PC Processes

We begin the spectral theory for the covariance (we assume henceforth that p.(¢) = 0)
with the observation that the diagonal periodicity or almost periodicity of (2) and (3}
can be transformed into periodicity in one variable through a simple transformation.
Following Gladyshev [37], we thus define the rotated covariance

Bt,t)=R@+1,0), 4)

and so the property (2) becomes B(¢, 7} = B(¢ + T, 7) forevery ¢ and ¢ € 1. This
suggests that for every t, B(¢, ) can be expressed as a Fourier series

B(t,7) ~ Y Bi(v) exp(i2mkt/T) 5)
k

where the sense of convergence depends on the smoothness of B(¢, T) in the variable
£, and

T
B.(r) = %fo exp(—i2mkt/T)B(¢t, T)d!. (6)

In the discrete-time case, the representation (5) is a pointwise equality and the integral
(6) is a sum. In the continuous-time case, since B(¢, t) is continuous with respect
to ¢ for each fixed t, B(¢, t) is represented by its Fourier series in the sense that the
Cesaro means of the partial sums converge at each ¢, T. Under stronger conditions,
such as B is Lipschitz in ¢ at (¢, 7), the partial sums themselves converge to B(¢, 7).
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Part of the general spectral theory for the covariance is thus provided through the
Fourier series representation (5) and to address the nature of the coefficient functions
Bi(1), Gladyshev answered the following question, first for sequences [37], and then
for continuous time [38]. Given a continuous function B{¢, ), what conditions on the
coefficient functions { By (7))} are implied by the fact that B arises from a PC covariance
R (which is nonnegative definite); and conversely, what conditions on the coefficients
imply that B will correspond to a covariance R. This is Gladyshev’s answer for
continuous time: A sequence of coefficient functions {By(z), £ € Z,t € R} arises
from some PC process if and only if for every ¥ and every sequence of complex
numbers {¢1, €2, .. ., cy), realnumbers {1}, 72, . . ., T§ ], and integers {&, &z, ..., kn}
it follows that

N N
D> ColaBik (T, — 1) = 0 Y]
=1 g=1
where 8;(t) = By_;(z)exp(i2njr/T). We note that Gladyshev’s result is in the
spirit of Khintchine [65] who obtains the spectral representation of the covariance of
a stationary process by using the fact that covariances must be nonnegative definite
(followed by an application of Bochner’s theorern).

In [47] it is shown that Gladyshev’s result also holds for a class of PC processes
that need not be continuous in quadratic mean.

The condition (7) is necessary and sufficient (see [12] or [80], p. 20) for each
Bjx(z) to be a cross-correlation function belonging to some weakly stationary vec-
tor process' and hence each Bix(t) is a Fourier transform of a complex mneasure
and thus the functions B(r) are also. This remains true in a general sense; if
R(t,t) = B(t,0) = B(t + T, 0) is Lebesgue integrable on [0, T], then the following
are equivalent [47]:

(a) By(t) is continuous at Tt = (;

®) Bi(z) = f exp(iAT)me(dA); f " e (@] < Bo(0) = f " 0@, )

—00 o0 (o]

where my is a nonnegative measure on the Borel sets of R.

Recently [20] it has been shown that my, is absolutely continuous with respect to
mg. The Lebesgue decomposition of the measure m, implies that there will always be
a unique (spectral) density g (although it may be null) associated with every my. But
when and only when m, is absolutely continuous with respect to Lebesgue measure,
may we write

Bi() = f exp(iAr) g (M)dA. ©

o0

Although (8) can be inverted to obtain mz; (see [69], p. 186), the direct inversion
ge(\) = 5= [ Bi(z) exp(—iAt)d7 requires that B¢ € L, (R). For an example of a

'We will subsequently show how to obtain a stationary vector process having this correlation
structure, -
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PC process that is not continuous in quadratic mean, consider the process formed by
amplitude modulation X(¢) = f(£)¥ (¢) where ¥ is wide sense stationary and f(t) =
f@ + Tyis Lo[0, T]. It is clear that X(¢) is PC but not necessarily continuous in
quadratic mean, but from (6) we obtain By(z) = T 'Ry (1) _[OT F@+1) f(¢)dt which
is continuous everywhere and so the coefficient functions B, (r) are each Fourier
transforms. Further results on the representation theory of such processes and their
relation to L,[0, T]-valued stationary sequences are given in [56]. In the preceding
example,ifweset f(t) = f(t+T)=1lfort €[0, T/ and f{¢) = f(t+T) = -1
for ¢ € [T/2, T), then from (6) it follows that B, (0) = m;(R) = 0 for &£ # 0, but
yet it is not true that B, () = 0 or equivalently m; = 0. Evidently for k # 0, the
measure my, can “oscillate” to produce m;(R) = 0.

There is an intimate connection between PC processes and processes that can
be made stationary by an independent uniform time shift. If the random variable @
is independent of a g.m. {quadratic mean) continuous second-order process X, then
setting ¥ (1) = X(¢ + ©) leads to

Ry(s, 1) = EgEx{[X(s + ©) — pu(s + O)[X(t + ©) — n(t + ©O)])

(10
= f Rx(s+8,t+8)du(@)

where p is the distribution function for ®. If we add to the general hypothesis of
independence that ® is uniformly distributed over [0, T'], then Y is weakly stationary
if and only if X is PC with period T [46].

Conditions of independence that imply (10), along with some results for the
strict-sense case are given in [48]. Gardner [25, 26] showed that a vector stationary
process {X;(t), j € Z] whose cross correlations are given by () appearing in (7)
can be obtained by

Xi(t) = X(t + O)exp[i2nj(t + @)/ T]. an
2.2 APC Processes

Results similar to those above hold for APC processes. Since for every v the function
B(t, T) is almost periodic with respect to the variable ¢, it follows from E{| X @3 =
B(t, 0) that APC processes have bounded second moments. Further, for each t the
function B possesses a Fourier series

B(t,t) ~ > Ba(r)explict) (12)

QEy

whose Fourier coefficients are determined by

1 A
By(r) = lim — f  exp(—ian) Ble, D)t (13)

and the set ce; = {a : By(z) # 0} is countable. The sense of representation expressed
by (12} is that the frequencies cx, and the coefficients B, (r) are uniquely determined
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by B(t, 7), and that there exists a sequence of trigonometric polynomials whose
frequencies are in o, that converges uniformly in ¢ to B(¢, 7). If o, is a finite
set, then the representation (12) is equality. In the language of ACS processes and
functions, the frequencies cx, are called the cycle frequencies [27, 28, 29].

The assumed uniform continuity of B (which follows from that of R) implies that
B, () is continuous with respect to T and this can be used to prove [51] a conjecture
of Gardner [28] that

a= LJQ::T = {o : B, (1) # 0 for some 7} (14)

is also countable and hence ¢, appearing in (12) can be replaced with .

Gladyshev [38] also gave a condition for APC processes corresponding to (7),
and it also remains true that all the functions {B,(t), @ € «} are Fourier transforms
of complex measures [51]

Balr) = f exp(iAT)ma (dA); f e (@] < Bo(0) = f mo@h).  (15)

o0 +2]

As in the PC case, m, is absolutely continuous with respect to mg {20] and

oc

By(t) = f exp((AT) g, (A)dA. (16)
—~0Q

when and only when m,, is absolutely continuous with respect to Lebesgue measure.

The remarks made for the PC case also apply to the inversion of (15) and (16).

We note that the frequencies o and the coefficients together have constraints
imposed by the requirement that B(¢, t) must be almost periodic in ¢ for every  and
those imposed by the requirement (Gladyshev’s conditions) that R is a covariance.
But these conditions still do not prevent the occurrence of other strange conditions,
such as the set o containing limit points. This issue is mentioned again subsequently.

Extensions of the ideas of APC processes include the following: First, rather
than considering B(z, T) as a collection of almost periodic functions, it may be viewed
as a function from R to the Banach space of bounded continuous functions. Gardner
introduces this idea in [27] where he calls them almost cyclostationary (ACS). In
order to distinguish them from the (Gladyshev) APC processes, they are also called
uniformly APC or UAPC [16, 20]; it is also pointed out that UAPC C APC and that
the two notions coincide when X is harmonizable.

The idea of random time shifts can also be applied to APC processes. Gardner
[27] shows that if X is quasi-CS {c has a finite number of elements), the process Y is
stationary if ® =} n; where the {5;} are mutually independent, independent of X,
and uniformly distributed over the interval [—s /et;, 7 /et;]. The result is also true for
almost CS [27] and almost PC processes [51] having countable a, but in both cases
3 1/0112. < 00 ensures Varf®] < co. Gardner [27] also points out that the vector
stationary process {X;(#)} for PC processes generalizes to almost CS processes by
replacing the cycle frequency &/ T with o and taking ® = 3 n; as above.
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Finally, the ideas of APC processes can be extended [58] to processes that are not
continuous in quadratic mean by using the notion of almost periodic functions in the
sense of Stepanov (see [68]), and in another sense of generalization, to APC processes
indexed on locally compact abelian groups [59]. In another direction, Gardner [27]
also introduces the asymptotically ACS processes, which intuitively are the same
as ACS except that they differ by a “transient™ part that does not affect the cyclic
correlations, which are determined by long-term averages. Isokawa [61] investigated
an identification problem for APC and asymptotically APC processes formed by the
output of a linear time invariant filter driven by a point process.

There also exist results connected with ergodic theory and the laws of large
numbers. Boyles and Gardner [7] introduce the asymptotically mean CS processes,
which are nonstationary processes whose covariances contain additive periodic com-
ponents (an additive trigonometric series), and hence contain the asymptotically ACS
processes. They introduce the notion of cycloergodicity, and give both weak and
strong types of results for CS sequences. Honda [42] obtains pointwise resuits for
the continuous-time strictly CS processes. Results concerning both weak and strong
laws of large numbers are given for continuous-time PC and APC processes in [9];
the strong-law results rely on the random time shift.

3 SPECTRAL THEORY FOR THE HARMONIZABLE
CASE

The notion of a harmonizable process can be motivated from the fact that every
wide-sense stationary process has an integral spectral representation of the form

' o0
X(t) =[ exp(iA}dZ()) an
—00

where the frequency-indexed random process Z(A) has orthogonal or uncoerrelated
increments and the equality is in L,($2). This theory is treated in many texts on
stationary second-order random processes (or sequences); for example, see [14, 69,
81].

Corresponding to (17} is the Fourier integral representation for the correlation

function
oo

E{X(X(D) =R(s —1) = f expliA(s — £)]d Fz(A) 18
—00

where the real-valued nonnegative spectral distribution function Fz () is defined by

Fz(b) — Fz(a) = E{|Z(b) — Z(a)|*} fora < b.

The notion of harmonizable (in the sense of Loéve [69]) processes preserves the
spectral representation (17) but the increments of Z(A) need not be orthogonal. For
such processes the correlation (covariance) function is given by a two-dimensional
Fourier integral

E{X()XE)) = R(s, 1) = foo fw exp(idis — ikat) Mz(dXy,dAg)  (19)
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where the spectral correlation measure defined by

Mz([a, b), [c, d)) = E{[Z(b) — Z(a)][2(d) — Z(2)]} (20)

is a finite complex measure on B(R) x B(R) for which (i) Mz(A4, B) = Mz(B, A) for
every 4, B € B(R), and (ii) }::."j:l a;a;M(4;, A;) > Oforeveryn,a,, as, ....d, €
Cand 4y, 4,, ..., A, € B(R). We note that the notion of weakly harmonizable pro-
cesses, described in [10, 74] still requires (i) and (ii} but only that A is a bimeasure;
that is, for every fixed 4 € B(R), the set function Mz(A, -) is a measure with respect
to the second set variable and conversely. Even the weakly harmonizable processes
have bounded second moments and are uniformly continuous in quadratic mean.
Other interesting concepts of harmonizability may be found in [44, 45].

The exact manner in which the increments of Z (1) are not orthogonal gives
some information about the nature of the nonstationarity of X (¢). In the case when
X () is stationary, the spectral correlation measure is concentrated on the diagonal
and is determined completely by Mz ([a, b), [a, b)) = Fz(b) — Fz(a). A principal
nonstationary example is given by the case of PC and APC processes.

If X(t) is harmonizable and periodically correlated, then the increments of the
spectral process Z (1) are correlated in a characteristic manner. Specifically, a pair of
increments of Z (1), written here as d Z (A1) and d Z(},) have nonzero correlation only
when A» = &) — 2wk/T. This fact may also be described in terms of the support set
of the spectral correlation measure given by (20); a harmonizable X (¢) is periodically
correlated if and only if the support of M3z is contained in the unicn of the diagonal
lines Dy = {(Ay, Az) : A, = &, —2ak/ T} [46]. In this case the coefficient functions
can be determined from

Bk(r)sz exp(ii T)Mz(d)Xy, dAy) 20
Dy

or, equivalently, the measure #t; can be identified with the restriction of Mz to the
line D; this restricted ineasure is denoted by M| p, . It is possible for harmonizable
processes to have support lines that are not of unity stope (see [3]).

If X(t) is harmonizable and almost periodically correlated, then the pair of
increments d Z (A1) and d Z (A») have nonzero correlation if and only if A, = A —«
for @ € «. In other words, a harmonizable X{t) is APC if and only if Mz is
concentrated on the union of the diagonal lines D, = [(A], Az) : Ay = &) — o} [49].
The coefficient functions can be determined from

Bu(r) = f f exp(iT) Mz (dhr, dho), @)
Dy

and the measure m, can be identified with M|y, . This identification is also true [20]
in a more general sense for weakly harmonizable APC processes having a o —finite
bimeasure [15].

Gladyshev [37] showed that all PC sequences are harmonizable by arguing that
By (1) being a Fourier transform implies, through the use of (5), that B(¢, t) can
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be represented as 2 two-dimensional Fourier transform and, therefore, the covari-
ance R(s,1) also can be. The support of Mz(dAy, dAy) is then characteristically
constrained to be in the intersection of the 2T — 1 diagonal lines {{(A(, A2} : A2 =
A =27k T, k= —(T —1),..., T — 1} with the square [0, 27} x [0, 27r). This
support set is illustrated in Fig. 1.

(2w, 2m)

0.0

Figure 1: Spectral mass locations for periodically comelated sequences.

Gladyshev also gave an example [38] of a continuous-time PC process that is
g.m. continuous and yet not harmonizable. The example is essentially based on
the existence of continuous periodic functions whose Fourier coefficients are not
(absolutely) summable. Subsequent examples have been given in [20]. Since q.m.
continuous PC processes are APC, these same examples show that continuous-time
APC processes are not all harmonizable.

Because of the identification of the measures m; with Mz|p, and m, with Mz|p_,
itfollows that PC and APC processes are harmonizable if andonly if 3, [mz|(R) < oo
or ¥, Img|(R) < oo [20).

4 PROCESS REPRESENTATIONS

Several representations, usually based in some way on speciral theory, have been
developed for PC sequences and processes. We first discuss the harmonizable PC
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case and then the unitary operator of a PC process and its connection to the represen-
tation theory. Finally, we examine the representation issue for APC processes.

4.1 Harmonizable PC Processes

Gladyshev made the important observation that a second-order sequence X (1) is PC
with period T if and only if the T-dimensional vector sequence Y (n) whose pth
component is determined by Y P} (n) = X(nT + p) is weakly stationary. There is a
corresponding spectral representation for the sequence ¥ (#) given by

2T
Y(m) = j exp(iAn) dz(d), (23)
0

where £ is an orthogonally scattered vector measure taking valuesin Lo{£2) x L2(€2) x
co. X La(R) = L2(R2)T, where the orthogonal scattering means

E{5,(A),(B)) =0 (24)

if A{) B = @. This leads to a corresponding representation for the cross-correlation
functions

27
Rpg(m — ) = E(YP(m)TD@)} = f expliA(m — n)]dFpy(A),  (25)
Q

and the correspondence with R(s, ¢} is givenby R(s, 1) = Ry (m —n)ifs =mT +p
andt =nT + g where 0 < p, g < T. Although useful information comes from this
representation, it does not clearly reflect the natural indexing of time that is obtained
in

2
X)) = f exp(far)dZ(A), (26)
o]

which follows from the harmonizability of X and rewriting (17) and (19) for se-
quences.

Gladyshev proceeded further with the representation (26) to show that PC se-
quences can also be expressed in terms of another T-dimensional stationary vector
sequence. To see this, the interval [0, 2) is partitioned into T consecutive subinter-
vals of length 27/ T, so that (26) becomes

-1 e+ )2 )T
X = [ exp(irt)dZ{A)
k=0 v k2x/T
T—1 p22/T
=) [ exp(irt + i2mhkt/ TYdZ (A + 27k/ T)
k=0 /0
71 275/T @7
= ) exp(i2nkt/T) f exp(AdZ (A + 27k T)
«=0 0
-1
= Zexp(iZ:rkt/T)ak(r).
k=0
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where

2x)T 2
a(t) = f exp(iA)dZ (A + 2nk/T) = f exp(iyt)dZ(y)  (28)
0 [

and the measures Z & are obtained from Z by
Zi(la, b)) = Z(la/ T, 8/ T + 2mk/T)).

The measures Zk can now be seen, with the help of Fig. 1, to be mutually orthog-
onally scattered in the same sense as (24), so finally we see from (28) that X{7) is
represented by a sum of products of harmonically spaced complex exponentials with
the components of a vector stationary sequence?. In the case of sequences, the sense
of equality in (28) is that of L,(£2) and the notion of limit is not an issue since the sum
is finite. See [37] and [72] for the relationship between the cross-spectral distribution
function £, (1) appearing in (25) and those of the family {a(?)].
Harmonic series representations

X))~ ) expli2mkt/T)ay(t), (29)

=—00

have also been obtained for continuous-time PC processes [26, 42, 49, 75] but now
there is the additional issue of the sense of convergence of the sum (29). In the case
of harmonizable PC processes, the proof follows from the partitioning of the real line
into intervals of length 2/ T, as for sequences, along with the fact that the support
set for Mz is contained in D = | J,{(A¢1, A2} : A2 = A — 2mk/T). The proof of
the harmonic series representation for harmonizable PC processes clearly illustrates
the close connection between the periodic partition applied to (17) and the periodic
spacing of the support lines Dy. The processes a,(r) whose existence and properties
are established by the representation theorems can also be expressed, for harmo-
nizable X, directly in terms of X by [26]

[se]

a.(t)y = f w(t — o) X(o)exp(—i2nko/ T)de G0
-0

where w(t) = sin(wt/T)/mt.

It is not clear that a representation (29} in terms of stationary processes holds
for APC processes even if they are harmonizable. However, such a representation
has been shown [70] for bounded correlation autoregressive sequences (which are a
subset of the harmonizable APC sequences with cx a finite set).

4.2 The Unitary Operator of PC Processes

An important notion in the theory of wide-sense stationary processes is the naturally
associated group of unitary operators. It is, in essence, the notion underlying the

2 the terminology of cyclostationary processes, this is a harmonic series representation [26].
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spectral representation (17) for stationary processes. We first mention a few pertinent
facts about unitary operators and groups of unitary operators, then we discuss their
importance to stationary and PC processes (where they naturally occur) and how they
can be used to generate an important subclass of the APC processes.

A unitary operator on a Hilbert space H is a continuous linear operator U for
which (Ux, Uy) = {x, y} for every x, y € H; that is, unitary operators preserve
inner products. Every unitary operator can be written as an integral (read as a sum)
with respect to orthogonal projections; that is

i
U=] exp(iM)dE()), (€)))]
0

where E(A), A € [0, 27) is an increasing family of orthogonal projections such that
E(2m~) = I, the identity operator [82]. A family of unitary operators {U/(7), z € I},
where I is an index set (here Z or R), is a group (under the operation of composition)
if U(s) o U (1) is given by U(s + t) forevery s, ¢ € I and U{0} is the identity; this is
often shortened to I/ (s + t) = U(s)L/ ().

If I = Z, then any U(t) has the representation

o
Uin)=U% = [ exp(rT)d E(A); (32)
0

if I = R and the family is strongly continuous, [[[U(h) — U(M]x|| — Oash — 0,
(see [82], p- 380) then

Ury=U"'= fw exp(iAT)d E(A). (33)

Beginning only with the view that a second-order wide-sense stationary process
X(¢) is a curve in a Hilbert space for which {X(s), X(t)) = R(s — ), one can
demonstrate (see [80], p. 14) the existence of a family of unitary operators {U(7), T €

1} that form a group under composition and satisfy

Xit+oy=U@X®] (34)

forevery ¢, 7. Since the group {U(7), T € I) through (34) “explains” any time shift of
the process, it is often called the shift group. Setting 7 = 0 gives X (¢} = U()[X(0)]
for every ¢, or we see that the entire process (curve} is determined by one random
variable (we chose X(0)) and the family of shift operators {U(z), T € I}. Taking
I = R and using (33) gives the representation (17) where the random measure Z is
determined by Z([a, b)} = E([a, b)) X(0), the application of the projection £(la, b))
to the element X(0). ’

We now turn to the unitary operator of a PC process (or sequence) [56, 71]. If
X is PC with period T we denote H(X) = 3p(X(¢).t € I} as the Hilbert space
generated by X. For vectors of the formz = 37, a; X(#;) in sp{X(¢), ¢ € 1], define
the operator Uy by Uxz = ) ;_, a; X(¢; + T). Itis easy to show that Uy is linear
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and, due to (2), is unitary on sp{X{#),t € I}. It follows from the continuity of Uy
that it extends to the closure H(X).
As a consequence, we may write

X+ T)=Ux[X()] (35)

forevery t € 1, so Uy is a shift operator for X but only for shifts of length T. If X
is aPC sequence (I = Z)and Uy is a shift operator for 7 = 1, then X is stationary.
Also in the case of sequences there is a close relationship between Uy and the unitary
operator associated with the vector ¥ (n) appearing in relation (23). Weakly stationary
vector sequences have the property that there is a single unitary operator Uy that acts
as the shift operator for each component of ¥; that is, ¥¢? (n + 1) = Uy [¥*P(n)] for
every p (see [80], p. 14). It follows that Uy = Uy.

In the continuous-time case when X is q.m. continuous, then we can construct a
similar ¥; indeed, define the infinite dimensional stationary sequence ¥ by ¥{?(n) =
X{(nT + rp) where rp, is the pth rational in the interval [0, T) (with any ordering).
Then Uy = Uy and any X(¢) is a limit along some sabset of values of Y (n). We

"have already seen, for the harmonizable case, one representation of continuous-time

PC processes in terms of infinite dimensional vector stationary processes, and we
shall subsequently see some others.

The existence of Uy leads to another characterization of PC sequences and
processes: X is PC with period T if and only if there exists a group of unitary op-
erators (U(t), t € I} and a periodic function (process) P(t) taking values in L3(§2)
for which

X)) =U®IPE)] (36)

for every ¢ [56]. If I = R and X is q.m. continuous, then U{r) is strongly continuous
and P(r) is a continuous periodic function.® The proof is straightforward. If X is
given by (36) then denoting inner product by {-, -),

(X(s, X)) = (USLP®)), UL
= ({UMUEIPG+ D1 UMUGOLPE + T
=X+ D, Xe+T) 37

so X is PC. Conversely, if X is PC, the spectral representation of Uy given by (31)
permits us to construct a group of unitary operators by '

2r
U(n) =f exp(iAt/TYAE(A), (38)
0

where U(T) = Uy. Therefore P(t) = U(—#)[X{#)] is periodic with period T and
so P and the group U satisfy (36).

The expression (36) provides the clear contrast to the stationary case, in which
P{t) = X(0), a fixed random variable. We also note that the characterization is not

3Even when X is not g.m. continuous, there is a sense in which (36) holds; see [56] for the details.
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unique since U@) = U)exp(i2nt/T) and P(t) = P(t)exp(—i2mt/T) will also
solve (36). See [56] for additional discussion.

4.3 Representations of X Based on the Unitary
Operator

Representations for X follow naturally from (36} by employing representations for
U and P. We begin with a representation of the karmonic series [26] type. Under
various conditions (see [64], p. 51), the partial sums

N
Sy(t) = Z Poexp(i2zkt/T)
=—N

converge to P(t) where By =T -1 j;,r P(1) exp(i2nkt/ T)dt; it follows that

N N
Xy() = U [ Y. R exp(EZHkE/T)] = Y a(O)expli2nkt/T), (39)
=N =N

converges in L}(Q) to X(r). Since ar(t) = U{1)[Px] (note that a0 =UO[F] =
P;) given in this manner are jointly wide-sense stationary, harmonic series representa-
tions are obtained without the assumption of harmonizability. If Xy (¢) were formed
from U(¢) operating on the Cesiro means of Sy(t), then Xy (1) — X(¢) atevery ¢,
The issue of expressing a; () directly in terms of a nonharmonizable X, as in (30), is
not completely settled. Some results are given in [60]. The representation (39), with
the common group U(¢) acting on the terms P, exp(i2rkt/T), provides additional
meaning to the spectral redundancy of cyclostationary processes [32].

Another similar representation is obtained for all g.m. continuous PC processes
and the L,{(§2) convergence is uniform in ¢. First write P(¢) = Yo (P, En)E
where {£;) is a complete orthonormal set (CONS) in (X); such a CONS exists
because of the q.m. continuity, and the convergence is unconditional {in a sense,
absolute). Since U{¢) is unitary for each fixed ¢ it follows from the unconditional
convergence that

X(z)=U(r)[2 ﬁ(r)sk] = 3 AOUOE) = ) filha®) (0)
=—00 k=—00 k=—00

where f;.(8) = (P(t}, &) is a scalar periodic function for every k and the sequence
of processes a;(f) = U(1)[Ex] are jointly stationary in the wide sense. As in the
preceding paragraph, we observe that a; (0) = U0)[&] = &

Finally, using the spectral representation (31} for U{¢) which is applied at each
f to the vector P(t) gives

X(t) = U®IP®] = f exp(iAnd EQ)P(1)] @1)
_ f ” expAndZ(r, 1) 42)
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where t_he {J'me-depena’ent spectral measure Z is defined through the application of
the projection-valued measure appearing in (33) to the vector P(#). To be precise
for the interval [a, b), we have ,

Z([a, b), 1) = E([a, b)) [P (1)].
In this case the family of measures are mutually orthogonally scattered in the sense
{Z([a,8). 1), Z([¢,d), 1)) =0

.whem.ever [a, &) N [¢, d) = @. This is in contrast to the harmonizable representation
in which the measure is independent of ¢ but is not orthogonally scattered.

. The unitary operator also has a role in the representations of the translation
series type, which are based on the Karhunen-Logve expansion. This representation
was introduced by Jordan [62] and was clarified and applied o a filtering problem by
Garflner and Franks [26]. The following statement appearing in [56], p. 267, sum-
marizes the basic representation result: A second-order process X () is continuous
and PC if and only if

XO =3 anp() nT<t<@+DT (43)
Ji=l1

where (a) the sense of convergence of (43) is in g.m. and uniform with respect to t;
(b) the sequence {¢;(t),t € R, j € Ny] are continuous periodic functions (1) =
¢;(t + T) that satisfy forall ke Nypand0O <t <T,

T
fo RGs, 0F;GYs = Ay (1) @a4)
and
T —
'/0‘ ¢ (O)pr(t)dt = by, (45)

and (c) for fixed n, the random variables {a;,, j € N} are orthogonal, E{a;.a,} =
A;8;k, and the countable collections A, = {a;,, j € N.} are weakly stationary in
the sense that
E[ajm'&i;} = rjk(m — n) (46)
Jorevery j ke Ny,m,ne L.
The connection between the unitary operator U y and the sequence {4, k € Z}
can be expressed by a;(z4.1y = Uxa;, for every j, n. This follows from writing

n+1T
qjn = f ; X ()de 47

.wh.ich is aR‘iemann integral because X (¢)is g.m. continuous. Then Uy can be brought
inside the integral (consider approximating Riemann sums) and hence ajp+) =
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Ugxajy follows. Thus Uy is the same unitary operator that is naturally associated with
the vector sequence {A4;}.

4.4 Almost Periodically Unitary Processes

Since unitary operators arise naturally in stationary and PC processes, do they also
arise in APC processes? This question motivates the almost periodically unitary
(APU) processes, which can be defined as the second-order processes X for which
there exists a strongly continuous group of unitary operators {U (), T € ] for which
the set of “almost periods”

S, X, U)y= {‘r ssup || X(¢ + ) — U)X, < e] {48)
teR

is a relatively dense set for every e = 0; a set £ of real numbers is relatively dense
if for some L > 0 every interval of length L has a nonnull intersection with £. This
definition of APU processes is motivated by the Bohr definition of almost periodic
functions. There is an easier equivalent definition. A q.m. continuous process X(¢)
is APU if and only if it can be given by (36) where P(?) is an almost pericdic function
taking values in L,(£2) [57]. We observe that PC processes can always be called
periodically unitary.

The standard examples of APC processes that begin with periodic modulations
of stationary processes are all APU as well. We do not know of a nice characterization
of processes that are APC and not APU.

The representations based on (36) each have a corresponding version for the
APU case, although a few gualifications are needed. In the case of the harmonic
series representation, the sense of convergence of

=—N k=—N

N N
Xn(0) = U@ [ Yo p exp(mr)] =Y mexplian),  (49)

must be taken in a sense corresponding to almost periodic functions (see [57]), and the
processes a; (t) are no longer necessarily bandlimited although they are still jointly
stationary. The representation (40) is roughly the same except the functions f;(t)
are almost periodic in the usual Bohr sense, and 3 o | f:,-(t)l2 must converge to 0
uniformly in ¢. The time-dependent spectral representation (42) follows in the same
manner except the L;(2)-valued fime-dependent spectral measure Z([a, b),t) =
E([a, b)[P(t)]is almost periodic in the sense of Bohr, We do not expect a translation
series representation for these processes based on the Karhunen-Loéve expansion
because the rigid constraint of periodicity is needed to get (35) from which everything
follows. Nor do we expect to be able to generally express ai(¢) directly in terms of
X{¢t) via (30) because for the APU case, the a; (¢) need not be bandlimited, another
fact that follows from (30).
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5 ESTIMATION OF THE COEFFICIENT
FUNCTIONS AND THEIR SPECTRAL
DENSITIES

We first review the stationary case, then the PC case, for which results are relatively
straightforward. When X is APC, some additional complication can arise because
generally there is nothing to prevent the set of cycle frequencies o from possessing
cluster points. This issue was first discussed by Gardner [27] in his discussion of
ACS processes. In our work it arose in attempting to extend the approach of density
estimation for PC processes to the APC case. To get some appreciation of the potential
difficulty, suppose aq is a limit point from ¢ so there is a subsequence {c,} with
a, — ap. If we wish to estimate B,,(z) or gy, (1) from averaging operations whose
resolution in the dimension « is imperfect (= () for any finite averaging interval
A, then for any A there will be a countable number of «, that are unresolvable
from ap. This problem is also discussed by Gardner [29] under the topic of cycle
leakage. Several types of restrictions can be made that diminish this difficulty. First,
it is possible for the amplitudes corresponding to the subsequence {a,} to diminish
sufficiently fast that they do not matter. Both harmonizability (absolute summability
of the spectral correlation measures) and certain mixing conditions cause this to
occur, And of course, the set & may not have cluster points and still be interesting;
for example, the condition 3 1 /uf. < oo (discussed earlier in connection with the
random shift for APC processes) prevents the occurrence of cluster points in the set cx.

5.1 The Stationary Case

In the case of a stationary complex-valued process with covariance R(t), the usual
estimator for R

. A=l
R(4, 1) = :11- f X+ t)X(t)dt (50)
i}

is consistent under conditions such as ff‘; |R{z)|dT < oo thatcontrol the correlation
between distant events. This may be considered a form of mixing, which will appear
again subsequently. If X is Gaussian, then R(A, 1) is consistent if and only if Fz
appearing in (18) has no discrete component [41]. '

Pointwise consistency (for fixed 7 or A) is usually taken to be in the sense of
quadratic mean orin probability. But since we are actually trying to estimate functions,
R(t) or g(A) for the stationary case, function-space consistency is also of interest.
The remainder of this preliminary discussion treats pointwise consistency.

A related problem is the estimation of the spectral density function g where
R(t) = ff° oo SXp(iAT) g(A)dxr. The typical approach to the nonparametric* estima-

4No constraints, other than g > Oand [ g(A)dk < oo, are imposed upon g.
g C 8 posed up
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In examination of q.m. consistency it is often useful to explicitly separate the
bias and variance of the estimator:

E{1Bi(4, T) — By (DI
= B84, ) ~ B + E{1Ba(4, v) - B(Ba(4, 1))
= |bias[Bx (A4, D)1|* + var[B:(4, T)].

It follows that [50]

'ﬂ] + €. 7) (55)

E{Bi(4, 7)) = Bi(x) [1 - v

where €(4, 7} is bounded with respect to both 4 and 7 and hence the bias is O(1/ 4).
See [35] for a similar result in the discrete-time case.

Sufficient conditions for lim 4, o var[5;(4, 7)] = 0 (and hence the desired
consistency) are now easily stated in terms of the process Z.{¢) = X (¢ 4+ 1) X(f) —
B(¢t, t) and its correlation, Rz . (4, 1) = E[(Z{t), T)Z{#2, T)}. Whenever X is real
and Isserlis’s condition,

E{X(1) X(R) X(1) X(14)} = E{X (1) X ()} E{ X (13) X(1a)} 56
+E{XO)X @GN EIX () X)) + E(X ) X))} E[X () X (1)}

is satisfied, as when X (¢} is real and Gaussian, Rz . (#), t2) can be expressed in terms
of pairwise correlations. This is used in the immediately following and subsequent
results. If X is PC with bounded absolute fourth moments, then the following are
sufficient for the desired consistency:

Ta. [ % |Rz,:{t, )ldnde, < oo;

Ib. limy o0 Rz (¢ + #, t) = O uniformly in ¢;

Ie. if Z (1) is PCand [ [ |Rz (1, 2)|dtdty < o0;

Id. if X is real, satisfies Isserlis’s condition and [*°_ [T B2(t, 7)dtdt < oo;

Ie. if X is real, satisfies Isserlis’s condition and lim, ., B(f, ) = 0 uniformly
in t.

For real-valued discrete-time Gaussian PC sequences, Genossar, Lev-Ar, and
Kailath [35] show that consistency for every k and T occurs if and only if one of the
following hold:

ITa. the measure m has no discrete component;
. 1 vA-1
Ib. limyo e A7 307 1Bo())? = 0.

These results should be compared to the remarks concemning F7 for the stationary
case discussed in Section 5.1.
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The study of consistency of By(A, 7) seems to have begun with Gudzenko [40]
who essentially gave condition (Ib). Proofs of the others may be found in [46, 50]. A
necessary and sufficient condition (see [28]) for g.m. consistency for APC and, more
generally, asymptotically mean cyclostationary processes, can also be expressed in
terms of the process Z.(f) by using

Var[Bi (4, 1)] = % f[ o f’ ) )Kz'r(s, 1y exp[—i2wk(s — H)dsdt  (5T)

where
Kz (s, 1y = Rz.(5.t) — B(s, T)B{¢, ©). (58)

Conditions for the a.s. convergence of ﬁk(A, 7) can be obtained from ([43],
Theorem 5.1) for Gaussian PC processes.

Additional consistency results for PC processes can be inferred from recent
results for APC processes (discussed in Section 5.4).

5.3 Estimation of gi()\) for the PC Case

The estimator for g; considered here is formed by tapering By(4,7) or equivalently
by smoothing the biperiodogram

1
2w A

along the line D. As in the stationary case (note I4(A) = J,(i, 1)) the “raw”
(unsmoothed) shifted periodogram [4(k, L} = J4(X, A\—2rk/ T) is anasymptotically
unbiased but inconsistent estimator for g(A), but appropriate smoothing can produce
consistency. Specifically, using the same notation for the kemnels appearing in the
stationary case, 2;(4, A) can be expressed in two ways,

Ja(hi, o) = Za)X4(02) (59)

A
gr(4,0) = %f k(B4v)Br(A, v) exp(—iiv)dy
I (60)

L [T k(7=2), 2k/ T)d
B, (lBA ) o, o wk/ T)do.

Qualitatively, the “bandwidth” of the estimator becomes small as 4 — oo at
a rate proportional to B4; but the sample size (degrees-of-freedom) of the biperi-
odogram is increasing at a faster rate, yielding a compromise between bias and vari-
ance that produces consistency.

The exact analysis of both the bias and variance of g,(4, 1) requires too much
space for this survey, but the following considerations for the bias illuminate the prob-
lem. First, assuming that By € L;(R) so that gi(\) = o {0 Bi(7) exp(—iAz)dT,
and that X is jointly measurable with bounded second moments (so we can use Fu-
bini’s theorem) we compute

1 4 o
E{g (4, M)} = o fAk(BAv)E[Bk(A, v} exp(—iAv)dv (61)
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and so

4
k(B 4v) E{Bi(4, v)} — B(v)|dv
4

1
+—f | Be(v)|dv.
2n |u|=4

So the manner of convergence of the bias to zero depends on the difference between
Bi(v) and k(B4 U)E{ﬁk(A, v)} and on the tails of Bx(v). Parzen [76] has developed
a method by which rate of convergence can be given int terms of the properties of k()
and B(-); it is applied to the PC case in [46].

Tuming now to the issue of the varance, if X is real, Gaussian, and

1
|E{8e(A, ) — g < —f
2 62)

12 ..
ff:o [ fOT B, r)dt] dt < oo, which can be interpreted as a sort of mixing con-
dition (see [81]), then there exists a positive constant M for which

ABylcov [£;(4, 1), g (4, 2) ]| = M (63}

or, in other words, |cov [g“fj(A, i), gx(4, 12)] |is O((4 B4)~") and hence q.m. con-
sistency follows [46, 50].

In a work mainly concerned with ergodicity, Honda [43] gives a condition for
the a.s. convergence of the smoothed shifted periodogram to the smoothed density g;
but the consistency question is not completely answered because smoothing is taken
as a fixed function with respect to A.

An alternative approach to the problem for real Gaussian PC processes has been
given by Alekseev [1] who first forms the estimator

N
BN) = Xt +nT +7)X¢ +nT 64
B (t, 1) N1 2 (¢ +nT +7)X(t +nT) (64)
and then ,
BM(z) = % f BNt vy exp(—i2mkt [ T)d!. (65)
0
Then the kth periodogram
1 [ .
1Mo = — f BM (1) exp(—irt)dr (66)
2r J_ oo

is smoothed by a kemel to produce an estimator g};" )(A) for the density gi(%), We
shall not pursue the apparent correspondence between the formulations here, but will
summarize Alekseev’s main result. Suppose the densities gy satisfy sup, |gi(A)] <
M, with 3~ My < o0, and that Re[gi ()] and Im[g,(1)] have bounded derivatives
of all relevant orders, then

CEIBMO — g0))? = O+ (67)
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tion of g (pointwise) is through the use of the finite-time Fourier transform

A
X0 = j; X() exp(—irt)dt 1))

from which the periodogram

1 = 2
40 = mw,q(l)l (52)
is formed. The periodogram is an asymptotically unbiased estimator for g although it
is not consistent. Consistent estimators for g are obtained by tapering the correlation
estimator by a multiplicative kemel k(-) € L;{—c0, co) which is bounded and even
with £(0) = 1. This estimator can equivalently be expressed as a smoothing of the
periodogram by X, the Fourier transform of %; thus

A
B4 = [ k(B 4v) B4, v) exp(—irv)d
2 —A

1 °'°K o’—AI(d
_BA —o0 BA Aa)a

(53)

where B, —» 0O and AB,4 — o0 as 4 — cc. This procedure gives kernels that are
dependent upon 4 in a manner that produces the consistency of 2. For example,
if a stationary process X is Gaussian and R € L, (—co, c0), then g is a consistent
estimator at every A. For additional details see [81] and [76]. Gardner [29] provides
a unified treatment of these and other methods, such as time averaging (with respect
to the parameter s) of the sliding periodogram obtained by replacing the interval of
integration [0, A] in (51) with [s, s + A].

Parzen [77] obtains consistency results for ﬁ(A, ) and g(4, 1) for the asymp-
toticaily stationary processes for which the limiting quantities are the asymptdtic
covariance and its corresponding spectral density; these are By(7)} and go{A) for PC
or APC processes.

We now review the corresponding results that have been obtained for both PCand
APC processes. In summary, modified versions of (50) and (53) produce consistent
estimators for B; and g, but there are additional considerations.

5.2 Bstimation of By(;) for PC Case

In the case of PC processes, estimators for Bi(t) are given by

B4, 1) = 1 f X(¢t -+ 1) X(t) exp(—i2mkt ] T)dt (54)
A Jran

where the interval 7 (4, 1) = [0, 4 — t] for t > O and [—1, 4] for T < 0. The need
for two such intervals disappears by defining B(¢,v) = R(t + t/2,t — ©/2), then
I{4,t) =[|z|/2, A — |t|/2] [28, 46]. But this presents an obvious problem in the
discrete-time case (consider odd values of ).
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where r is a parameter of the smoothing window, and the window scaling factor 4 (N
must be chosen proportional to N~/ +1) g5 N - oo,

Gardner [29] introduces a method that time-averages a sliding biperiodogram
and unifies this method along with (60) and other methods in terms of the single
representation

wi(t) = f f k5 (e, v) X (t — ) X (¢ — v)dudv exp(—i2mwat) (68)

where the kernel &5 (#, v) can be chosen to produce estimators of the time-dependent
analogs of the quantities we have been discussing above, For example, by appropriate
choice of &5 (x, v) one can obtain w¥(t) = S}m {#, X} ax, which is the time-average
version of the estimator for the cyclic spectral density (at cycle frequency «) at
frequency A at “local” time #. The time resolution of the average is Al and the
frequency resolution is AX. General yet explicit formulas for the bias and variance of
all estimators in this family are obtained by using Isserlis’s condition; although these
results are obtained for time-average definitions of bias and variance (rather than
expected-value definitions), the results agree with those obtainable using expected
values [29,31]. The connection between our notation and that of [29] can be facilitated
by identifying the quantity 4 (time duration of the estimator) in (63) with A¢ and
B (the frequency resclution of the estimator) with AA. Gardner also discusses the
problem of “cycle leakage” that occurs with finite time estimators and is thus often
not treated in the discussions of consistency.

5.4 Estimation of B,(-) for the APC Case

The basic form of the estimaror considered here is a natural extension of that for the
PC case:

~ 1 _
B,(4.71) = 1 /;(A ) Xt + 1) X(1)exp(—~iat)ds, (69)

where (A4, t) is the same as that given in (54).
As in the PC case we first consider bias[ﬁa(A, 7)]. Since APC processes have
bounded second moments and are continuous in g.m.,

n 1
E{B,(4,0)) = Z]; B(t, t)exp(—iar)dt. (70)
B {4,7)

To be specific, if we take ¢ > 0 so that 7 (4, t) = [0, 4 — 7], then

E{By(4, 1))

1 A-t
—f B(t, Ty exp(—iat)dt
A4 Jo

I:A -7 i At B .
Y, A—r_/(; (f, Tyexp(—iwt)d:.

(71}
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For any fixed 7, the term in brackets converges to 1 as 4 — oo; and since B(t, 7) is
almost periodic in ¢ for each t, the second term converges to the Fourier coefficient
B, (7); hence éa (A4, T) is asymptotically unbiased.

Although for the PC case we were able to show generally that the bias was
O(A4~"), we cannot do so here since the basic results on almost periodic functions
do not provide rates of convergence of such integrals to their limits. But rates can
be determined for specific subclasses of almost periodic functions. For example,
Cambanis et al. [9] show that if the frequencies {e;} of an almost periodic function
satisfy 3 . 1 /aj?’ < 00, then the convergence is O(4~1); note this condition prevents
the occurrence of cluster points in the sequence {o;}. If this condition applies to o
(excluding ¢ = 0} then the bias will be O(4~!) for every .

Again, sufficient conditions for lim 4, var[é,(A, )] = 0 can be given in
terms of the process Z, () = X(t + r)-X(_t) — B(¢, t); any of these conditions, along
with the preceding remarks on the asymptotic bias, yields consistency. If Xis AMCS?
with bounded absolute fourth moments, then conditions (Ia) and (Ib) of Section 5.2
are sufficient. But the rest require modification to

Olc. if Z,(2) is APC and f:c lim 400 47! fo" |Rz (81, t2)|dtydtz < 00;

IIId. if X is APC, real, satisfies Isserlis’s condition and
I limyo,0 47 ! B2, T)drdT < o0;

Ile. if X is APC, real, satisfies Isserlis’s condition and lim,_, o B(u,t) = O
uniformly in ¢,

By restricting consideration to Gaussian processes having bounded fourth mo-
ments, Genossar, Lev-Ari, and Kailath [35] refine the earlier work of Boyles and Gard-
ner [7] on discrete-time AMCS processes with the following collection of equivalent
staternents (paraphrased to our notation):

I'Va. ﬁa(A, 1) is consistent for all & and t;

1Vb. By(4,0) is consistent;

Ve, (174 T4 T4 R(t,5) > Oas 4 — oo;

Ivd. (1/4) Y2, R¥(4,5) - Oas 4 — oo.

I'Ve. If the process is harmonizable, {(all PC sequences are) Bo(A, T) is consis-
tent for all o and 7 if and only if the spectral correlation measure Mz has
no discrete components and this occurs if and only if mg has no discrete
component.

The summability conditions on the correlations can be seen to be a form of
mixing, as they control the correlation between separated events. It is shown in [7]
that either weak mixing or uniformly strong mixing guarantees the cycloergodicity

5The class of asympiotically mean cyclostationary processes introduced in [7] conlain the PC and
APC processes.
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property which then ensures the consistency of the estimator (69) for AMCS discrete-
time processes. The following results use the idea of ¢p—mixing. A continuous-time
process X is called ¢—mixing ([51, p. 166) if for every ¢,

sup | P(4|B) — P(4)] < ¢(s) (72)

A€F y(—oo.)
BeF y(r+a.00)

where F (g, b) denotes the sub o —algebra of events generated by {X(¢),a < ¢ < b).
It follows (see [5], p. 170) that the correlation is controlled by ¢ in the sense

— 712
[E{IX(t)X(t +S)I}] < CHSENXOPIEIX(E + 5)1%) 73

where C = 2. If the APC process X is ¢—mixing with ¢'/2(-) € L (R) and By(t) is
continuous at T = 0, then there exist constants C; and C, for which

Var[Bq (4, T)] < (Cilt] + C)/ A, (74)

forevery e and 7. This is clearly sufficient for q.m. consistency [53]; see the discussion
of (57). In [54] it is shown that adding only the hypothesis that X has uniformly
bounded fourth moments gives almost sure consistency of Eu (A, ) for every o and
7. Further, if X is UAPC and

4,1/2(;) = O~ C+)

for § > 0, and if o is not a cluster point of ¢, then strong consistency in L (R) is
obtained; that is,

f |Bo(A4, 1) — E{By(4, D)}|dT —> 0

o0

almost surely as 4 — oo. And finally, if the function ¥V (¢, Ty, 72, 73) is almost
periodic in ¢ uniformly (see [11], p. 35) with respect to 1;,{ = 1,2, 3, then the
estimator is asymptotically normal.

The following results [20] show that if Var[8,(4, 7)] is O(47Y) fory > 0,
and assuming some variants of the fourth moment property, then almost sure (and
g.m.} consistency is obtained. Generally it is assumed that X is measurable, has finite
fourth moments for all ¢, and one of the following is satisfied for some C and y > O:

Va. E{|X(t + )X (®))?} < C for fixed 7 and all ¢, and
A pd
f f Cov[Z,(u), Z.(v)] expl—ia(u — v)]dudv = 0477y,
o Jo
Vb. | X(t + t)X(t)] < C for fixed t and all ¢ a.s. (P), and

oo A A
f 473 f f |Cov[Z, (), Z.(0)]|dudvd A < oo
a 0 G

forsome a > 0Q;
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Ve. X satisfies Isserlis’s condition (56) and
A pd
f f |R(u, v)|*dudv = O(4>77);
0 Jo

Vd. X satisfies Isserlis’s condition, | X (¢)] < C for all ¢ a.s. (P) and

00 A A
f A_3f f [R(u, v)|Pdudvd 4 < oo
a (1} 0

for some a > 0.

A variation of the a.s. result that uses mixing appears in [18]. Condition (Vd),
while similar to condition (IVc) for discrete-time AMCS processes discussed above,
shows that a.s. consistency is obtained if for y > C,

1 A A 2 1
E[o fo |R(u, v)| dudv:O(F).

5.5 Estimation of g,()) for the APC Case

The estimatoﬁr for the density g, (A) is formed in the same manner as for the PC case,
by tapering B, (4, 7) or equivalently by smoothing the biperiodogram (59) along the
line D,. That is,

1 A -
ge(4, X)) = —f k(B au)Be(A, v)yexp(—iiv)dv
2r —A
1 [*® o —A
= — K Ii(o, 0 —)do. 75
5 ) ( B, ) A€ ) (73)

As previously stated, the approach to proving consistency followed for Gaussian
PC processes does not extend in a simple manner to the APC case. The difficulty can
be related to «x possibly containing cluster points. However, if the APC process is
assumed to be ¢—mixing with ¢!/2(.) € L(R), By(r) is continuous at r = 0, and
ff; w2\ k(u)|du < oo, then for eVETY oy, G, Ap, Ag

lim Cov[gy, (4, x1), 8 (4,22)]1 =0
A—00

if B4 — Oand 4B% — oo as 4 — oo [53]. It would appear that such mixing con-
ditions are strong enough to prevent any problem from clustering cycle frequencies.
Analogous results on the estimation of speciral densities, based on mixing con-
ditions have been found for bivariate APC processes [17].
The asymptotic normality of g, (4, A) has been shown [67] under the following
assumptions:
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VIa. X is ¢—mixing with ¢ () = O@¢~@H) for § > 0;

VIb. ¥ (¢, 7|, 72, 13) is almost periodic in ¢ uniformiy with respect to #;,i =
1,2, 3

Vlc. B(¢, t) is uniformly almost periodic in ¢ with respect to € R;

VId. ffzo lu] K2 (u)du < oo, where K is the Fourier transform of the covariance
tapering kemel k in (53).

The problem of clustering of the cycle frequencies can also be addressed through
explicit conditions [20]. First, define

Ki(z) =) |Bu(D)l, (76)
. 83
Ka(z) =) |B. (o) amn
(83
and
Re(t) =) Byl — | " (78)
Bta

Note X,(r) is bounded if X is harmonizable. Suppose X is a zero-mean real
measurable APC process that satisfies Isserlis’s condition (56). If for any specific
o, By(-} € Ly(R) and
| Be(t)ldT = 0(47),
Ab<iz|
and either of the conditions (VIIa) and (VIIb) is satisfied, then

}inger[ga(A, A)—g,(A)] =0 as. andin q.m.
The conditions are:

VIla. forsome €, ¥, and §, 4€ < 1 — y — 48 and there is a C > 0 such that
[R«(1)] < C for almost all 7; in addition, f*, K,(t)dt = o(4?) for
some y < land By = A° ford6 < 1—y; ‘

VIIb. for some ¢, ¥, and 6, 4¢ < 1 — 2y — 38 and there is a C > 0 such that
|K{z)| < C for almost all 7; in addition, f_AA[Kz(r)]lﬂdr = 0(4?) for
some y < 1/2and B4 = 4% for36 <1 —2y.

A variation of (VIIb) that uses mixing appears in [18].

The general family of estimators (see Gardner [29]) given by (68) can also
be applied to the APC case, where the discussion of cycle leakage along with the
possibility for ¢ to have cluster points become particularly relevant.

6 CONCLUSIONS AND NEW DIRECTIONS
OF RESEARCH

This survey concentrates on the structural propertics of second-order PC and APC
processes, and on the estimation of the coefficient functions and their spectral densi-
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ties. Many related issues, which are treated in other contributions to this volume, are
omitted.

Interesting problems related to these processes remain open. To name a few,
we begin with the problem of PC and APC random ficlds. Alekseev [2} has begun
the problem of spectral density estimation of two-dimensional Gaussian PC fields.
Ramanathan and Zeitouni [78] introduce a connection between wavelets and cyclo-
stationary processes; Cambanis and Houdré [8] take this idea a little farther. The
determination of the presence of the PC or APC property in a time-series is another
problem of interest; a test based on Goodman’s [39] spectral coherence is given in
[52]. Results for the second-order case can also be found in the work of Dandawate
and Giannakis [13] on testing for the presence of kth-order cyclostationarity. The
weak-signal maximum-likelihood approach for parametric detection, and a maximum
signal-to-noise ratio approach for nonparametric detection are pursued by Gardner
and Spooner in [30, 33, 34]. The estimation of the period of a PC process (see
[73]), and of the frequencies o of an APC process, and the determination of their
relative importance is also of current interest. The works of Dragan and Yavorskiy
[21, 22, 23, 87] also treat these problems. For a discussion of computationally ef-
ficient algorithms for estimation of B,(r) and g, (A), see Article 6 in this volume,
Additional problems for APC processes include their representation (the existence of
a stationary representation as in the PC case) and prediction. Finally, we believe the
connection between the probabilistic (Kolmogorov) and nonprobabilistic (Wiener)
theories is a problem of great interest and challenge. See Chapter 1 of this volume
for further discussion.
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1 INTRODUCTION

The classical communication system design problem has centered around single-
user communication in additive noise. Within the last decade, increasing attention
has been centered on multiuser communication having qualitatively different fea-
tures than the single-user problem. While some of these developments have been
prompted by specific multiaccess communication technologies (such as time code-
division multiaccess in mobile radio), improved system design in the presence of
cochannel interference (and not merely additive noise) is increasingly the canonical
issue that must be addressed in many future system design and optimization tasks.
For linear communication systems, a common approach to system design is
based on the joint minimization (with respect to the transmit-receive filter pair) of
the mean-squared error (MSE) between the transmitted symbol and its estimate at the
output of the receiver, subject to a power constraint at the transmitter output. Tradi-
tionally, receiver optimization (for a fixed transmit filter) has been overwhelmingly
emphasized compared to joint transmit-receive optimization even for the single-user
problem (as is evident by the extensive literature on the subject, summarized in stan-
dard references such as [1]), even though the optimum transmit filter has been known
since 1967 [2]. This lack of emphasis on joint transmitter-receiver optimization for
single-user communications (represented by a single-input, single-output (SISO) sys-
tem) perturbed solely by additive noise may be partially explained by the availability
of implementationally simpler alternatives such as forward error correction (FEC) to
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improve system reliability. However, for high performance multiuser communica-
tions in interference-limited environments, all avenues of system optimization must
be explored, particularly since in some situations, FEC coding may not be effec-
tive. Increasingly, evidence in recent work [3, 4, 5] appears to support the hypothesis
that transmitter optimization (in addition to receiver optimization) contributes signif-
icantly to cross-talk suppression in multiuser systems.

The purpose of this paper is two-fold: (i) to present a coherent view of system
design approaches that include different but related multiinput, multioutput (MIMO}
models representing multiuser scenarios, and (i) to summarize results that constitute
the present state-of-knowledge and underscore the potential for cochannel interfer-
ence suppression by these methods.

A generic block diagram of a MIMO system is shown in Fig. 1 that transmits
a vector of symbols a; every T seconds, which is subsequently detected as &; at the
receiver output. The dimension of the input stream (corresponding to the number
of users) is &, while the dimension of the transmitter output is 2, implying that the
transmit matrix is 2 x N. The channel matrix is assumed to be P x P in this work;
a more general case is treated in [6].

S(f) == C(S) ) R(S)

a,

B

Figure 1: MIMO system representation.

1.1 MIMO System Optimization: Prelude

The problems of MIMO system optimization may superficially appear to be a straight-
forward vector generalization of the scalar (SISO) case. Such a view is misleading due
to the singular fact that cross-talk from other users (that consists of data-modulated
signals such as that from the desired user) is not wide-sense stationary (WSS) but
wide-sense cyclostationary (WSCS) [7, 8] assuming synchronous transmission when-
ever the system responses have excess bandwidth, i.e., the spectral support exceeds
the first Nyquist zone (— 5=, =) corresponding to a symbol interval T, as is usually
true. A key feature of such (interfering) WSCS processes is that they exhibit spectral
correlation as characterized by the (nonzero) cycle frequencies of the cyclic correla-
tion function (or spectral correlation density) [7-9]. An optimized system seeks to
exploit this spectral redundancy inherent in WSCS signals to achieve cancellation of
the unwanted signals. Thus, the performance of the conventional single-user receiver
(i.e., a matched-filter followed by a tapped-delay line equalizer and detector) that is
optimum for the single source in additive Gaussian noise (AGN), but which treats
such cross-talk interference as WSS noise, can be significantly suboptimal compared
to an optimized MIMO system,

A consistent understanding and appreciation of the implications of the WSCS
nature of data-modulated signals began with the seminal contributions of [10]. Of
the many results in [10], a key one (for our purposes) was the solution to the time-
domain linear MMSE estimation problem for jointly WSCS processes (zkin to the
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standard Wiener filtering problem for jointly WSS processes). The essential results
were summarized in [11] and applied to the single-user receiver design problem. In
particular, it was shown that the optimal receiver belongs to the class of linear peri-
odically time-varying systems. Some structural implications of this were elucidated
in [8, 12], particularly with a view to adaptive implementations. In more recent
work [13, 14, 15], frequency-domain interpretations of the above as embodied in the
concept of FREquency-SHift (FRESH) filtering have been developed. Examples pre-
sented there underscore the potential for separation of cochannel WSCS interfering
signals based on the exploitation of spectral redundancy. In some cases, this can
involve exploiting differences in the cycle frequencies of the desired and interfering
signals in the design of the receiver. For digitally modulated signals, such differences
typically occur due to (i) different symbol (or keying) rates and/or (ii) different carrier
frequencies for separate users.

However, in many scenarios, the necessity for standardization may imply that
several cochannel users communicate using a common symbol rate and (nominal)
carrier frequency. In these situations, exploitation of the differences in the shapes
of the spectral correlation densities of the WSCS processes, achieved by appropriate
pulse shaping at the transmitter, becomes critical to cochannel interference rejection.
This naturally leads to investigations of the joint optimization of the receiver and
the (transmit) shaping filter, which has been relatively unexplored since [16]. Some
evidence of the importance of the spectral support of the system toward interference
suppression was presented in [3, 15], and enhanced by the more recent analysis and
results concerning transmit pulse shape optimization in [4, 5, 6, 17]. In this article,
an overview of these new results is provided. Taken together, the results reported
here and those in [4, 5, 14, 15, 18] offer a comprehensive picture of the state-of-the-
art in co- and adjacent-channel interference rejection via the exploitation of WSCS.

As with the SISO case, the joint optimization of MIMO systems can be viewed
as a two-step procedure:

1. The receive (matrix) filter is first optimized for a given transmit filter;

2. Substituting for the optimal receiver filter, the MSE is then minimized with
respect to the transmit (matrix) filter, subject to an average fransmit power
constraint to ensure a well-posed problem.

In consonarce with SISO optimization, step (1) is analytically simpler and has con-
sequently gained considerable attention, beginning with [19] and developed more
comprehensively by [4, 18, 20].

It is useful to highlight here some aspects of the MIMO system optimization
problem. In a generic multipoint to multipoint communication scenario, all the input
data streams constitute “desired” signals and need to be detected simultaneously.
Such a goal could be embpdied in the simultaneous minimization of the total (.e.,
over all & users) MSEs,

min§ = Eflla; — M ey
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However, the design of any one receiver (nominally the i/th) may be based on
minimization of the MSE only for its desired input to the exclusion of the others,

. 12
ming; = £ o - a}". @

It deserves to be emphasized (as was indeed noted by [4]) that the optimum receiver
for these two different problemns is identical, due to the fact that the first problem of
global minimization over all the users’ data decouples into independent subproblems
at each of the receiver locations and can be viewed as interference rejection problems.
In contrast, no such decoupling is feasible for transmitter optimization, since the MSE
&; for the ith user is a function of al the transmit filters. Consequently, transmitter
optimization (once the receiver has already been optimized for a given transmitter) is
a problem of greater analytical complexity, with fewer results to date.

Finally, physically different multiuser scenarios impose structural restrictions
on MIMO system models used for optimization. In this work, we describe two such
models that lead to somewhat different analytical results. These distinctions are
based on assumptions about the nature of cooperation between the different users. In
applications such as the high-speed Digital Subscriber Lines (DSL), coordinated two-
pair transmission has been proposed [21] implying a cross-coupled transmit matrix.
Such a system with a fully cross-coupled receiver is shown in Fig. 2 for the two-
user case. In contrast, in a mobile communications scenario, different users do not
coordinate with each other and this is represented by an (uncoupled) diagonal transmit
matrix. Assuming an uncoupled receiver leads to a fully uncoordinated system, which
is shown in Fig. 5(a) for the two-user case.

The rest of the paper concentrates on the optimization problem for these two
situations and is organized as follows. Sec. 2 deals with resuits for a fully coordi-
nated MIMO system beginning with the Nyquist bandlimited case in Sec. 2.1. These
results can then be applied to the situation of interest—systems with excess band-
width, where the cross-talk is indeed cyclostationary—as is shown in Sec, 2.2, The
optimization problem for uncoordinated systems is investigated in Sec. 3. Following
the major developments in Sec. 3.2 assuming cyclostationary interference, Sec. 3.3
revisits the problem but with a stationary cross-talk assumption, to provide a base-
line for appreciation of the additional suppression of synchronous cross-talk that is
achievable. The paper concludes with representative computational examples in Sec.
4 to compare system performance as a function of system srructure (i.e., uncoordi-
nated vs. coordinated) and critical system parameiers such as bandwidth {measured
in number of Nyquist zones available at the symbol rate) vis-i-vis number of users.

2 MIMO SYSTEM OPTIMIZATION: COORDINATED
USERS

To provide a perspective to our developments for the MIMO optimization problem,
it is necessary to revisit the pioneering results of Berger and Tufts [2] for the SISO
case (i.e., additive noise only). Their key observation regarding the optimum transmit
filter can be summarized as follows:
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Consider all frequencies intheset T = {f: fo + %, k€ Z) where T is the symbol
period, and f € Ty = [—3r, 7] The optimal transmitter has support at f € Z only
if (i) a minimum-allowable spectral signal-to-noise ratio (SNR) at the channel output
is preserved; and (ii) within this subset of 7, it allocates power only at the unique %
for which this SNR is maximum (in case of nonuniqueness, any 4 that maximizes the
SNR can be chosen).

As a direct corollary, this implies that, in general, the optimal fransmitter is not
bandlimited to the first Nyquist zone and its support is nonzero only on a set (termed
a Nyquist set in [2]) of measure (at most) % [22]. Note that the support set, in general,
is not connected, and exceeds the basic Nyquist interval Zy.

The first attempt to extend the above to multiuser or MIMO systems appeared
in [20]. However, the results obtained were restricted to the case where the system is
bandlimited to the first Nyquist zone (— 5, 57). Its significance is thereby limited
in view of [2]. Nevertheless, a notable contribution of [20] was that the optimization
problem for a set of mutually cross-coupled channels was shown to be reducible to
that of an equivalent decoupled system consisting of parallel subchannels. As will be
apparent, the developments presented here revolve around two key decompositions
(of the transmit and receive filters, respectively) that allow a similar transformation
of the original coupled problem into an equivalent decoupled one.

A basic coordinated MIMO two-user system is shown in Fig. 2 for P =N =2
{merely for convenience); the analytical results are valid however for all P, N [6].
The derivation presented focuses on the P > N case, since this wil! be subsequently
used (in Sec. 2.2) to derive optimum systems with excess bandwidth.

Nboise

‘Transmiuer . Channel Rereiver

User |
" ®
fa; }

Noise

Figure 2: Coordinated MIMO sysiem (N = P = 2).

2.1 Formulation: Nyquist Bandlimited System

The system optimization problem based on minimizing the MSE can be written as
mink = tr [Ee;e}] =E{|a —a/?}, ®)

where e, = & — a; is the error sequence corresponding to the transmitted and the

received (vector) symbols. The above can be rewritten in the frequency domain as

b 1 ' I 1
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subject to the transmit power constraint

]
21
7 | SRS NS = MR, ©)
r

where X, () and 3, (/) are the power spectral density matrices of the (vector) input
data and noise processes, respectively; R(f), C(f}, S(f) represent the receiver,
channel, and transmitter’s frequency responses, and T denotes conjugate transposition.
Note that in this section the support of all (frequency domain) quantities is assurned
restricted to Zy.

In the interests of analytical tractability, it is useful to transform the above prob-
lemn into an equivalent one defined in terms of the new variables F( /) and E(f),

S(f) = V(OIFHU(f), (6)
R(f) = UNENVHNCHAHE N 0]

where U{ /') and V (/") are unitary matrices that diagonalize the input data covariance
matrix X4( /) and the Hermitian matrix CT(£)X;" (£ )C(f), respectively, i.e.,

UN(NHZ(NHUS) = Ka(S) (8)
1
?W(f)cT OEINCAOVU) = AT, )

It is apparent that K, and A are diagonal matrices that contain the eigenvalues
of £,(f) and +CT(£)B;"(f)C(f), tespectively, and that such a decomposition
always exists. In addition, we assume without loss of generality that the elements of
K, and A, are ordered as follows

kilf) = k(= = wny(f) > 0 (10
0 < M) = XfH=-- Ae( ). (11)

The motivation for this ordering will be made apparent subsequently. The case of
singnlar (zero) eigenvalues can be accommodated with little difficulty as shownin [6].

The resulting decomposition is shown in Fig. 3. Some additional insight into
this decomposition is obtained if one observes that the receiver front end VICTX!
is simply the whitening (matrix) filter matched to the channel C in additive Gaussian
noise with covariance X, which is known to be a canonical lossless (i.e., information
preserving) front end [18].

The MSE can now be rewritten in terms of the new variables as

1A

T
E:trTf {1 - EA;'FIK.[I — EA'F]' + EA;'ET} df

- -

B

=T [ L= DUOFNIK (NI = DOENT +DOHALNDH ) S
2r (12)
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Figure 3: Transmitter and receiver decomposition.

where

D(f) = E(NAL ). (13)

The transformed transmit power constraint is now given by

- f T ROKFN (O = NPy, (14)

2

Comparing (12) and {14) with (4) and (5), it is clear that the original problem
has been converted to that of finding the optimal transmit-receive pair for mutually
uncorrelated input data and noise sequences with uncorrelated components in the
presence of an ideal channel.

The method of Lagrange multipliers can now be invoked to solve the constrained
optimization problem given by (12) and (14). Using standard techniques from vari-
ational calculus and setting the first variation with respect to D and F to zero, yields
the following necessary conditions:

D(f) = K IF (NIFOKOFT () + A7 (15)
D' (IDOF(S) +¥F() =Di(y), (16)

where the constant y is chosen to satisfy the power constraint (14).

fart

Lemma 2.1.1  F()K.(/)FI(f) is diagonal.
Proof: From (16), we have upon postmultiplying by Ka(/ ()
DI (ID(FK(NFN () + yFOOK(NFN () = DIHNOKLOFN (), (D)

while (15) straightforwardly gives

D(OF(OKNIFN) = Ko (NFT(F) = DA (18)
Premultiplying (18) by DT( ) and subtracting from (17) leads to
yF(IKOFTS) = DI NODN A (19)

Then, since the left-hand side of (19) is clearly Hermitian, it implies that
DI (/ID{S)AL(S) (which is the product of a Hermitian matrix and a nondegenerate



336 Roy, Yang, and Kumar

djagonal matrix) is i_tself Hermitian. It is easily seen that the latter statement is true
if and only if DT(£)D(f) (and hence F()K.(FT (/) is also diagonal.

~ Lemma212 F( KX OFNS) is diagonal.
Proof: From (15) and (16), we have
[FCOKL(FT() + Ba(NOIDT (D) + yIIF(KL(OFT ()
=F(KLNF().

The diagonality of F( f )Ki (f YFT( 1) follows from the fact that the left-hand side of
(20) is the product of three diagonal matrices.

(20)

Proposition 2.1.1  The optimal F(f) (P x N) is diagonal; i.e., only Fy(f)
are nonzero.

This central result is established in three steps. In Parts 1 and 2, it is shown
that the optimum F(f) has at most one nonzero element in each row and column
respectively. Part 3 then demonstrates that the optimal F(f) within this class is
diagonal. In the sequel, the frequency variable f is omitted, wherever possible,
without sacrificing clarity.

Part I: To show there is at most one nonzero element in each row, note that the
MSE of (12) can be rewritten using (15) as

E=1irT i Ka() {1 = FIAFNKOFN ) + Al 1T FUOIKa()] 4.

-1
21
Thus minimization of £ is equivalent to

max tr f_ _ FUOKZAOF(F) IFNOKLOF () + An(NTTNE (22

r

Using Lemma 2.1.1 and Lemma 2.1.2, the integrand of (22) simplifies to

v IFCAOKZOF ()i
[FOOKOFN) + Al

(23)

Note that the ith diagonal element of both F(f)K,(/)F'(f) and F(/)KZ(/)
F(f) depend only on the ith row of F(f),

(FKF' )i = 3 1Ryl and [FKFT), = ) 1Py} 24)
i i

Assume now that the ith row of F{ /) has more than one nonzero element. Consider
the matrix I( ) obtained from F( ) in the following manner:
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For the index set U(’) {j : Fi; # 0} for each , find / = arg max and choose | F|?
jEUmKI
such that

Z|F,,| ki = |Fyl’ and Fi; =0, j#1 . (25)

Note that this operation preserves the diagonality of F(f)K.(f JFt( f) and
F(KZ(f)FT(f), implying that (23) is still valid for minimization of the mean-
squared error, with ﬁ‘( f) substituted for F( /). Further, note that P (/) also satisfies
the power constraint {14) due to (25), and that F(f) contains only one nonzero element
in each row. Now

> 1Ry} <mZ|F,,|x, |Ful’F (26)

J

where the last equality follqws using (25). It is evident by using (26} in (22} that (23)
is optimized for F(f) = F(S). The above establishes that the optimal F(f) can
have at most one nonzero element in each row for nondegenerate K, (/).

Remark 2.1.1: If K, (/) isdegenerate, e.g., K,(f) = a}[ (asin [20]), it follows
from the above that the optimal F( /) is unique only up to a unitary transformation.
However, since a unitary iransformation leaves the MSE unchanged while satisfying
the power constraint, the minimum MSE is always achievable by an F( /) with at
most one nonzero element in each row,

Part 2: We now proceed to show that there can be at most one nonzero element
in each column of F(f) as well. Note that F(/)Ka( /YFI(/) can be written as the
outer-product decomposition

FONK(NFN) = 3 DR, @7)
k

where f.(f) is the kth column vector of F(/}. Now each off-diagonal element of
(27) can have contribution from at most one of the terms in the summation, because
of the just-proven fact that there is at most one nonzero element in each row of F( /).
Assuming that K, ( /) is nonsingular with probability 1, it follows that in order for the
right-hand side of (27) to be diagonal, there can be at most one nonzero element in
each f; or, equivalently, there is at most one nonzero element in each column of F( f).
Thus the important property that the optimal F(f) contains at most one nonzero
element in each row and column of F( f') is established.

Part 3; Based on the results in Parts 1 and 2, the optimal F( /') can be represented
as

F(f) = PUOF), (28)

where f?( f)isa P x N matrix with nonzero elements on the main diagonal, and
P{f)isa P x P permutation matrix. We are now left with the problem of showing
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that P(f) = [ corresponds to the desired result, and this will be achieved by a
constructive demonstration of the fact that any other P(f) is not optimal.

From (15), it is clear that D( £} can have nonzero elements only at those lo-
cations where FT( /) has a nonzero element since D(f) is equal to F1(f) pre- and
postmultiplied by diagonal matrices. Hence we can conclude that D(f) also has at
most one nonzero element per row and column, allowing the representation

D(f) =D(NHPHS) (29)

where, f)( f)isan N x P matrix with nonzero elements along the main “diagonal.”
Using the property of permutation matrices that

PP = PUOPHS) =1, (30)

the MSE in (12) can be reexpressed as

§=urT f " [T BUHRNIKNI = BOF +DUHAND ()] df

(31
where

An(f) = PIOAPU) (32)

is a diagonal matrix of the additive noise variances with its elements permuted vis-a-
vis An(f). The transformed power constraint (14) now becomes

Z f "t [FOOKUNF () dr
T (33)

= —_[L Z |F(f )i (f)df = NPy

and a necessary condition commensurate with (15) now holds for the permuted re-
ceiver matrix D( 1), ie.,

D(f) = Ka(OF (OFKOF ) + BT (34
Using (34), the MSE of (31) can be expressed as
()
et [T s = f d (35)
AR S IF(OPER +1 4

where F",-,- and i; denote the ith elements on the diagonals of F and f&n, respectively.
Since (35) is monotonic nondecreasing in (%) N ’s,itis clear that the permutation P
is one that selects the smallest N diagonal elements of Ay {A,..., Ax}. Thus, the
minimal MSE does not depend on the remaining P — N largest A;’s, and we need
only examine the ordering of the first N diagonal elements of An(f).
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Note from (11) that the ordering of the elements in Aq (/) satisfies, for any j < £,
MY =AY, Y L (36)

Thus any Aq(f) that is not identical to A(f) in the ordering of the first N diagonal
elements, contains at Ieast one pair of indices j < &£ < N such that for some f,

(o) = Ml fo)- (37

Consider Ag( f) that is identical to An( f) except for swapping the jth and kth
diagonal elements at fp, i.e.,

X (o) = M o) and X (fo) = 4, (o). (38)

The difference between the integrand of (35) for these two permutations is easily

shown to be
" Kj}‘-"j + Kkik
|Fyle; + 4 [ FelPoe + Ak
§N)-8(f)= Y . Kih Py (39
- — = — — ¥ = Jo
1FjilP; + A5 | Frelke + A
0 otherwise.

It is shown in [6] that the right-hand side above is nonnegative while satisfying
\Fyyl + Fuel® = 1F517 + | Pl (40)

This implies that An(f) is at least as good as Aa(f) while preserving the same
transmit power due to (40). This process can be repeated until no such j, k pairs
exist, thereby proving that the ordering of the elements of Ay(f) is optimal and,
by implication, the diagonality of F(f). With the diagonality of the optimal F(f)
established, the final expression for the minimal MSE becomes

i Kl(f)
dr. 41
fL F.,(f)lz'i-’—+1 % @D

T i=l MU
The final step in the proof is the specification of the elements F;;(f)’s. This is
achieved by observing that (41) is convex in {| F;; {f }]?}, implying that the optimal
| F;(f)? that minimize (35) subject to the convex set (33) is obtained as the solution
to a well-known allocation problem [23] popularly illustrated by a “water-pouring”
argument [24]. The solution is

MY MO .
Fu( NP = 0, - \ =1,2,..., N, 42
IFa( )] max( ) x,-(f)) i 42)

where p is chosen so as to satisfy the power constraint (14).
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From (31) and the diagonality of F(f), it is evident that the original system has
been converted into the one shown in Fig. 4 consisting of N parallel independent
subsystems, each communicating over an ideal (unity gain, zero-phase) channel.

noise (A,)
IR
i1 2 N P
1 2 N

Figure 4: Optimal transmitter and receiver filter structure,

Once the optimal F(f) is determined by the preceding procedure, one can obtain
D(f) from (15). Finally, the optimal coupled transmitter and receiver filter S¢ /) and
R( f) for the original coupled MIMO system can be determined from (6), (7), and
(13).

Remark 2.1.2: It is interesting to note that «; /A, is an effective SNR for the ith
subchannel of the decomposed MIMO system. The optimal ordering given by (10)
and (11) simply attempts to utilize the & channels with the best SNR, in accordance
with intuition,

Remark 2.1.3: Note that (42) specifies only the magnitude of the optimal F;,
implying that the transmit phase can be freely chosen without affecting the optimality
as long as the phase of the receive filter is adjusted accordingly, i.e., as long as (34)
is satisfied. This parallels the result in [2] for the SISO optimization problem.

2.2 Application to Excess Bandwidth Systems

We reconsider the original MIMO system shown in Fig, 1, but now allow the system
10 have excess bandwidth. This case is of considerable interest due to the capability
for superior cross-talk rejection by systems with excess bandwidth, as demonstrated
in [3,4, 5, 15]. It will be shown that the optimizaticn problem can be converted to that
of an equivalent MIMO system bandlimited to the basic Nyquist interval (—%, %)
with matrix transmit and receive filters of augmented dimensions. Hence, the results
of the previous section can be directly applied to obtain a solution to this important
problermn.
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We assume that the transmit filter S(f'), receive filter R{f), channel response
C(/?), and the noise power spectral density (psd) X,(f) are all bandlimited to M
Nyquist zones. Let £2;( /) denote the bandlimited filter restricted to the first Nyquist
zone whose response is the same as that of Q( £} in /th Nyquist zone, i.e.,

_[QU -5 —F=f=5
() = l 0 "7 clsewhere “3)

Utilizing this representation, the folded spectrum ®( /) of the cascade of the
transmit-channel-receive filters can be expressed as

B(f) =LY R/~ 5EhHC( — EHS(f - 5
1 M
=7 LRGN (@)
i=l1
Lo o
= ZRUNENISY)

and, similarly, the noise psd at the sampler output in the receiver is given by

1 M
V(f) =2 Y R(IZa sl IR
i=1 (45)

1o o -
= ZRNENR'(),

where the quantities with subscript i are Nyquist bandlimited filters defined as in (43),
and we have introduced the concatenated matrices

R() =( Ri(f) Re(f) Ru(f) ). (46)
S(NH= (s s s ), 47)
Ba(f) = diag ( Bai(f) Zaa() ... Zam(N )}, (48)
C(fy=diag( C1(f) Ca(f) ... Cu(f).) (49)

Assuming the usual uncorrelatedness of the input data and noise, the transmitter-
receiver joint optimization problem can be reformulated as

2

v

ming = tr 7 ] (M= B ZN T - BT +T(f)]df

2
=trTf

)
ol

o

- 1a= at
I- —R ~ —RCS)  + —RZ,R' 4
|[ T CS]3,[1 T 8] t7 I f

5l



M2 Roy, Yang, and Kumar

subject to the power constraini at the transmitter output

Moy
tr[Z% s,-(f)za(f)S,?(f)]df

: L
i=l T

(50)
=zr[% ZS(I)E (N8 (f)}df NP,

The problem is now converted to one of transmitter/receiver optimization of
a strictly Nyquist bandlimited system in terms of the matrix variables S( FYMN<N)
and R( /Y (N x MN). The results of Section 2.1 can now be applied to obtain a so-

lution, by identifying P = MN. The optimal transmitter structure in the equivalent-

decoupled system thus allows the following intuitive interpretation: for each of the
N decoupled channels, choose only the optlmum (in the sense of the SNR defined
earlierin Sec. 2.1) frequencies in the set { /" : jb+ k=0,1,..., M—1}toallocate
transmit power, in a manner analogous to [2] for Lhe scalar case.

3 MIMO SYSTEM OPTIMIZATION:
UNCOORDINATED USERS

In Section 2, the design of the transmit matrix S( /) and receive matrix R( /) was based
on the premise that the transmitter has access to data from all users. Similarly, it was
assumned that the receiver acts on all the channels, outputs to simultaneously detect all
the users’ data. In many practical situations, stich as in mobile radio, the users operate
independently implying that transmitter coordination is infeasible. Analogously, in
some situations, the receiver may have access to the output of only one channel (more
generally, a subset of the channel outputs) to decode the corresponding data. It follows
that structural constraints such as the lack of full coordination at either the transmitter
or receiver leads to different MSE performance. For a simple qualitative illustration of
one instance of this, consider the situation of two users using two uncoupled channels
to transmit data, where the passband of one channel is superior (in its gain and/or
phase response) to the other. In this case, transmit coordination would assure that the
better channel is shared by both the users for a given system bandwidth. This superior
allocation of system resources (and hence improved system performance) would not
be possible when the users are uncoordinated.

A fully uncoordinated system in which both the transmit and receive matrices
are uncoupled is shown in Fig. 5(a) (for a 2 x 2 system for simplicity) in contrast to the
fully coordinated situation. Here, we exclusively concentrate on a special subproblem
of the above that is characterized by the following constraints:

e All users implement identical transmit pulse shaping filters.

e Each user sees the same direct and cross-talk channel responses, i.e., the.

matrix of channel responses is circulant.

This is a natural generalization of the two-user version of the same problem
investigated by [51. It now follows readily from the previous structural assumptions
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Transmitter Channel Receiver
User 1
— 5,1 e, (1) rp ) —
(1} all)
{a‘, } {a, }
Cp (1)
¢y (1)
User 2
(-—)-2) 55, (1) Cap (1) | z ry, {t) "
{a; } lraf }
Noise

(a) 2-user Uncoordinated MIMO System

User | Noise
(U Transmit Filters Direct Channel

7 Estimates
a ——] b )

(2) Cross-talk 2% 1

User 1 Receiver

(b) Individual MMSE Problem (Symmetric Channel, N -users)
Figure 5: Uncoordinated MIMO systems.

that the global MMSE problem (i.e., over all users) leads to identical decoupled
MMSE subproblems for each user, i.e., we need only to consider the single-user in
the interference problem shown in Fig. 5(b). Clearly, identical, uncoupled receive
filters are employed by each user.

While the above formulation is clearly not the most general, it may be justified
due to the resulting simplicity in system implementation. Also, this model may
be tenable for a cluster of subscriber loop cables arrayed with circular symmetry.
We summarize the following key rtesult, concerning the optimal transmitter for this
problem, which is striking due to its fundamental distinction from that obtained for
the optimal transmitter for the case of coordinated users presented in Section 2:

e The optimal transmitter has nonzero support on at most L < 2N — 1 points
intheset{f: fo+ %}.
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This is in distinct contrast to the result for the coordinated case {Sec. 2) where the
optimal transmitter had nonzero support on at most one point in the set { f : fo+ %}

3.1 Problem Formulation

The schematic in Fig. 5(b) represents the (ldentzcal) individual optimization problem
for each user. It is assumed that the inputs {a, ). i =1,..., N are mutually inde-
pendent, WSS processes consisting of independent zero-mean, symbols with variance
2. Since the optimization problems are structyrally identical for all users, we nom-
inally refer to user 1 as the desired source. Thus, the direct channel has an impulse
response denoted by ¢{'V(¢), and the cross-talk impulse Tesponses are described by
¢!y, i =2,..., N. For simplicity in the subsequent analysis, the first superscript
will be omitted and the channel responses identified simply by ¢®(7), i = 1,..., N.
The optimization entails minimization of the MSE for the 1% user

min & = £ {1a” - a"P) , 1)
5(1),r(t)

where s(¢) and r(t) are the responses of the identical transmit and receive filters used

by each user. Rewriting this in the frequency domain, using Parseval’s relation and

the definition of the kth Nyquist translate in (43), results in the following expression

for MSE:

2

M
=_[ > SCOR—T| df
# k=1 52
o2 N # M - 2
+—T~Ef Y SCOR, df+ov,,2f . Elelzdf
i=2 Y737 |k=1 —IF k=1

subject to the usual power constraint

f SO 1Saf = B (53)

ﬁk_

Note that, because of the structural assumptions concemning the problem, Fy 1s effec-
tively an individual power constraint at each of the transmit filter outputs in distinction
to N Fp in (50), which represents the fotal power at the output of the ransmit matrix.

Introducing a Lagrange multiplier A, the preceding problem can be transformed
io the following unconstrained optimization problem

M " | g2 N

— — _ﬂ
_f. > SiCLV Ry T‘ df + § f
zr | k=1 i=! T

+ M
,?f ZRk|2df+l|: f ElSklzd[—Po]

_lf k= 2r k=

M 2
Zskc,ﬁ”ze,,} af
k=1

(54)
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Remark 3.1.1: Note from {54) that the MSE depends on R and S; only through
their product and, hence, via the sum of their phases. Consequently, the phase can
be arbitrarily distributed between the transmit and receive filter pair S; and Ry, while
maintaining a constant sum.

3.2 Analysis

‘We now consider the joint optimization of the transmit and receiver filters. We note
that {54) can also be compactly written in two complementary forms:

b1=% [, 1A — ThI%ds
55)
£ [T, Irlds + 1% [T, bsi%ds - R]
w i
=% [, IAs — ThlPdf
2T (56)

02 [B IriPds +A[$ [7, Islas - By).
where || . || is the L, norm of the corresponding vector; the vectors and matrices
written in boldface are understood to be functicns of f and are defined as follows

R e

c® .
A= e CNxM 57
Al=AS; e CV*M o A =AR; e CV*M (58)
S; = diag [S,...,Sy] € CHM*¥ . Ry = diag [Ry,..., Ry] € CM**¥ (59)
s=[S,....541" e CY"' ; r=[R,,..., Ry} ecCM! (60)
b=[1,0,...,07 e RV*L (61)

For a fixed transmitter s{¢), the optimal receiver can be found by optimizing (55) at
each frequency. In a dual manner, (56) can be used to obtain the optimal transmitter
for a fixed receiver r(#). Using standard variational techniques, these yield the two
necessary conditions for the jointly optimal transmit-receive pair:

-1
ro=7[AlA+771] Afb (62)

—T [A;A2+,s—'1]_' Alb (63)
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where we have introduced (for notational simplicity) n = 02/02T, 8 = 1/A. Note
that (62) and (63) actually represent two coupled conditions due to the implicit de-
pendence of A; and A; on s and r, respectively.

T
Proposition 3.2.1 |S(f)|®? = %IR(f)l2 Yf.

Proof: This follows in a direct manner upon observing the following relation in

(54):
[To? [ Ao
E1{|Sel, |Re]) = &1 (|Rk| Aol | Skl Ta}) . (64)

Equating the respective arguments of §;(., .) on both sides of (64) directly leads to
the desired result.

Remark 3.2.1: A direct corollary of the above is that S{f) = 0 if and only if
R(fHy=0.

The cptimum N-user receiver structure is well known [18] to consist of a bank
of N filters matched to the respective overall channels [19], followed by T-spaced
tapped delay lines, the outputs of which are summed together to produce an estimate
of the desired symbol; i.e.,

R(f) = S*(HIC*(NHN(S)
+ S NCONOf) + -+ SHOCT(NYN)

where * denotes the complex conjugate and Y,(f), ..., Yx(f) are periodic filters
with period 1/ 7. It follows that

IR(OIF = ISCHIP [CON Y

(65)

66
FCO (LIS -+ CO N YN 0
Using Proposition 3.2.1, this becomes
M0 |1+ CR )
7 _ f 2 67

+-- -+ CWOYNOIE, I S() # 0.

It is easily shown [17] that Y,(f) is real, but {¥2(f), ..., ¥Y» (/)] are, in general,
complex. Evaluating (67) at { Jfo+ %], and denoting Y;{ fo) = ¥;, we obtain

X 2
GST = 1€Y1 + CO% Yo + -+ C* Yy, ¥  for which S; # 0. (68)

L

Proposition 3.2,.2 Ler the number of indices k for which Sy is nonzero be L.
Then (68) represents a system of L equations in 2N — 1 variables (one unknown

Joint Transmitter/Receiver Optimization for Multiuser Communications 347

corresponding to the real Yo and two each for the complex Yo, ..., Yn). This
implies that for a solution to exist generically, the number of nonzero elements 5;
satisfies L <2N — 1.

Remark 3.2.2: Note that for I > 2N — 1, a solution could still exist for some
special cases, but over the ensemble of all possible channels, this event is of measure

‘zero. For N = 2 which corresponds to the case of one interferer, this reduces to

the result obtained in [5] that L < 3. Further, if the direct and cross-talk responses
are assumed to be real (i.e., ¥ig, ..., Yao are all real), (68) reduces to a system of L
equations in N variables. By similar arguments as above, we obtain L < N, which,
for N = 2, corroborates the ¢laim in [5] that L < 2.

Proposition 3.2.3 .
g [ 2

A= —"f (lrali“df = O.
Py J-}

L
T

Proof. This follows by integrating both sides of the expression in Proposition
3.2.1 and using the power constraint.

Proposition 3.2.4 >} S CE)Rk is real and nonnegative.
Proof: From (63), we get
[A;A2 n ,s-'I] x, = TAlb (69)
= RIATA Ryx, + 87'x, = TR}ATD. (70
On multiplying both sides of (70) by s!, we obtain
= stRIATA Rys, + B~ 'sls, = Ts/R}ATD. (71)

Since the left-hand side of (71) is nonnegative and real, it follows that the right-hand
side s;RTATH = ¥ STC{"T R is also real and nonnegative.

Using Proposition 3.2.4, (71) can be rewritten as

M
IA Rysoll2 + 87 s> = T Y SkCV Ry (72)

k=1
M N | M P M
= (ZS;C{.”R;C) + Y Y SCOR| +87 YIS
k=1 i=2 | k=1 k=1
M

(73)

=Ty 5CPR,.
k=1

On substituting (73) in (54) and simplifying, we arrive at the expression for the

MSE as L
_ 2 _f[7 (L
£ =02 [1 f_.n, Y SCRe df:|. (74)

57 k=1
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Ateach frequency f, let the set of indices j, for which S; is nonzero, be denoted
J)=th k... k) ie,

i . .
{= S exp(j¢;), forsome ¢;, fori e J
R = B Py ¢ (75)

0, ieJ.

We form the matrix B by deleting those columns of A whose indices are not in J.
Let 84, and Ry, be defined as

S4p = diag [Sy, ..., S, ] € C**; Ry, = diag[Ry,, ..., Ry, ] € C*L. (76)

Sp =[Sk Su]” € C' 5 rp=[Ry, ..., Ry,]” € CFX! a7

B, =BS,, € " ; B;=BRy, ¢ CV*L. (78)
Using these definitions, (70) can be rewritten as

t pt g _ t pt
R;,B'B Ryy5, + 7 '8 = TR, B'D. (79)
Note that Ry, has an inverse because it is formed by taking the nonzero elements of
R,. Multiplying (79) on the left by RY,, we obtain,

-1

B'B Rypsp0 + B7'RY 5,0 = TBYD. (80)

We consider the special case L = 1, which corresponds to the transmit filter
having nonzero support at a solitary point in the Nyquistset { f : fo + %]. The MSE
expression (74} simplifies to

£ =0’ [1—filF SCVR df:| _ (81)
= g2 [1—\/%[_; lS;lzlcfl)Idf] (82)

by using (75) and Proposition 3.2.4. To obtain the optimum / (which is a function of
frequency), we first solve (80) for |5;|? to obtain

g J3TICOI-B
(83)
) |c‘”|2+2, Alea

Substituting this in (82), we deduce that the MSE is minimized if 7 is chosen’ ac-

cording to
\/_ TIcM ~
¢tV (84)

IC 1R+ T, JC"’P

= arg max —|
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Note that if (84) yields/ = 1V f, it implies that the optimum transmit filter is strictly
bandlimited to the first Nyquist zone ( 2T, zr) The more general case L > 2 does

not appear to be analytically tractable, and numerical techniques must be resorted to.
Toward this end, we write

=|S5lexp(j§;) = R = \/glsil exp { (6 + ¢:)}. (85)

Substituting (85) in (80), gives us

\/gn’fn 1/[2exp (g +26)) | + — | expliten +26) | = TBIb. (86)

~Bn
Let z = |[S%exp{j(¢i +26)} and define Z = [z,...,z]", |Zl; =
diag[lz|, ..., |ze|] as the diagonal matrix containing |z;| as the elements. Then,

(86) can be rewritten as

\/EB*B z L & | TB'b 87
B ; VB | Izl
= \/EBTBZ + L|zr‘z = T'B'b. (88)
B VBn
Clearly, (88} is a set of coupled nonlinearequationsin |z |, { = 1, ..., M. Aniterative

approach that is guaranteed to produce a local optimum proceeds by introducing the
squared erTor € between the left- and right-hand sides of (88) and updating the current
cstimate Z, via a gradient descent algorithm.

Proposition 3.2.5 A necessary and sufficient condition for uniqueness of the
solution to (88) for the case M < N (number of Nyquist zones less than or equal to
total number of users) is that the matrix B have full column rank for each f.

Proof: We first note that the assumption that the channel vectors, formed by
the elements of all the frequency translates, are linearly independent implies that the
matrix B is of full column rank, This in turn implies that BB is nonsingular and
hence is positive definite. The proof follows by contradiction. Let us assume that
(88) has two distinct solutions Z; # Z;. It then follows using (88) that

\/ngBz, +%z;|‘z[ =\/;BTB22+ -\/ﬂ_-—zd'zz (89)

1
= BB - Zo) = (252, - 23/2.]. 90)
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Since BB is positive definite, we have
(Z, —Z)'BTB(Z; —Z2) >0, Z, #Z,. (91)
Left-multiplying (90) by (Z; — Z»)' and using (91), we obtain
(T - 21232, - 2;'2)) > 0. 92)
This can be expanded to obtain
712;'7, + 212;'2, > 2127'2, + 227'7,. 93)

Writing this component-wise gives us

ZiZai | ZZi 74 (2. (94)
T > T 1]
[Z2] [Z1:] i u
From (94), we have
* ) * 7
LHSE le'Zz‘ 22121'
[Z2] [Z1]
< |23 22| 12321 (95)
| Za2:] [Z1i]
= 1Z1il + | Zal.
Combining (94} and (95), we obtain
Z1: 2y ZY. 2y
|Zy| +1Z) > == 4 = > |2y + 121, (96)
MRS Nz T 12 G

implying a contradiction. Hence, Z; = Z».

Remark 3.2.3: A sufficient condition for Proposition 3.2.5 to hold is that the

matrix A be of full column rank, which obviously implies that B is also of full column
rank.

Remark 3.2.4: Proposition 3.2.5 together with Remark 3.2.2 implies that the
optimal solution for the transmitter is unique for channels with real frequency re-
sponses.

3.3 Interference Modeled as Stationary Noise

In [3], MMSE calculations based on a “stationarized” interference model were in-
cluded to provide a baseline for comparison of the results for the cyclostationary
case. As is well known, in the case of a large number of interferers with random
initial phases, the net interference can be well approximated as WSS [8]. Conse-
quently, the primary purpose of this section is to provide an analytical foundation to
the optimization problem when the interference is assumed to be WSS, and compare
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the results obtained thereby to the case when the interference is (more accurately)
modelled as wide-sense cyclostationary (WSCS).
Assuming WSS interference, the MSE expression (51) now becomes

] L
=3/ iZf:il SCOR, — TI%df

52 . Iy o7
a 2 )2 2
T H;'SkRkl Z|Ck ffdf +a? [%EIRH df.
‘We introduce
N
(= Z:IC“)(f)I2 (98)
i=2
in (97) to obtain
2
= T”f__IZSkC;E”Rk—TIde
P (99)
f|Z|SkRka|2df+a[ ZiRdef.
7 k=1 T k=1
As in Sec. 3.2, we define the matrices
R e U
L 0 0 -0
X 0 L 0 . 0
A= (100)
0 0 0 - Iy |
AMM = a8, (101)
AMM = AR, (102)
The MSE (99) can now be written as
P
=2 [ thr-Tbids
i (103)
2 [T 2 ol [F
+0, Irli“df + A T | lIsl"df — Py
L L
= lilAzs—Tbllzdf
o (104)

S

=~ 2
+a3f” IIrIlzdf+l[UF"f

Isii*df — Po] :

S
g
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Setting the first variation of {104) to zero yields the necessary conditions for the
optimal transmitter and receiver filters:

Al a -1 .

ro="T[Al&; +071] Alp (105)
PO -1 .

s$o=T [A;A2 + ,3-11] Alb. (106)

Following arguments identical to those in Sec. 3.2 leads to a similar relation between
S{f) and R(f) (see Proposition 3.2.1):

2
= 1SN =25 (107)

Using (107) in (106) leads (repeating the derivation in Sec. 3) to the final form of the
equation for the optimal transmit filter

Naia 1 - A
ZB'BZ + —|Z|7'Z = TB'b (108)
\/; By ¢

where B is obtained from A by deleting those columns of A that correspond to the
elements in the Nyquist set { /' : 5+ %} where the transmitter has no support. Now,
the spectra of the total WSS cross-talk and noise is given by

2 N
N() =07 + 1SN Y ICOUNIR. (109)
i=2

The optimal MMSE receiver in the presence of additive WSS interference is well
known to be given by

XHCD)
R = — -7 11
) oy v (110)
o 1R(NE = SDPCODE oo (i
NP
2 2
= YOI’ = Ao, NG/ (112)

2T |CO(fy2’
where Y (f) is a periodic filter {corresponding to the tapped delay line), and (107)
was used to obtain (112) from (111). Using the periodicity

Y(f):Y(f+%),k=1,...,M—1 (113)

in (112) yields
N(f)  NU+D
CO(f) — CO(f+ &)

=1,..., M -1 (114)
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Substituting {109) into (114) results in the following set of equations

aq -1 0 0 ... |S;, 12 b
as o -1 0o - Si, ]2 by
= . (115)
a, 0 0 - -1 |8, 1 b
where i, ..., iz correspond to the indices of the Nyquist translates for which S(f)

is nonzero. Note that in obtaining (115), only (106) and the structure of the receiver
(110) was used. Hence, it follows that (115) and (108) represent two independent
sets of constraints that the transmit filter must satisfy. This implies a total of 2L — 1
equations (L — 1 from (115) and L from (108), respectively)} in L variables. For
a solution to exist genericaily, it follows that 2L — 1 < L & L < 1. Neglecting
the case L = 0 (which yields a trivial solution), only L = 1 remains as a bona-fide
candidate. For this sntuatlon we can obtain an explicit closed form expression for the

transmit filter:
7|1 - !
sz = £ Vi (116)

n Ic(l)lz + E N |C i)|2

1
[ TICc0| -
(l)l

I+ 2L, |C“’

where [ is chosen such that

= argrnfx - (117

Note that these are identical to (83) and (84), which were obtained for the . = 1 case
but when the interference was modelled as WSCS. Clearly, the optimum transmit
filter under the assumption of WSS interference is identical to the optimum transmit
filter in the presence of WSCS interference only when the latter is restricted to one
generalized Nyquist zone, i.e., when the support for the transmit filter is (at most)
of measure T' and is such that it is nonzero on at most one of {f : fo + T} [2].
This is in accordance with the fact that digitally modulated signals are WSS when the
pulse-shaping filter responses have support restricted to one generalized Nyquist zone.
Finally, this result demonstrates analytically that greatly improved cross-talk rejection
is achievable when the spectral correlation properties of WSCS signals are exploited,
as described in [14], [15]. The computations in Sec. 4 quantify the improvement
in the MSE as a function of L (number of points in the Nyquist set { /' : fo + %}
where the transmit filter has nonzero support) and M (total number of Nyquist zones
in the given system bandwidth). Note that for a fixed system bandwidth, varying M
is equivalent to changing the symbol duration 7.
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4 NUMERICAL EXAMPLES AND DISCUSSIONS

Some representative numerical results are presented to highlight the MSE perfor-
mance of jointly optimized MIMO systems for both coordinated and uncoordinated
cases. The selection of the examples was motivated primarily by the need to inves-
tigate comparative system performance for coordinated and uncoordinated transmis-
sion as a qualitative function of the shape and gain of the channels. All examples
assume i.i.d. input data with additive white noise. The noise power is chosen to be
45 dB below the transmit power (Po/o"2 = 45 dB), so that system performance is es-
sentially cross-talk limited. Only two-user examples are included; a more exhaustive
catalog of numerical results for N > 2 users is given in [6, 17].

Examplel: A2 x2symmetric MIMO channel that spans two Nyquist zones is
assumed. Fig. 6(a) shows the direct and cross-channel frequency response, where C;;
represents the channel responses from the jth input to the 7th output. The direct paths
(Ci1 = Cg) exhibit low-pass characteristics and the cross channels (Ci; = Cgp)
a high-pass response, representing typical HDSL. loop characteristics [4, 5]. The
optimized coordinated transmitter matrix response is shown in Fig. 6(b) where, similar
to above, S;; is the transmit filter response from the jth input data source to the ith
channel input. The uncoordinated transmitter response is shown in Fig. 7(a) for L = 1
and in Fig. 7(b) for L = 2.

The average MSE per user for the coordinated case was computed as was the MSE
for identical channel responses when the receiver only is optimized to serve as a base
line for comparison. The latter assumed commonly employed uncoupled transmit
filters that have raised-cosine responses with 100% excess bandwidth (note that this
is clearly nonoptimal for this case). These results and those for the uncoordinated
case (for L = 1, 2, respectively) are shown in Table 1. A gain of 7.1 dB in MSE
performance is noted for the jointly optimized coordinated system vis-3-vis one that
employs only the optimal receiver. Similarly, the gain for the coordinated system
over the uncoordinated system is about 5.5 dB. Note that L = 1, which corresponds
implicitly to system design based on WSS interference, is inferior by nearly 18.5 dB
compared to L = 2 when the system is not coordinated. The best uncoordinated
system (L = 2) achieves marginally better MSE performance (by 1.6 dB) than the
coordinated system with only an optimized receiver and uncoupled raised-cosine
transmit filters.

Table 1: MSE for Example 1

Coordinated  Uncoordinated(f. = 1)  Unccordinated(f, =2) Receiver Only

MSE(dB) —40.65 ~16.62 —35.14 —33.54

Example 2;: Figure 8(a) shows another set of channel responses that differ from
those used in Example 1, in that both direct and cross paths now have similar low-pass
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(b) Optimal Transmitter for Co-Ordinated Case
Figure 6: Example 1.

characteristics. The optimal transmit filter is shown in Fig. 8(b) for the coordinated
case and in Figs. 9(a) and (b) for uncoordinated cases L = 1 and L = 2, respectively.
The MSE for the severat designs discussed above are shown below in Table 2.
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igure 8: Example 2.

The gain of the fully coordinated design vis-2-vis the optimized-receiver-only
system is now 5.9 dB (which is 1.2 dB less than in Exainple 1) whereas the advantage
over an optimized noncoordinated system is 6.6 dB. This qualitatively highlights a

fundamental aspect of system performance—that a system with a fixed (or unopti-
mized) transmit filter will suffer poor performance depending on the relative shape of
the direct and cross-talk channels. In contrast, a coordinated system with
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Figure 9: Example 2 (continued}.

an optimized transmitter adjusts to the channel characteristics. Thus, fransmitter
optimization is crucial in systems that are interference limited. In both Examples 1
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Table 2: MSE Results of Example 2

Ceordinated  Unccordinated(L = 1)  Uncoordinated(L =2)  Receiver Only

MSE(dB) —40.49 —9.34 —33.87 —3491

and 2, the optimal transmitter exhibits the following symmetry

Su(f) =820/ 8i2(f) =8nlf) (118)

that follows directly from the symmetry of the channel response matrix. Finally,
we observe that in both examples, the WSS assumption results in severely degraded
performance (by 24 dB and 31 dB compared to the jointly optimized and coordinated
systems, respectively).

5 CONCLUSIONS

The joint transmit/receive optimization problem for multiuser communication is in-
vestigated for fully coordinated and uncoordinated scenarios. The optimum trans-
mitters are derived and system performance is obtained by simple numerical proce-
dures. The performance improvements achievable vis-a-vis system design based on
a stationary interference model when the system is uncoordinated is also quantified
analytically. The numerical examples further substantiate the consensus that each
additional interferer may be effectively suppressed by the addition of a Nyquist zone
[3,15].
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Abstract

The clock waveform of a PAM signal may be recovered by feeding a nonlinear func-
tion (e.g., the square) of that signal to a narrowband filter. The deterministic relation-
ship between pairs of spectral components of the PAM signal whose frequencies differ
by or sum to a multiple of the clock frequency has opposite effects on the in-phase
and the quadrature components of the output of such a narrowband filter centered on
a harmonic m /2T of half the clock frequency. The mean squared value of the com-
ponent in quadrature with the clock harmonic determines the mean squared phase
error (jitter) in the clock waveform regenerated in this way when m is even (usually
m = 2}. This mean squared value is studied as a function of the narrowband filter’s
shape, bandwidth, and center frequency—first for the PAM signal itself and then
for its square, whose behavior is remarkably similar—thus clarifying and extending
previous work on this topic.

I INTRODUCTION

Discovering and characterizing periodicities is a very widespread and fundamental
problem in time-series analysis. In the field of communications it is particularly im-
portant in regard to sampling, demodulation, demultiplexing, and decoding. Because
of its crucial role in the proper operation of coherent communication systems, the
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synchronization problem has been the subject of considerable research and develop-
ment for several decades, especially in recent years with the increasing demands on
system performance that result from rapidly growing usage.

The synchronization of the phase and frequency of an analogue oscillator with
a signal’s carrier and the synchronization of those of a digital clock with the symbols
conveyed by that signal are two applications of this very general problem. A popular
approach has been to break the synchronization problem down into two tasks: (i) using
a nonlinearity to transform the time-series to be synchronized into a timing waveform
whose spectrum contains a line {representing a periodicity of interest) along with
a continuous spectrum (representing additive noise), and (ii) locking the frequency
and phase of an oscillator or clock to the sinusoid represented by that spectral line
with the help of a phase-locked loop (PLL) or a similar dévice such as a narrow
bandpass filter or zero-crossing detector. Both the design and the performance of
such synchronizers can be characterized in terms of spectral correlation and higher-
order spectral-moment functions [1]. In particular, a timing sinusoid of frequency o
can be generated from a random time-serjes by using an nth-degrec nonlinearity if
and only if the time-series exhibits cyclostationarity of order n with cycle frequency
«, and this occurs if and only if the nth-order spectral-moment function for spectral
components whose frequencies sum algebraically to « is not identically zero [2].

The spectrum of this timing wavé at the output of an nth-degree nenlinearity
is given explicitly in terms of the 2Znth-order spectral-moment function of the input,
which is determined by the 2nth-order and lower-order spectral cumulant functions.
For the class of digital quadrature-amplitude-modulated (QAM) signals and pulse-
amplitude-modulated (PAM) signals, the spectral cumulants can be expressed simply
and explicitly in termns of the Fourier transform of the pulse shape and the cumulant of
the distribution of the random amplitude factor representing the transmitted symbol
[2]. Moreover, the mean squared value of the phase jitter of the PLL that locks
onto the timing sinusoid is characterized by the continuous spectrum accompanying
this sinusoid and the associated autocorrelation function [1]. For synchronizing with
a QAM or PAM signal in the presence of strong additive Gaussian noise, it has
been shown that the quadratic transformation generating the timing sinusoid with the
greatest signal-to-noise ratio and the maximum-likelihood timing-phase estimator is
determined by the spectral correlation functicn of the digital signal and the power
spectrum of the additive noise.

These general results demonstrate the central role played by spectral correlation
and higher-order spectral-moment and cumulant functions in the design and analysis
of synchronizers. However, to obtain more refined results showing more specifi-
cally how to design synchronizers and evaluate their performance, we must focus
on particular classes of signals and nonlinearities. This article treats the class of
amplitude-shift-keyed signals and their baseband counterparts, the pulse-amplitude-
modulated signals, along with quadratic nonlinearities consisting of a squaring device
preceded and followed by fixed linear filters, and it carries out a detailed study of the
statistical characteristics of the resulting waveforms with a view to their optimization..
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. Reference [3] calculated the power spectrum of the square of the binary phase-
shift-keyed or PAM signal

[20]

u@ty= 3 cglt — j7) (1

J==e0

with statistically independent, identically distributed real coefficients {c;} having
mean 0, mean squared value 1, and fourth moment M:

Efc}=0, E{dl=1, M=E[}). 2)

That spectrum consists of a clock-frequency line and a self-noise spectrum that results
from the random nature of the signal. The part of the latter representing self-noise
components in quadrature with the clock-frequency line can cause jitter in the phase of
the regenerated clock. However, (1) is cyclostationary and cycloergodic [4—6], and, as
mentioned in [3], [7], and elsewhere, there are correlations [8] between Fourier com-
ponents of any single realization of (1) separated in frequency by any harmonicof 1/ T
that remain even when the signal ensemble is stationarized as in [3] by randomizing
the signal’s epoch, although: this randomization destroys the signal’s cyclostationarity
[5]. These spectral correlations profoundly affect the magnitude of the quadrature
component of the self-noise.

When the transmitted waveform is u(¢) times a sinusoidal carrier, its upper and
lower sidebands are well known to be deterministically related. Because E{c;} = 0,
it has no carrier-frequency spectral component, but its square contains a term that
is u(#)? times the second harmonic of the carrier. Since z(z)? > 0, this term is
the sum of a pure second-harmonic sinusoid plus in-phase noise produced by the
fluctuations of #(f)? around its mean value; there is no self-noise in quadrature with
the second harmoric of the carrier to introduce any error in the times of the zero-
crossings or in the phase of the carrier regenerated from this harmonic. The problem
of clock-regeneration error, however, is far more complicated; to study it we suppose
henceforth that #(¢) is available without multiplication by a carrier.

W. R, Bennett [6] determined the in-phase and quadrature spectra of the self-
noise-in special cases, and Manley [9] showed that, in the case of on—off keying,
the self-noise arising from the signal may resemble a double-sideband suppressed-
carrier (DSBSC) waveform whose carrier is in phase with the clock. Franks and
Bubrouski [10] (see also [11, [11]) carried out a general analysis of the rms clock-
regeneration phase error for the case of a bandlimited g(¢) and found conjugate-
symmetry conditions on the Fourier transform of g(¢) and the narrowband clock-
regenerating filter H( /") (Figures 1 and 5) that ensure the vanishing of the quadrature
self-noise. F. M. Gardner [12], Franks [13, p. 310], and others previously cited
have stressed that the rms jitter of the regenerated clock as recovered by nonlinear
processing {e.g., squaring) of the signal u(#) can thus be far smaller than might be
mistakenly inferred from the spectrum of the total self-noise [3], and a number of
books [14-16] point out the benefits that can thus be obtained from the proper design
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of g(#) or from its effective modification by a “prefilter” preceding the squaring of
u(¢). Fang [17] has obtained similar results for square-law clock regenerators, and
Mengali et al. [18-20] have found similar effects when nonquadratic nonlinearities
are used.

With some simplifying assumptions, Franks [21] and F. M. Gardner [12] have
found for the component of the self-noise of #(¢)? in quadrature with the clock a
spectral density that vanishes at the clock frequency. It was inferred that the mean
squared phase jitter in the regenerated clock should therefore be proportional to the
cube of the bandwidth B of the filter H( /) used in the clock regeneration. In fact,
if the signal pulse and the narrowband filter have the requisite conjugate symmetry,
the phase jitter should remain zero as 8 varies up to half the clock frequency. It is
shown later, however, that the term proportional to frequency in the departure from
conjugate symmetry of the spectrum of the signal pulse causes the mean squared
jitter to be indeed proportional to B> when BT <« 1 if H( /) possesses conjugate
symmetry around the clock frequency. It is also found later that the mean squared
jitter also generally includes a term proportional to the square of the offset of the
center frequency of the narrowband filter H (/) from the clock frequency 1/7.

This article studies the complex spectrum of the self-noise output of the filter
H( ) in order to make clear the relationships between pairs of its spectral compo-
nents whose frequencies differ by or sum to a multiple of the clock frequency and to
determine the mean squared value of the quadrature self-noise component, which is
responsible for clock-regeneration phase errors. As a result, some extensions of the
work of Franks and Bubrouski [10] are possible. Straightforward analysis of (1) in
Section 2 and of its square in Section 3 suffices to provide both insight into the nature
of the self-noise and a quantitative description of the mean squared clock-phase jitter
showing its dependence upon g(¢) and A ). Section 2 reveals the amplitude and
phase relationships between different Fourier components of the signal which, when
the signal is squared, result in spectral relationships very similar to those of the sig-
nal itself, producing, among other things, the clock-frequency spectral line discussed
in Section 3. Finally, the latter section’s results are applied to several signal-pulse
waveforms g(#) and filter responses H{ ).

2 SPECTRAL ANALYSIS OF THE PAM SIGNAL
ITSELF

To understand the nature of the PAM signal «(¢), it is useful to notice that it can be
generated by feeding the PAM train of impulses

o0

w() =Y ¢(t—jT) 3

j=mo0

to a filter with impulse response

g = f GOy, @
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where G( f) is the Fourier transform of g(#). Thus, the PAM signal can be described
as the convolution '

u(?) =v(t) » gt). )
In the frequency domain, this equation takes the form
U(f)=VNHGn), (6)
where
00 . .
Vf)= Y et T M
Jj=—0o0 .
Here it is evident that : ‘
Vif)= V(f+ ?) (8
is a periodic function of f with period 1/7 and that
V=f)=V*f) €)]

1s its complex conjugate. Hence, V' (f) = V*(7 — f) for every integer m and,
therefore, ¥ (-) has the conjugate symmetry

Vgt ) =7 (5 -7) 10

around every multiple m /2T of half the clock frequency.

These amplitude and phase relationships between the Fourier component of v(¢)
of frequency f and those of frequencies /7 + f for all integers n would persist
even if the summations over j were, for the sake of mathematical rigor, truncated to a
finite number of terms, which would at a later stage be allowed to grow infinite. The
amplitude and phase relationships among the corresponding Fourier components of
u(t) are exactly those for v(¢) but modified in a deterministic way by the amplitude
and phase responses |G (f}| and arg G(f) of the pulse-shaping filter.

When f is amultiple of 1/27T, V' (f) is real. Otherwise, ¥ (/) is complex, and,
by the central 1imit theorem, it has a circular normal distribution with equal-variance
zero-mean uncorrelated components in any two orthogonal directions. Thus, for
" any f that is not a multiple of 1/27, the contributions of ¥ ( f) to the in-phase and
orthogenal components of the self-noise have equal mean squared values. Because
of the correlations between the values of ' ( f) at different frequencies, however, the
net results of combining different frequencies passed by the narrowband filter H{ )
are different for the in-phase and quadrature components.

These correlations are described by the expectations E{V (/1)F*(f2)} and
E{¥ (/1)¥ (f2)}, which will be needed in the next subsection, the latter being called
a confugate correlation [22, 23]. Making use of the fact that E{c;c;} is O for j # &
and is 1 for j = k and of the fact that a train of unit impulses (Dirac delta functions)
with unit spacing (known as the shah function [24, pp. 77-79] or comb function [25,
p- 28]) is its own Fourier transform, we can express these expectations as
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BV (V) = 3 e mitheT
e , an
=7 2 (i 4 7)
and .
BV =7 Y (At 7)- .

These two equations merely reflect the relationships revealed more fully by (8)
and (9).

If a random constant 7 distributed uniformly between O and T is added to ¢ in
order to randomize the epoch of the signal and thus to make its ensemble statistically
stationary, the phases of the Fourier components of frequencies { f + n/T} will no
longer be the same, but they will depend linearly on #, thus continuing to show fixed
phase relations although in a slightly disguised form. However, in order to maintain
a fixed clock phase as a basis for our investigation of the in-phase and quadrature
self-noise in #(#) and in #(£)*, such a time shift is not introduced in this article.

2.1 Variances and Covariance of In-Phase
and Quadrature Components

To understand the more complicated case in which a narrowband filter with impulse
response A(f) and frequency response

o]

H(f) = f R(e 214y (13)
-0

passing only frequencies in the neighborhood of a harmonic m /2T of half the clock

frequency is fed the square of the signal u(¢), we shall first consider the result of

passing u(¢) itself through such a filter, whose cutput w(¢) in this case has Fourier

transform

W{f)=V(NGHH. (14)

To obtain the complex form of the filter’s output (the “analytic signal”), which
directly exhibits the amplitude and phase of this output, we suppose that H(f) =0
for f < 0. Multiplying the resulting output

o .

wy= [ VGHHN df
—oo

of the filter by e~""""/T, we get the complex amplitude of the output expressed with

reference to the frequency m /2T, whose in-phase and quadrature components x{#)

and y(¢) (Fig. 1) are the real and imaginary parts of

w(@®)e™™ T = x (1) +iy(t) = e T f V(OGOH( ) df. (15)
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Since the expected value of the square of the absolute value of (15) can be seen to
be independent of ¢ and since the expected value of the square of (15) can similarly
be seen to be independent of ¢ whenever the filter H( /') has a bandwidth B < 1/2T
and thus passes only frequencies in the neighborhood of a singie harmonic m /2T of
half the clock frequency, we can keep our notation simple by dealing with the second
moments of (15) at the convenient time ¢ = 0, i.e., the moments of

o0
wO =x+iy= [ V(OGNHUN S 16)

—0C
where x = x(0) and y = p(0). Because E{¢;} = 0, the mean value of {16) is zero.
If the impulse response 4(r) of the filter is very long because of a small bandwidth,
the central limit theorem is applicable, and hence the joint probability distribution of
x and y is very nearly the bivariate normal distribution [26, ch. 1].

In-phase clock

cos ’"—T-’" w LO;‘IEGP:SS L )
PAM signal
ul) = Filter H |
> # 0 for f(i)ﬂ [x(r) + fyp())e™mitT
2_cgl = iT) 7
-0
| Low-
Quadr_au;rgrclgck x | f\i\;lzrass -

5N =

Figure 1:  Block diagram for the analysis of the PAM signal u(t) itself.

To determine their variances and covariance, we look at E{|w(0)|?} = E{x2+?)
and E{w(0)?} = E{x2 — »? + 2ixy}. Using (11) and (16), we find that, if (/) = 0
outside a band of width 1/2T centered in any suitable sense at frequency m /2T, the
n # 0 terms make no contribution, and hence

E(lw(0))
=E(x2 457

- %]:: f_w i GUDH(RC H (8 i~ o ~ %) dfsdf,

OO p=w00

an
- % f : GUNH(NGH () dSf
~1 G(Z’"—T)f[_: P df.

The approximation in the last line of (17) is valid if the variation in G(f) over the
passband of H( f) can be neglected. Its first factor represents the PAM total power
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spectrum [3] |G{f)|*/T; the integral factor expresses the effect of the analyzing
filter.

Similarly, if the filter’s passband again lies in the neighborhood of the harmonic
m /2T of half the clock frequency, we have from (12) and (16)

E(w(0)?)
=E{x* - y? + 2ixy}

1 o0 occ o0
=?[m ) GUDHUIGUHURDI( S+ fo— 7) dhdf;

=1 ¥ 6(z-1)u(%-H)ewnnmas a®)
=7 LGN (=) o5 + ) (55 + 1) ar

~7o(g) [ #Gr - )G+ r)ar

This is G(m/2T)*/T times the convolution of H(f) with itself evaluated at f =
m/T. Notice that this convolution is zero if, for example, m /2T is outside the
passband of the filter Z(f). When (52) is zero, its first line implies that x(¢) and
»(t) are uncorrelated and that they have equal mean squared values.

Adding and subtracting (17) with f replaced by 7% = f and the real part of (52),
we find that the mean squared value of the in-phase part of the filter’s output can be
expressed as

B = 7 [ |oGr + 1) (55 + 1)
- . (19)
* m ¥ m
+6*(gp = S) i (g = 1) @7
and that of the quadrature part of the filter’s output is
oo
- LG g

- (=N (- @

if the filter /7(f) passes frequencies in the neighborhood of no more than one
harmonic m /2T of half the clock frequency. Thus, (20) vanishes if and only if
G(a=+ N)H(Z+ f) = G(& - f) H* (& - f), e.g., only if G(-) and H(")
possess conjugate symmetry around the clock harmonic m /2T or, equivalently, if
g(?) and h(¢) are, respectively, cos mrt/ T and e™™ /T times a real function of ¢.



370 Blachman

2.2 The Vanishing of the Quadrature Self-Noise

From (20) we see that E{y2} = 0, i.e., there is no quadrature self-noise, if

(e ) u(e ) =G () e

for almost all values of f. This condition can be achieved by tailoring either G(f) or
H{f) tomake their product satisfy (21). When this is the case, the impulse response of
the two filters G{ f) and H () in tandem is ¢™™*/T times a real function of time, and
the real part of the latter product is therefore a double-sideband amplitude-modulated
suppressed-carrier waveform with carrier frequency m /27 that passes through zero
at exactly the same times as the clock-harmonic waveform cos msr¢ /T, with no error
due to self-noise. For the case of the squared signal x(£)?, we shall find a set of similar
conditions in Section 3 that involve H( /) and each of a set of functions {G(/)}.
To satisfy (21) it suffices to ensure that

M )= (1) i o )= (Gp=1). @

i.e., that H(-) has conjugate symmetry around the clock harmonic m /2T and that the
part of G(-) lying within the passband of H () has the same symmetry. In this case,
the impulse response & (¢) of the H(f) filter is ™™/ times a real function of time,
and the part of g(¢) whose spectrum lies within the passband of H(f) is cos mat/T
times a real function of time—again a DSBSC waveform. The latter condition is not
hard to meet when that passband is very narrow and includes the frequency m /27T

Since, when G(f) isreal, i.e., when g{¢) is symmetric, any two Fourier compo-
nents of z{f) whose frequencies sum to a multiple of 1/ T have equal amplitudes and
opposite phases on account of the ¥ () factor in (14), they are like the sidebands of
a suppressed-carrier AM signal whose carrier frequency is the average of their two
frequencies and whose carrier phase is the same as that of the clock. If the filter A( 1)
passes the two of them with equal attenuation and opposite phase shifts, there is no
quadrature clock-harmonic component in their sum.

‘When the condition (21)is satisfied, (52) is real, and so x and y, which have mean
0, are uncorrelated. In this case all of the power represented by (17) lies in the in-phase
component. From (20) we see that quadrature components of the filter’s output result
from any differences between G(35 + f)H(3F + f) and G* (55 — NH" (35 — 1)
which destroy the totally in-phase addition of ¥ (3% 4 f) and ¥ (37 — f) that occurs
when (21) is satisfied. If only one of the two frequencies m /27T % f falls within the
narrowband filter’s passband, it contributes equally to the in-phase and the quadrature
components of the filter output.

2.3 Examples: ldeal Bandpass and Gaussian H(f)

Ideal Bandpass Filter: When H(f) is a normalized ideal bandpass filter with
bandwidth B < 1/2T centered F above the clock harmonic m /2T (because of

mistuning, F may fail to be zero), i.e., when H (5 + F) = 1 and
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HOf) = rectf_i_ , 23)
where [25, p. 29]
a1 forlzl <}
rectz = | 0 otherwise @4

(rect z is sometimes denoted by IT1(z) [24, p. 52]), the integral appearing in (17) is

f \H()PdS = B. 25)

The convolution of H(f) with itself appearing in (52) is conveniently expressed in
terms of the triangle function [24, p. 53]

A(z) 2 rectzx rectz

1=z} for|z <1 (26)
0 otherwise

(Fig. 2). This convolution,
—2_2F
BA (fr—) :
B

has the shape of an isosceles triangle of height B and total width 28 centered at
m/2T + F. Thus, if G(m /2T is real, {20) becomes

B m 2 2F
E(*) ~ —G(—) Y it
[y 27 \o7 [ A(B)]’ @n
and the quadrature component of the filter output is reduced in mean squared value

as shown in Fig. 3b when the detuning | F| is less than B/2, i.e., whenever a multiple
m /2T of half the clock frequency lies within the narrowband filter’s passband.

-
-1 _

]
-
1
3

Figure 2: The rect (dashed) and A (solid) functions.

G(m/2T) may not be real if the signal pulse g{¢) is not even, as G (f) is then
not always real, and (52) may therefore not be real. If it is not, x and y are correlated.
It is then appropriate to shift the phase of the reference clock as described later in
Section 3.3 in order to permit the quadrature component of the self-noise to vanish.
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Figure3: (a) Mean squared in-phase ouput self-noise (28) and (74) and (b) quadrature
output self-noise (27) and (75) as functions of the tuning error F and the (nonnegative)
bandwidth B of the filter H( ") when the latter is an ideal bandpass filter. Abscissas are
to be multiplied by 1/ T'; the vertical scale must be multiplied by a factor that depends
on the shape g{¢) of the signal pulses (see text).
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The power of the in-phase component (19) is compensatingly increased, becom-

ing
2. B m\2 2F
E(x }~2TG(2T) [1+A(B)] (28)
(Fig. 3a), as the sum E{x?} + E{y?} is hardly affected by any small detuning F even
if F > B. When the ideal bandpass filter is not centered at m /2T, it wili pass a band
of width | F| on one side of m /2T that is not paired with the corresponding band on
the opposite side to make a DSBSC waveform because the filter does not pass the
latter band. The self-noise power in the former band therefore contributes equally to
in-phase and quadrature components, thus accounting for the fact that the quadrature
self-noise power is proportional to | F| for | F| < B/2. When | F| > B/2, none of the
self-noise passed by the filter is paired with self-noise equally far on the opposite of
m /2T, and alf of the self-noise is divided equally between in-phase and quadrature
components, just as if there were no spectral correlations.
Gaussian Filter: When

—_m_
H(f) =exp [—(—f—fBz—)] . (29)
(20) becomes
B 2 3,52
e ]

which is proportional to F2/BT when |F| « B, is proportional to B/T when
F > B, and is zero regardless of the value of B when F = 0. See Fig. 4b; for
application to the present section, ordinates in Figs. 3 and 4 are to be multiplied by
BG(%)2 /4T. Likewise {19) becomes

B m 2 2,92
E(x?) ~ Y28 (=) (1+e71%) 31

b= 5 Olap )\ re Gl
(Fig. 4a), which, when added to (30), gives a total self-noise power proportional to B
that is independent of any small mistuning F.

3 SPECTRAL ANALYSIS OF u(t)?

Because of the correlation (11) and conjugate correlation (12} between spectral com-
ponents whose frequencies respectively differ by (if one of the components is con-
jugated) or sum to (if neither component is conjugated) any multiple of the clock
frequency, the squaring of u(¢) (Fig. 5) offers a natural way to bring about the het-
erodyning of pairs of correlated components to yield spectral lines at harmonics. of
the clock frequency. If the squaring precedes narrowband filtering, all of the received
frequencies are able to participate in the process. )

‘When v{¢) is squared, pairs of components like these add together to produce
spectral lines in the £ = 0 portion of (32) at multiples of the clock frequency. As
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Figured: (2) Mean squared in-phase output self-noise (31) and (76) and (b} quadrature
output self-noise (30) and (77) as functions of the tuning error F and the (nonnegative)
bandwidth B of the filter H(f) when this filter has a Gaussian frequency response.
Abscissas are to be multiplied by 1/ T'; the vertical scale must be multiplied by a faclor
that depends on the shape g(#) of the signal pulses (see text).
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In-phase clock

cos 2 x [ PR L
PAM signal
uft) = Filter H ;
o0 —1 P 1 fofor f(i)ﬂ (=) +iy(r) + elemit/T
> gl — i t
—00
Low-
Quadralure clock X | ;pass = y()
PR ler
sin ==

Figure 5: Block diagram for the analysis of the square #(£)? of the PAM signal.
In addition to the self-noise components x (¢} and p(), there will be constant output
components Ric} and ¥{c} from the low-pass filter that result from the clock-harmonic
output ce™®/T of the filler H(f).

(52)—(55) show, each pair whose frequencies do not sum to a multiple of the clock
frequency combines additively with the pair whose frequencies are their reflections in
amultiple of ha!f the clock frequency, to produce self-noise spectral components of the
squared signal that, to the extent the filters G(f) and H(f") allow these correlated
combining components to have equal amplitudes and opposite phases, exhibit the
same sort of spectral correlations (44) and (45} as the signal itself.

The square of the signal (1) can be expressed in the form

oo [.o]
w(t? =3 Y eciciuglt — jTIgl — G +0T)
k=0 j=—00
o (32)
= > e ) * glo),
k=0 ’
where the Neumann factor ¢, is 1 for X = (t and is 2 otherwise,
= 2+ k
w(t) = _Z: CiCivkd (f -3 T) ' (33)
J=—00
and kT kT
&) = g(t + 7) g(t - 7) . (34)

Because the {¢;} are statistically independent, zero-mean random variables, the terms
of (32) with different values of & are completely uncorrelated, regardless of any time
shift, as noted by Fang [17].

The & = 0 part of (32) can be separated into two terms,

o0

Y. gt~ jTV =s(t)+ Y (@ — Dglt = jTY, (35)

j==oo j==co
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the first of which,

(=]
s ZEw@N = Y gt — T, (36)
J=—o0
is periodic with period T and thus contains only clock-frequency harmonics, and the
second of which (with zero-mean coefficients cf — 1) is the contribution of ¥ = 0 to
the self-noise. If g(t) = 0 whenever |¢| > T /2, this is the entire self-noise; all of the
k > 0 terms of (32) then vanish identically.
Applying to (36) the Poisson summation formula, which states that

PIEE %,;,o Q(%) @7

for any Fourier-transform pair {g (), @(f)} (because the shah function is its own
Fourier transform), we can express s(¢) as the Fourier series

s(t)—*l i ez"""’/waG(i—f) G(i+f) af. (38)
= o \2T 2T '
This series contains only a finite number of nonzero terms when G( £} is bandlimited.
If the convolution integral in (38) is not real for £ = m /2, i.e., for the clock harmonic
m /2T being regenerated, and, instead has a phase angle ¥, the self-noise component
in the direction ¢ + %n’ rather than the component p(¢) in the direction %rr will
produce errors in the phase of the regenerated clock. When g(¢) is an even function
of ¢t and G (f) is therefore real, however, ¥ will be zero, and the mean squared value
of y(z) will determine the mean squared phase error of the regenerated clock. The
case of ¢ 7 0 is discussed later in Section 3.3,

If, instead of being real, the coefficients {¢;} in (3} were equally likely to be each
of the nth roots of unity with# > 2, (3) would not be real, and (9) would not be valid,
thus invalidating (10). Moreover, because E{¢;] = 0, the righi-hand side of (12)
would be replaced by zero and, hence, that of (52) also. Thus, E{x?} = E{y?} and
E{xy} = 0; i.e., the in-phase and quadrature components of #(¢) would then always
have identical spectra and would be uncorrelated. In addition, (36) would vanish, and
there would be no periodic component from which to regenerate the clock. However,
such a periodic component is then obtainable, for example, from |u(¢)|? because there
is still a correlation between spectral compenents of u{#) whose frequencies differ by
any multiple of the clock frequency.

From (32)—(34) it follows that the Fourier transform of u(¢£)? is

Y eGP NIGHS), (39)
k=0
where o
V()= ) cjejme” @PHRTIT, (40)

Jj=—co0
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Gr(f) =]i g(f+i—cz£)g(f—£§-)e_2’”ﬂdt

- [Colf-s)elf-o) e

are the Fourier transforms of vi{f) and g (f). The second line of (41) shows that
G (f) comes from pairs of Fourier components of «(¢) whose frequencies sum to f.
By comparing (38) with (41), notice that Go(m /2T} is the complex amplitude of the
Fourier component of s(¢) of frequency m /2T for even m, from which the clock can
be recovered if Go(m/27T) #£ 0.

and

(41)

From (40) it follows that
1
Ve(=fl=V(f)= Vk(f+ -T—) (42)
and, hence,
m of
Vk(ﬁ + 1) =¥ (ﬁ - f) 3)

for every integer m, as is the case for ¥ (f) as given by (7) [cf. (8)-(10)]; Le., every
Vi(f), too, has conjugate symmetry about each muttiple of half the clock frequency.
Whenever k is odd and f is amultiple of 1/ T ork isevenand f is a multiple of 1/27,
(40) is real; otherwise, it has a circular normal distribution like that of ¥ ( f),and so
it too results in contributions to x{¢) and to y{¢) that are, for each f, uncorrelated,
zero-mean random variables.

Just as we needed the correlation properties of ¥ (f) in Section 2, we shall
shortly need those of the {¥,( f}}. Again recognizing the Fourier series for the shah
function [24, pp. 77-79], we find that

5 . oQ
E(V OV =22 Y 6(fi- - 7) (44)
and
5 o0
E(Va (/0¥ (U9} = 22 > 8(fi+ fi— 7). (43)

In contrast with the Dirac delta function 8(.), the Kronecker delta 8,4, is 1 fork; =k
and is 0 otherwise. It arises here because the {c;} are zero-mean independent random
variables, of which just the first power of at least one is a factor in each term for which
k) # k». Thus, the {¥;(f)) have the same autocorrelation properties [17] as ¥ (f)
and are completely uncorrelated with one another. Moreover, the sum of the terms
of (32) for each k > O behaves just like u(#) with g(?) replaced by gi(¢), and so our
analysis of (¢} can be applied directly to (z)? except for the & = 0 terms.
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Because all three express the correlation between signal values displaced in time
by kT or by radar range difference and shified in frequency by heterodyning or by
the Doppler effect, (41) and Woodward’s [25, sec. 7.2] complex radar ambiguity
function x (z, ¢) and W. A. Gardner’s cyclic finite autocorrelation function [5, p. 356,
eq. (12.149)] are identical in form whenever g(¢) is real for all ¢ and, consequently,
G(L f — &) = G*(¢ — ;S for all values of f. Otherwise, (41) must be regarded
as a conjugate correlation [22] and [23], which can be regarded as a form of cross-
ambiguity function.

From the first line of (41) we see that, if g(#) is an even function, G(f) is
real, and so this factor in (39) will leave the proper phase relations between (39)
at frequency f and (39) at frequency /2T + f for every integer /. The amplitude
relationships will generally be altered, however, preventing full cancellation of the
quadrature self-noise unless the bandwidth B of the filter H(f) is small enough
that |G ()| varies negligibly over its passband, since the Fourier transform of the
narrowband filter’s output is

W) =H( Y aVl(HG(S)- (46)
k=0

Subtraction from (32) of the periodic component (36) of u(2)*, which gives
rise to the clock-harmonic spectral lines, replaces the & = 0 term of (32) by the
last term of (35). Multiplying the time-domain version of (39) by ™™™/ as in
Section 2.2 in order to get its phasor representation in terms of the reference frequency
m/2T and again setting ¢ = O for convenience, we now find that, at f = 0, the
phasor representing the self-noise near this frequency that is passed by the filter

H(f)is

x+iy=wl) = f H(f) [Vm(f)Go(f) + 22 Vk(f)Gk(f)] df, (47)
—oo k=1

where .
Voolf)= D (¢ — e /T, (48)
J=—00

Notice that (47) resembles {16). The autocorrelations of (48), which are completely
uncorrelated with ¥ (f) fork > 0, is

M-1 &
EVm(Vadl = —— 3 5(fi-fi-7) (49
and
M-—1 &
EVon(/¥oo( ) = —=— 3 8(fi+ fi= 7). (50)

where M is the fourth moment (2) of the coefficients {¢;}.
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3.1 The Statistics of the In-Phase and Quadrature
Components

From (44) and (47) we find that, if the bandwidth B of the f( f*) filter docs not exceed
1/2T,

E(x? + y?)
= E{lw(O®*)

M-1 f* : 4 2, oo

M-1 m 2 4 & m 2 o
~| oozl + 7 oG | [ wmorar
[ 7 [6o(7)| +7 L loGE)l | L P
Likewise, the square of the self-noise phasor has expectation

E{x? — y +2ixy}
= E(w(0)’}

=M_T_l i ]:ZGO(%+f) Go(3z — f) (5 + 1) H (55— 1) dr

2 i i[_‘:ek(%u)ck(%—f) 52)
o7

<[Ee(m) 5 o)

<[ G HGr - @

o o]

if the passband of H(f) lies in the neighborhood of the harmonic m /2T of half the
clock frequency; (52) is zero if m /2T does not lie within the passband of this filter.
Equations (51) and (52) are convenient when the signal pulse g(f) has a finite duration,
as the summation over & then includes only a finite number of nonzero terms.

Notice that the terms of (52) for each n involve two pairs of Fourier components
of g(t) whose frequencies sum respectively to (n/2T) £ f, ie., with n/T as the
sum of the four frequencies, while each term of (51) comes from a tetrad of Fourier
components of g(¢), pairs of whose frequencies have arbitrary equal sums f. This is
related to the fact that the fourth-order spectral-moment function studied by Spooner
[2] is nonzero only when the sum of the four frequencies equals a clock harmonic.
Notice also that, if M = 1, as in the case where each ¢; in (1) takes only the values
+1, the terms of (51) and of (52) involving G disappear, and only the terms involving
G, with &k > 1 remain.

xH(%+f)H( - 1) df
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Combining (51) and (52} just as we did (17) and (52), we find that

6y = 5= [ _loo(g5 + ) (g5 + 1)
#6357 = 1) (g = ) as
1 & [
N INCIC W ECY)]

m

+6i(zr =) (g =) s

(53)

and that

E{y’} = M;—;l :|Go(% + 1) H(55 + 1)

m

~Gigr =) (g- ) v

1 ™ m m
+— |64 (5= + r) # (7
T;/_m \ar +f) 2T +f)
m m 2
i) () o
Hop — 1) H (57— 1) @r
When g(¢) is bandlimited and thus has long tails, (5 1)-(54) involve summations
over many values of £. To recast (54) in a form that then involves only a finite
number of nonzero terms, we add to and subtract from (54) half of what would be the
k = 0 term if the summation over k began with k¥ = Q. Then applying the Poisson

summation formula, (37), to the resulting summation over k, we can express (54} in
the form

(54)

E{y?%)
M-3 [ m

=% [ oo + 1) H G+ 1) -Gz - ) (- ) s
vara [ [ [0GE+5)o(f5 + #) (3 + 5+ 5)
- (G A0 (Gr - Ay (5~ A 5)] 55
xjijm[c;*(%+ﬁ+%)G‘(%+fz—%)ﬁ*(%+ﬁ+fz)

- G(%—ﬁ—»_%)G(%—ﬁ+%) (3= - f —ﬁ)}dﬁ éﬁ.-
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(The corresponding form for (53) is the same except for + signs between products
where — signs appear here.) As observed in [2], when the signal pulse g{¢) contains
no frequencies higher than half that of the clock, i.e., when G(f) = Ofor | /| > 1/2T,
the j # 0 terms of (55) vanish because one factor or another is zero for every f; and
2. For j = 0the integrand is the square of an absolute valus.

3.2 The Vanishing of the Quadrature Self-Noise

The first term in (55), with the factor M — 3, vanishes whenever the distribution
of the {c;} is mesokurtic, e.g., if it is Gaussian, as A is then 3; this results from the
vanishing of the fourth-order spectral cumulant [2]. If M 3 3, this term will generally
not vanish, but we shall shortly sec that, when the rest of (55) vanishes, the first term
does also. These other terms vanish when their common factor is zero, i.e., when

S+ £) 0z + £) Hlzp + £+ )

e of L (2 _
=6 (4T f‘)G (4T fz)H (ZT Y fz)
for all values of f; and /5. From (54) we obtain a different but equivalent condition
for the vanishing of the mean squared quadrature self-noise:
m m o m ofmo
G*(E+f)H(ﬁ+f)=G*(2T f)H(zr f) 7
for all values of k and all values of /. Multiplying (57) by e*™'¥7  summing over k

from — oo t0 0o, and integrating with respect to the ¢ in the definition (41) of G, we
find, after substituting f; for f/2 — v and f; for f/2 + i, that (57) implies

= m J m J m
S o(grarg)o(iF+a-5) Hgg+ 5+ 5)

j=—00

(56)

o _ _ (58)
m J m J m
— Gl - 2+ Gl: - = Ht(___ _ )
j;m (4T q T) (4T Jr2+T) 2T h=re
for all values of £} and f3, which is similar to (56) apart from the shifts by /T and
the summation over j and represents the vanishing of the second factor in the last
integrand of (55).
The condition (57) is clearly satisfied when

Mg )= (-
for all f and
o+ ) =i 1)

for all values of £ and for all values of f for which H(f) # 0. The conjugate-
symmetry condition {59) on [ { f } means that the impulse response £ (¢) of the narrow-
band filter is e®*/T times a real function of time. The conjugate symmetry condition
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(60) on G( /) means that the part of g;(¢} whose spectrum lies within the passband

of H(f)is cosmmt/T times a real function of time. For g (£) 2 gt —kT/Dg(t+
kT /2) to include the factor cos mm¢/ T after exclusion of frequencies not passed by
H(f), it is sufficient that g(t) be cos mm¢ /2T times a real function of time whose
spectral density vanishes at all frequencies above m /4T and that H( f) should pass
no frequencies below m /4T so that the dc component of cos® mmt/ T will have no
effect. Thus, we find that the same conjugate-symmetry condition

G(:—T+f) =G‘(%—f) (61)

that has been found by other authors ([10], [17], and others) suffices to climinate
quadrature self-noise.

The conditions (59) and (61) together clearly suffice to satisfy (56), and they
ensure the vanishing of the first term on the right-hand side of (55) as well as the
second. They are not, however, the most general conditions under which E{y?} = 0,
as any G(f) and H{f) satisfying (39) and (61) can be multiplied, respectively, by
a=27%/ and a®*¢/, where a, b, and ¢ are any real or complex constants, and wili
still satisfy (56) and (57). The resulting asymmetric G(f) and H () represent the
most general solution to (56) and, probably, to (58) also, as can be seen by letting
y(@®) £ G + @)/G (= + ¢) and (@) = H(Z + ¢)/H*(Z + ¢). Then
(56) becomes y (¢)y (¥}In{g¢ + ¢) = 1 for all values of ¢ and . If the two sides
of this equation are divided by the values they have when ¥ = 0 and if the two
sides of the resulting equation are divided by the values they have when ¢ = 0, the
equation n(0)n{¢ + ¥) = n(@d)n(yr) is obtained, whose only continuous solution is
readily found (by putting ¥ equal to successive multiples of ¢b) to be an n(¢) that is the
exponential of a linear function of ¢, and it follows from setting 1 = 0 that y (¢) must
be the reciprocal of that exponential. The foregoing factors ¢® and a~* representing
this exponential will take care of any phase mismatch at the clock frequency. The
factor =%/, however, may destroy the conjugate symmetry of G () around f = 0,
which is necessary if g(¢) is to be real.

When H{f) possesses conjugate symmetry around the clock harmonic m/2T
but G () does not, suitable filtering before squaring (“prefiltering™) may give it the
requisite symmetry within the band of width B passed by H(f). Otherwise, the
dominant effect of the asymmetry will generally come from the linear Taylor-series

term of Gx(f), say C - (f — m/2T), which will, for BT « 1, make the & > 0 term .

of (54) proportional to (4/T) ff"m 1C-{f —m/2TYH(m /2T + f)|2df, which varies
as the cube of the bandwidth B of H(.) if its tails fall more than 9 dB per octave.
E{y?} will be proportional to B even if G, (m/2T) = 0, as, for example, in the case
of (64) substituted into (20). This cubic dependence of the mean squared jitter on
bandwidth is like that of the output noise in high-SNR high-modulation-index FM
Teception.
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3.3 Other Reference Phases and the Case of Correlated
xandy

If the signal pulse g(¢) is not symmetric, the phase angle of the clock harmonic m/T
in (38) 1s likely to be, say 8 # 4, and, instead of E{y(£)*}, we need to know the
mean squared value of the self-noise component y’(¢) in the direction g + %J’t’, which
is responsible for the errors in the phase of the clock-frequency component of the
output of the narrowband filter. The mean squared vaiue of 3/(£) can be determined
by reference to Fig. 6, which shows the circle [26, prob. 1-9a] having as a diameter
the line from (E{y»?}, —E{xy}} to (E{x?}, E{xy}), whose inclination is 26, where
2E{xy}

20 = aretan gy pe (62)
is the phase angle of (52). As complex numbers, this diameter and the center of the
circle are, respectively, (52) and half of (51). When (52) is not real, it is because
E{xy} is not zero, and x and y are correlated; E{»?} can then be made smaller by this
sort of shift in the phase reference.

If the reference phase is changed from zero to §, the diameter seen in Fig. 6
tumns clockwise through the angle 28, with the abscissas of its ends becoming
E{x'(¢)?] and E{3’(£)?}, and their ordinates bccoming_:I:E{x’(t)y_’(t)}. When 8 =0,
E{x'()?} and E{y'()?} reach their extreme values, x2,, and y2;,, which are the
abscissas of the rightmost and leftmost points of the circle, and x'(¢#) and y'(¢) are
then uncorrelated. The effect of this rotation can be found by replacing H and f/* in
(52)~(54) by He™# and H*e, respectively.

3.4 Examples
Raised Cosine; When the signal pulse has the raised-cosine form

= cos2 *L rect L 63
g(f) = cos o7 et om (63)

with Fourier transform

T ¢ 2
G =3 > (j+1)sinc(2fT—j)

J=—1 (64)
_ sin2x [T
T 2mf( —4f2TY
the expectation of u(£)?, (36), is a constant plus a clock-frequency sinusoid,
3 1 2t
==+- —_— 65
s(2) 3+ 70— (65)
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Figure 6: Relationship between the variances ¥ = E{x?} and ;3 = E{y?} and
covariance Xy = E{xy} of the a.m_pliludes of the in-phase and quadrature components
and the extrema of the variances X2max = E{x¥)mux and 2, = E{p2)min attainable
by shifting the reference phase of the filter output.

no other clock harmonic is present. Because (63) is zero for |¢| = T, G (/) vanishes
for £ > 1, and for the smaller values of & we have (Fig. 7)

Go(f) TZZ:( 4 )sinc(sz h)
1] = — 3 —
81.=_2 J+2 (66)
_ 3sin2n fT
C8mf(l— FITH(1 —412T2)
and |
T 2-
Gi(f) = — ( )sim:(fT—J')
161=_1 j+1 67
sinz T

T 8mf(1— [T
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Figure 7: Go(S) (dashed) and G () (solid) when the signal pulse g(¢) is the raised
cosine (63): (a) main lobe and (b) sidelobes.

where in7tfT
. A sinm
T=

sinc afT

is the Fourier transform of T rect(¢/T). At the clock frequency their values are
Gyo(1/T) = T/8 and G,(1/T) = T/16. Hence, the quadrature self-noise output of
the H{f) filter will tend to vanish only if the response of this filter has conjugate
symmetry about the clock frequency and its passband is very narrow. Because Go(f)
and G, () are not flat near f = 1/T, their variations with f will prevent perfect

(68)
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cancellation even when F(f) has conjugate symmetry about f = 1/T, causing
E{y*} to be of the order of 5% when BT is small.

Short Rectangular Pulse: When
t .
g(t) = rect " (69)

with < T, successive pulses do not overlap, and hence only the £ = ( terms of
41), (46), (47), (51), and (52) are nonzero. In this case the mean squared jitter is
determined by

Go(f) = Tsinc f1. (70}

For f = m/2T with an even value of m, Go(f") vanishes if T = T, but, for this T,
u(#)? becomes identically 1, and it then contains no clock harmonic from which to
regenerate the clock.

Ideal Bandlimited G(f): When

1 f
G = —rect —, 71
6 R ()
the pulse shape is
g(t) = sinc Bt, (72)
which produces no intersymbol interference at the times ..., —T, 0,T,...iffBisa

multiple of 1/ 7. Substituting (72) into (41}, we find that

sinkr(B - /DT for | f| < B

Gi(f) = o ke BT (73)

otherwise.

If, for example, B = 2/T and f = 1/T, this is zero unless &k = 0, in which case
itis 7/4, and E{y?} is easily approximated for any convenient /(f). This case is
identical with that of a pulse spectrum centered at /' = 1/2T with the form [10]
G(f) = (T/2)rect (| /1T — 3).

Ideal Bandpass H(f): When H(f') is an ideal bandpass filter (23) with band-
width B < 1/2T centered F above the clock harmonic m/2T, where m is any
positive, even integer, we find, upon substitution into the last line of (53), that, if the
{G(m /2T)) are all real, as in the case when (60) is satisfied,

E(x?) ~ % [——M; IGO(%)Z + iek(%)z [1 + A(%)] (74)
k=1 n

(Fig. 32) and, upon substituting into the last line of (54), that

w2 [ oy« ey [-a(F)] o9
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(Fig. 3b). For a fixed F, as B increases from zero, (75) increases linearly until
B = 2F, and it remains constant as B increases further because up to that point the
band of width B passed by the filter is not balanced by anything on the opposite side
of the clock harmonic m /27, but thereafter there is only a band of fixed width 27
that is not balanced by its mirror image in the clock-harmonic frequency.

If B is large enough that the {G.(f)} must be treated as linear functions of
f in the neighborhood of f = m/2T instead of as constants, E{y?} will include
higher-order (up to cubic) terms in B and F in addition to the linear term in B and
the constant and linear terms in F. E{y*) is then no longer zero for F = 0, but, as
mentioned in the Introduction, suitable prefiltering of the signal before squaring and
narrowband filtering can alleviate this problem.

Gaussian Filter H(f): When H( f) has the Gaussian form (29}, the last line of
(53) becomes

s 22 [ M)« S (1) o

(Fig. 4a), and the last line of (54) becomes

wirt ~ 222 [ Mo (2 4 Sa(g) () o

(Fig. 4b), whicli is proportional to £2/BT when |F| <« B and which is proportional
to B/T when F-3» B. If {G,(f)} must be treated as linear functions of f in the
neighborhood of f = m /2T, additional terms proportional to BF, BT, BF?T,
and B3Te F"/% are required in (77). These result, for example, in E{y?}’s being
proportional to B°T when £ = 0.

4 CONCLUSIONS

The quadrature self-noise y(f) introduces a phase error. of rms wvalue
2 Yrms/ m|Go(2m/ T)| in the regenerated clock, where Go(2m/ T) is the magnitude of
the Fourier coefficient of (36) found in (38) that corresponds to the clock harmonic
m /2T Because of the amplitude and phase relationships between the pairs of Fourier
components of (39) having frequencies whose sums or differences are multiples of
the clock frequency 1/ 7T, the mean squared clock-regeneration jitter is far smaller
than might be predicted on the basis of the spectrum of the total self-noise [3]. It is
given by an integral (20) in the case of the signal u({¢) itself (Fig. 1) whose integrand
involves rwo frequencies, since the quadrature self-noise on one of the foregoing sort
of pair of frequencies can cancel the quadrature self-noise on the other while the
in-phase self-noise components on these two frequencies add constructively. In the
case of u(rY? (Fig. 5), (54 has an integrand involving four frequencies that combine
in this way. :
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The phase and amplitude correlations between the Fourier components of fre-
quencies m /2T % f, where m is any integer, cause them to combine like the sidebands
of a suppressed-carrier AM signal of frequency m /2T whose carrier is in phase with
the clock if the two frequencies fall within the passband of the filter H( /) and suffer
equal aftenuation and opposite phase shifts, thus producing no jitter. If, as a result
of asymmetry of H( f), only one of the two falls within the passband, it contributes
equally and uncorrelatedly to the in-phase and the quadrature filter outputs. The fore-
going analysis should help to clarify the source and the nature of the relationships
between spectral components of the square of a PAM signal and the effects that these
relationships have upon clock recovery. These foregoing results show explicitly how
the design-and-performance analysis of square-law synchronizers is characterized by
the spectral correlation function and the fourth-order spectral-moment function of a
PAM signal.
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Abstract

Recently proposed cyclostationarity-exploiting methods for multipath-channel iden-
tification are reviewed. They are inherently tolerant to both noise and {possibly
correlated) interference and can, in principle, provide arbitrarily accurate multipath-
parameter estimates when a sufficiently long collection time is available. The prin-
ciples of operation of these techniques are explained and their algorithmic imple-
mentations are discussed. Computer simulation results show the capability of the
new methods to correctly estimate the multipath parameters in noise and interference
environments where the conventional techniques (based on power spectrum mea-
surements) fail. Finally, a comparison among the methods, in terms of estimation
accuracy, arrival-time resolution, and operating range, is made.

1 INTRODUCTION

The problem of multipath-channel identification (MCI) is of great interest in many ap-
plications including radar, sonar, seismics, ocean acoustics, communications, and oth-
ers. For example, the use of digital communication systems characterized by higher
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and higher bit rates requires detailed channel modeling to counteract the degrading
effects of intersymbol interference and selective fading arising from the presence of
delayed replicas of the transmitted signal,

The standard cross-correlation method [1, 2] identifies the channel, that is, esti-
mates the arrival times (ATs) and the scaling amplitudes (SAs) of the multipath sig-
nal, by locating and measuring the peaks of the temporal cross-correlation function
of noisy measurements of the channel input and output, provided that the individual
pulses in the impulse response of the channel are separated by time intervals greater
than the duration of the autocorrelation function of the uncorrupted exciting signal
(ES).

A variety of techniques, referred to as the generalized cross-correlation (GCC)
methods [1, 2], reduce the degrading effects of noise and interference by filtering
the input and output measurements prior to estimating their cross-correlation func-
tion. Some of these methods, proposed in the time-difference-of-arrival (TDOA) esti-
mation context, with the PHAT technique as an example, cannot be utilized for MCI
since the cross-correlation function between the filtered measurements does not neces-
sarily exhibit peaks in correspondence of the ATs. Moreover, some GCC techniques,
with the Roth method as an example, allow one to estimate the ATs but are not able
to perform SA estimates. In any case, all GCC algorithms that are appropriate for
MCI exhibit poor arrival-time resolution.

Greater arrival-time resolution can be achieved by an algorithm based on the
autoregressive spectral analysis technique that is referred to as the Prony algorithm
[3]. The method, however, turns out to be very sensitive to measurement errors due
to the presence of noise and interference.

All the above-mentioned estimation methods have been found to perform very
poorly when the measurements of the channel output and, especially, input are highly
corrupted by noises and/or interferences, particularly if the input and output undesired
signals are correlated with each other. Such a correlation typically occurs when the
channel input and output cannot be reached or fully controlled by the experimenter.

Recently, a new approach to the identification of linear time-invariant systems [4,
5] has been utilized to obtain multipath-parameter estimates [6—10]. It is applicable
as long as the ES exhibits cyclostationarity with a cycle frequency for which the
input undesired signals do not exhibit cyclostationarity and, moreover, the input and
output undesired signals do not exhibit joint cyclostationarity. In short, the new
methods exploit the spectral correlation properties, as well as the temporal correlation
properties, in order to gain immunity to noise and interference. In particular, they can
assure satisfactory performances when the input and output undesired signals exhibit
a high degree of temporal correlation,

This article provides a tutorial review of recently proposed cyclostationarity-
based {say cyclic) methods for multipath-channel identification. After a brief intro-
duction to cyclostationarity, Section 2 describes the general cyclostationary model for
the MCI problem. Then, the cyclic methods so-far proposed [6-10] are derived and
their principles of operation are explained in Section 3, whereas problems arising from
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their algorithmic implementations are presented and discussed in Section 4. Section
5 presents numerical results of Monte Carlo simulation experiments aimed at com-
paring the cyclic methods with each other and with the corresponding conventional
(i.e., noncyclic) estimation techniques. Finally, conclusions are drawn in Section 6
and some analytical details on the derivation of two of the described methods are
given in the Appendix.

2 CYCLOSTATIONARY MODEL FCR MCI

Before introducing the cyclostationarity-exploiting methods for MCI, let us present
here the necessary background on cyclostationarity and the cyclostationary model for
MCL

A real signal s(¢) exhibits cyclostationarity [4] with cycle frequency o % 0 if
the cyclic autocorrelation function

RiD) & (s (: + %) s (: - %) g J2maty N
is not identically zero; that is, for some lag values 7, the lag product s(t + 3)s(t — 3)
contains a finite additive sinewave component with frequency & # 0. In (1), {:}
denotes infinite-time average. For o = 0, (1) is recognized as the conventional
autocorrelation function R (7).

Analogously, two real signals s (¢} and s3{¢) exhibit joint cyclostationarity with
cycle frequency o # 0 if the cyclic cross-correlation function

T T ]
R;:;(T) é {s1 (I + E) 52 ([ — E) e—ﬂ.rmr) @
is not identically zero. For o = 0, (2) is the conventional cross-correlation function

RS| 52 (t) .
The multipath-channel identification problem can be described by the following

model:

x(t) = s(6) +n() (3a)
N

y(t) = Y Awst = Dy +m(t) (3b)
k=

where x (¢} and y(¢) are noisy versions of the input and output signals (respectively)
of the multipath channel. Both signals #(¢) and m(¢) take into account the presence
of noise-plus-interference on the real exciting signal s (¢) and on its multipath version.
We desire to estimate the scaling amplitudes A, 4z, ..., Ay and the arrival times
Dy, Dy, ..., Dy.

Assuming that s(¢), n(#), and m(¢) have zero-mean (time-average) values and
that s(¢) is statistically independent (over time) of n(t) and m(¢) and exhibits cy-
clostationarity with cycle frequency e, then, from (3), accounting for (1) and (2), it
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follows that
R%(1) = R%(z) + R%(v) (4a)
N -
RE(1) = D AxRY(z — De™ ™% + R% (7). (4b)
k=1

If the undesired signal »(¢) does not exhibit cyclostationarity with the considered
cycle frequency o (RS (r) = 0) and, moreover, m (¢} and n(¢) do not exhibit joint
cyclostationarity with this cycle frequency (R5,(t) = 0), (4a) and (4b) become

RY(r) = R{(7) (52)
N

Re (1) = ) AxRY(z — Dpe 7", (5b)
k=1

By Fourier transforming (5), one finds that the cyclic spectrum S ( /) and the cyclic
cross-spectrum 7 ( f) (also referred to as spectral correlation density functions) are
given by

SN =8N (6a)

N
Sp(f) = SE(f) Y Aye™2rUra/ DD (6b)
k=1

Equations (5) and (6) show the potential immunity of AT and SA estimation
methods based on the spectral correlation properties (¢ % 0) against noise and inter-
ference, regardless of the extent of the spectral overlap of s(£), n(¢), and m(¢) and of
the degree of temporal correlation between #(¢) and m(¢). In contrastto this, the GCC
methods, which are based on the temporal correlation only (i.e., @ = 0 in (4)), are
affected by the presence of noise and interference. Even if #(t) and m(¢) are uncor-
related, the presence of n(¢) affects (see (4a)) the measurement of the autocorrelation
function of the ES.

3 CYCLOSTATIONARITY-EXPLOITING METHODS
FOR MCI

In this section the recently proposed [6-10] cyclostationarity-exploiting methods for
multipath-channel identification are presented and their principles of operation are
explained.

3.1 CYCCOR Method

On the basis of (5), and using estimates of R;’x(r) and R7(t), the ATs and SAs can
be estimated by assuming that the replicas in (5b) do not overlap, i.e., that the true
values Dy satisfy the resolution relations

| Dy — Dyl = de h—','l—'k; hk=12,...,N ’ (€))]
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where d, is the width of RZ(z). In fact, on this assumption, from (5b) it follows that
N

|RE ()| =) Ak |R¥(x — D] ®)
k=1

and, therefore, the ATs Dy can be estimated by evaluating the shifts of the replicas
of |R%(7)| and the SAs A, can be determined by considering the values of | R}, (7) |
/ ‘Rf(‘t — Dk)| corresponding to values of 7 such that [t — Dy| < dy/2, provided
that | R%(z — Dy)| # 0. The evaluation of replica shifts benefits from the fact that
R*(7) is an even function of 7. This method, referred to as the CYCCOR (CYclic
Cross-CORrelation) method [7, 9], reduces for &« = 0 to the conventional cross-
correlation technique. Moreover, for @ # 0, it includes the CCC (Cyclic Cross-
Correlation) method of TDOA estimation as the special case for which only one
delay exists (¥ = 1) and no estimate of the SA is sought [4, 11].

3.2 SPECCOA Method

An alternative method can be obtained using an ad hoc least-squares optimization pro-
cedure. More specifically, the SAs and ATs are estimated by determining the values

- Lo A
of the amplitudes -y 2 (1. ¥2s - - -, ) and the arrival times 8 = (B, B2, ..., ,B.N)
that minimize the norm of the difference of the two sides of (6b) where, accounting
for (6a), S2(f) has been replaced by S7(f):

+oo
min f
B8 —go

Although this minimization problem is in general very difficult to solve, it can
be simplified by assuming that the true values Dy satisfy the resolution relations

2
N
S8) = SAL) Y e PRUSIDB df o 9
k=1

| Dy — Dil = 2d, Rtk hk=1,2...,N. (10)

In fact, on this assumption, as is shown in the Appendix, the problem can be solved
considering that the function

+00
Re lejmrr f S;x (f)Sf(f)'eﬂ"frdf}

A
8 (%) = T 5 (11)
[ isantar
—00
is equivalent to the superposition of N nonoverlapping replicas
N +co
$° e o=t [ sz ey
k=t = (12)

“+oc 2
[ iszolar
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each of which presents a peak of amplitude 4; at t = Dy, Therefore, the ATs and
SAs can be estimated by locating and measuring the maximum of each replica in (11)
where the cyclic spectra are replaced by their estimates.

This method maximizes the correlation over f of two cyclic spectra by phase
alignments through adjustment of the linear phase-versus-frequency term 2 [+
a/2)t. It has been referred to as the SPECCOA. (SPECtral COherence Alignment)
method [6, 7, 9] in accordance with [11, 12] in the TDOA estimation context. For
o = 0, this technique reduces to the GCC method with the power spectrum S, ( /) as
weighting function. Moreover, for & # 0, it includes the SPECCOA method of [11,
12] as the special case for which N = 1 and the estimate of the SA is ignored (in
which case the denominator in (11) and (12) can be replaced with unity),

3.3 BL-SPECCORR Method

A further estimation method can be obtained by the least-squares minimization pro-
cedure
2

52 N
e () if a3

i —J2n([+a/2)8;
min — 3 e
B Lfl—jnss,./z SENH ;

as suggested by (6). In (13), fy and B, are the center and width of the support band
for S*(f).

The minimization problem can be reasonably simplified by assuming that (7)
holds. In fact, on this assumption, as is shown in the Appendix, the problem can be
solved recognizing that the function

s ) '
Vo (7) 2 ——I—Rc{f ﬁeﬂr(ﬁa/z)rdf} (14)
f af /1= fel<Bar2 STCS)
(11— fal<Ba/2

is equivalent to the superposition of ¥ nonoverlapping replicas

iA sin [ B (1 — Dy))

% Balr — Do) cos[za(z — Di)]cos [27 fu(z ~ Dy)] (15)

k=1
each of which presents a peak of amplitude 4, at r = Dy. Consequently, the ATs and
SAs can be estimated by locating and measuring the maximum of each replica in (14)
where, of course, the cyclic spectra are replaced by their estimates. This technique has
been referred to as the BL-SPECCORR (Band-Limited SPECtral CORrelation Ratio)
method [13] in accordance with [11] in the TDOA estimation context. Moreover, for
e # 0, it includes the BL-SPECCORR method of [11] (a variation of which was first
proposed in [4, 14]) as the special case for which N = 1 and the estimate of the SA
is ignored (in which case the scale factor outside the Re{-} operation in (14) can be
replaced with unity).

3.4 Cyclic Prony Method

The cyclic methods considered above are expected to exhibit an arrival-time resolution
limited by the width of the cyclic autocorrelation function RY(r) (see (7} and {10)).
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To overcome this limitation, we present now a cyclic method [8, 10] based on th_e
autoregressive spectral analysis technique referred to as the Prcfny algorithm. This
cyclic method, however, exhibits a lower tolerance to noise ‘and mtgrference.

Accounting for (6) and the generalization to cyclostationary input of the well-
known time-invariant system identification formula (see [4, 5]), the method can.he
introduced by recognizing that the samples of the multipath-channel transfer function
H(F) at M evenly spaced frequencies can be wriiten as

SE(f) ... A
H(fy +a/2) = Sy;(f) =) bfzy = H n=0,1,....M—1 (16)
x \ih k=1
where A
fo = fotnAf (17)
B & et/ (18a)
7 2 e SAmALD: (18b)

The samples have an autoregressive structure, i.e., each sample can be expressed
as a fixed weighted sum of its neighbors:

N
HY == amHS, n=N,N+1,....,M -1 (19}
m=I

where the weights A, are such that the predictor polynomial can be written as
N N
Py@ = 2+ ha2 T =] -2 (20)
m=I1 k=1

Then, the cyclic Prony procedure consists of the following steps:

1. Calculation of the weights A,, by solving (19);

2. Evaluation of the z s by factoring the polynomial (20) and, hence, evaluation
of the arrival times D by (18b);

3. Evaluation of the #’s by (16) and, hence, evaluation of the 4;’s by (18a).

Note that this cyclic Prony method is identical to the usual Prony algorithm [Zf;]
where, however, the samples of the channel transfer function are obtained by cyc?hc
spectrum measurements. In the following section, which deals with implementation
problems, an improved cyclic Prony method is introduced.

4 IMPLEMENTATION OF THE METHODS

The cyclic correlation functions and the cyclic spectra involved in the me.thods pre-
sented in the previous section must be replaced by their estimates obtained from

measurements.
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The cyclic cross-correlation function R, (z) can be efficiently estimated by
evaluating the cyclic cross-cormrelogram [4]

s 1 U=l . _—
T _ _ —j2mau
R ) & 2 j(r—lrn/zy (u+ 2)x (u 2) eIy @1

via inverse Fourier transforming the cyclic cross-periodogram

1
Sp () & ZYr(f +a/DXF(Sf —af2) 22)

where T is the integration, or collection, time and the transforms

A T/2 )
Xr(f) = f x(t)e /S dy (23a)
-1/2
T/2 )
Yr(f) 2 f HOe Py 23b)
-T/2

are approximated by an FFT algorithm.

The cyclic spectra Sy, (f) and S7(f) are efficiently estimated by using the
frequency-smoothed cyclic periodograms {4]. For example, the estimation of Sy, (f)
is performed by

S+o/f12
e (Nar = Y] f s Se (V) (24)
where A f is the width of the frequency-smoothing window. Such a parameter A f
must be large enough to assure sufficient reliability of the cyclic spectrum estimates,
that is, Af >» 1/T, and, moreover, small enough to resolve the oscillations in
the cyclic spectra and to assure satisfactory operating range for the armival times.
Specifically, from (5b) and (21)-(24} it follows that

[ prr (Nas)

— Rt )sm(n'Afr) (25)

yxr JTAf‘C

iAkR" (t — Doe —jman, SIN(TAST)
P TAfT
where F~'[-] denotes the inverse Fourier transform operation and the approxima-
tion is close when max; Dy <« T. Then, from (25) it follows that the condition
Af < Afmax; D, (where the chosen value of A affects the estimation accuracy)
must be satisfied.

From the previous discussion, it follows that for the CYCCOR method the con-
dition max; Dy <« T must be satisfied, whereas for the SPECCOA, BL-SPECCORR,
and Prony methods both max; Dy < A/Af and TAf > 1 must be satisfied. There-
fore, the arrival-time operating range of the CY CCOR method is larger than that of the
other methods which utilize the frequency-smoothed cyclic periodograms. Note that,
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when the two previously mentioned conditions cannot be simultaneously satisfied
and CYCCOR is not expected to perform satisfactorily, one can obtain coarse es-
timates of the D;’s by the CYCCOR technique, thereby identifying the intervals
(Do — A/Af, Dy + A/Af) where the Dy’s lie. Then, one of the other meth-
ods can be applied by utilizing the smoothed cyclic periodogram Sy, (f)as (with

»n@) = y(t + Dyg;)) so that
sin(mAfT)

sin(w Aft) I7eDu pa
A SRS+ D= (26)
provided that the Dy; s are sufficiently smaller than T [7, 9].

As regards the implementation of the cyclic Prony procedure presented in Sec-
tion 3, since NV is generally unknown and, moreover, the data are noisy, one uses a
predictor of higher order, say Np 3> N, by assuming Ny = M/2, as recommended
by Kay and Marple in [15].

With reference to the implementation of step 1, to gain greater immunity against
the added noise in the data, the weights A, are evaluated {8, 10] by solving (using
the standard least-squares “pseudoinverse™ method) the system constituted not only
by the forward prediction equations (19) in their finite collection time versions

e Mo —~
ax - o
Hf=—- E rAnHY
m=1

but also by the backward prediction equations

J’|XT( )

n=Ng,No+1,...,M—1 (27a)

No
“*5—21 H n=0,1,....,.M—Ny— 1. (27b)

Tilde identifies, here and in the following, quantities obtained by measurements over
a finite collection time and = denotes approximation in the least-squares sense.

As regards step 3 of the procedure, a modification aimed at assuring more ac-
curate estimates can be introduced [8, 10]. More specifically, the estimnates of by are
obtained by considering the system constituted not only by the finite collection time
versions of the M equations (16)

):b""" n=01,...,.M—1 (28a)
but also by the M equations
No -

SED I HE n=0,1,...,M~1 (28b)

Note that, in the ideal case of infinite collection time T (i.e., noise-free samples H,%),
the system (28b) is equivalent to (28a), whereas, for finite collection time, this is not
true, in that the roots z;, do noi necessarily lie on the unit circle.
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The modified cyclic Prony technique considered here has been referred to as the
improved cyclic Prony method [10].

5 SIMULATION RESULTS

The simulation results presented here are aimed at substantiating the tolerance of the
cyclostationarity-exploiting methods to severely corruptive noise and interference
andat quantitatively assessing their performances. The superiority with respect to
the conventicnal techniques, which utilize measurements of the power spectra (i.e.,
o = 0), is also corroborated.

The estimates of the conventional and cyclic spectra have been carried out by
discretizing both time and frequency with sampling increments T, = T/(K — 1) and
Fs = 1/T and by using K = 2'5. The ES is a binary phase-shifi-keyed (BPSK)
signal with carrier frequency fp = 0.125/ T, baud rate o = 0.03125/ T, and full-
duty-cycle rectangular envelope. It exhibits cyclostationarity with cycle frequencies
o = kap and ¢ = +2 f; + ko for all integers & such that a # 0. In al} experiments,
a two-path channel with 4; = 45 = 1 is considered.

The first experiment qualitatively shows that, unlike the corresponding conven-
tional techniques, the CYCCOR, SPECCQA, and BL-SPECCORR methods exhibit a
high tolerance to noise and correlated interference. The interference-plus-noise n(z)
and m (¢} contain additive white Gaussian noise (AWGN) components independent
from each other, whose discretized versions have equal power. Moreover, to intro-
duce correlation between #(¢) and m (¢}, it is assumed that an interfering BPSK signal
contaminates s{¢) and that the multipath signal is corrupted by a delayed version of
the same interfering signal with a delay D; = (D; + D;)/2. This BPSK interfer-
ing signal has carrier frequency f; = 0.101/T}, baud rate a; = 0.02525/7,, and
full-duty-cycle rectangular envelope. The cyclic spectra utilized here are those with
o =2 fy and the ATs are fixed at D; = 3147, and D, = 4547, so that both (7) and
(10) are satisfied and, then, nonoverlapping replicas are expected.

Figures 1-3 present results referring to a single trial of the experiment for a
signal-to-noise ratio for x (£) (SNRy) and a signal-to-interference ratio for x (1) (SIR,)
both fixed at O dB.' More specifically, Fig. 1a shows the magnitude of the normalized
cyclic cross-correlogram | RS, ()| / | RE,(0) ]| as a function of t/T;. The AT esti-
mates D; and D, are essentially error free, whereas the SAs are estimated with an error
of about 2% for 4, and 1% for 4. The graph of Fig. Ib shows the failure of the con-
ventional (& = 0) cross-correlation method owing to the presence of areplica centered
at D;. For the SPECCOA, BL-SPECCORR, and their corresponding conventional
methods, which have been implemented (here and in the following) with a smoothing
product TAf = 100, analogous behavior is shown in Figs. 2 and 3, although less
accurate amplitude estimates are obtained by the BL-SPECCORR method. Note that
BL-SPECCORR and its corresponding conventional method have been implemented
by assuming B, = 2agp and f, = 0, fora =2 fy, and f, = f fora =0,

10nce SNR; and SIR, are fixed, the assumptions made yield the values of SNR,, and SIR,.
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Figure 1: (a) Graph of magnitude of normalized cyclic cross-correlogram. (b) Graph
of magnitude of normalized cross-correlogram,

To quantitatively analyze the performance degradation due to the presence of
correlated interference, a second experiment has been considered where the environ-
ment is the same as the previous one, except for the absence of noise. Figures 4 and 5
present the sample root mean-square errors {(RMSEs), computed on the basis of 400
trials, € p, and €4, on the estimates of D) and 4, (respectively) as functions of SIR;.



402 Tzzo, Napolitano, and Paura

gal(T) ]
- a=21, -

[ SNR,=SIR,=0dB ]
D,=314Ts -

05 [ D.=454Ts ]

L A=A=1 -

_05 — —
—1.0+— _
1 | 1 1 1 1 i 1 1 1 J l 1 1 1 1 | ] I 1 1
200 300 400 500 T/Tg

T T T T T T T T T T T ] T T T

ga(T) - ! ! ! —
- a:O -~

[ SNR,=SIR,=0dB R

L D=814Ts -
05— D,=454Ts ]

A=Ag=1

0.0

—0.5 |- —

1 1

200 300 400 500 7/Ts

Figure 2: (a) Graph of estimate gy (r) of SPECCOA function (11). (b) Graph of
estimated SPECCOA, function with @ = 0 (GCC method with a weighting function

S ().

The results confirm the capability of the cyclic methods to provide, unlike the corre-
sponding conventional methods, accurate estimates in severely corruptive correlated
interference environments. In particular, SPECCOA outperforms CYCCOR for the
AT estimate, but CYCCOR is superior to SPECCOA for the SA estimate. Moreover,
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Figure 3; (a) Graph of estimate #i,(t) of BL-SPECCORR function (14). {b) Graph

of estimated BL-SPECCORR function with @ = 0 (GCC method with a weighting
function 1/Sx{ ) in the support band for S;( /) and zero otherwise).
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both methods outperform BL-SPECCORR in both AT and SA estimates. The peak
at SIR, = 5dB in €p, of BL-SPECCORR is caused by insufficient reliability, as was
confirmed by results obtained on the basis of 600 trials. Finally, note that, here and
in the following, the curves referring to €5, and €4, are not reported since they are
very close to those concerning €p, and €4, (respectively).
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Figure 4: RMSE of the estimate of AT Dy versus signal-to-interference ratio at the
channel input for the CYCCOR, SPECCOA, BL-SPECCORR, and their corresponding
GCC methods in a correlated interference environment without AWGNSs.
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Figure 5: RMSE of the estimate of SA A, versus signal-to-interference ratio at the
channel input for the CYCCOR, SPECCOA, BL-SPECCORR,; and their corresponding:.,,
GCC methods in a correlated interference environment without AWGNs.

The third experiment is aimed at assessing the performance of the estimation
methods under consideration when the measurements at the input and the output of
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the channel are corrupted only by the independent AWGNSs considered in the first
experiment. Figures 6 and 7 present the RMSEs €p, and €4,, computed on the
basis of 400 trials, versus SNR,. As regards the AT estimate (Fig. 6), both cyclic
and conventional methods work well for high SNR,s; for low SNR,s, vice versa,
only SPECCOA is competitive with the corresponding conventional technique. With
reference to the SA estimate (Fig. 7), the conventional methods are far inferior to the
corresponding cyclic methods and, moreover, CYCCOR significantly outperforms
both SPECCOA and BL-SPECCORR.
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Figure 6: RMSE of the estimate of AT I} versus signal-to-noise ratio at the channel
input for the CYCCOR, SPECCOA, BL-SPECCORR, and their corresponding GCC
methods in independent AWGNS.

To test the behavior of the methods when both independent noises and corre-
lated interferences are present, the first experiment has again been considered. The
performances from 400 trials are shown in Figs. 8 and 9, which present €, and €4,
(respectively} as functions of SIR, for SNR, = 0 dB. The expected superiority of
the cyclic methods with respect to the conventional ones is confirmed. Moreover,
the SPECCOA technique largely outperforms both CYCCOR and BL-SPECCORR
methods in the AT estimation, whereas the CYCCOR method provides the most
accurate SA estimates.

To analyze the influence of the smoothing window width A f on the perform-
ance of both SPECCOA and BL-SPECCORR methods, 400 trials of the first exper-
iment were made for various values of A f for SNR; = —8 dB and SIR, = —5 dB.
The results showed that very small and very large values of A / must be avoided. The
former lead to inadequate smoothing (see (24)); the latter provide a correlation taper-
ing window width too small to assure (see (25)} a satisfactory estimation accuracy.
The optimum value of A f for @ = 2 f; was approximately cp/10.
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Figure 8: RMSE of the estimate of AT Dy versus signal-to-interference ratio at the
channel input for the CYCCOR, SPECCOA, BL-SPECCORR, and their corresponding
GCC methods in the presence of both independent AWGNs and correlated interferences.

Fipure 9: RMSE of the estimate of SA A; versus signal-lo-inlerference ratio at the
channel input for the CYCCOR, SPECCOA, BL-SPECCORR, and their corresponding
GCC methods in the presence of both independent AWGNs and correlated interferences.

As regards the Prony techniques presented in the previous sections, to qualita-
tively compare their performances, the first experiment has again been considered. In
this case, however, accounting for the fact that the Prony methods are more sensitive
to noisy measurements than the other methods, a smoothing product 7A f = 1000
rather than 100 has been utilized and higher SNR, and SIR; have been used. The
true ATs can be chosen closer than those considered in the previous methods since
in this case no condition on the AT separation must be satisfied. Therefore, in the
experiment they have been fixed at D| = 37} and D, = 107,. Moreover, accounting
for the regions of support of the BPSK cyclic spectrum in the bifrequency (f, o)
plane [4], the equispaced samples H” of the channel transfer function have been
selected in the spectral band | f| < 1/27T; — |a| /2. Finally, since the value of A f;
and, hence, the number of samples 3 must be chosen according to the constraint
2Af. < 1/ max; Dy to avoid phase ambiguity (see (18b)), in the experiment M = 32
and, hence, Ny = 16 have been used.

Figure 10 presents results for a single trial with SNR, = 3 dB and SIR; =
5 dB. In particular, Fig. 10a shows that the improved cyclic Prony (ICP) method,
utilizing cyclic spectra with @ = 2 f;, provides fully satisfactory estimates, in that
two values of amplitudes (4, = 0.96 and 4, = 1,08) are significantly greater than
all others and close to the actual values and the corresponding arrival times (D) =
3.24T; and D, = 10.057T;) are very close to the true values. Figure 10b presents the
results of the cyclic Prony method, which evaluates the b3 ’s (and, hence, the A4;’s)
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Figure 10: (a) SA and AT estimates by the improved cyclic Prony method working
ate =2 fp. (b) SA and AT estimates by the cyclic Prony method working at o = 2 fg.
(c) SA and AT estimates by Lhe conventional Prony method.

by solving the system constituted by (28a) only. The failure of the method, and,
consequently, the effectiveness of the modification proposed in step 3 of the Prony
algorithm, is evident. Finally, Fig. 10c shows the ineffectiveness of the conventional
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Prony technique (i.e., the one utilizing measurements based cn the power spectra},
even though the modification of step 3 has been used here.

An experiment, which differs from the previous one in that the interfering BPSK
signal and the ES have the same carrier frequency ( /; = fo = 0.125/T;) but different
baud rates {(; = 0.0625/7; and ap = 0.03125/7;), has also been considered. In
such a case, since (6a) and (6b) do not hold for « = 2 fj, a cycle frequency related to
the baud rate of the ES must be used and, therefore, & = ap has been chosen. Figure
11 presents the results (referring again to a single trial) obtained by the ICP method
with reference to SNR, = 7 dB and SIR, = 0 dB. The resulis are fully satisfactory,
unlike those (not reported here for the sake of brevity) obtained by the (not improved)
cyclic Prony method and the conventional Prony technique.

To carry out a statistical performance analysis of the Prony methods, we still
refer to the last two experiments. The performances are evaluated in terms of the
sample mean normalized integrated square error € y (computed on the basis of 400
trials) on the reconstruction of the multipath-channel transfer function:

1/2Ts N 2
. E{fo |H() - B[ df

€H

1/2Ts (29)
fo \H()Pdf

where H (f) is the reconstructed transfer function, obtained from the estimates 2;{
and Dy (k=1,2,..., Np), and E denotes sample mean.
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o = oyp-

With reference to the first of the two experiments, Fig. 12 shows the behavior of
€y versus SIR, for all considered Prony techniques. The ICP method is the only one
that can assure satisfactory performance. Such a result is confirmed (Fig. 13) with
reference to the second experiment where the ES and the interfering signal have the
same carrier frequency.

Finally, let us consider an experiment aimed at comparing all cyclostationarity-
based methods in terms of arrival-time resolution and operating range. The ES and
the noise and interference environment are those utilized to obtain the results shown
in Figs. 1-3. As in the previous experiments, the smoothing product 7 A f has been
fixed at 100 for the SPECCOA and BL-SPECCORR techniques, and at 1000 for the
ICP method. With reference to SNR; = SIR, = 5 dB, Figs. 14 and 15 present the
RMSEs ep, and € 4, (respectively), computed on the basts of 400 trials, as functions of
the normalized atrival-time separation A D/ T; between the true values of the ATs. The
ICP method exhibits a resolution largely greater than those (comparable) of the CYC-
COR and SPECCOA methods, which are superior to that of the BL-SPECCORR tech-
nique. Moreover, the results show that CYCCORR and, especially, SPECCOA can
assure satisfactory performances also in the presence of partially overlapped replicas,
i.e., when the conditions (7) and (10) are not satisfied. As regards the arrival-time op-
erating range, the CYCCOR method, as expected, largely outperforms the other meth-
ods, which utilize frequency-smoothed cyclic periodograms. In particular, the ICP
method exhibits the smallest arrival-time operating range since a very large smoothing
product 7' A f has been adopted to assure adequately accurate spectrum estimates.

the multipath-channel transfer function versus signal-to-interference ratio at the channel
input (the cyclic methods work at o = 2 fg).
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Figure13: Sample-mean-normalized integrated squared error of the reconstruction of

the multipath-channel transfer function versus signal-to-interference ratio at the channel
input (the cyclic methods work at o = o).



412

EpL

10Ts

Ts

0.1T,

0.01T,
1

Izzo, Napolitano, and Paura

II\I\H] T l\HIHl I

T I\I\Hi

T III[IHI

a=2[,

SNR,=SIR,=5dB

ICP
CYCCOR
SPECCOA

® > E x

l IIIIIIJl

BL-SPECCORR

L ILIIIIl L 111

Il]

Hi

T T

lIlI[ll‘ 1 lIll[lI[ 1 IIIHHl 1

1 L.

10

160

1000

AD/Tg

Figure 14: RMSE of the estimate of AT D, versus normalized AT separation for the
ICP, CYCCOR, SPECCOA, and BL-SPECCORR methods.

Eatl

0.8 |—

0.6 |

0.4 —

0.2 —

T Illll\l

a=2[0

SNR,=SIR,=5dB

% ICP

m CYCCOR

A SPECGCOA

® BL-5PECCORR

1 Illllll

I TI\\]]I[ T T T TTTIT

NN

[

0.0
1

10

100 1000

AD/Ts

Figure 15: RMSE of the estimate of SA A, versus normalized AT separation for the
ICP, CYCCOR, SPECCOA, and BL-SPECCORR methods.

Cyclostationarity-Exploiting Methods for Multipath-Channel Identification 413

6 CONCLUSIONS

This article provides a tutorial review of recently proposed methods for multipath-
channel identification. By exploiting the cyclostaticnarity property of the exciting
signal, these methods ideally (for infinite collection time) remove the effects of noise
and interfering signals present at the input and the output of the channel. Simulation
results have shown that, unlike the conventional techniques, the cyclostationarity-
exploiting methods can assure satisfactory performances in severely corruptive noise
and interference environments, such as when the interfering signals are comparable
10, or greater than, the exciting signal in spectral density level and bandwidth and/or
when they exhibit an arbitrarily high degree of temporal correlation. As regards the
comparison among the cyclic methods in terms of multipath-parameter estimation
accuracy, the SPECCOA and improved cyclic Prony methods are the least and the
most (respectively) sensitive to noise and interference effects. Moreover, both the
CYCCOR and BL-SPECCORR techniques significantly outperform the improved
cyclic Prony method. This last technique, however, exhibits an arrival-time resolu-
tion capability that is much greater than those (comparable) of the CYCCOR and
SPECCOA methods, which are significantly superior to that of the BL-SPECCQORR
method. Finally, as regards the arrival-time operating range, the CYCCOR method is
strengly superior to the SPECCOA and BL-SPECCORR techmqucs, and, even more,
to the improved cyclic Prony method.

APPENDIX

The optimization problems stated in (9) and (13) can both be formulated as the

minimization, with respect to 1, ¥2, ..., ¥n and 8y, B2, ..., B, of
2
oo SR A
W, rx _ 'e“ﬂﬂ'(f+ﬂ/2)ﬁh d
/- (f)[S;,(f) > 1
—+o0 2
= (W (I d
v/;oo 4 S“(f) 4
(A-1)
- e 21— 2l D)
+ ym,f (W) eGP g
33 [

I=1 h=1

SEH)

In (A-1), the weighting function W, (') is equal to S*(f) when SPECCOA is con-
sidered, whereas, for BL-SPECCORR, it assumes a value of unity in the support band
for §7{ /) and a value of zero otherwise.

S e S&(f)
~2Y  iRe [f (W ()P 2t 127r(f+u/2),ﬂ,,df].
h=1
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By equating to zero the derivatives of (A-1) with respect to y; and S (k =
1,2,..., N), one obtains the system of 2N equations in 2N unknowns

ZnRe[[ f T Wanite -ﬂ”‘f“'f”’df] ]
=B—5

+oo
—Re [ |:f |W (f)|2 Sy:(f) _;27:(_/’+a/2)1’df} } =0
—eo =

(S}

(A-2)

N ] +o0 ]

Z the [ |:— f |Wa (f) |2 e”JZW(f+ﬂ/2)rdf] }

=t 9% Je T=Pr—Bx

a8 +oo (f)
—R — a 2 yx o2 /DT 4 ] —o
e“:ar '/:00 Wl S / T=ﬂk}

(A-3)

The solution of such a system is very difficult. However, the problem is greatly
simplified if one assumes that the true values D satisfy the resolution relations

| Dy — Dyl = d, Rtk hk=1,2,...,N

where g, is the width of the autocorrelation function

A +00 ]
Fw, (1) = f W () e/ df. (A-5)

00

In fact, on this assumption, the optimization is performed under the constraint

[Bs — Bel = d,

which leads to

[ f 2 +“””df]

h#k, hk=12...,N (A-6)

- A (A-7)
= [, (=), _p 5 =0 h k.
Consequently, from (A-2) and (A-3) it follows that
Vi = e 1 Re [f+m We ()12 Sy:((;)) err(f+n/2)ﬂkdf]
f_m \We (IS —oo “s)
k=1,2,...,N
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__Rel.[+oo|W (o 2=? SN Jer(f+a/2)-B‘df} =0 k=L2...N (A9
SE(f) o

Equations (A-8) show that the y;’s can be determined once the 8;’s have been
evaluated. Moreover, accounting for (6a) and (A-5), one has

- 1 Re l./"'oo |W (f)|2 y,r(f) J'2Tl.'(f+a/2)'rdf]
f Wl )P df 5
-0 (A-10)
1 Y .
= 7@ & ARe{ Ty (e — D).
@ k=1

In other words, in (A-10) each of the N nonoverlapping replicas of Re {7, (t — Dr)}
presents a peak at T = Dy. Then, accounting for (A-8) and (A-9), the ATs and SAs
can be estimated by locating and measuring the maximum of each replica in (A-10)
where, of course, the cyclic spectra are replaced by theil estimates.

Finally, we note that, for the SPECCOA method, the width &, of the autocorrela-
tion function ¥y, () is twice the width d, of RY (). For the BL-SPECCORR method,
d., is not finite, but one can obtain useful approximations by assuming d, = 2d,,.
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Spectral Correlation
Measurements, Part [:
Frequency-Domain Analysis
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Abstract

Recent work by Gardner [1] and Tong, Xu, and Kailath [2] presents novel techniques
that exploit cyclostationarity for channel identification in QAM data communicaticn
systems. In this article, we investigate the identifiability of linear time-invariant
(LTT) channels based on the use of second-order cyclic statistics. Using a frequency-
domain approach, we show that channel identification is achievable for a class of
linear channels without the need for pilot signals or other special assistance from
the transmitter. We also study the identification of linear rationally parameterized
channels from cyclic spectral measurements. Since the estimation of second-order
statistics requires less data compared to the estimation of higher-order statistics, faster
algorithms can be realized by exploiting the cyclostationarity of the channel output.
Moreover, channel identification based on cyclic statistics does not preclude Gaussian
or near-Gaussian inputs.
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I INTRODUCTION

Blind adaptive channe! equalizers eliminate the need for training signals in digital
communication systems when the transmission of a training sequence js impractical
or very costly [3, 4, 5]. This ability of blind startup enables a blind equalizer to
start its self-adaptation or to self-recover from system breakdowns, during which
the equalizer may have lost track of the desired parameter settings, without special
assistance from the transmitter.

This article summarizes the work to date on blind equalization and channel
estimation and studies possible alternatives to traditional solutions by utilizing the
cyclostaticnarity of communication signals. This presentation describes various ap-
proaches and some shortcomings in the traditional solution to the blind equalization
problem. Through the investigation of channel identifiability based on cyclostation-
ary statistics of the channel cutput, the possible future development of some simpler
and faster blind channel estimation methods is illustrated.

Most blind equalization schemes begin by sampling the channel output at the
baud rate [3, 4, 6] to produce a stationary channel output sequence for processing.
Consequently, blind channel identification based on input/output statistics (withcut
direct access to the channel input) must require the use of higher than second-order
statistics [3] since second-order statistics are sufficient only to recover the magnitude
but not the phase of the channel transfer function. Some well-known blind equaliza-
tion schemes based on explicit or implicit use of higher-order statistics can be found
in[3,4,7,8,9,10, 11, 12, 13]. Because of the large amount of data necessary to
estimate higher-order statistics, algorithms based on higher-order statistics tend to be
rather slow.

It is important to note, however, that the actual analog channel outputs of pulse-
amplitude-modulated (PAM) and quadrature-amplitude-modulated (QAM) systems
are in fact cyclostationary processes instead of stationary. Thus a very important
question arises as to whether it is possible to identify the unknown linear channel
based solely on the second-order (cyclic) statistics of the cyclostationary channel
output. Gardner [1] recently investigated the use of the second-order cyclic spectrum
in channel identification and proposed a scheme requiring the use of a training period
during which the unknown training sequence is transmitted at a very low rate. Based
on a certain rank condition of the channel convolution matrix, Tong, Xu, and Kailath
[2] also proposed an effective finite impulse response (FIR) channel identification
scheme by using the second-order cyclostationary autocorrelation of the channel
output sampled at a rate higher than the baud rate.

While the work of Gardner {1] and Tong, Xu, and Kailath [2] opened up pos-
sibilities for a class of new blind equalization schemes, the key issue that still needs
to be addressed is whether, in principle, second-order statistics alone can be suffi-
cient for blind channel identification withour fraining. Motivated by [1] and [2], this
article, along with Article 5, is aimed at establishing channel identifiability based
on second-order cyclic spectra and at deriving variocus conditions under which blind
channel identification can be accomplished. It is shown that for a class of channels
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with limited phase variations, such as those with rational transfer functions, the chan-
nel dynamics can be identified through the use of cyclic spectra of the cyclostationary
channel cutput signal. Thus, in contrast to blind equalizers for baud-spaced time
samples, which require the use of higher-order statistics, the channel output signal
sampled at higher than the baud rate can contain important second-crder statistical
information for channel identification. Since second-order (cyclic) statistics require
less data for estimation, faster algorithms can be devised by exploiting the cyclosta-
tionarity of the channel output.

This article is organized as follows: In Section 2 the problem of blind equaliza-
tion and channel estimation is outlined. The best-known and most popular approaches
using higher-order statistics are briefly described and some key weaknesses associ-
ated with various approaches are pointed out. In Section 3 the cyclostationarity of the
channel output signal to be processed is clarified, and the possible use of the cyclo-
stationary statistics for blind channel estimation is addressed. It is shown that while,
in general, an arbitrary channel phase cannot be identified based on cyclostationary
statistics alone, the identifiability of a class of practical channels can be established.
In Section 4, a new parametric channel identification scheme based on the use of
cyclostationary statistics is presented. The proof of its feasibility corroborates the
results in [2] and shows a potentially fruitful new research direction in the develop-
ment of future blind equalization strategies. Simulation results are given in Section 5.
Although most of our analysis is carried out in the frequency domain, a time-domain
approach is presented in Article 5.

2 FUNDAMENTALS OF BLIND CHANNEL
EQUALIZATION AND IDENTIFICATION

2.1 Channel Equalization in QAM Systems

The complex baseband model for a typical QAM data communication system, as
shown in Fig. 1, simply consists of an unknown linear time-invariant (LTT) channel,
which represents all the interconnections between the transmitter and the receiver.
The baseband-equivalent transmitter generates a sequence of complex-valued random
input data {s, }, each element of which comes from a finite complex alphabet A (or
constellation) of QAM symbols. The data sequence [s,} is sent through a baseband-
equivalent complex LTI channel whose output x(¢) is observed by the receiver. The
function of the receiver is to restore the original data {s,} from the observation x(t)
by outputting a sequence of estimates for {s,).
The complex LTI communication channel is assumed to be causal with impulse
response A(¢). The input/output relation for the QAM system can be written as
o0
()= sh(t —kT — o) +w(), s €A, 1
k=—o0
where T is the symbol baud period. The noise w({¢) is stationary, white, and indepen-
dent of the channel input s,,, but not necessarily Gaussian, When the distortion caused
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Figure 1: Baseband representation of QAM data communication system.

by a nonideal LTI channel is significant, as is often the case in practice, equalization
is needed to remove the intersymbol interference (IST) at the sampling instants. Due
to the presence of [S], the recovery of the input signa! sequence s, requires that the
channel impulse respense (¢ — fo) be identified. The channel identification process
is explicit in nontinear channel equalization schemes such as the decision feedback
equalizer (DFE) and the maximum-likelihood sequence estimator (MLSE) and im-
plicit in linear equalizers where the channel inverse is identified.

2,2 Blind Channel Equalization/Identification Based
on Stationary Statistics

In traditional blind equalization systems, the channel output is sampled at the known
baud rate 1/ 7. The sampled channel output

x(aTy= Y sth(nT — kT — to) + w(nT) = 5, ®h(nT — 1o) + w(nT) (2)

k=—00

is a stationary process. Using the notation x, = x(nT), w, 2 w(nT), and
By = h(nT — 1), the relationship (2) can be written as a noisy discrete convolu-

tion
o

An = Z Skkn—k + wp. (3)

k=—00
The function of the receiver is to restore the original data {s,} from the observation

{xa).
The discrete channel transfer function is defined by

Hig™h=> hg™, @
=0

where (h,} is the discrete impulse response of the channel. When the channel is
noiseless and ideal with no ISI such that only one nonzerc element exists in the
sequence {#,} (Nyquist I Criterion}, the channel output becomes

Xp = thn—m, hm -—/'é 0,

which is simply a scaled version of the input with finite integer delay m. The difficulty
arises when the channel is imperfect such that more than one nonzero element exists
in the channel impulse response {#,}. In this case, undesirable IS is introduced at
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the channel output x, from which a simple memoryless decision device may not be
able to recover the original data sequence.

In blind equalization the original sequence is unknown to the receiver except
for its probabilistic or statistical properties over the known alphabet A. Since both
the channel input s, and the channel impulse response 4, are unknown, traditional
minimum-mean-squared-error approaches are not applicable due to the lack of a
reference or training signal. Blind equalization or channel estimation is necessary to
restore S, or to identify 4, from the channel output without direct measurement of the
channel input data. The following summary of facts about stationary blind channel
equalization is taken from [3]:

1. A mixed-phase linear dynamical channel is identifiable from its output (and
knowledge of the distribution of its input) only when the input is not Gaus-
sian.

2. Second-order statistics alone are insufficient for blind equalization or esti-
mation of channels with mixed phase.

3. Most practical QAM systems employ a complex-valued constellation A
which has symmetrical properties such that the constellation is £z /2-rotation-
invariant. Thus, blind channel equalization or estimation will be subjected
to a phase ambiguity of kx/2.

Blind channel equalization and estimation methods based on higher-order statis-
tics (HOS) generaily belong to two distinct classes, which shall be referred to as
explicit HOS methods and implicit HOS methods. Because stationary blind decon-
volution of nonminimum phase systems must rely on the use of HOS, all existing
blind equalization and estimation algerithms based on baud-rate data samples can
be thus classified depending on their direct or indirect computation of higher-order
statistics.

2.3 Blind Adaptive Equalization Algorithms: Implicit
HOS Methods

Alinear channel equalizer is a linear filter G(g ") that is applied to the channel output
in order to eliminate its ISI by essentially cancelling the channel dynamics. All the
ISI is removed if

H(@™YG@Y=cqg™, c#0 (5)

for some integer m. The desired response of (5) can be rewritten as

Glg N =cqg"H (g™"), (6)

which means that the equalizer attempts to achieve the inverse of the channel transfer
function with a possible. gain difference and/or a constant time delay.

The objective of the blind equalizer is to adjust its parameter vector & such that
the desired response (6) can be achieved. ‘The key in the development of a blind
equalizer is therefore to design the rule for self-adjustment or adaptation. Clearly,
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a blind equalizer adaptation scheme needs to minimize some special type of cost
function, other than mean-squared error (MSE), which implicitly exploits higher-
order statistics of the channel output. Consequently, almost all existing blind adaptive
equalization algorithms are designed as stochastic gradient descent (SGD) schemes
to update the parameter vector by seeking to minimize some special (non-MSE) mean
cost functions that do not involve the use of the original input s, but still reflect the
current level of ISI in the equalizer output. The mean cost function is defined by

J@) = E{¥(z,)), )

where W is a real-valued scalar cost function of z,. The mean cost function J @)
should be at its minimum when @ is such that z, = e/®a,_p.

With mean cost functions defined, stochastic gradient descent algorithms can be
used to adjust the equalizer parameters [3]. A blind equalizer can be defined either
by the cost function ¥ or, equivalently, by its derivative r which is called the error
function since it resembles the role of a prediction error in the least mean square
(LMS) algorithm. The design of blind equalization now transiates to the selection
of the function ¥ (or ¥) such that local minima of J{(6) correspond to significant
removal of ISL.

Although adaptive algorithms have been developed for channel equalization with
training since the early work of Lucky [14], the first well-known inplicit HOS method
for blind adaptive equalization was presented by Sato [7] in 1975. This rather heuristic
method was later extended and analyzed by Benveniste, Goursat, and Ruget [3] in
{heir seminal work of 1980. In 1982, Godard presented his well-known algorithm [4],
which also generalized Sato’s work for QAM systems by providing a class of cost-
functions to be mimimized. A similar scheme, known as the “constant modulus
algorithm” (CMA), was also developed separately by Treichler and coworkers [15, 16]
through a property restoral philosophy. Since then, there have been a plethora of
algorithms proposed that are based on various approaches [8, 9, 13, 17, 18, 19, 20,
21,22,23, 24, 25). The recent tutorial paper [6] contains many useful references, and
a special section devoted to blind equalization has also appeared recently in Oprical
Engineering [26].

Nevertheless, almost all the existing on-line blind equalization algorithms can
be viewed as SGD minimization algorithms differing only in the specification of the
error function v (-). The special error function implicitly utilizes higher-order statis-
tics of the channel output in order to obtain phase information. With few exceptions,
existing implicit HOS algorithms are various forms of SGD algorithms.

2.4 Explicit HOS Methods for Channel Identification
and Equalization

The use of explicit HOS for blind system equalization originated in geophysics where
biind deconvolution was needed for non-Gaussian inputs. In explicit HOS methods,
the second-order statistics, namely, estimates of the power spectral density, are used to
determine the magnitude of the channel transfer function. The phase of the channel is
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determined from the higher-order statistics of the channel output. Due to the symmetry
of QAM constellations, the lowest order of the cumulants of the channel output signal
that can be used for phase identification is the fourth order. For a simple illustration,
the relationship between the phase W(w,, wz, @3) of the tri-spectrum (fourth-order
spectral cumulant) and the phase & (w) of the channel for zero-mean, independent
identically distributed (i.i.d.) and non-Gaussian input can be written as

W(w, wy, @) = Olw)) + Pwa) + Plws) — Ol + w2 + w3). (8

This relationship can be exploited to extract the phase of the channel ®(w).

The first detailed study of explicit HOS methods was presented by Donoho
in [27] in which theoretical analysis and extension were provided for the rather ad
hoc minimum entropy deconvolution approach of Wiggins [28]. Based on the rela-
tionship between the cumulants of input and ountput signals of a linear time-invariant
systern given by Brillinger and Rosenblatt [29] and by Kuznetsov, Stratonovich,
and Tikhonov [30, 31], various identification methods were proposed to identify
the impulse response of linear systems with autoregressive moving average (ARMA)
models. Some well-known studies on HOS blind deconvolution include those by
Lii and Rosenblatt [32], Tugnait [11, 33], Giannakis and Mendel [34], Nikias [10],
Giannakis and Swami [35], Mendel and Swami [36], Friedlander and Porat [12], and
Hatzinakos and Nikias [13]. In addition to two tutorial papers given by Nikias and
Raghuveer [38] and Mendel [37], as well as the references therein, other related work
can be found in the two special issues on higher-order statistics [39, 40].

2.5 Limitations of HOS-Based Methods

The implicit and explicit HOS methods based on the baud-rate sampled channel output
can be generally effective, judging from successes reported by various authors. Nev-
ertheless, they also exhibit some critical weaknesses such as the possible convergence
of some algorithms to local minima [41] and the sensitivity to timing jitter [42].
One particularly important limitation of HOS-based methods is the slow rate of
convergence due to the need for accurate time-average approximations of higher-order
statistics. Time-average approximation of higher-order statistics demands a much
larger number of data samples than that required for second-order statistics. In order
to maintain similarly low estimation bias and variance for n-th order statistics, the
required amount of data increases almost exponentially with the order n [43]. Since
channel identification requires at least fourth-order statistics, slow rate of convergence
is typical of HOS-based blind equalization and channel estimation algorithms.
Typically, several thousands of data samples are needed for the success of ex-
isting blind equalization and channel estimation schemes. The resulting delay in
equalization cannot be accommodated in many practical communication systems. In
land mobile communications, for example, such a delay can make it impossible to
track the time-varying channel, or at least represents a loss of several seconds of
useful information, which could potentially obliterate other advantages of the no-
training, blind equalization system. This problem can be further exasperated when
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certain coding schemes utilized by the channel input may cause the channel output
to have near zero fourth-order cumulants [44], resulting in the need for even higher
order statistics whose approximations are even harder to obtain. By contrast, adaptive
equalizers with training take only a few hundred data samples to converge. Clearly,
the slow convergence exhibited by the existing blind equalization schemes is detri-
mental to their wide application in many data communication areas such as mobile
communications where rapid adaptivity is essential.

3 CYCLOSTATIONARITY OF THE CHANNEL
OUTPUT SIGNAL

3.1 Second-Order Statistics of the Cyclostationary
Channel Qutput

Although the use of higher-order statistics is necessary for the identification of non-
minimum. phase channels based on channel outputs sampled at the baud rate, the
actual channel output x{¢) as in (1) is cyclostationary instead of stationary. It can
be verified that for a stationary channel input s, and noise w{¢) with autocorrelation
functions

Rifk =11 = E(sis7), Ru(ta — 1) = E{w(t)w*(12)),
we have

Re(, 1) = E{x(0)x* (1)}

= 3 D Rlk—1lhlty — kT — )™ (2 — IT — o) + Ru(ta ~ 1) 9)

k=—col=—co

=R(ti+ T, 02+ T,

where the symbol duration T is the fundamental period of the cyclostationary pro-
cess. Hence, failure to identify the channel phase using second-order statistics of the
stationary channel-output baud-rate samples does not necessarily imply failure for
second-order cyclic-statistics of the analog cyclostationary channel output signal or
the channel output sampled at a rate higher than the baud rate.

The notation for second-order statistics of cyclostationary processes used here
generally follows that in the pioneering work of Gardner [45, 46]. Specifically, for
cyclostationary process x(¢) with fundamental pericd T, the cyclic autocorrelation
Junction is defined by

1 T T T ;
o s e _ 5 —jdrar —
O Tf_mR"(“rz’t z)e dr, wherea =k/T. (10)
Correspondingly, the spectral-correlation density (SCD) is given by
o
SE(jw) = f R¥(r)e *"dx. an
—co
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For the QAM signal x(¢} of (1), the SCD can be shown to relate to the input
power spectral density (PSD) and the frequency response of the channel through the
expression [45]

S*(jw) = LH(jo + jra)H*(jo — jra)S;(jo + jra)e=i2mn

(12)
+ 55 (o),
in which -
H{jow) = f k() exp(— jwt)dt
—o0
is the channel frequency response and
o0
5 (Jw) = Z ‘Rilk)exp(—jwkT) (13)

=—00

is the PSD of the stationary channel input sequence s,. Note that for white stationary
noise w(¢), we have

ST (jw) = f ” RYT () exp(— jor)dt = Nod[k]. (14)
-0
If the channel input {s,} is i.1.d. with zero mean, its autocorrelation function is simply
Rs[k] = E{sniis;) = E{ls:|"}14], (15)
and its PSD is a constant S, (jw) = R;[0] = E{|s.*}.
3.2 Channel Identifiability Based on the Channel
Qutput SCD

The objective here is to study the possibility of identifying the channel frequency
response H{jw) from the SCD of the channel output x (¢). Without loss of generality,
the discussion is limited to the case of a zero-mean and i.i.d. input. Thus, since the
magnitude of H{je) can be identified from the PSD of the channel output, our
objective is to identify the phase of H(w) from

e R,0] . wk o wk ( _2;rrkto)
kT _ i _ —
SOy == H[J (w+ T)]H [j (w T)]exP 7T ) ae

k=21, £2, ...

It is apparent that our discussion can be applied also to correlated channel inputs if
the correlation is known.

Let W (jew) be the phase of SCD Si‘/ T(a)) and & (w) be the phase of the frequency
response H (jw). For k # 0, the following relationship between the two phases can
be expressed according to (16) by

wk nk 2kt
= —_— |- - )= =41, 42, .... 17
Uy (w) ¢'(w+T) CD(w JT) T bk ==£1, £2, (17
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For an arbitrary channel, the above equations indexed by %, in which phase un-
wrapping is necessary to obtain W (w), are the only sources of phase information.
Clearly, # can at best be identified as modulo T. For analytical simplicity, it is
temporarily assumed that £ is known. The identifiability of $ (e} from ¥ (w) can
be better illustrated through a cepstral approach. Let

s 1 e 2k .
AOEES f_ ) [xm-(wn ”T’“]ewdw, (18)
o 1 oo et
o) = E£m¢(w)e’ dw. 19

We have from (17)
Yi(t) = d(r)exp(—jmkt/T) — ¢p(z) exp(jmkz/T)

= 2 j¢p(zysin(mkt/T). - (2'0)
From this particular relationship we can make the following observations:
+ No cepstral channel phase information can be extracted when
sin(zkt/T)=0, orwhen z=mT/k, melZ, 21

where Z is the set of integers. Therefore, an arbitrary channel transfer function
cannot be completely identified from the cyclostationary statistics alone.

o [tisclear from (20) that no additional phase information can be extracted from
the SCD by setting £ = £2, £3, .... Consequently, we simply consider
the use of the SCD with £ = 1 which has the largest support region.

Theoretically, most of the imaginary cepstrum of H{jw) can be identified

through
b=z

sin{rz/ T}
exceptfort = mT. If ¢(z) is bounded at t = m T, the L;-normed error between the
true phase and the phase estimate from (22) will be zero since the set {t : = = mT}
has zero measure. However, when ¢ (t) is not bounded at t = m7T, the channel
phase cannot be determined even theoretically. For example, if ¢ (r) has an impulse
att = m7T, then correspondingly & (w) will contain a sinusoidal part with frequency
mT (e.g., cos(mTw)) and the L,-normed phase error can be infinite. It is in fact
clear from (17) that the SCD contains no information about any oscillatory phase
content with frequency m7T. This fact is reinforced in Article 5 where it is shown
that discrete channels with zeros uniformly spaced on a circle (resulting in oscillatory
phase content) cannot be identified. In a recent private communication, the author
learned that similar results were alse independently obtained earlier by Gardner.

In practical communication systems, channels are effectively bandlimited. It is
therefore reasonable to consider the special case where

(22)

O(w) = Dlw) + o sgnlw) + ¢, ¢, ez €R, (23)
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in which ®@ is bounded and has finite support (w1, &) and R is the set of real numbers.
Based on (17) and (23), fg can be identified as modulo T from

Ty 2 27[’!0__21'!'!0
lpl(a&_i_f)_(p(w_'-'f) ‘D(wz)—T— - (24)

Hence 7, () can be determined and it satisfies the following relationship
) - c
Yi(r) = —2jsin(rz/T) [¢(f) - jﬁ + Cza(f)] ) (25)

where ¢ is the inverse Fourier transform of ®. Both ¢ and & have finite energy
according to Parseval’s Theorem. Therefore the only source of estimation error from
using (22) lies in our inability to determine ca, which is merely a constant phase
shift. Thus in theory, the phase of bandlimited channels satisfying the assumption
(23) can be identified from cyclostationary statistics except for a possible constant
phase ambiguity. .

The preceding argument establishes the theoretical identifiability of bandlimited
channels. In practice, however, the estimate ¢ (v} will be highly inaccurate whenever
T =~ mT. Moreover, due to the bandwidth limitation of the channel, the support of
the SCD is finite and is typically small. It becomes necessary, therefore, to estimate
the missing information through interpolation assuming the continuity of ¢(z) or
through a parametric approach in which we define a parametric model for the channel
and identify the unknown parameters from cepstral phase information obtained for
values of T sufficiently far removed from those points whete sin(2wrt/T) = 0. In the
following section, we describe one such parametric method.

4 PARAMETRIC CHANNEL IDENTIFICATION

4.1 Basic Assumptions and the Uniqueness of the SCD
Model

1t is assumed that the channel transfer function is given or can be closely approxi-
mated by the following rational transfer function

Y, (o — 2)

H(jw) = de™ /™ —=——",
H?,:I(_]m - pi)

M < N. (26)

The orders of the channel model (M, N) should be no less than those of the actual
rational channel. It is required that the channel be strictly stable such that all of its
poles are inside the stability region {Re{p;) < 0}. Itis also required that the channel
transfer function have no allpass factor, The channel bandwidth B,, is required to be
above the minimum bandwidth B,, > 1/2T needed for zero ISI.

The identification of the channel transfer function makes use of the following
resultant rational function model for the SCD



428 Ding

5/ jew) = 4*

expl—j2wk(to + 24}/ T]
YL@ + k) T) = 2)(—jlw —zk/T) =z &7
N, (e +7k/T) — pll—j(w—wk/T) — p}1’
It has 2N poles that are not on the imaginary axis in the complex plane C because of
the stability condition Re(p;) < 0. Thus the complex rational function S,t ( jw) is

analytic on a complex open set £2, which includes the entire real axis. The following
well-known lemma [47] can therefore be invoked:

R,[0]
T

Lemma 4.1.1 If 5,(z) and S:(z) are two analytic functions in a region Q and
if §1(2) = 8:(2) for all z in some set that has a limit point in 2, then 5(z) = $;(z)
Yz e Q.

S ( jw) is therefore uniquely determined by its values given over any frequency
(open or closed) interval. In other words, the complex function S ( Jjw@) is uniquely
specified by

§¥jw), o€ lw, @] CR. (28)

This property is the key to extracting phase information from the limited support of
the SCD. In practice, however, the smaller the length e, — w (of the interval) is, the
more accurate the estimate of .S'Jr ( Jw) on this interval must be.

4.2 lclentlﬁablhty
Tt is clear that the channel poles can be identified from the PSD

R 5(0] MY 1 jow — z]
T anl_](U pil?

SY(jw) = + No (29)
by finding the roots of its denominator except for those allpass factors that have
pi = —z7. Since it is required that the channel have no such pole/zero relationship,
the approach to channel identification proposed here is to first identify the poles from
the PSD and then to 1dent1fy all the zeros based on the cyclostationary information
contained in the SCD SJr ( jw).

Given that all N poles have been identified, the function defined by

DH T jw) = SEW X je) (M, [j(w + mk/ T) — pll—jlw ~ mk/T) — pf1) (30}

can be calculated. It follows from (27) that the zeros of Dx ( Je) are shifted (parallel
to the imaginary axis) versions of the zeros of the transfer function and their reflections
about the imaginary axis; that is, their locations are given by

*Re(z) -+ jIim(z) ¥ jak/T, i=1,12,..., M.

The fact that DX/ T Jw) isa complex polynomial function of the complex variable je
is essential to the identification procedure presented here.
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Without loss of generality, £ > 0 is chosen. Then the following procedure can
be adopted:

1. Find the set of all zeros of Df/ T( Jjw) and label it Uyy;

2. Find the element gy, in Uy that has the maximum imaginary part—if it is
not unique, arbitrarily choose one—to obtain

Im(zy) = Im(apy) —wk/T and Re(zy) = —Relay);
3. Form a new set Uy by removing two zeros,
Upy—1 = Uy — {FRel(zp) + jIm{zar) F jmk/ T}

4, Repeatsteps 2and3forlU;, i=M—1,M —2,..-,1 toidentify all M
zeros of the channel transfer function H (jew),

a; = Arg max Im(x),
xel;

Im(z))=Im(q;) —nwk/T and Re(z;) =—Re(a;)
Uit = Uy — (X Re(z) + jIm(z) F jrk/T}.

This procedure identifies all the zeros of the channel transfer function. Once the
poles and zeros of Sy T (jw) are identified, the combined attenuation factor | 4| Rs[0]
and the combined delay & + £4 modulo T can also be identified. Hence, from the
SCD Sf’ T( Jeo) of the received channel output signal, the zeros of the channel transfer
function can be uniquely identified, and the attenuation factor | 4| can also be identified
if R;[0] is known (from the knowledge of the symbol constellation). But the exact
delay ¢, cannot be identified. Although & can be any positive integer, it is best to rely
on Si' 7 jw) since it has the largest support. The ambiguity of a possible linear phase
term w?y is not crucial to the objective of recovering the input sequence {s,} since we
have identified the delayed channel impulse response A(t — f5). On the other hand,
the sign ambiguity in | 4| is inherent in the blind identificationfequalization problem
when all odd-order cumulants of the charnel output are zero [11].

4.3 Remarks

The major cause of ISI is the limited bandwidth of the channel. From the channel
output SCD given in (16), the bandwidth limitation of A ( ) can also cause the SCD

AN jw) to be negligible over most of the Nyquist band [—1/2T, 1/2T]. However,
since it is assumed that the unknown channel does have bandwidih higher than the
minimum Nyquist bandwidth, i.e., B > 1/2T, and since the support band of the SCD

is given (from (16)) by

SYT ja) £0, || <2w(B —1/2T), (31)
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then the SCD of the channel output is, in general, nonzero over the frequency interval
(1/2T — B, B — 1/2T)} and can be used to parametrically determine the function
;’ T( Jjw) which can then be used to identify the linear channel.

The constructive proof of rational parametric channel identifiability based on
second-order cyclic statistics outlines a procedure for channel identification based
on the SCD. Essentially, Sf( Je) and Sj/ 17( jw) are first parametrically determined
from data via SCD estimation. The channel transfer function H(jw) is then identi-
fied from the poles, zeros, and attenuation factor of the SCD models. This method
is used only to illustrate the concept and should not be taken as an effective ap-
proach.

Although it was assumed that the channel has no allpass factor, this condi-
tion can be relaxed if the allpass poles do not cause any pole-zero cancellation in
H(jow + jra)H"(jo — jra). Under this relaxed condition, the poles of DY (jw)
can also be identified using the same procedure as that used for identifying its zeros.

For stationary signals and systems, if the input is Gaussian or nearly Gaussian,
it then becomes impossible to identify the unknown channel and to deconvolve the
unknown input. However, if a cyclostationary output is available, the result obtained
herein shows that even when the input is Gaussian, channel identification and blind
deconvolution can still be accomplished based on second-order cyclic statistics. This
feature has practical importance since recent work [44] has shown that certain con-
stellation shaping tends to make the channel input nearly Gaussian.

5 SCD ESTIMATION AND SIMULATION
5.1 Computing the SCD

The computation of the SCD can be conveniently accomplished from discrete-time
samples of the channel output x(¢),

x(A) = Y sh(nA —kT + )+ w(nA), s € A, (32)

k=—0o

where A is the sampling increment. This is a discrete-time cyclostationary process
when T'/A is an integer greater than unity. Its cyclic autocorrelation function and
SCD can be estimated using the estimators

N
ReA) = 37 x(nA +IA)x* (nA) exp(— j2ma(n +1/2)A)  (33)
=N

IN+1,

M
Se(w) = D RE(a)e s (34)
I=—M
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where N >> T/A and N >> M must be satisfied sufficiently strongly for reli-
ability (low variance) and A must be sufficiently large for spectral resolution (low
bias) [48]. The sampling interval A must be sufficiently small to avoid spectral
aliasing (sec [46]). Once S ‘_g Jew) is obtained, a parametric model 57 (jw| 8) with
known orders can be fitted to S¥ (jw) using the method of least squares (or some other
method) for = 0 and ¢ = 1/T. The resulting parameter vector 8 can then be used
for pole/zero channel identification.

Several FFI-based smoothing methods for computing the SCD that are com-
putationally more efficient than the direct method used here (34} are available. The
details of these algorithms are given in [48, 49].

5.2 Simulation Example

We simulated a noiseless binary phase-shift-keyed (BPSK) (5; = £1) signal in which
the data rate was 1 Kbits/s. The linear channel was a mixed phase channel with four
poles and two zeros, one of which was in the right-half plane. The channel impulse
response is given by

A1) = 10e~ " sin(1200¢ + 2.1475)

—12.8151e 2% 5in(900¢ + 2.4286), ¢ > O. (35

The channel output was sampled at 16 kIHz. Stationary white Gaussian noise was also
added to the channel output. Channel identification results were obtained for 1024,
256, and 64 input symbols, respectively, corresponding to the use of N = §192, 2048,
and 512 in the estimator (33). M = 16 was adopted in the SCD estimator (34) for al!
three cases. The nonlinear least square fit was accomplished through gradient descent
search initialized with a linear least square fit.

In Fig. 2, the actual channel frequency response H(jw) is shown indicating its
lowpass feature. The true channel impulse response 4{¢) is shown in Fig. 3 along
with the channel estimates based on 256 symbols (4096 data samples) and channel
output signal-to-noise ratio (SNR) of 20 dB. The comparison of identification based
on different numbers of data samples and SNRs is made by computing the normal-
ized mean squared error (NMSE) of the channel response estimate ?1\(:),

E(|[R) = R
E®IE

where the average E is over 50 simulation runs. The comparison of NMSE is given
in Fig. 4. Although asymptotically the stationary noise should not affect chan-
nel identification, the effect of strong noise (SNR = 10 dB) is evident for finite
data length. Overall, good identification resulis are obtained from cyclostationary
statistics even with only 256 input symbols and an SNR of 20 dB. Such a short
data set would be insufficient for most identification methods based on higher-order
statistics.

NMSE =

(36)
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(a) Channel magnitude

{b) Channel phase
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Figure 2: True frequency response of the channe! used in the simulation.
{a) true h(t} (b) h{t) estimates
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Figure 3: True channel impulse response and estimated channel impulse response
based on 256 input symbols with 20 dB SNR.

6 CONCLUSIONS

The cyclostationarity of the QAM channel output can be used for blind identification
of unknown channels, By merely using the second-order cyclic statistics or cyclic
spectra of the channel output, the phase as well as the magnitude of a class of transfer
functions for lowpass rational channels can be identified. The potential advantage of
using second-order statistics for blind equalization is the significant improvement in
convergence rate compared to algorithms based on higher-order statistics. Although
the identification procedure presented here is used only to illustrate the identifiability
of rationally parameterized channels and may not be efficient, the identifiability result
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Figure4: Normalized mean squared error between the true channel and the identified
channel responses with i.1.d. binary input and stationary white Gaussian noise.

may-lead to future development of highly effective and fast algorithms based on
second-order statistics only. To this end, the recent results of Tong, Xu, and Kailath [2]
are very encouraging. More work is needed to develop effective channel identification
and equalization systems utilizing cyclostationarity, and to extensively show actual
advantages for algorithms based on second-order cyclic statistics in achieving fast
and global convergence of blind adaptive equalizers. Finally, it is expected that
schemes combining cyclostationary higher-order statistics might have more potential
for improving the speed and accuracy of blind channel equalizers.
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Abstract

A time-domain approach to blind channel identification and equalization is described
in this articie. Based on the second-order cyclostationary statistics, the time-domain
approach provides a faster convergence rate than most techniques based on higher-
order statistics. An explicit formula for the identification of possibly nonminimum
phase FIR channels is given. Such an approach can be applied to the identification
and equalization of multipath channels using an array of receivers, A connection
between the time-domain approach and the frequency-domain approach presented in
Article 4 is also explained.

1 INTRODUCTION

The frequency-domain approach of Article 4 provides insight into some new blind
channel identification and equalization methods. However, a time-domain approach
[10] is perhaps simpler as far as the implementation is concerned. Here we present
an overview of this method and explore its relationship to frequency-domain con-
cepts.

The main features of the time-domain approach can be summarized as follows:

1. The algorithm provides an explicit identification of possibly nonmirimum
Phase finite impulse response (FIR) channels.

2. The algorithm is insensitive to the uncertainties associated with timing re-
covery. This is achieved by exploiting the signal subspace structure and
by sampling the received signal at a rate higher than the baud rate, an idea
perhaps first used in fractionally spaced equalization [14].

3. The algorithm can be used to initialize various adaptive schemes, and the
equalized output can be used to facilitate decision feedback adaptation. The
identified channel can be used to implement a maximum-likelihood sequence
estimator [2] to further reduce intersymbol interference (IST).

4. The algorithm relies on only the second-order statistics of the received
signal. Therefore, it requires fewer symbols than most other schemes sug-
gested to date which rely on higher-order statistics. This property also im-
plies that the algorithm can be used to estimate rapidly varying channels.

5. There is no restriction imposed on the probability distribution of the source
symbols. The random source can be real or complex, continuous or discrete,
or even Gaussian.

6. The algorithm can be extended easily to incorporate multiple receivers. This
feature is most attractive for wireless communication where spatial diversity
is particularly important.
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2 EXPLOITATION OF CYCLOSTATIONARITY
IN THE TIME DOMAIN

2.1 A Time-Domain Formulation

For time-invariant communication channels, a discrete-time baseband model of a
digital QAM (quadrature-amplitude-modulation) system is given by

o

M=) sh(t —kT), x(t) =r(t) + w(®), (1)

k=—0o0

where x(¢) is the received signal; {s;} is the sequence of information symbols; A (-}
is the discrete-time “composite” channel impulse response including shaping filters
at the transmitters, channel dispersion, and receiving filters; T is the symbol interval,
and w(-) is an additive noise process.

The objective of blind channel identification is to identify h(-) given only the
received signal x{-) and some a priori information about the transmitted signal. Once
such identification is achieved, the estimation of the information symbols {s;} be-
comes more or less a solved problem, and various channel equalization and symbol-
sequence estimation techniques can be applied.

The following is assumed throughout the presentation:

Al: The symbol interval T is a known integer and " > 1.

A2: The channel has a finite impulse response (FIR).

A3: E(sst) =8k —1).

Ad: w() is zero mean, uncorrelated with {s;}, and
E(wt)w* (1)) = a28(t — 1)

As a general notational convention, symbols for matrices (in capital letters)
and vectors are in boldface; the symbols (-)7, (-}, (-)*, and (-)T stand for hermitian
transpose, transpose, complex conjugate, and the Moore-Penrose generalized inverse,
respectively; the symbols I and 0 stand for the identity and zero 1natrices with appro-
priate dimensions, respectively; and E(-) denotes the probabilistic expectation.

2.2 A Stationary Representation of Cyclostationary
Processes

One of the important properties of a cyclostationary process is that it can be repre-
sented by a set of jointly stationary processes. Several stationary representations were
derived by Gardner and Franks [4], the simplest of which is the special case of the
translation series representation (T'SR) that is obtained by sampling the received sig-
nal. Such a representation leads naturally to a time-invariant vector linear regression
model of the channel, as we shall now explain.
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As illustrated by Fig. 1, an important observation is that, under assumption A2,
the signal space of the observation restricted to any finite time interval I (referred
to as an observation interval) is 2 finite dimensional linear space spanned by a finite
number of time-shifted copies of #(-). As shown in Fig. 1, consider the received
(noise-free) signal r(-} in an observation interval Iy = (g, fp + L) for some finite L.
The signal space is spanned by A(t — KpT), ..., h(t — (Ko + (d — 1))T) with the
h(t —iT) being restricted to (%, o+ L). Itis then not surprising that this observation
leads to a linear regression model of the channel.

h{t)

N L

h

(K+d-1)T
TN LN
AVAVAE Ve v s v NV

1

t0 t0+L

Observation Interval [
Figure 1: Basis funclions in a sampling interval.

If an m = vector x(k) is formed by
(k) =[xGkT), x(kT — 1), ---, x(kT —m + 1), @

‘then the vector x(k) is related to a vector of input symbols s(k) by a memoryless
time-invariant matrix filter H of dimension m x 4 (plus noise):

x(k) = H s(k) + w(k), 3

where
S(k) = [Sk1 Sk—1y" "7, Sk_d+1]{, (4)
wik) = [wED), wkT — 1), -, wkT —m + DY, (5)

Each row of H corresponds to a baud-rate sampled channel impulse response, and -

the columns of H are related directly to the basis in Fig. 1. The identification of H
leads to the identification of the impulse response £ (-).
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3 CHANNEL IDENTIFICATION

To simplify the presentation of the key ideas for channel identifiability, we first ig-
nore the noise in Section 3.1. Similar results can be obtained when the noise statistics
(second-order) are known by using the techniques to be described in Section 3.2.

3.1 Channel Identifiability

Following the development in the previous section, the blind channel identification
problem can be restated as follows:
Consider a vector process (i) obtained from a linear model

r() =Hs(@).i =0,1,... ©)
along with the following constraints:

1. H isanm x d complex matrix of full column rank.

2. s(i} is a zero-mean stationary vector process with the matrix of autocorre-

lation functions
R;(k) = E{s()s (i — b} Q)
of the form
[ K k>0
where J is the d x d shifting matrix
¢ 0... 00
1 0... 00
I=1. . Do ®
0 0... 10

The objectives of blind channel identification and equalization are to identify H
{channel identification) and to estimate (i) from x(i) (channel equalization).

Remarks

1. In most practical cases, the rank constraint on H can be satisfied by suffi-
ciently fast sampling combined with choosing a sufficiently large m, or by
designing the pulse shaping filter in the transmitter properly. As we shall
see in Section 3.3, unless the channel is unidentifiable from second-order
cyclostationary statistics, the full-rank condition can always be satisfied.

2. The idea of sampling the received signal at a rate higher than the symbol
rate has been used in fractionally spaced equalization (FSE), and is known
to provide robustness to timing recovery uncertainties [14].

3. Equations (8-9) are a direct consequence of A3 and (4).
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In what follows, an algebraic approach is used to establish channel identifiability
and an identification algorithm. To provide some insight into the derivation, itis noted
that because of the special forward-shift structure of the correlation matrices of the
source, the rank of E[r(f)r?(t -k)} =HR s(k)HH decreases as k increases. On the
other hand, the range space of R, (k) = E {r(£)r (¢ — k)} is spanned by the columns
of the channel parameter matrix H. It is the change in the rank of R, (k) that provides
the information for the identification of the column vectors of H and, consequently,
the identification of the channel.

The following theorem given in [10] provides an identifiability result and sug-
gests an explicit identification algorithm.

Theorem1 Le! R, (0) have the following singular value decomposition (SVD),
UYR(O)U = diag(c?,...,02,0,...,0). 10
Let u; denote the ith column of U, and let
U =[uy,...,ugl, B = diag(oi,...,04), F=3""07. (D
Let R = F R ()F¥ have an SVD of the form

[¥pe.nn Yol Rz, . 24] = diag(rl, .. ¥ (12)
Then there exists a real phase ¢ such that
H = U;ZQe/?, (13)
where
Q= [¥s Ry --- R y,l, (14)

or, equivalently,
Q = [(RNY¥Vzy, RN Dz, ... 24]. (15)

The proof of this theorem, given in [10], may be obtained by first assuming that
H is orthogonal. We then have

R, (1)=HJH". (16)

When H is orthogonal, the right-hand side of the above equation is in fact a Jordan
decomposition of R(1). This leads to a recursive relation among the column vectors
of H. The first column vector of H turns out to be the left singular vector associated
with the (unique) zero singular value, which results in the identification of H. The
matrix H is of course not orthogonal in general. However, a commonly used trans-
form defined by F in (11) can be applied to orthogonalize H.

3.2 Algorithm Implementation with Noisy Data

Theorem 1 provides the essential parts for proposing a blind channel identiﬁcat.io.n
algorithm. Although the previous development was based on a noise-free model, it1s
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not hard to think of ways of handling additive white noise. In particular, the ideas
now widely used in sensor array processing (see e.g., [15]) can be used. For the
vectorized process x(f) satisfying

x(i) = Hs(i) + w(i), a7
the correlation matrix R, (k) is given by
R, (k) = HR(F)H” + R, (k). (18)

Under the assumption of white noise, the noise correlation matrix R (%), for k > 0,
has the form

R, (&) = E{w)w (i — &)} (19)
= g2J*7. (20)

Note that the superscript T in (20) denotes the baud period. Although neither the
noise covariance, nor the signal space dimension 4 is known a priori, they can be
obtained from the data covariance matrix R, (0). That is, it can be shown that the
SVD of R, (0) has the form

UYR,(0)U = diag(r +02,---, 24 +0%,6%, -+, 0%), 20

where Ay > A; > --- > Ay > 0. Therefore, both 02 and 4 can in principle be
obtained by determining the most significant singular values of R,(0). In practice,
a threshold test can be employed to determine d, and then to estimate o from the
singular values of the estimated data covariance matrix. Readers are referred to [5]
and [16] for suitable methods. Once the noise covariance o2 is determined, the iden-
tification procedure suggested in Theorem 1 can be easily extended to handle noisy
data by subtracting the corresponding noise correlation matrices from the observa-
tion correlation matrices. '

The idemification algorithm is first outlined and some important technical points
of the algorithm are addressed.

3.2.1 A Blind Channel ldentification and Equalization Algorithm
The proposed algorithm consists of the following seven steps:

1. Select a sufficiently large m and form the observation vector x(i} =
[xGTY, x¢T = 1),---,x(0T —m + DY.
2. Estimate Ry (0) and R.(1) from x(i) by time averaging,
. 1 &
R(0) = & Exmx”(f). (22)

- 1 <& )
R.(1) = ng(z)x”(z - 1. (23)
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3. From ﬁx(O), use the SVD to estimate the noise covariance o2 and the di-
mension d of the signal space.

4. Compute the SVD of Ry = R,(0) — 62I and form U, which consists of
the singular vectors associated with the d largest singular values, ¥ which

consists of the positive square roots of the 4 largest singular values, and
then form F = £7'U7.

5. Compute the SVD of R 2 F(R,(1) — Ru(1))F¥, where
R (1) =27, (24)

Let y,; and z; denote the left and right singular vectors corresponding to the
smallest singular value of R.

6. Form an estimate of H (and consequently £ (-) if necessary) using the formula

H = U, 20, (25)
where
Q = [y, Ry,, ..., R4y, {26)
or, equivalently,
Q = [(RNH¥ Vg, RNE Dz, .., 24] @7

or a certain combination of the above. For example, one can reduce the error
propagation caused by R* and (R"Y* by using (26) for the first ¢/2 columns
of Q and using (27) for the last /2 columns of Q.

7. Extract the information symbols using the estimator
5() = A'x() . (28)
= Q"Fx(), (29)

or by implementing any equalizer or maximum-likelihood estimation scheme
that is based on the estimated channel.

3.3 Connections Between the Time-Domain
and Frequency-Domain Approaches

Insight can be gained by examining the connection between the time-domain identi-
fication results presented here and a frequency-domain solution. Recall from Article
4 that the cyclic spectrum’ (or spectral correlation density) S¥(jw) of the observation
is related to the channe] frequency response H(jw) by

SMT(jw) = H(jw)H*(jo — 21k/T) + o25(k). (30)

Note that the definition of the cyclic spectrum used here differs from the original definition in
(3} which is used in Article 4 by a shift in the frequency in the amount of % radian/sec. Also, the cycle
frequency parameter in [3] and Article 4 has units of Hertz.
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For notational convenience, the product in (30) is denoted by
I*(w) = Ho)H*(jo — 2wk/T). (31)

These functions can be estimated by estimating the spectral correlation densities
(k¢ # 0) and power spectral density (¢ = 0). In the z-domain, this leads to the
following identification equation

. 1
I'*(z) = H(z)H*(ef””’T;,-), k=0,--.,T—1 (32)

The problem of channel identification is then equivalent (o identifying H(z) using
I'f(z), which can be approached by identifying the zeros of H(z) from those of
I'*(z). The following theorem was given in [11].

Theorem 2 The channel transfer function H(z) is uniquely determined
(identified) by {T*(2)} up to a multiplicative constant if and only if H(z) does not have
zeros uniformly spaced around a circle with separation of 2/ T radians. Moreover,
if the channel is identifiable,

Z(H@) =[] 2T*2) (33)
k

where Z(H(z)) stands for the sei of zeros of H(2).

The above theorem suggests an identification algorithm in the frequency domain.
By estimating the spectral correlation density functions (SCD), the zeros of the chan-
nel (assumed to be FIR) can be identified by using (33). However, in comparison to
the time-domain approach, such an implementation appears to be more complicated
and perhaps more sensitive to noise and estimation error.

Recall that the time-domain result was presented under the assumption that the
channel impulse response parameter matrix H has full column rank. In light of the
above frequency-domain result, the full-rank condition turns ont to be a necessary
and sufficient condition. The following theorem from [6, 13] provides an important
link between the time-domain and frequency-domain approaches.

Theorem 3 H(z) has zeros uniformly spaced around a circie with separation
of 2r/ T radians if and only if the channel parameter matrix H has linearly dependent
columns. In other words, the channel is identifiable if and only if the matrix H has
Jfull column rank.

Two approaches can be used to prove this result. The approach by Li and Ding
[6] exploits the root structure of the observation process whereas the one of Tong,
Xu, and Kailath exploits the fact that H is a Sylvester matrix [9, 13].

3.4 A Simulation Example

In this example, the impulse response of a three-ray multipath channel is a weighted
sum of delayed raised cosine pulses. A single such pulse is denoted by (¢, &) where
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« 1s the roll-off factor. In particular,
h(t) = fe(t,0.11) —0.8¢(r — 0.5,0.11) + 0. dc(r — 3, 0.11)1Wsr (1), (34)

where W¢r is a square window of duraticn 6 symbol intervals. The resultant impuise
response is shown in Fig. 2(a). Among the 23 zeros of the system, there are 21
nonminimum phase zeros. The source symbols were drawn from a 16-QAM signal
constellation with a uniform distribution on a rectangular grid.
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Figure2: (a)Theimpulse response of a three-ray multipath channel. {b) Constellation
at the output of the unequalized channel at SNR == 304 B.
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The signal-to-noise ratic (SNR) is defined by

SNR = 201log 1) e (dB), (35)
I w() ll2
where || (-} ||z stands for the /; norm of r(-). Figure 2(b) is a plot of 1000 output
symbols of the unequalized channel at SNR = 30 dB (obtained by sampling the
received signal at kT, k = 1,2, ...). Clearly, the intersymbol interference is severe
and a high error rate is expected.

To evaluate the time-domain approach, a Monte Carlo simulation of 100 inde-
pendent trials was conducted. The sampling frequency was chosen to be 4 times
faster than the baud rate, i.e., T = 4, and five bauds of data were used to form the
20x1 complex vector x(f). The signal subspace dimension was assumed to be kniown
in the simulation {4 = 10). At each Monte Carlo run, 100 symbols were used to es-
timate R, (0) and R,(1), and the identification algorithm of Section 3.2 was applied.
Figure 3 shows the sample mean of 100 estimates and a scatter plot of the channel
estimates. For demonstration purposes, the unknown multiplicative constant factor
was removed by scaling the estimated channel. Such scaling is of course not possible
in practice, nor is it necessary when differential encoding scheines are used.

To measure the performance of the channel estimator, the normalized root-mean-
square error (NRMSE) of the estimator

1
NRMSE = —

6
B ©€)

is used, where M is the number of Monte Carlo trials (100 in our case), h is the vector
of the channel impulse response, h; is the estimated channel impulse response vec-
tor at the /th trial, and ||h|| stands for the 2-norm of the vector h. Figure 4(a) shows
the NRMSE versus SNR.

The Bit-Error-Rate (BER) was evaluated as a function of SNR. In this case, a
binary phase-shift-keyed (BPSK) source was used to estimate the channel. At each
Monte Carlo run, the channel parameter matrix H was first estimated by the pro-
posed algorithm, and the source symbol vector s(i) was estimated by a (suboptimal)
minimuni-variance equalizer given by

§G) = AP @AY + 62D 'x() = Tx(). (37)

The fractionally spaced equalizer was defined by the row of T with minimum norm
in order to reduce noise enhancement. The output of this equalizer was followed by
a baud-rate sampler and a slicer.

At each Monte Carlo run, a fractionally spaced equalizer was obtained, and
the probability of bit-error was computed (analytically). The BER is defined here as
the probability of error averaged over 100 Monte Carlo runs. Figure 4(b) shows the
effect of noise on the BER. Whereas the performance is excellent at high SNRs, the
error rate is high when SNR is below 25 dB. To achieve better performance, a larger
sample size will be necessary.
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channel estimation in each run. (b) BER vs. SNR for 100 Monte Carlo runs with 100
symbols used for channel estimation in each run.
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4 BLIND EQUALIZATION WITH ANTENNA
ARRAYS

For an array of receivers, the time-domain approach has a natural extension [12].
Because of the spatial diversity provided by an array of antennas, better equalization
performance can be obtained [1]. More importantly, it can be shown [12] that a
channel that is not identifiable (by the second-order statistics) when a single receiver
is used may be identifiable when an antenna array is employed.

An example of an M-channel reception is illustrated in Fig. 5. The signal re-
ceived at the jth receiver is given by

0= Y st —kT) +wi(t), j=1,-.-, M, (38)

=—00

where /;(¢) is the impulse response from the source to the jth receiver. As in (3),
each receiver has a vector representation of the form

X; (i) = H;8() + w; (). (39

Using the notation x(f) = [x{(i),---, x4, ()], H = [H],---, HY, Y, and w(i) =
[wi(@), - -, wi(i)], we have again

x(2) = Hs(i) + w(i), (40)

but with the dimension m in (3) expanded to m M here in (40). The blind channel
identification algorithm can be applied directly to equation (40).

Main Source{si}

Channel 1

Channel M

Receivers

Blind Equalization Algorithm

l ¢

Figure 5:  An antenna-array-based blind equalizer.
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To illustrate the effect of spatial diversity, we consider a three-antenna three-ray
specular multipath channel [1]

hi(t) = a;8(0) + o8t — 1)) +a3;80 — 1), = 1,2,3, 41)
where 1; = 0.75T, 12 = 0.875T, and

0.3310 — 0.6545; —1.2125—1.7851i 0.0655 —0.1734:
[aj;]= | —0.3081 — 1.1443; —1.4500 — 0.2900/ -0.1519 — 0.0175/ | . (42)
—0.2541 + 0.0529; —0.2198 — 1.2166{ 0.1321 — 0.2432

Quadrature-phase-shift-keyed (QPSK) modulation is used in this simulation. Again,
£(+) is a raised-cosine pulse with 11% roll-off. The impulse response is truncated
after 6 symbol intervals. Figures 6(a,b) show the constellations of the outputs of the
unequalized channels associated with the first two receivers (the output of the third
is similar). The SNR is 20 dB.

4 . ; ; 10— . ,

2k @ * R St ]

2+ * & & - S5F ‘ N
_4 N N i . 10 1 1 i
-4 -2 0 2 4 -10 -5 0 5 10
(a) (b
40 . T y 500

-40 : . L -500
-40 -20 0 20 40 -500

(© (d)

500

Figure 6: Constellations for SNR = 20 dB with 20 symbols used for channel estima-
tion. (a) Unequalized output of receiver no. 1. (b) Unequalized output of receiver no.
2. (c) Equalized output using three receivers. (d) Equalized output using receiver no. 1.

In applying the blind identification algorithm, we experimented with a simple
order determination scheme. The dimension of the signal subspace d was chosen
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s0 that the singular value spread is less than 10. In this simulation, the dimension
was determined to be 4 = 3 (the actual dimension is 6). Figure 6(c) shows the
constellation of the equalized channel output when the data from all three receivers
were used. Figure 6(d) shows the constellation of the equaiized channel output when
only the first receiver is active. The improvement obtained by using three receivers
results from the spatial diversity.

A Monte Carlo simulation was conducted to evaluate the performance of the
three-channel equalizer. The ISI performance measure used is {from [8])

_ 3o he()|? — max, [ho (1)
max;, |h.(£)|?

ISI

) (43)

where (¢ is the single composite equalized channel impulse response. The number
N of symbols used in the identification process and the SNR were varied. For each N
and SNR, 500 Monte Carlo runs were conducted. Figure 7 is a plot of the averaged ISI
(43) vs. SNR. Since blind equalization can be switched to decision-directed equaliza-
tion when ISI is below 0.1 [7], the simulation results of this experiment suggest that,

on the average, 20 symbols are sufficient for SNR > 15 dB, 40 symbols are sufficient
for SNR > 1G dB.

0 T T T T T
-lI0F T . 4
U t. ISI of RX1
ISIof RX2
20+ i
SN, . I[SI of RX3
230k N
o, T N=20
40 . N=80 N
N=40
ol N=100 . - k N=60 |
60} . e .-:.-._:__?
.70 L L . L L
0 5 10 15 20 25 30

SNR

Figure 7:  Average ISI vs. SNR for 100 Monte Carlo runs.
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5 CONCLUSIONS

Blind equalization is of significant value in many communication problems, and
cyclostationarity turns out to hold a key to rapidly converging blind equalization meth-
ods. The cyclostationarity properties of communication signals can be exploited in
either the frequency domain or the time domain, and this article describes and com-
pares some of the relationships between these two approaches. An explicit algerithm
for identification of channels resulting from using either a single-recetver or multiple-
receivers is described and the results of initial simulations are very encouraging (see
also Chapter 3 in this volume). The multiple-receiver scheme exploits the spatial
diversity of an array to enhance the identification performance.
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1 INTRODUCTION

Estimation of the spectral correlation function, also called the cyclic spectrum, is im-
portant in a number of signal processing applications. For example, time-difference-
of-arrival, signal detection, and modulation recognition techniques based on spectral
correlation theory require estimates of the spectral correlation function over some
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region of the bifrequency plane. Some applications demand rapid computation of
these quantities, and thus require rapid estimation of the spectral correlation function.
If the problem has a priori knowledge of the cycle frequencies of interest, and the
number of cycle frequencies is not large, estimation of the spectral correlation func-
tion has a computational cost comparable to ordinary spectral analysis. On the other
hand, if the cycle frequencies of interest are unknownn, then estimation of the spectral
correlation function over the entire bifrequency plane can be required. In this case the
computational burden can be much greater than it is for ordinary spectral analysis.

The theory and implementation of digital spectral correlation analysis algorithms
has been covered in a number of publications. The basic time and frequency smooth-
ing methods of spectral correlation analysis were introduced in [1] and proof of their
equivalence was given in [2 and 3]. The additional dimension of cycle frequency,
which is absent in ordinary spectral analysis, presents issues peculiar to spectral cor-
relation analysis. In particular, because of the large computational burden in some
applications, the computational efficiency of cyclic spectrum estimation algorithms
is a central issue and has been the focus of research in this area. The computationally
efficient algorithms reviewed in this paper were introduced in [4] and discussed in
[5, 6, 7]. They exploit the computational efficiency of the Fast Fourier Transform
(FFT) to produce cyclic spectrum estimates efficiently when they are needed over a
large portion of the bifrequency plane. The algorithms are generalizations of tech-
niques used previously for measuring the correlation frequency density between sonar
signals with unknown relative doppler shift [8, p. 198].

This article reviews the theory behind digital spectral correlation analysis algo-
rithms and describes various aspects of implementing the algorithms. The discussion
begins with time smoothing algorithms. In general, FFT based time smoothing al-
gorithms are considered most attractive for computing estimates of the spectral cor-
relation function over the entire bifrequency plane. Two computationally efficient
algorithms, the FFT Accumulation Method and the Strip Spectral Correlation Algo-
rithm, are described here. Frequency smoothing methods are generally considered
best for computing estimates of the spectral correlation function along lines of con-
stant cycle frequency for moderate numbers of cycle frequencies. In particular, a
frequency smoothing algorithm called the Digital Frequency Smoothing Method is
useful for this type of estimation problem. Although spectral correlation algorithms
are generally classified as time or frequency smoothing, hybrid algorithms (i.e., al-
gorithms that smooth in both time and in frequency) can be advantageous in certain
applications [9].

2 TIME SMOOTHING ALGORITHMS

We begin our study of time smoothing algorithms with the time smoothed cyclic
(cross) periodogram. By itself, the time smoothed cyclic periodogram is not compu-
tationally efficient for computing estimates of the spectral correlation function over
large regions of the bifrequency plane. However, modification of the time smoothed
cyclic periodogram leads to several computationally efficient algorithms. In particu-
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lar, the FFT Accumulation Method (FAM), and the Strip Spectral Correlation Algo-
rithm (SSCA) can be derived by modifying the time smoothed cyclic periodogram,
Kemel representations of the algorithms are also developed. These representations
are useful in quantifying the performance of the algorithms. References [6 and 7]
present detailed studies of the time smoothing algorithms.

The time smoothed cyclic cross periodogram is the basis for all time smoothing
algorithms discussed in this article. Consider a pair of continuous-time waveforms
x (¢ and ¥(¢) with sampled versions x(n) = ¥(nT;) and y(n) = y(nT;), where T} is
the sample period. The time smoothed cyclic cross periodogram is defined by

S (0, fodae = (Xr(n, fo+eo/DYE(, fo— /D), (1)

where the quantities X7(n, -) and Yr(n, -} are the complex demodulates of x (») and
y(n), respectively. A complex demodulate such as Xr(n, f) is obtained by passing
x(n) through a one-sided bandpass filter centered at frequency f with bandwidth
Af = 1/T, and frequency shifting the output to baseband. It is a complex-valued
lowpass waveform and represents the spectral components of x(n) within a band
of width A f centered at frequency f. Hence, (1) can be interpreted as correlating
spectral components of x(n) with those of y(n) over a time span of Af seconds.
The time averaging operation in (1) employs a unity area weighting function g(n) of
duration At = NT; seconds,

S, fdae = Y Xe(r, Y3, f)gln —r). @

In (2) the complex demodulate frequencies are related to the frequency and cycle
frequency of the point estimate by fo = (i + £2)/2and ey = f1 — /2. The complex
demodulate X+ (n, -) can be computed from the formula

N'f2-1 ‘
Xr(, )= Y. a(r)xin —r)e /=0T 3)

r=—N'/2

where a(r) is a data tapering window of duration T = N'T; seconds. Complex
demodulates computed by (3) have bandwidths on the orderof Af = Aa = f;/N’
where f; = 1/7,. Figure 1 illustrates the parameters of the time smoothed cyclic
periodogram.

Reliable estimation of the spectral correlation function requires that At 3» T,
or more succinctly, that ArAf > 1. If the data tapering window is normalized
according to ¥, |a(r))? = 1, then in the limit as At - oc and Af — 0, the time
smoothed cyclic periodogram approaches the limit ¢yclic cross spectrum [3]

Al_,ifinro Ap—inoo ey, Jo)ar = 555 (o) “)
= f:55;(f) (5)

where the last equation is valid for | fo] < f;/2 —|a|/2 and f; > 2B, where B is the
bandwidth of the waveforms X{¢) and ¥(¢). A basic time smoothing algorithm can
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be formed by evaluating the time smoothed cyclic periodogram at frequency/cycle-
frequency pairs (fy, ) of interest. In many applications, computation of the entire
cyclic cross spectrum estimate (i.c., all possible point estimates) using this basic
algorithm would require an enormous number of computations. However, the basic
algorithm can be used to derive other, more computationally efficient, algorithms.

(1) T e
noT,

fWW“W“WﬁW%mWWMNMWMH

~ - I

Figurel: Tllustration of the parameters of the time smoothed cyclic periodogram. For
clarity of presentation, the magnitude of X7(n, f) is illustrated.

Another representation for the estimate produced by the basic time smoothing
algorithm can be obtained by manipulating (2) and (3) into the form

5% (1, fo)ar =Y Y mlg.)x(n— g)y (n — rye= 20T 6)
q r

where the kernel m(g, r) is

m(g,r) = g(plalg — pa(r — p)e A=l ginan+nT: 0
F4

Equation (6) is a quadratic transformation that represents the estimate in terms of
the parameters f, og, At, and Af. Note that all of these system parameters are
contained within the kemel m{g, ). Of greater use in describing algorithms is the
rotated Fourier Series Transform (FST) of the kernel

Ma, f) = sz(q, r)e—:'Zn(f+cl12)qner“ZHU’ua/Z)rT}- (8)
g r
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In terms of the rotated kernel M (¢, 1), the estimate is given by

L2 )
S far=T0 Y f M(B,v)SE,(v) dy *TF~00T + R(n)  (9)
BeR v —fil2

where the first term on the right side is the mean of the left side, the second termis a
randomly fluctuating residual, and where R is the region — /2 < B — o < £ /2.
Equation (9) indicates that cycle features of the underlying cyclic cross spectrum
Sgy(f) that are within the domain of M(e, /) are summed in cycle frequency and
integrated in frequency to produce the value of the estimate. Cycle features outside
of M{«, f) do not appear in the estimate.

The relationship between the amplitude scaling of the estimate and the form of
the kemnel transform is important in connection with the FAM algorithm discussed in
the next section. The amplitude scaling of the estimate is determined as follows. In
the limit as At — oo and as A f — 0 the random residual in (9) disappears, and (9)
becomes

£z
im lim S% (n,fo)m=|:lim lim T, M (eto, f)df] S2(f). (10)
2

Af—>0Af—o0 T Af—>0A—o0 J_p

The area under the kernel transform evaluated at @ = « scales the amplitude of the
estimate. With the weighting functions a (1) and g(n) scaled as described earlier, this
scaling factor is unity for the unmodified time smoothing algorithm.

Under the condition A¢tA f 3 1, the rotated kemel can be approximated by the
separable form

Ma, ) =~ Gale — o) Hyr (f = fo). (I

The functions G /4, () and Hy;r(f) are frequency windows and are related in a
simple manner to the FSTs of the data tapering windows used to compute the esti-
mate. For example, the basic ime smoothing algorithm described by (2) and (3)
constitutes a quadratic system and has a kernel transform given by

Mia, ) = G(o — ag) 4 (f— fot 2 _2““) 4 (f— h-Z _2“") (12)

~ Gla —ag)lA(f — fo)I? for AtAf > 1 (13)

where 4( f) and G(a) are the FSTs of a(#) and g(»). Equation (13) indicates that
M(c, ) isatwo dimensional pulse that has most of its area concentrated in the region
defined by | f — fol < Ae/2 and |a — | < 1/2At. Since cycle features within this
region contribute to the estimate (cf. (9)) the region determines the frequency resolu-
tion A f and the cycle frequency resolution Ac of the estimate. A troublesome type
of spectral leakage, called cycle leakage, can occur if the kernel transform M (e, f)
is incorrectly designed. If cycle features are present in the sidelobes of M(a, f)
they will contribute to the estimate. Cycle leakage can be minimized by properly
designing the kernel transform so that it has low sidelobes and low skirts.
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Two modifications to the basic time smoothing algorithm can be made to im-
prove computational efficiency: use a computationally efficient Fourier Transform to
perform time smoothing, and use a computationally efficient algorithm to compute
the complex demodulates. An algorithm based on the first modification can be derived
by introducing a frequency shift ¢ into the complex demodulate product sequence be-
fore smoothing. Consider the expression

S5 (1, fodar =) Xp(r, fOYR(r, f)g(n — r)e 27T (14)

where [¢| < Aa. Note that the cycle frequency parameter has been redefined to
&y = fi — f2 + €. Since the product sequence has a bandwidth on the order of
2Aaq, and the averaging operation is a lowpass filter with bandwidth on the order
of A = 1/At, frequency shifting the product sequence moves different bands of
the product sequence into the lowpass filter. The kernel transform associated with
lg] < £2,(14) is

M@, ) =Gle-f+L—-Af — fi+e/DA(f~ i—a/2) (15)

and is a pulse centered at (fy = (f; + f£)/2, 20 = fi — f2 + €) with a width of
Ac = 1/Af and alength of Af = Aag — |e|. By discretizing the frequency shift to
€ = gAw, (14) becomes

Seo.(n, fo)ar =Y Xr(n, f)Y7(r, fo)gln — Pe~2mralV (16)

and it follows that the sum in (16) can be efficiently evaluated by an N-point FFT.
Note that (16) computes a column of N point estimates with the column centered at
(o, i — f2), and that the gth point estimate has a variable frequency resolution of
Af = Aa —|q| f;/N, and a constant cycle frequency resolution of Ax = f;/N.
The second modification improves the computational efficiency of the complex
demodulate calculation. For now, modify (3) so that L samples are skipped between
computations,
N'f2—]
Xr(pL, f)= ) a(r)x(pL — rye=f(et=n1, ()
r=—N'/2

By hopping the channelizer L samples between computations the number of samples
in each complex demodulate sequence shortens from N to P = N/L. As described
in the next section, an FFT can be used 1o efficiently compute this sum for a set of
discrete frequencies. (See [10] for a general discussion on efficient algorithms for
computing complex demodulates.) If g(-) in (2) is replaced by its comb-filter version

geln) = Z S(n —mL)g(n)/ Zg(KL)
L k

and the output is sampled at n = PL, the estimation equation (2) can be written in
terms of the decimated complex demodulates,

S (pL, fodar =D Xr(rL, YL, f)ga(p—r) (18)
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where gz(r) = g(rL). To determine the kemel transform for this system, G (-} in
(12} is replaced by the FST of the comb filter g.(-),

Ge(@) = ) ge(r)e >erm (19)

=2Gd(a+”—ﬁ), 20)
- L
where G4 () consists of one period of G.(a),

Gala) = { > Gam)e=Zremtlfor |a| < f/2L
0

otherwise.
The kernel transform for this algorithm is thus

M, ) = ;Gd(a—ao+ %)A(f—fl+%),4*(f—f —%) 1)

=Y Ga (a —ap+ %) M, f). (22)

The teeth of the comb filter have bandwidths on the order of 1/A¢, and are spaced
fo/L Hz apart. Cycle leakage can result if the teeth of the comb overlap the re-
gion of support of M, (e, f). Proper values of decimation factor L are discussed in
conjunction with the FFT Accumulation Method.

2.1 The FFT Accumulation Method

The two modifications to the basic time smoothing algorithm can be combined to
form the FFT Accumulation Method (FAM). But first, note that an N’-point FFT can
be used to efficiently compute the complex demodulates in (17). Equation (17) can
be manipulated into the form
N=1
Xr(pL, fu) = [Z ald —k)x(pL —d + kye™*™H ”} e BmmpPL=DIN (23)
k=0
where d = N'/2 — 1. In this form, it is immediately apparent that the summation
in the brackets can be efficiently computed using an FFT. Complex demodulates
computed in this manner have a discrete set of center frequencies f, = m/f;/N,
—N'/2 < m < N’/2 — 1. With this set of complex demodulates, and combining the
results of (16) and (18), a point estimate can be expressed as

5% (pL, fidsi = Y Xr(rL, fOYF(rL, flga(p—r)e 24P (24)

where ayy = fr — frhop = ay + qAca, and fy = fu = (S + f1)/2. Equation
(24) can be efficiently evaluated by a P-point FFT, thereby producing a block of
point estimates. The kernel transform of the FAM is given by

M@, fik ) =Gola—e)d(f— fi+5) 4 (f=fi=5). @5
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The idealized region of support (no sidelobes or skirts) of A(f— fr4+a/2) A*(f — fi—
o /2) is called a channel-pair region. As is evident from Fig. 2, computation of (24)
for all combinations of channel pairs (%, /) and FFT bins |g| < L P/N’ completely
covers the bifrequency plane.

The cycle frequency resolution of the FAM is A¢ = f;/PL and the frequency
resolution, which is variable, is Af = Aa — |q|Aa. Likewise, the time-frequency
resolution product is variable, and is AtAf = ArAa — |g|. Typically, the time-
frequency resolution product is referenced to the point estimate at ¢ = 0. The
amplitude scaling of the estimate, determined according to (10), also varies with g:

f:/2

512
T; f;zM(aD’ fydf = Tch(O)ffﬂA(f+qAa/Z)A*(f—qAa/Z)df (26)

Aa
=1 —|g|l—. . 27
IqlAa 27

The design of the channelizer is particularly important in the FAM approach.
The possibility of severe cycle frequency leakage, which can occur if the replica teeth
in the comb filter G, intersect the channel-pair region, requires careful design of the
channelizer passband shape A( /') and selection of the decimation factor L. From Fig.
3, it can be seen that the extent in cycle frequency of the nominal channel-pair region
is 2Aq and that the teeth of the comb filter are separated by f;/L. Therefore, for all
values of oy spanned by the channel-pair region, the replica teeth will not intersect
the channel-pair region provided that f;/L > 2Aa or, equivalently, L < N'/2.
However, any actual tapering function g (n) of length N* will have significant response
for frequencies greater than Aa/2 = f;/2N’. Therefore, we recommend designing
a(n) 1o produce a sharp transition band and using

L=N/4. (28)

In applications where computation speed is paramount, there can be advantage in
selecting L = N'/2 in order to minimize the FFT size P = N/L. This can be
accomplished without cycle frequency leakage by increasing the length of a(n) to
achieve a more rectangular passband shape. For example, replace N’ in (23) by 2N’
and design a(r) to produce a nearly rectangular passband of width Aa = f/N.
The increased cost of channelization is offset by the decreased cost of performing the
P-point FFT for all channel-pair regions when P is reduced from 4N/N' to 2N/ N'.

The variable time-frequency resolution product is troublesome near the ex-
tremes of channel-pair regions since point estimates there have a high degree of
variability. The trouble can be eliminated by simply discarding the offending point
estimates; for example, retain the point estimates whose index parameter lies within
the range

Aa Aag .
- <gha < - (29)
or PL PL
£g=——-L (30)

Y = 2N
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Figure 2: Tiling the bifrequency plane with channel-pair regions for N’ = 8. The
channel-pair region index for channels f; and f7is ((k + D /2, k= 1).
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Figure 3: Region-of-support diagram for the FFT Accumulation Method.

This approach has the added advantage of somewhat mitigating the cycle frequency
leakage problem described in the preceding paragraph.

Another approach is to combine point estimates in adjacent channel-pair regions
having equal values of cycle frequency as depicted in Fig. 4 [11],

Sevr (PLy fo) = S0 (PL, fiu) + S8 (PL, ferra) (1)

where fy = fj+ap/2 and the cycle frequencies are matched by using g, = ¢, — N/ N’
with g, > 0. Since the scaling factors (27) associated with the two terms sum to
unity, the scaling factor of the combined estimate is unity. The kemel transform
corresponding to this composite estimate is

M, fik,k+1,1,q1,92)

= —_ -— E —_ E f'; * o
Gl ag)[A(f fit 2)+A(f St s —F)]A (r-4-9).
(32)
If A(S) is rectangular and of width f;/N’ then the frequency resolution associated
with this kemel is indeed independent of ap and equal i f;/N’. There are two
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drawbacks to this approach. First, the need for rectangular channelizer passbands
increases the computational cost of channelization, and second, combining estimates

- from adjacent channel-pair regions complicates the partitioning of the algorithm onto

multiple processors operating in parallel.

PAV:
v — fi ]

fr fr f:k+1

Figure 4: Adjacent cell combining for mitigation of variable frequency resolution in
the FAM.

The FAM computation consists of three computational stages: computation of
the complex demodulates, computation of the product sequences, and smoothing the
product sequences. The complex demodulate computation can further be divided
into data tapering, Fourier transforming, and frequency translation sections. A listing
of the algorithm is given in Table 1, and a digital realization is illustrated in Fig. 5.
The listing is an implementation of the FAM on a uniprocessor (i.e., single CPU)
computer and computes estimates of the cyclic cross spectrum. An optional step
of adjacent cell combining is included for completeness. The algorithm is easily
modified to computing estimates of the cyclic spectrum of a real-valued signal by
replacing references to y with x and adjusting the indices on the product computation
looptobe 0 <k < N'/2—1and 0 <[ < N'/2 — 1. It is important to realize
that other operations are needed for postprocessing such as data thinning, graphics
computations, etc. Although these computations are important in the design and
implementation of a digital spectral correlation analyzer, they are not discussed here.
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Table 1: A Uniprocessor Implementation of the FFT
Accumulation Method

* Compute Complex Demodulates of the Inpur Sequences */
Dop:=0to P—1
Compute xr(pL, ji) = FFT{a(r)x(pL + r)}
Compute yr(pL, f;) =FFTl{a(r)y(pL + r)}
Dok:=—-Nj2toN'f2-1
Compute Xr(pL, fi) =x7(pL, fi) expl~i2nkpL /N'}
Compute Yr(pL, i) = yr(pL, fi) expl—i2wkpL/N'}
end
end
* Compute and Smooth Product Sequences */
Fork:=-N'j2toN'J2 -1
Foril:=-—N'/2toN'/2 -1
Compute Sy7 (pL, fu) = Xr(pL, f)¥3{pL. fi)

Compute Sy0.(pL, fidar = FFT{gs(p) S8 (pL, fur))
end

end
1* Optional */
Compute Adjacent Cell Combining.

e—iZrkpL/N'

SpL, fu)a

Xr(pL, f

x(pL +r)

——
|
|
I
1
L

e—iZTlpLIN'

Figure 5: Dighal implementation of the FFT Accumulation Method.

The computational complexity of the FAM is given in Table 2, where complex
multiplications are used as a metric. From that table, we can develop an expression
for the number of real multiplications required by the FAM to compute an estimate
of the cyclic spectrum of a real-valued signal, That expression, for L = N'/4, is

4N |
Com = 2N N'logs (F) + 8Nlog, N' + 4NN’ + 20N. (33)

Relating the parameters of our digital implementation, N, P, L, and N, to the
fundamental signal processing parameters Af and At, we note that Af = f£,/N’,
At = NT; and P = N/L = 4N/N' (for L = N'/4). Thus the number of real
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multiply operations required in the FAM is

2 (AtAS) B(AtAS)
m = —————loga[4(AtA —1 A
(AR og2[4(ALtA )]+ XT3 oga2(fs/AS) =
+4(AtAf) + 20(ALAS)
(AfIRE  @AfIf)
The dominant term in this expression is
(AtAf)

which represents computation of the smoothing FFTs. In order to give the reader a
fee! for the magnitude of the computations involved in estimating the cyclic spectrum,
anumerical example is given.

Table 2: Computational Complexity of the FAM in Terms of the Number of
Complex Multiplications

Computation Section Number of Complex Mulltiplications

Cyclic Cross Spectrumof ~ Cyclic Spectrum of a

Two Complex Signals Single Real Signal
Channelizer
Dala Tapering NP &
N'-point FFT PN'logy N PW' [ logy N
Frequency Shift 2N'P N'P
Cross Multiply P(ND? PI(N)2/4
FFT Product Sequences (N")2(P/2)log, P [(N2/41(Pj2) log, P

2 N’ P real multiplications are required for data tapering.

Example: Consider computing an estimate of the cyclic spectrum of a real-
valued bandpass signal, whose bandwidth is 20 MHz, having been sampled at f; =
50 MHz, where the frequency resolution is Af = 27 . £; and the time-frequency
resolution product is AfAf = 23. (The requirement on the time-frequency resolution
product is to ensure detection with a sufficient SNR. Determination of the time-
frequency resolution product required to achieve a desired output SNR as a function
of input SNR is treated in [7].)

In this example, the number of real multiplies required by FAM 1o estimate
the cyclic spectrum over one quarter of the bifrequency plane is 1.6 x 108, for a
collect of N = 2! samples, collected in At = 82 x 1075 seconds. Using a 33
MFLOP processor efficiently, we would be able to estimate the cyclic spectrum in
about 48 x 1073 seconds, or 591 times real-time. (A computation is said to be real-
time if the amount of time required to compute the estimate is equal to thé amount of
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time required to collect the data for the estimate.) To achieve additional computation
speed, we could employ parallelism by assigning computation of different correlation
products and P-point FFTs to different processors, operating in parallel.

While the uniprocessor implementation of the algorithm might be satisfactory for
some problems, applications demanding rapid estimation of the cyclic (cross) spec-
trum require a multiprocessor approach. Parallel FAM aigorithms can be developed
by observing several aspects of the uniprocessor algorithm. First, note that several
operations in the uniprocessor algorithm can be vectorized. In particular, windowing
the input data and frequency translation in the complex demodulate computation can
be vectorized. Similarly, computation of the product sequences can be vectorized.
However, the greatest gains in improving the computation rate are obtained by paral-
lelizing the computation and smoothing of the product sequences. Since the product
sequences are independent of one another, (if adjacent cell combining is not used)
parallelization is relatively easy. A parallel algorithm based on these observations is
described in [6]. The tricky part in exploiting this natural parallelism is in the efficient
distribution of the complex demodulate sequences to the processors.

2.2 The Strip Spectral Correlation Algorithm

The Strip Spectral Correlation Algorithm (SSCA) is another efficient algorithm for
computing estimates of the spectral correlation function [6]. The primary difference
between the FAM and SSCA is that in the SSCA the complex demodulates Xr(n, fi)
are multiplied by y*(n) instead of by Y(n, f7). Peint estimates are computed by

S n, fo)ar =D Xp(r, f)y*(r)gln — rye= 2N (36)

where 0p = fi + gAw and fy = f;/2 — gAe/2. The sum in (36) can be effi-
ciently evaluated with an N-point FFT. The resulting point estimates lie along the line
a =2 f; —2 f, which is a strip in the bifrequency plane. For this algorithm it appears
that the channelizer decimation factor must be L = 1 since Xy (r, J) and y*(r) must
be at the same sampling rate to be properly multiplied. However, a decimation factor
of L = N'/4, like that of the FAM, can be used if the demodulate sequence is inter-
polated to match the sampling rate of y(n). It has been found that adequate inter-
polation is obtained by holding the value of each comiplex demodulate sample for L
samples. Thus the interpolated sequence X7 (n, fi) = Xr(pL, fi)for pL < n <
(p + 1)L can be used in place of Xr(n, f;) in (36).
The kermnel transform for the SSCA is

M(a,f>=G(a—ao)A(f—ﬁ+“;“") 37

where P A
fo=5 -0 38)
oy = fr+gAx 39
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and G{a) and A(f) are the FSTs of g(n) and a(n). The frequency resclution of the
SSCA is Af = f;/N’, and the time-frequency resolution preduct is AtAf = N/N'.
The uniprocessor description of the SSCA is similar to that of the FAM and consists of
three steps: computing the complex demodulates, computing the product sequences,
and smoothing the product sequences. A uniprocessor algorithm for the SSCA is
given in Table 3, and a digital realization of the algorithm is illustrated in Fig. 6.

Table 3: Uniprocessor Implementation of the Strip Spectral
Correlation Algorithm

{* Compute Complex Demodulates of x */
Dop:=0toP -1
Compute x7(pL, fi) = FFT{a(r)x(pL + r))
Dok:=-N/2to N'/2—1
Compute X7(pL, fi) = xr(pL. fi) exp[—i2npLk/ N’}
end
end
1* Interpolate Xr(pL, fi) %
Compute X1(pL, fi) > )E’;r(n, i3
1* Compute and Smooth Product Waveforms */
Dok:=—-N/2toN'/2—1
Compute S%_(n, i) = y* () Xr(n, fi)
Compute 859, (n, fo)a: = FET{gm) S5, (. f0)}
end.

e—i2rkpL/N'
Xr(n, fo) S%(n, fodae
x(pL + ) | hold —-—;—*
WS VT | gL, g NFFT | |
. i
x(n)

Figure 6: Digital implementation of the Strip Spectral Correlation Algorithm.

The computational complexity of the SSCA, for two typical estimaticn problem.s,
is given in Table 4. In a similar manner to that of the FAM, using the informatiop in
Table 4, we can derive an expression for the number of real multiplication operations
required by SSCA for computing an estimate of the cyclic spectrum of a real-valued
signal. That expression, for L = N'/4,is

Crm = NN'logoN + 2NN’ + 8Nloga(N') + 12N. (40)

Making the same substitutions as in FAM for the signal processing parameters in
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terms of At, Af, and f; yields

G = BIBD) | [(ArAf)]

YA TNTIA
+8A AL, logs(£./AS) + 2ALAS N 12A1Af “1)
@ " BSIER T (AfIfY
Note that the dominant term in this expression is the same as in the FAM,
(AtAf)
—1 .
o [(Af/f,)z og(AtAf)] (42)

Table 4: Computational Complexity of the SSCA in Terms of the Number of
Complex Multiplications

Compulation Section Number of Complex Multiplications

Cyclic Cross Spectrum of ~ Cyclic Spectrum of a

Two Complex Signals Single Signal
Channelizer .
Data Tapering 4N a
N'-point FFT N(N'/2)1og, N P(N'/2)log, N’
Frequency Shift NN 2N
Compute Product Sequences NN NN j2)
FFTs Product Sequences NN/ logy N (N /2N log, N

* 4N real multiplications are required for dala tapering.

Example: If we were to compute the estimate of the previous example using
the SSCA, it would require 9.2 x 10° real multiplies, or about 27 x 103 seconds
on a 33 MFLOP machine, or 338 times real-time. As with the FAM, additional
processing speed can be obtained by parallelizing the SSCA. Similarly, the discussion
on parallelizing the FAM can also be applied to parallelizing the SSCA. A parallel
algorithm for the SSCA is given in [6].

In comparing the SSCA to the FAM, the SSCA is simpler than the FAM, has
comparable computaticnal cost, and, importantly, has uniform frequency resolu-
tion. The disadvantages of the SSCA relative to the FAM are that larger size FETs
are required (large FFTs can be inefficient if the data array size exceeds the local
memory capacity of the FFT processor) and there is less flexibility to partition the
algorithm for parallel processing.

3 FREQUENCY SMOOTHING ALGORITHMS

Frequency smoothing algorithms car be classified as direct or indirect algorithms.
Direct frequency smoothing algorithms first compute the spectral components of the
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data and then perform spectral correlation operations directly on the spectral com-
ponents. Indirect algorithms compute a related quantity, such as the cyclic cross
correlation function or the Wigner-Ville distribution, and Fourier transform one vari-
able of the bivariate function to get the frequency smoothed cyclic cross periodogram.
In general, direct frequency smoothing algorithms are computationally superior toin-
direct frequency smoothing algorithms [3]. This article focuses attention on a direct
algorithm called the Digital Frequency Smoothing Method (DFSM).

The basis for the DFSM is the frequency smoothed cyclic cross periodogram
represented by

S3 (n, fo)ar = (Xar(n, fo+ao/DYX (1, fo—a0/2)),,- (43)

An explicit formula suitable for digital implementation is obtained by employing
discrete frequency averaging,

8% oy =Y WG =D Xacln r + 12DT 5,0 r = 172D (44

where @; = ifs/N and f; = jf;/N and the spectral components are computed by

Xpi(n k) =) b(r)x(n — r)e2rke=n/V (45)

in which b(#) is a data-tapering window of length N = Az/T,. The shape of data
tapering window b(r)} is typically rectangular. The frequency smoothing function
W (r) ranges over [r| < M/2, which corresponds to Af & Mf;/N. A kernel scaling
factor of unity results if 3, |b(r)|? = T, and > W (m) = 1. Figure 7 illustrates the
parameters of the frequency smoothed cyclic-periodogram (and of the DFSM). The
kernel transform for the DFSM is

Ma, )
46
_ZB(f fot +_ff)3*( +mA{;)W(m).( )

For AtAf > 1, the frequency smoothing kernel and the time smoothing kernel in
(13) closely approximate one another [3].

A umiprocessor algorithm for the DFSM consists of computing (44) for all de-
sired values of o; and f;. There are several approaches to organizing the compu-
tations, each of which might be better suited for a particular analysis task. One
approach is to compute spectral products along a line of constant cycle frequency
and then convolve the products with a smoothing window. This approach yields
point estimates spaced f;/N Hz apart in frequency and can ease interpretation of
the overall estimate. Another approach is to compute (44) along a line of constant
cycle frequency, but space the point estimates by f. M/N Hz in frequency. Such an
arrangement provides full coverage at minimal computational expense (particularly
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Figure 7: 1llustration of the parameters of the frequency smoothed cyclic peri-
odogram. For clarity of presentation, the magnitude of X, (a1, ) is illustrated.

if a rectangular smoothing window is used), but may make interpretation of the overall
estimate more difficult. A digital realization of the DFSM is illustrated in Fig. 8.
The computational complexity of the DFSM, in terms of complex multiplica-
tions, is easily estimated. For the problem of estimating the cyclic cross spectrum of
two complex signals (each consisting of N samples), two N-point FFTs (each with
(N/2)log, N complex multiplications) and N cross multiplications are required for
atotal of N? + N log, N complex multiplications. For the problem of estimating the
cyclic spectrum of a real signal, one N-point FFT and N?/4 cross multiplications
are required for a total of N?/4 + N/2log, N complex multiplications. Note that
the contributions to computational complexity by smoothing is not considered. (If a
rectangular window is used to smooth the estimates, its contribution to the number of
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complex multiplications is nil.) The number of real multiplications required by the
DFSM to compute an estimate of the cyclic spectrum of a real signal is

Crm = N2 4+ 2NlogaN. (47
Expressing C,,, as a function of A f, A{, and f; yields

co - (AtAf)? + 2(AtAf) o [ AtAf }
ST 7T RN T e RN 73 Y A

Note that the dominant term for estimating the cyclic spectrum is o [M], as

(48)

[EN7IA
opposed to o [&l—}?j'[)—)zlog(AtA f )] for the same estimation problem using the FAM
or SSCA.

Xarn, k+m)
t r
x(n) N FFT : (E Sy, fidar
P MR
Xan, 1+ m) =M 2+1

Figure 8: Digital implementation of the Direct Frequency Smoothing Method.

Example: If we wished to use the DFSM to estimate the cyclic spectrum in
the previous example, we would need to compute 16 x 10° real multiplies, requiring
on the order c_)f 0.5 seconds, for 6 x 10° times real-time.

From the preceding discussion and example it appears that the DFSM is not well
suited for computing estimates over the entire bifrequency plane. In passing, it is
noted that the DFSM is a highly parallel algorithm [5]. However, in order to exploit
this parallelism for large regions of the bifrequency plane, a massively parallel com-
puter is required. For now, we content ourselves with employing this algorithm for
small estimation tasks, such as estimating the spectral correlation function over a small
number of cycle frequencies. But even for restricted problems the computational bur-
den can be substantial. Fortunately, the algorithm is relatively easy to parallelize
on even quite small problems. A simple way to partition the DFSM is into two sec-
tions: computation of input FFTs, and correlation and smoothing of the speciral data.
Further partitioning can occur by breaking the spectral correlation and smoothing
operations along bands of cycle frequency.

Another approach to improving the computational efficiency of the DFSM is to
use the One Bit Spectral Correlation Algorithm (OBSCA). The OBSCA technique,
which applies to both time and frequency smoothing, converts the complex multipli-
cations in the spectral correlation operation into sign change and data multiplexing
operations. Thus, the complex multiplication operations indicated in (44) can be per-
formed with greatly simplified hardware. Details of the OBSCA technique are given
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in [12], and digital implementations of the OBSCA, along with parallel computation
structures for the DFSM, are given in [13].

4 ON THE DESIGN OF DIGITAL SPECTRAL
CORRELATION ANALYZERS

To illustrate some aspects of the design of digital spectral correlation analyzers, two
implementationexamples are presented. The examples are not meant to be exhaustive,
or case studies of existing systems, but rather to illuminate various design consider-
ations that apply to implementing the algorithms discussed in this article. As a first
example, consider the design of an instrument for testing communications signals.
For this type of instrument, the cycle frequencies of interest are known a priori, so
estimation can be limited to a restricted number of cycle frequencies. For specificity,
assume that a DSP board capable of 33 million floating point operations per second
{MFLOPS) is available for the implementation.

For this problem the DFSM is the algorithm of choice. Given the specified
hardware it is appropriate to consider the question of how long it would take to
compute a particular estimate. Such a timing estimate can be found by considering
the number of operations the processor must perform as a function of the problem
size. To begin, the processor must perform 5N log, N real multiplications and addi-
tions to compute the input N-point FFT. Computation of the cyclic periodogram along
N lines of constant cycle frequency requires at most 4 VN, real multiplications and
2N N, real additions. (Note that this is the precise operation count foro = 0. As ||
increases toward f;, the number of computations in the cyclic periodogram computa-
tion decreases.) In order to increase computational efficiency, frequency smoothing is
accomplished by the simple hopped summing operations previously described. This
operation Tequires at most 2N N, real additions. Finally, say that a floating point
operation, either multiplication or addition, can be performed in Ty, seconds. Thus,
the cyclic spectrum of a real valued signal can be estimated along N, lines of constant
cycle frequency in approximately

T, ~ (SN log, N + 8NN, T}, (49)

seconds. Estimates of the computation time with a 33 MFLOPS processor are listed
in Table 5 for a variety of problem sizes.

Table 5 indicates that the processing time for some problems might be unaccept-
able. One approach to decreasing the computation time is to obtain a faster processor.
For purposes of processor sizing, say that a fixed amount of time is available for the
computation. For this type of instrument a reasonable delay time, i.e., the time from
when the data is available for processing to when the results are displayed, is 2 sec-
onds. The processor speeds required to perform the computations in 2 seconds are
listed in Table 6. Note that other computational facets of the system, such as graph-
ics computations for display of the results, might require a significant number of
computations, but are ignored here.
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Table 5: Table for Estimating Time Required to Compute Estimates along Ny
Lines of Constant Cycle Frequency with the DFSM. (Times are listed in seconds
for a 33 MFLOPS processor.)

P a2 213 214 218 216 217 218 219 220

4 (001 001 002 005 011 022 046 0.97 202 4.19

§ | 001 002 003 007 014 029 059 1.22 2.53 5.21

16 | 001 002 005 010 020 041 085 173 3.54 7.24

Ny 32 |1 002 004 008 016 033 067 135 275 5.58 1131
64 | 0.04 007 014 029 058 118 2.37 4.78 9.64 1945

128 | 0.07 0.13 027 054 109 219 440 885 17.718 3572

256 | 013 026 052 105 211 423 847 1698 3405 68.25

Table 6: Table for Estimating MFLOPS Required to Compute Estimates along
N Lines of Constant Cycle Frequency with the DFSM (computation time is two
seconds.)

211 12 213 214 215 216 217 213 2]9 220

4 (02 04 0.8 1.7 35 7.3 15.3 32.0 66.6 1384

8|02 05 1.1 22 4.6 9.4 19.5 40.4 83.4 1720

16 | 04 08 1.6 32 6.7 13.6 27.9 57.1 1169 239.1

Ny 32106 13 2.6 53 1038 220 44.7 90.7 184.0 3733
64 { 1.2 23 4.7 95 192 38.8 782 1578 318.2 641.7

128 | 22 44 89 179 360 724 1454 2920 5867 11786

256 | 43 86 173 347 696 1395 2796 5605 11235 22523

A second alternative to obtaining a processor with the speeds indicated in Table
6 is to parallelize the computations as previously described. A natural partition is
to compute the input FFT in one second and then compute and smooth the cyclic
periodograms in the remaining second. For the problems indicated in the tables, the
FFT processor would have to perform on the order of 105 MFLOFS for the largest
computation. The correlation processors would have to perform on the order of 2150
MFLOPS. Both the FFT computation and the cyclic periodogram computation can

“ be further parallelized. Computation of the cyclic periodogram calculation is achieved

by assigning sets of cycle frequencies to individual processors. For example, the
design goals are obtained if R = 32 processors each with 67 MFLOPS processing
speed are used.

As a second example, consider the design of a system to estimate the cyclic
spectrum of a real-valued signal over the entire bifrequency plane and to perform the
computation in real-time. Recall that a system is considered (o operate in real-time
if the amount of time required to compute an estimate is equal to the amount of time
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required to collect the data for the computation. From the preceding discussions, the
need for parallel processing is evident. The high degree of parallelism inherent in the
FAM makes that algorithm a good cheice for this problem. The system consists of a
channelizer to compute the complex demodulates and R processors to compute and
smooth the product sequences. As with the previous problem, the characteristics of
the system can be inferred from estimates of the number of computations required
for a variety of values of Af and ArAf.

The complex demodulates of the input sequence are computed by the channelizer.
In order to improve computational efficiency, the decimation factor is setto L = N'/2
instead of the typical value of L = N’/4. Each of the R correlation processors is
assigned to compute and smooth the product sequences associated with a subset of the
(N"y*/4 channel-pair regions. The processors are assigned channel-pair regions in
such a way as to form regions where adjacent-cell combining can be performed with a
minimum of data transfer between processors. After the correlation processors have
been loaded with appropriate data, they begin to cross multiply complex demodulate
streams, and Fourier transform (smooth) product sequences. The FAM generates a
large amount of data for many problems of interest. For example, if the input stream
consists of N = 22 samples and N’ = 256, then approximately 22 point estimates
are generated by the FAM. Most of these point estimates are irrelevant. Itis therefore
appropriate to “thin” the data by applying a threshold test. Point estimates that fall
below the threshold can be discarded with little effect on the overall estimate.

The processing speed required by the correlation processors is estimated by the
following simplified analysis. The analysis uses the following simplifications:

1. Eachcorrelation processor can compute a P-point FFTin Trpr = u Plog, P
seconds where 1! is on the order of the correlation processor FLOP rate.

2. The channelizer has sufficient resources to channelize the data in less time
than it takes R correlation processors to process an epoch.

3. The time to compute the product sequences, perform adjacent-cell combin-
ing, and thin the data is negligible compared to Trry.

4, Data transfer times are negligible.
5. The time required to compute the display is ignored.

With these assumptions, the average time required to process an epoch is the
number of channel-pair regions times Trpr divided by the number of correlation
processors,

_ {N)?Plog, P
4R )
Substituting P = N/L and L = N'/2, approximation {50) becomes

_(u\[NN'_ 2N
o (5) [ w3 | D

Te (50)
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The quantity in brackets is roughly the number of operations required to perform the
estimation. Table 7 lists the quantity in brackets for a number of values of N and N’.

Table 7:  Table for Estimating the Number of Operations Required to Compute an
Epoch with the FAM. (Table entries are scaled by 10°. The decimation factor for
this table is set to L = N'/2. For reference, AfAS = N/N' and Af = fi/N')

N
2l7 213 219 220 221 222 223

3 [ 0.0079 00168 00357 0.0755 0.1594 0.3355 0.7046
16 | 0.0147 0.0315 00671 0.1426 03020 0.6375 1.3422

N 32 | 00273 0.0587 0.1258 02684 05704 1.2080 2.5501
64 | 00503 0.1091 02349 05033 1.0737 2.2817 4.8318

128  0.0923 02013 04362 09395 20133 4.2950 9.1268

256 | 0.1678 03691 0.8053 1.7448 37581 8.0531 17.175%

Consider a system that meets the previous simplifications and has R = 32
processors, where each processor has ¢ = 20 x 1072 seconds. Say that an estimate
is performed with a frequency resolution of Af = f;/256 and a time-frequency
resolution product of AtAf = 2048. Using the relationships A/ = £/N' and
AtAf = N/N', it is determined that N’ = 256 and N = 2'?. From Table 7 and
approximation (51), the approximate time to compute an epoch using the FAM is
Tg =~ 05033 seconds. The real-time bandwidth of the system is determined by
equating the collection time T to the time required to compute an epoch, T¢. Say
that the system sampling frequency is f; = 2.5B, where B is the signal bandwidth.
Then, since N = Tf; = 2.5T B, equating T = T and solving for B, it is found that
the system’s real-time bandwidth is B = 416,7 kHz.

5 CONCLUSIONS

The objective of this article is to describe the theory and implementation of digital
spectral correlation algorithms. In particular, the FFT Accumulation Method (FAM),
the Strip Spectral Correlation Algorithm (SSCA), and the Digital Frequency Smooth-
ing Method (DFSM) are described. All three of the algorithms are based on either
the time or frequency smoothed cyclic periodogram. Each is derived by manipulating
the smoothed cyclic periodogram equations, Each algorithm can be represented as
a quadratic system characterized by its kemnel function. With the kernel representa-
tion, attributes such as frequency resolution, time-frequency resolution product, cycle
leakage, amplitude scaling, and computational complexity are easily determined. Re-
garding computational complexity, the FAM and SSCA are well suited for computing
estimates of the cyclic (cross) spectrum over the entire bifrequency plane. The DFSM
is best suited for computing estimates of the cyclic (cross) spectrum.along a moder-
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ate number of lines of constant cycle frequency. Parallelization of the algorithms is
briefly mentioned, and several examples illustrate some implementation issues,

It is appropriate at this point to list some relevant topics that are not covered.
With regard to algorithms, the FAM and SSCA produce a great deal of data, much
of which is irrelevant because most signals have spectral correlation features at rela-
tively few cycle frequencies. Thinning algorithms are desirable to reduce the amount
of data transmitted to postprocessing systems using the spectral correlation estimates.
It is very important to have algorithms that convert raw estimates into a more intelligi-
ble form. Such algorithms might be graphical, if a human provides the interpretation,
or perhaps might be automatic pattern recogniticn classification algorithms, if a ma-
chine performs the interpretation. Algorithms for computing estimates gver the entire
bifrequency plane and along lines of constant cycle frequency are discussed. Algo-
rithms for computing estimates along lines of constant frequency are not discussed.
For completeness, it is noted that either time smoothing approaches, such as those
discussed in [6] or frequency smoothing approaches, such as those discussed in [13],
are available for this purpose.

With regard to implementation, we hope it is apparent that parallel processing is
the key to real-time spectral correlation analysis. This article only touches on paral-
lelization of the FAM and SSCA. Aspects such as network topology, load balancing,
and interprocessor communications (particularly for adjacent cell combining in the
FAM) are not discussed. Finally, only one type of channelization is mentioned. Other
types of channelizers are available and indeed might be better suited for a particular
analysis task.
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1 INTRODUCTION

Interest in prediction theory of cyclostationary (also called periodically correlated)
processes is growing rapidly. This is because of its potential applications in eco-
nomics and various fields in science and engineering, including climatology, meteo-
rology, hydrology, oceanology, medicine, and biclogy (cf. [1,2,3,4,5] and Chapter 1
in this volume and references therein). The foundations for mathematical treatment
of (discrete-time) cyclostationary sequences were laid down in [6]. Gladyshev showed
that every cyclostationary sequence ¥ = {x(n) : » € Z} is strongly harmonizable
and obtained a complete description for their spectrum. He also proved that any cy-
clostationary sequence can be represented as a linear combination of components of
a certain multivariate stationary sequence which has some common approximation
properties with the sequence x itself. Since then prediction theory of cyclostation-
ary sequences has been studied by various authors including [7,8,9,10,11,12]. These
mathematical foundations have been, to some degree, also extended to (continuous-
time) cyclostationary processes in [3,13,14,15,16,17,18]. It seems that prediction of
continuous-time cyclostationary processes inevitably leads to consideration of infi-
nite dimensional stationary processes. The fact that a continuous-time cyclostationary

Supported by Office of Naval Research Grant N00014-89-J-1824 and U.S. Army Research Cffice
Grant DAAL 03-91-G-0238.
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process need not be harmonizable [13,15] has obscured its spectral analysis. Under
the assumption of strong harmonizability, the description of the spectrum and a cer-
tain series representation of a continuous-time cyclostationary process were given
in [15,19]; also [16] obtained a characterization of the spectrum and the random
spectrum of bounded cyclostationary processes.

In this article we briefly review these and some other recent developments of
prediction theory for cyclostationary processes. Section 2 is devoted to notation and
preliminaries. Discrete-time cyclostationary processes are studied in Section 3, and
continuous-time cyclostationary processes are studied in Section 4.

2 PRELIMINARIES

Let B be a o-field of subsets of the sample space £2 and P be a probability measure on
B. The triple (22, 8, P) is called a probability space. Throughout this article, the term
random variable means a measurable function on the probability space (22, g, P)
with zero mean and finite variance. So a random variable x is an element of the
Hilbert space L2(%2, 8, P), and for most of our purposes can be considered to be an
element in any complex Hilbert space H.

Definition: Let G represent the set of real numbers R or integers Z. A bounded
measurable H-valued function x = {x(¢) : £ € G}issaid to be a (H-valued) stochastic
process. To distinguish the discrete-time case G = Z from the continuous-time case
G = R, we usually refer to the former one as a sequence and to the latter one as a
process.

Definition: Let F be a locally convex topological vector space and B(F, H)
denote the space of all bounded linear transformations from F into H. For G = R
or G = Z, a B(F, H)-valued function x = (x{¢)} : # € G} is said to be stationary if
x(¢) f is continuous for every f € F and

x(@) f,x(9)g) = x@E + A L x(s+RM)g) forall f,geFandt, s,k eG.

Here (-, ) denotes the inner product of two elements in the Hilbert space H. If
dim F = 1 the process is simply a (univariate) stationary process and if dim F = co
the process is called infinite dimensional, If dim F = g < oo, then x will be re-
ferred to as a g-variate or a multivariate stationary process and is usually denoted by
X() = L), X2, ..., x4 ()Y, with x(#) = x(t)e;, and {e;} being the standard
basis of F. We use (...)’ to denote the transpose of the vector (... ).

Definition: An (H-valued) stochastic process x = {x(¢) : t € G} is said to be
cyclostationary (CS) or periodically correlated if there exists some T € G such that

(xs), x()) = (x(s+ T),x(¢t +T)), forals,teG.

In this case the smallest such T is called the period of the process x. The following
subspaces play a crucial role in prediction theory of an H-valued stochastic process
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x={x(@):feG}

H(x) = sp{x(t): ¢ € G}, time domain of x
H(x;s) = sp{x(¢) :t <5}, pastofxattimes
H(x; —o0) =NH(x;s), remote pastof x,

where sp{ } stands for the closed linear span of all elements inside { } in the H-
topology.

Definition: An H-valued stochastic sequence x = {x(?) : £ € G] is called
deterministic if H(x; —00) = H(x), and it is called nondeterministic otherwise. It
is called purely nondeterministic if H(x; —co0) = {0).

Definition: The time domain, past, and remote past of a B(F, H)-valued pro-
cess X = [x(¢) : ¢ € G} are similarly defined to be the following subspaces of H:

H(x) = sp{x(©)f: f€F,t € G}, time domain of x
Hx;5) = sp{x(¢t)f: f €F,t <s], pastofxattimes
H(x; —o0} = NH(x; s), remote past of x.

Fora B(F, H)-valued process x, the notions of determinism, and pure nondeter-
minism can be similarly defined.

3 DISCRETE-TIME CYCLOSTATIONARY
PROCESSES

In this section we discuss some prediction problems for CS sequences. It is well
known that CS sequences are closely related to multivariate (MV) stationary se-
quences. In fact CS sequences are connected to MV stationary sequences in a number
of different ways. These connections have been exploited by several authors in their
investigations of different prediction questions concerning CS sequences. Here these
ideas are discussed and their applications to some prediction problems for cyclosta-
tionary sequences (CSSs) are given.

It is well known that any CSS is harmonizable and hence has a spectrum. This
is important because it allows for the use of the powerful tools of harmonic analysis
in developing a prediction theory for CSSs similar to that of stationary sequences.
However since the spectrum of a CSS is given through a bimeasure rather than a
measure, this approach is not as froitful as might be expected. For instance, in order
to use the spectral approach for developing a successful prediction theory similar to
that for stationary sequences, the time domain must be complete. But this does not
seem to be the case. Hence, the time-domain approach seems more appropriate for
studying CSSs and, in this section, time-domain techniques are adopted. We first
investigate their moving average and autoregressive properties and then exploit the
close tie between CSSs and multivariate stationary sequences (MVSS) to study some
prediction problems concerning CSSs.
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3.1 Autoregressive and Moving Average
Representations

One way of predicting a seasonal time-series is that of fitting it to an autoregressive
(AR) or moving average (MA) model. Here we consider some properties of these
models. For a CS8S, its AR and MA coefficients can vary with time; however, these

coefficients must vary in a periodic manner. o _
An H-valued stochastic process x = {x(¢) : { € Z} is said tobe MA of order ¢ if

(O =vEO+bOVE -+ + bW (@ —q), tel
and it is said to be AR of order ¢ if
() Fa (Ot —1D+... +a,)x —q) =), tel, (¢)]

where yr(¢) is a white noise sequence. For each integer k, bx(2) and a,(¢) are constant
if x is stationary but change with ¢, in a periodic fashion, if x is CS. .

Ifx = (x(¢) : ¢t € Z}is a CSS of period T, then its AR coefﬁcwnts ay(t) are
periodic with period T and hence can be expanded in a Fourier series:

= 2 jt . 2mjit
ar(t) = Z; [CU cos - + dy; sin 7 |-
J=

Substituting these series representations into the AR representation (1) yields the
following AR representation for x

ct B el 2 jt
£ = WP crox(t — k) — ) Y leyx(t — k) cos —

k=1 k=1 j=1

. 2mjt
+dij(t - k) sin T]

This shows that the best linear predictor of a CSS in terms of its past can b‘? expressed
in terms of its past data and the past data multiplied by sines and cosines of the
fundamental and harmonic frequencies of the period [8,20].

We now consider MA representations of aCSS x = {x(#) : £ € Z]. Let

£t 1t — 1) = Prger-1yx(t)

denote the best (in the least squares sense) linear predictor of x(¥) baser.;l on its past
(Py denotes the orthogonal projection from the Hilbert space H onto its subspace
M), When x(t) = Z(¢; t — 1), we define ¢ (r) =0 otherwise we take v (f) to be the
normalized innovation

() —x(;e—1)

, teZk
lx () — 26t — L}l

V() =
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One can then express H (x; t) as the direct sum H(x; £} = sp{¥r (1)} @ H(x; ¢ — 1).
Continuing this process g more times

Hx )= sp(y @y~ 1, ...,y -} @ Hx; t —g—1).

Since x{t) € H(x; t), one can see that
q
O =Y b — k) +07(0), withv () = Puguogpx(t). ()

This general decomposition of x is not as useful as one might like it to be because, in
contrast to the stationary case, the coefficients by () here vary with time {. However
in the case of a CSS x, these coefficients vary in a periodic manner. That is, for each
k the coefficient by (¢) is periodic in ¢ with period T and hence it can be expanded as

T-1
be(¥) = Zeb exP( mjz)'

J=0

Substituting these representations for the &;’s into (2), one obtains
T—1 ..
2wijt &
HOESY (exp (—TJ—) D eyt~ k)) + 07 (2). (3}
=0 k=0

This representation can be used to prove the following decomposition of the MA
part of CSS in the sum of finitely many MA stationary sequences.

Proposition  Suppose x = (x(t) : t € Z) is a MA CSS with period T.
Then x can be decomposed into the sum of T moving average stationary sequences
yi={y/t):teZ),j=0,1,...,T — 1, each having the same order as that of
the original sequence x.

Proof: If the CSS x has an MA model of order g, then all the v7(¢)’s in (3)

vanish,
-1 /- it g r-1
x@) =) (eXP ( H;ﬂ) D et~ k)) =2 @
=0

j=0 k=0

One can then check thateach MA sequence y/ = {y/(t) :t € Z), j =0, 1,..., T—1
is stationary.

Remarks: We can rewrite (4) as

-1

x(t) = Z(Zek,,exp( ”k) (———2”ij;f_k))qJ(z—k))

T-1 ¢ ..
2rijk .
= %MPC%#)WG—M
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where each ¥/ (t) = exp @mijt/T)¥ (@), = 0,1,...,T — 1, is a white noise
sequence. This time-independent MA representation for the CSS x shows that in
order to complete our modeling one needs to estimate only Tg parameters and use them
with the innovations data as well as their products with some appropriate harmonic
functions.

Using the above decompositions one can immediately prove the following
Wold decompositions with time-independent coefficients.

Theorem A CSSx = {x(t) : t € Z] with period T can be decomposed as

x(ty = u(ty + v{t) with
u(t) = 2°(t) + exp (27;1 )z @)+ - exp (4—21”-!(; — 1)) 277,

where

i. the sequences z/ = (z/(t) : t € Z}, j = 0,1,...,T — 1, are purely
nondeterministic and jointly stationary,

ii. the sequence v = (v(¥) : t € Z} is CS and deterministic,

iii, the sequence v = (v(t) : t € Z) is uncorrelated with each of the sequences
=[):tel),j=0,1,...,T - 1.

Proof: 1t is sufficient in (3) to take

q
@)=Y eV — k).
k=0

Theorem Letx = {x(¢) : t € Z) be a CSS with period T. Then it can be
decomposed as x(t) = u(t) + v{#) with
w(t) =YW+ YO+ + 57O

such that

i. each sequence y/ = {y/(t) : t € Z) is stationary and purely nondetermin-
istic,

il. v(t)is CS, deterministic, and uncorrelated to each y/(t).

Progf: 1t is sufficient in (3) to take

; 2wijty . it &
W)= exp( H;‘J )z-’(z‘) = exp( ﬂ;" )Zekj\ll(t — k).

k=0
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3.2 Prediction of Discrete-Time Cyclostationary
Sequences

There is a well known connection between any CSS of period T and the MVSS formed
from its consecutive blocks of length 7. This connection can be used to study some
prediction properties of C8Ss such as their Wold decomposition and Wold-Cramer
concordance.

The correlation function R(¢, ) = (xr4r, X} 0f aCSS x = {x(¢) : t € Z} of
period T is periodic in ¢ with period T. Hence it can be decomposed as

T—1 .o
R, ) =Y Ri()exp (2”;1’) . (5)
k=0

The functions Ry(r), 5 = 0,1,..., T — 1 are extended to all integers by R; (1) =
Rpir(t). There exist measures Fr, k=0,1,..., T — 1 and bimeasure

r—1
F(4,B) =) F(AN(B - 2rk/T))
k=0
such that

i 2r 2n
Ri(t) = f e "™dF() and R(,T)= f f e DA g By 6y,
0 0 0

For any subset B of real numbers and any real number A, B — A denotes the set
{b — X : b € B). This shows that the bimeasure F of a CSS is concentrated on
2T —1line segments A — @ = 2nk/T,k=1—T,..., T — 1 in the square [0, 27)?,
with F; being the mass of F on each of these lines. When we talk about the absolute
continuity of this spectral bimeasure F, its derivative F”, its density f, or its Cramer
components F° and F*, we mean with respect to the measure whose restriction to
each of these 2T — | segments is Lebesgue measure.

For a fixed integer T, to each univariate sequence x = {x(¢) : t € Z) we cor-
respond the MV sequence y = {y(¢) : ¢t € Z} defined by y(t) = (°(), ¥' (), ...,
YUY = (k72 Xe7410 « + s Xer7—1). This correspondence is clearly one to one.
It is well known that x is CS with period T iff its corresponding MV sequence
y is stationary. If we decompose y (according to the Wold-decomposition for MVS
sequences) as the surn of two uncorrelated MVSSs y(¢) = y"(#)+ y*(¢) with y” being
purely nondeterministic and y* deterministic, then we can go back and consider their
corresponding CSSs x™ and x* to get the Wold-decomposition x (¥} = x"(¢) + x*(¢)
of x as the sum of two uncorrelated CSSs x” and x*, which are, respectively, purely
nondeterministic and deterministic. We define therank ofaCSSx = {x(¢) : € Z}to
be the number of x (¢)’s inside one period with x (¢) & H(x; ¢ —1). Itis not hard to see
that the rank of a CSS x is equal to the rank of its corresponding MVSS y as given in
[21,22]. Using this result in conjunction with the available Wold-Cramer concordance
results for MVS8sin [21,22,23] one can similarly prove that the Wold-decomposition
x{) = x"() + x*(t) of a CS§ x is in concordance with the Cramer-decomposition
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F = F? 4+ F7 of its speciral bimeasure F. That is, one can prove that the spectral
bimeasures of the CS components x° and x” are identical to F* and F“, respectively,
iff the rank of x equals the rank of its speciral density F'.

Since prediction of the deterministic component is usually not of interest,
throughout the remainder of this section the CSSs are assumed to be purely non-
deterministic with an absolutely continucus (a.c.) speciral bimeasure F that has a
spectral density f. Letx = {x(#) : ¢ € Z} be CSS and y be its MVSS in the preced-
ing. Under appropriate assumptions, ene can continue to use this linkage and obtain
an algorithm for finding the best linear predictor £ (¢; ¢ - 1) of x(¢) based on its past
H(x;t — 1). Because of the periodicity, our attention can be restricted to just one

period, namely to¢ =0, 1,..., 7 — 1. Fort = Q the coefficients a; of our predictor
20,-1)=) ax
k<0

are exactly the coefficients of the 0-th component of the predictor $(0; —1) of the cor-
responding MVSS y and hence can be obtained using prediction theory of
MVSSs [21,22,24]. To obtain the predictor X(f,¢ — 1), for 0 < ¢ < T we first
note the following orthogonal decomposition of H{x,t — 1)

Hx,t—D=Hx,-1Doe spx()) -z -1:0<i =<r—1}

and then we use this decomposition to write

1—1

Bt — 1) = Pypy—iyx(t) = Py —nnx(t) + Zc,-(x(i) — X0, 1)
oy

t—1
= BOx+ ) k() — 26 —1).
k<0 i=0

The 5*(r)’s are exactly the coefficients of the ¢-th component of the predictor
$(0; —1) of the corresponding MVSS y and hence can, again, be obtained using

prediction theory of MVSSs. The other coefficients, namely ¢;’s can be obtained from
a systemn of ¢ linear equations resulting from the following orthogonality requirements

-1
X(0) =Y axe— Y ax(@) — G, -1y Lx(s), s=0....t-1L
k<0 i=0
The prediction problem for CSSs can be handled more efficiently using another
related MVSS z appearing in the following theorem. As we shall see, this new tech-
nique results in an explicit formula for the predictor of CS$Ss which can be calculated
in a single step.

Theorem (Gladyshev [6]) The funciion R(t, v) in(5) is the correlation func-

tion of a CSS iff the matrix-valued function

_1 . 2mik
R(t) = (R (D)) g WEiR R (1) = Rp_p(t)exp -

is the correlation function of some MVSS z = [2*(t) : t € Z).
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In order to use this new MVSS z for prediction purposes it is crucial to have an explicit
representation of this z sequence in terms of the original CSS x, and vice versa. The
following theorem which was first proved in [12] and is given as Theorem 4 in {25]
gives such a representation.

Theorem (Miamee [12]) Let R(t, ) and R{t) = (Rw) be the correlation
function of an H-valued CSS x = {x(t) : t € Z} and its MVSS z = {z*(), k =
1,...,T,t € L), respectively, related as in (5). Then

a) components z*(t) of z can be expressed as elements in the direct sum

Hoe...oHby

=l 2wik(t + f)
() 69;:0 ﬁx(r + 7 exp( T ) ,

b) Identifying x(t) in Has x(1) @00 .. o 0in Ho Ho Hp ..o H

one has ,
1 = —2wikt
x(f) = i j§=n:z"(r) exp( 7 ) .

This new MVSS captures more prediction properties of the original CSS than the
widely used y sequence mentioned before. This closer relation gives the following
explicit formula for the predictors of CSSs, which naturally results in a more efficient
algorithm for finding the predictors. Details omitted here are given in [12].

Theorem A CSS x has an autoregressive representation of the form

. 1 & /3, —2mik
x(v;O):PH(,;g)x(U)=jZ akﬂjexp( - ) x(—=k), (6
k=0 0

j=

whenever its corresponding MVSS z has an autoregressive representation
o0
2(v; 0) = Pugoa(v) = Y Ajz(—k). Q)
k=0

- Matrix coefficients in the representation (7) for the predictor at lag v of the
MYVSS z can be obtained using the available multivariate prediction techniques (cf.
for example, [21,22,247). Hence (6) furnishes an explicit formula for evaluating the
predictor of CSSs under some appropriate assurptions.

4 CONTINUOUS-TIME CYCLOSTATIONARY
PROCESSES

This section is devoted to prediction problems for continuous-time cyclostationary
processes (CSF). The spectrum of these processes has been studied in [3,15,16,17].
In general, the spectrum of a CSP is a distribution rather than a measure. Hence
spectral approaches here are even less promising than those in the discrete-time case
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and are, therefore, not discussed here. Our investigation of prediction properties of
CSPs is limited to time-domain techniques and is again based on their close tie with
stationary processes.

Two infinite dimensional stationary processes are associated with a bounded
CSP x = [x(#} : t € R}. These processes can be considered as counterparts of the
two processes we have already discussed in the discrete-time case. As we will see they
capture some approximation properties of the original CSF, a matter that is crucial for
developing a Wold-decomposition and obtaining some regularity conditions for CSPs.
These two associated stationary processes have appeared in some earlier work [5,19].
They have recently been reconsidered in [16,17,18] after their discrete counterparts

were proved to be very useful in [11,12].
2.}
Definition: Let x = {x{f} : + € R} be an H-valued CSP with period T.

Foreach &k € Z and ¢ € R let 2 (1) be the H-valued function on [0, T') defined by
2. (1)(8) = exp2mik(t + 5)/T)x(t + 5), 5 € [0, T).

The process z = {z () : k € Z,t € R}, regarded as a B(sy, L2([0, T), H))-
valued (continuous-time) process, turns out to be stationary. Here L2([0, T), H) is
the space of all H-valued functions on [0, T) with a square integrable norm, and sp
is the space of all sequences indexed by Z with finitely many nonzero entries. Proof
of stationarity of z(t) = {z(t) : k € Z, t € R} is easy and is therefore omitted.

Definition: Letx = {x{#) : ¢ € R} be any H-valued stochastic process and
T > 0. Forevery f € L?[0, T) and k € Z define

T
J’kf=f x(kT + 1) f(2)dt.
0

Clearly 3 € B(L3([0, T), M) for &k € Z. The B(L*[0, T), H))-valued sequence
¥ = {» : k € Z} will be referred to as the y-sequence associated with x = {x(¢) :
t € R}.

Proposition x = {x(t) : ¢+ € Z} is a CSP if and only if its associated infinite
dimensional sequence y is stationary.

Proof: If x is a CSP then for any two functions £, g € L?[0, T) we have
Omt1 £, a1 2 =f xmT+T+D, x(nT+T+5)) f()gs)dtds = (Yu [, Yug).

which means y is stationary. Conversely, if y is stationary, that is, if

Omir [, Yo18) = Ui £, 30g),  forall f, g € L*[0, T),

then one can prove

/j eI () x(s+ T, x(t + T))dsdt = jj (O (O {x(s), x())dsdt

for all rapidly decreasing functions ¥, ¢ on R, which completes the proof.
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Remarks: The z-process seems more promising using spectral-domain tech-
niques, whereas the y-sequence seems better using time-domain techniques. This
follows because prediction theory of infinite dimensional stationary sequences is
more developed than that of infinite dimensional stationary processes.

Now we use these ideas to study some prediction properties of CSPs. We start
by showing that a CSP x and its associated y-sequence and z-process share the same
prediction properties. In particular, we show that the CSP x and its associated z-
process and y-sequence are deterministic (purely nondeterministic) simultaneously.

To proceed we need the following lemma whose proof is given in [16,17].

Lemma  Ler M(t) be a measurable subspace-valued function in a sepa-
rable Hilbert space H. Then the orthogonal complement L2([0,T), H) © |f ¢
L0, ), H) : f(t) € M(t) ae.) of the subspace { f € L*([0,T),H) : f(t) €
M) ae) in L2([0, T), H) is given by

LA[0,T), )& {f € L2([0,T),H) : f(t) € M(t) ac)

={feL¥0,T),H): f(t) € M¢)* ac.).

Using this lemma one can prove the following two propositions.

Proposition Letx ={x(t):tcR)beaCSPandlety={m:kecZ}beils
associated y-sequence. Then H(x; (n + 1)T) = H(y; n) for everyn € L.

Proposition Letx = {x(t) : ¢t € R} be a CSP with period T and let z(t) =
[zx(t) : k € Z}, t € R, be its associated z-process. Then

i Hz,o0)={f ¢ LZ([O, T, H): f(£) € H(x; c0) a.e.},
il. H(z;5)={feL¥[0,T)y,H): f(£) € H(x; s +1) ae],
iii. H(z; —00)={fe L¥([0,T),H): f(t) € H(x; —o0) a.e.}.

The next theorem is an immediate consequence of the last two propositions.

Theorem Considera CSPx = (x(t) : t € R} withperiod T and its associated
z-process and y-sequence. The following conditions are equivalent:

a. x is purely nondeterministic (respectively, deterministic),
b. z is purely nondeterministic (respectively, deterministic),
¢. yis purely nondeterministic (respectively, deterministic).

This theorem makes it possible to utilize the prediction theory of infinite dimen-
sional stationary processes for studying CSPs. As an example, we employ this idea
to obtain a Wold-decomposition for CSPs.

Theorem (Wold-Decomposition) Let x = [x(¢) : ¢t € R} be a CSP with
period T. Define x°{t) = Przi—oqpx(t) and x"(t) = x(1) — x*(t} for t € R. Then
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i. x=1{x"(t): ¢ € Rland x" = {x"(?) : ¢ € R} are two jointly CSPs with
period T';
ii. x* = {x*(t) : ¢t € R} is deterministic;
fii. x" ={x"(t):¢ € R} is purely nondeterministic;
iv. H(x5;0)® H(x";8)= H(x;1),foreveryf e R.

Furthermore, this decomposition is unique. That is if x* = [x*(¢) : t € R} and x" =
(x"(¢) : t € R} are any two CSPs satisfying ()—(iv) as well as x(t) = x*(1) +x" (1),
for all t €'R, then x*(t) must be equal to Prx;—o)x(t) for all t € R.

The following is a sketch of a proof of this theorem

Proof: Letz(t) = {z:() : k € Z,1 € R} be the z-process associated with
our CSP x. The Wold-decomposition theorem for infinite dimensional stationary
processes given for example in [26] decomposes the z-process uniquely into the sum
of two Bl(so, L2([0, T), H))-valued processes z*(¢) = {z(#) : k € Z,t € R} and
' (t) = {zf () : k € Z, ¢ € R}, such that

a. z(t) =) + z' (1), forall: €R,

b. H(z;!) = H(Z*; )@ H(z"; 1), forallt € R,
e. H@En=H( 00), foralfek,

d. H(z'; —oo) = [0}.

Now let x5(f} = Py(z—onx(t) and x"(¢) = x(t) — x°(¢), € R, Then Hx D@
H(x';t) = H(x; )fort € R. If U is the unitary operator defined by U (3 arx (4)) =
Y apx(te+T), then Pyei—onyU = U Pryge:— o), because U H(x; —o0) € H(x; —00)
and U~ H{x; —o0) = H(x; —00). Therefore x*(t + T) = Ux*() and x" (¢ + T) =
Ux'(¢), for all t € R. This implies that the processes x* and x” are both CS with
period T. The proof that x* = {x"(f) : ¢t € R} is purely nondeterministic and
x% = [x°(t) : ¢ € R} is deterministic follows from (¢) and (d).

Remarks: One can continue this line of work in conjunction with the known
results on the spectrum of CSS processes to obtain some spectral characterizations for
a CSP to be purely nondeterministic. However, because of their limited applications,
this is not pursued here.
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A

Acoustic noise analysis for rotating machinery, 9
ACS (see Almost cycloslationaryy
Adapting a spatial filter )
conventional methods for, 182-83
cyclostationarity-exploiting methods for,
183-92
Algorithms
for blind channel identification/equalization, 8,
79-80, 204-12, 417-33, 437-53
for blind adaptive spatial filtering, 71, 182-95
conjugate cross-SCORE, 185, 198, 199
constant modulus, 422
cross-SCORE, 184--86
cyclic least squares, 218—19
least-squares SCORE, 183-84, 186
PCCA, 191-92
phase-SCORE, 194, 215
SCORE, 170, 183-95
wideband-SCORE, 195-96, 202-3
for cyclic spectral analysis, 455-78
for direction finding, 72, 213-19
cyclic leasl squares, 218-19
cylic MUSIC, 214-15
MUSIC, 213-14
XK cyclic MUSIC 217-18
for estimating number of signals 222-26
CCST, 223
CCT, 224
DEM, 224-25
MDL, 222-23
VCBM, 225
for estimating time-difference of arrival, 70-
71, 155-56, 39497
cyclic phase difference, 156
CYCCOR methods, 394-97
SPECCOA, 71, 156, 395-96
SPECCORR, 71,396
for multipath channel identification, 394-97
cyclic Prony, 396-97
CYCCOR methods, 394-97
SPECCOA, 395-96
SPECCORR, 396
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for nonlinear system identiRcation, 80
for prediction, 77-78
for signal detection/classification, &9, 151-54
for signal extraction, 73-77, 24764
for spectral correlation analysis, 455-78
by lime-smoothing, 45670
FAM, 457, 46168
SSCA, 457, 468-70
by frequency smoothing, 470-74
DFSM, 471-73
OBSCA, 47374
Aliasing effecls
avoiding spectral, 431
due to sampling, 135, 244
Almost cyclostationary (ACS) processes, 296,
(see also Polycyclostationary processes)
Almost periodically correlated {APC) processes,
295, 199-301, 310, 316-20
Almost periodically unitary (APU) processes,
310
AM (see Amplitude modulated signals)
Amplitude modulated (AM) signals, 8, 28, 43,
50,73,75
Amplitude-shift-keyed (ASK) signals, 8, 28, 62—
64,73, 75,363
Antenna arrays
blind adaptive spatial filtering with, 182-95
blind channel equalization with, 204—12
estimating number of signals with, 222-26
direction finding with, 213-19
Anlenna pattern
of array at base station, 197
of a spatial filter, 179
Aperture vector, 171
APU (see Almost periodically unitary processes)
Array manifold, 171
Array response vector, 171, 172
Arrival times (ATs), estimation of, 352
ASK (see Amplitude-shift-keyed signals)
ATs (see Arrival times)
Autocorrelation function,
conjugate cyclic, 41, 45
cyclic, 34, 39-46
Markovian representation of, 276-78

probability-space, 32

time-space, 33

(see afse Cyclic autecorrelation)
Autoregressive (AR) model, 483-85

Backward prediction equations, 399
Band-limited spectral correlation ratio
(BL-SPECCORR) method, 396, 398
Baseband representation of QAM data
communication system, 135-40, 420
Binary phase-shift-keyed (BPSK) signals
and CCA beamformer results, 192-93
compared to ASK, QPSK, and SQPSK, 62-64
in Cross-SCORE signal separation, 185
in multiple AM interference and neise, 6769
and polyperiodic filtering, 263
and signal extraclion, 73
and spread spectrum system, 202
used to estimate channel, 447
Blind-adaptive spatial filtering, 71-72, 182-95
application examples, 195-04
summary, 203-4
Blind adaptive channel identification/equalization
CS-based, 79-80, 20412, 437-53
wilh antenna arrays, 204-12, 450-52
frequency-domain analysis of, 423-29
HOS-based, 421-24
time-domain, analysis of 441-42
BL-SPECCORR (sez Band-limited spectral
correlation ratio)
BPSK (see Binary phase-shift-keyed signals)

C

Canonical configuration for Mth-order PTV
systemn, 247
Canonical correlation analysis (CCA)
spatial filter derived as selution to, 189
programmable, 191-92
simulation results, 192-93
Canonical correlation significance test (CCST),
223-24
Canontcal correlation test (CCT), 224
Canonical innovations, 268, 281, 282-83
Canonical representation of PARMA models,
286-89
Causality between lime-series, 28, 77-78
CCA (see Canonical correlalion analysis)
CCML (see Constrained condilional maximum
likelihood)
CCST (see Canonical correlation significance
test)
CCT (see Canonical correlation test)

CDMA (see Code division multiple-access)
CE (see Cycloergodic processes)
Cellular communication system, design of, 169
Cepstral approach to channel identification, 426
CF (see Cumulative function)
Channel equalization (see Blind adaptive
channel identificationfequalization)
Channel identification (see Blind adaptive
channel identification/equalizalion)
Circulant matrix of channel responses, 342
CL (see Conjugate linear transformation)
Classification of signals, 9, 69, 151-54
Climatology/meteorology, use of cyclostationary
models in, 7
CLS (see Cyclic least squares algorithm)
CMA (see Conslant medulus algorithm)
Cochannel interference
elimination of, 73-77, 258-64
improved system design in the presence of, 329
Code division multiple-access (CDMA), 194,
196, 329
Compulational complexity
of FAM, 467
of SSCA, 470
Conjugate cyclic autocorrelation, 41, 45
Conjugate linear (CL) transformation, 258
Constant-component extractor, 20
Constant modulus algerithm (CMA), 422
Constrained conditional maximum likelihood
(CCML), 186-89, 190-91
Control problems in presence of CS disturbances,
268
CP (see Cyclic polyspectrum)
Cramer-Rao lower bound (CRLB), 221
Cross-coupled transmil matrix, {wo-user case,
332
Cross-SCORE
algorithm, 184-86, 195-98
processor, block diagram of, 191
crosstalk suppression, 330
CS (see Cycloslationary)
CSD (see Cyclic spectral density function)
CTCF (see Cyclic temporal cumulant function)
CTMF (see Cyclic temporal moment function)
Cumulants, 110-15, 122-24
addition rule for, 113
applications of, 151-59
cyclic, 125
and cyclic polyspectra, 123
derivalion in terms of sine-wave generation, 31,
92, 108-14
effects of signal processing operations on,
13135
formulas for QAM, 135-37
history of, 98-103
and interpretation of sine-wave generation, 96
measurement of, 140-51



Cumulants (cont.)
of polycyclostationary signals, structure of, 91
and polyspectra, 98-103
relationship between moments and, 112-13
of a set of random variables, 111-12
signal selectivity property of, 115
simple, 112
of a single random variable, 110-11
special cases of 125-27
spectral, 363
statistics, 99
superiority of over moments, 100
of a time-series, 114
utility of theory of, 125
Cumulalive function (CF), 99, 102
Cumulalive moment functions, 99
CYCCOR (see Cyclic cross-correlation method)
Cycle frequency, 43, 92, 300, 456
Cycle leakage, 316, 459, 462
Cycle spectrum, 43, 260
Cyclic autocorrelation
for an AM signal, 43—46
estimatien of, 229-31, 312-14, 316-19
function, 34, 39-46, 126, 260, 424
for a PAM signal, 61-62
Cyclic Correlation Significance Test, 190
Cyclic cross-correlation {CYCCOR) method,
394-95 -
Cyclic cumulapts, 125
Cyclic DF algerithms, 214-22
performance, 219-22
Cyclic MUSIC algorithms, 21416
generalizations of, 215-16
Cyclic least squares (CLS) algorithm, 218-19
Cyclic periodogram
frequency-smoothed, 47 1-74
time-smoothed, 45670
Cyclic polyspectrum (CP)
definition of, 123
effects of signal processing operations on,
131-35- ’
and HOS, 127
measurement of, 14142, 144-51
of digital QAM signals, 13637
and relation to RT-CTCF, 123, 129
signal selectivity of, 125
Cyclic Prony method, 396-97, 399-400
Cyclic spectral density (CSD) function, 49
(see alsa Spectral correlation density)
Cyclic spectrum (see Cyclic spectral density
function)
Cyclic temporal cumulant function (CTCF)
applicatiens of, 151-56
definition of, 114
of digital QAM signals, 136-37

effects of signal processing operations on,
131-35
reduced-dimension version of, 116
and its relation to CTMF, 114, 129
signal selectivity of, 115
Cyclic temporal moment function (CTMF)
definition of, 105
and ils relation to SMF, 121, 129
effect of signal processing operations on,
131-35
Cyclic Wiener filter, 77, 179, 25064, 331
Cyclic Wiener relation, 49, 119, 127, 129
Cycloergodic (CE) processes
terminology, 7
definition, 24
Cycloergodicity, 13
and HOS, 128
and measurements of cumulants, 147-51
and pitfalls of stochaslic processes, 26-29
property, 317-18
and refined stochaslic-process definitions,
24-25
Cyclospectral factorization (see Periodic speciral
factorization theorem)
Cyclostationarity
background, 2-10
detection of, 321
to enhance reliability of information, 3
exploitation of, 65-80, 125, 151~-56, 168-227,
250-65, 327-59, 36288, 391413,
42431, 435-52
fundamental concepts, philosophy,
and definitions, 10-32
hidden, 24-25
higher-crder, introduction to, 91-104
histogram of papers on, 5
mathematical motives for studying, 9—10
measurement of, 455-78
practical motivations for studying, 7-9
nth-order, 94
of order 2 (in the wide sense), 34
research interest in, 47
second-order, 32-65
seminal contribution to study of, 67 °
and sensor array processing problem, 174-78
signal selectivity associated with, 67, 115
usefulness of, 3
viability of exploitation of, 4
whal is, 2
why publish a book on, 4
Cyclostationary autocovariance function,
Markovian
representation of, 27678
Cycloslationary models
advantages of, 7
" of communicalion signals (see AM, ASK,
BPSK, QPSK, SQPSK)

periodic autoregressive (PAR), 7, 284, 289
periodic autoregressive-moving average
(PARMA), 7. 268, 283, 284-91
periodic moving average (PMA), 7
Cycloslationary noise sources, 9
Cyclostationary {CS} processes
definiton of, 21, 25,94
PARMA representation of, 284-91 -
periodic innovations representation
of, 281-82
prediction theory for, 480-91
representation of and estimation for, 295-321
representation, prediction, and identification
of, 267-92
state-space representation of, 274—84
stationary represenlations of, 299, 303-10,
482-91
as suhclass of nonstationary processes, 9
synonymous with periodically correlated, 296
(see also Cyclostationary signals;
Cycloslationary time-series)
Cyclostationary signals
definition of, 2, 23
introduction to, 1-80
two approaches 10, 1-2, 10-32
of second order, 32-80
(see also Cyclostationary time-series}
Cyclostationary time-series
as conceptual aid for solving practical
problems, 32
definition, 23, 94
nonstochastic theory of, 7
(see also Cyclostationary signals)

D

DBM (see Determinant-based method)
Detection of signals, 9, 69, 151-54
general search problem, 152-53
known-cycle frequency problem, 153-54
known-modulation-problem, 154
using the SCD, 69
Delerminant-based method (DBM), 224-25
DF (see Direction finding)
Digital cellular radio, 196-98
Digital frequency smoothing method
(DFSM), 456,471-73
Digital implementation
of FAM, 466
of SSCA, 469
Digital quadraiure-amplitude modulation,
135-40
Digital spectral comelation
analysis, review of, 455-78
analyzers, design of, 474-77

Direction finding (DF)
conventional algorithms for 213-14
cyclostationarity-exploiting algorithms for,
2[4-19
exploiting signal selectivity in, 72-73
Direction vector, 171
Direct-sequence spread spectrum signal, 202,
254-58
Double-sideband (DSB) AM signals, 36-38,
43-45, 50-51, 67, 73, 364, 370
Double-sideband suppressed carrier (DSBSC)
signals (see¢ Double-sideband
AM signals)
DSB (see Double sideband AM signals)
DSBSC (see Double-sideband suppressed-carrier
signals)
Duality between probabilily-space theory and
lime-space theory, 20, 32
Dual theoretical frameworks, 17-20

E

Ecenomics, use of cyclostationary models in, 8
Equalization (se¢ Blind adaptive channel
identificationfequalization; Fractionally-
spaced equalizer)
Equalizers, fractionally spaced, 26-29, 97
Ergodicity {E)
absence of, 26-29, 7
relevant types of, 23-24
(see also Cycloergodicity)
Ergodic theorem, need for fundamental, 29
Estimation
of channels, 8, 79-80, 20417, 319-413,
41731, 437-53
of CTMF and CTCF, 14044
of cyclic polyspectrum, 140-42, 144-50
of signal parameters, 8, 69-71, 72-73, 362-86
of signals, 8, 73-77, 329-59
of spectral comrelation densitics, 64, 314-16,
319-20, 453-78
of TDOA, 70-71, 155-56
of spectral correlation function, 455
Excess bandwidth, oplimization of, 34042

F

Fast Fourier transform accumulation method
(FAM), 456, 457, 46168
Filter
design, theory of, 241
jointly optimum transmit and receive, 329-59
for optimum reception of baseband PAM, 253
Filtering
blind-adaptive spatial, 71-72, 178-204
effects of on spectral correlation densily (SCD)
function, 51-53



Filtering (cont.}
frequency-shift (FRESH), 73-77, 263-64,
331
input-output CTMF, CTCF, and CP relations
for, 133-34
input-output SCD relation for, 51-52
periodically, 5864, 240-58
polyperiodic, 240-64
structures for spatial, 17881
FOT (see Fraclion-of-time probability}
Fourier series transform (FST}, 458
Fractionally-spaced equalizer (FSE)
blindly adapting a, 204-11
malched filter/tapped-delay-line filter
corresponding to, 253-54
as special case of LCL-PTV filter, 180
Fraction-of-time (FOT) probability, 19-20,
22-23,93-95
concept, 15
operational origin of, 13
and development of HOCS, 96, 103
Frequency-shift (FRESH) filtering (see Filtering)
Frequency smoothed cyclic periodograms,
398, 470-74
FSE (see Fractionally spaced-equalizer)
FST (see Fourier seres transform)
Fundamental concepts of cyclostationarity, 10~32
Fundamental theorem
of expeclation, 18
of polyperiodic component extraction, 23
of time-averaging, 19-21

G

GCC (see Generalized cross-correlation methods)

General search problem, 151-53

Generalization of the second-order parameters,
127

Generalized cross-correlation (GCC) methods,
97, 155,392

H

Half invariants, cumulants defined as, 98
Harmonic series representation, 247-51, 308,310
Harmonizable processes, 301-5
Hidden cyclostationarity, 24-25, 27
Hidden polycyclostaticnarity, 25, 27
Hidden statistical dependence, 26
Higher-order cyclostatienarity (HCCS)
applications, 151-57
and cyclic specirum, 125-27
development of the theory, 10424, 128-35
introduction to, 91-104
and higher-order stationarity, 96-97, 127-28

importance of theory of, 125, 150
measurement of the parameters of, 14051
motivations for developing theory of, 97-98
and power spectrum, 125-27

relalionship between parameters of, 125, 129
signal processing operations in, 131-35
spectral parameters of 119-24

study of, defined, 92

temporal parameters of, 104—19

utility of the theory, 125

Higher-order statistics (HOS)

explicit methods for channel identificalion
and equalization, 422
implicit methods for blind
adaptive equalization algorithms, 421
-based methods of channel identification/
equalization, limitations of, 423-24
limitations of theory of, 96-97, 128
for nonlinear processing of cyclostationary
signals, 91-159
and relation to HOCS, 96-97, 127-28
relevant work in the areas of, 98-103
Higher-order stationarity, 127-28
Historical perspective on stochastic processes in
communications, 16-17
HOCS (see Higher-order cyclostationarity)

HOS (see Higher-order slalislics)

HSR (see Harmonic series representatior)

Hybrid (lime and frequency) smoothing
algorithms, 456

Hydrology, use of cyclostaticnary medels in, 7

Identification

of PARMA models, 289-90

of multipath channels, 391413

(see also Blind adaptive channel identification/

equalization)

IL (see Innovationslike representations)
Impure cycle frequency of order #, 105
Impure nth-order sine waves, 106-8
Impure third-order cycle frequencies, 119
Inference and decision, statistical, 9, 15-16, 27
Innovationslike {IL) representations, 268, 281-83
In-phase components

slalistics, for squared PAM, 379-81

variances and covariances of, for PAM, 367-73
Interference-tolerance (see Signals)
Intersymbol interference (ISI)

removal of, 8

(see also Blind adaplive channel

identification/equalization)

ISI (see Intersymbol interference}

J

Joint optimization of MIMO systems, 331
coordinated users, 33242
uncoordinated users, 342-53
numerical examples, 35459

Joint transmitter/receiver optimization for

multiuser communications, 329-59

K

Kalman filter/predictor, 267, 278-80, 287, 291
K-statistics, 99

L

Laws of presumptive ermrors, 93

Leakage problem, cycle, 145, 146, 316

Least-squares SCORE (LS-SCORE)}, 183-84,
186

LCL-PTV (see Linear-conjugale-linear
polyperiodic lime varying)

Lifted representation, 273

Linear-conjugate-linear (LCL) transformation,
259

Linear-conjugate-linear polyperiodic time
varying (LCL-PTV), 175, 179-81, 187,
189, 190

Linear periodic systems, basics of, 24247,
270-74

Linear prediction (see Prediclion)

Linear quadratic Gaussian {LQG) methods, 268

Linearly constrained minimum variance
beamforming, 182

LQG (see Linear quadratic Gaussian methods}

LS-SCORE (see¢ Least-squares SCORE)

M

Markovian model, 267

Markovian representation of a CS aulocovariance
function, 276-78

Matched filter (MF), 253-54

Maximum likelihood liming-phase estimator, 363

MDL {see Minimum description length principle)

Measurement of the parameters of HOCs, 140-51

Measurement of the parameters of SOCS,
311-20,455-78

Medicine/biology, use of cyclostationary models
in, 8

MF (see Matched filter)

MIMO (see Multiinput, muliioutput models)

Minimum description length {MDL) principle,
222-27

Minimum variance distortionless response
(MVDR) beamforming, 182
Mitigation of multipath fading effects, 8
Mixing conditions, 32
Mobile communication systern, 169, 332
Moments
of cyclic correlation estimales, 229-31
operational origin of temporal, 13
properties of temporal, 115-19
relatienship between cumulants and, 112—13
spectral, 120-22
temporal, 104—8
Monodromy matrix and stability, 270
Multiinput, multioutput (MIMO) models, 330
optimization of transmilter and receiver for
fully coordinated, 33242
oplimization of ransmilter and receiver for
uncoordinated, 34253
numerical examples of optimized ransmilters
and receivers, 354-59
Multipath-channel identification 391415
cyclostationary model for, 393-94
Multiple Signal Classification (MUSIC)
algorithm, 213-14
Muliiple-sine-wave-component extractor, 22
Multiplication, signal, 54-57, 131--33
Multiple incommensurate periodicities, 58
Multiuser communication, 329-59
Multivariate moment and cumulant relations,
112-13
MUSIC (see Multiple Signal Classification)
MVDR (see Minimum variance distortionless
response beamforming)

N

Nonlinear syslem identification, 79-80
Nontinear system models, 92-93
Nonlinear transformations
characlerdzation of, 11
and esscnce of cyclostationarity, 30
sine-wave components present in, 104, 125
Nonstochastic operational model, stochastic vs.,
13-15
Nonstochastic statistical inference and decision,
15
Nenstochastic time-series approach, limited
exposure of, 14

O

OBSCA (see One bit spectral correlation
algorithm)
Oceanology, use of cyclostationary models in, 8



One bit spectral correlation algorithm (OBSCA),
473

Operational definition of pelycyclostationarity,
11

Optimal transmilter and receiver {(see Multiinput,
muitioutput models)

Orthogonality condition in polyperiodic linear
flenng, 250, 156, 160, 264

P

PAM (see Pulse-amplitude modulated signals)
PAR (see Periodic autoregressive
cyclostationarity models)
Parameler estimation (see Estimation)
Parameters
frequency-domain of HOCS, 119-24, 14446
time-domain of HOCS, 104-18, 14344
PARMA (see Periodic autoregressive-moving
average cyclostationarity models)
PC (see Periodically correlated processes)
PCCA (see Programmable canonical correlation
analyzer)
PCE (see Polycycloergodic process definition)
PCS (see Polycyclostationary)
Pd (see Probability density)
PD (see Probability distribution)
Periodic and polyperiodic linear systems, 240-65
Periodic auteregressive (PAR) cyclostationary
models, 7, 284, 289, 483
Periedic auteregressive moving average (PARMA)
cyclostationary moedels, 7, 268, 283,
284-91
Periodically correlated (PC) processes, 205-96
(see also Cyclostationary processes)
Periodically time-variant filtering, 8, 58-64,
24758
Periodically-lime-varying (PTV) linear systems,
240-65
Periodicity
first-order, 35
hidden, 35
nth-order, 106
second-order, 40
Periodic moving average (PMA) cyclosiationary
models, 7, 48385
Periodic prediction of cyclostationary processes,
8, 77-78
Periodic pulse train, random-amplitude
modulated, 34 (see also Pulsc-amplitude
modulated signals)
Periodic Riccati equation, 279-83
Periodic spectral factorization theorem, 287, 289
Periodic time-sampling, 35-58, 134-35
Philosophy of cyclostationarity, 10-32
Phase randomization, 25-29, 128

Phase-SCORE algorithm, 194, 215-16
Phase-shift-keyed (PSK) signals, 8, 6244,
135-40
PMA (see Periodic moving average
cyclostationarity models)
Polycycloergodicity, 3, 6, 10
nonexistent theory of, 27
see also cycloergodicity)
Polycycloergodic (PCE) process definition, 24,
29
Pelycycloergodic theorem, need for fundamental,
29
Polycyclostationarity, operational definition of,
11 (see alse Cyclostationarity)
Polycyclostationary (PCS) signals, 3, 11
applicability of mathematics of, 14
of second order, 32--80
(see also Cyclostationary signals;
Polyeyclostationary time-series)
Polycyclostationary processes definition, 21
(see also Cyclostalionary processes)
Polycycloslationary time-series, definition, 23
(see also Cyclostationary time-series;
Polycyclostationary signals)
Polyperiodic component
extraction, fundamental theorem of, 23
extractor, equivalence with probabilistic
expeclation, 13, 22-23
linear operation for extraction of, 12
potential generation of, 11
Polyperiedic fillering (see Filtering)
Polyperiodic FOT Pd, 22
Polyperiedic FOT PD, 22
Polyperiodic nonlinear systems, identification of,
80
Polyperiodic lime-variation
mathematical characlerization of, 13
physical evidence of, 11, 13
Polyspectrum, 100, 127-28
measurement of, 141
Power spectral density (PSD), 46
Prediction
and causality, 28, 77-78
of discrete-time cyclostationary sequences, 27,
77-78, 486338
error (PE) representation of CS processes,
268, 280
for PARMA models, 286-89
theory for cyclostationary processes, recent
developments in 480-91
Probabilistic analysis using lime-space theory, 31
Probability density function, 18, 98
Probability distribution function, 17
Probabilistic models
for nonstochastic statistical inference
and decision, 15-16

operational origin of, 11
stochastic vs. nonstochastic, 13-15, 321
Probability-space
approach, abstractions introduced by, 30
definitions of 8, CS, PCS, 21, 25
theory, duality with time-space theory, 20
Programmable canonical correlation analyzer
(PCCA), 191-92
Prony algorithm, 392, 397
PSD (see Power spectral density)
PSK (see Phase-shift-keyed signals)
PTV (see Periodically-time-varying linear filters)
Pulse-amplitude modulated signals (PAM)
analysis of, 362-88
cyclic autocorrelation of, 61-62
cyclic polyspectrum of, 13540
cyclic temporal cumulant, 135-40
deterministic relationship between pairs
of spectral components of, 362
measured cumulants of, 147-51
power spectral density of, 38-40
separaled wsing pericdic filters, 8, 28, 73-77
sine-wave generalion from, 38
spectral correlation density of, 59-62
temporal and spectral cumulants of, 135-40
Pulse-shaping at the transmitter, 331
Pure and impure components of an ath-order sine
wave, identifying, 107
Pure nth-order sine waves, 103, 108-10
Pure second-order sine waves, 108
Pure sine waves and temporal cumulants, 114
Pure stationarity/cyclostationarity, 23

Q

QAM (see Quadrature-amplitude modulation
signals, digital)
QPSK (see Qualernary phase-shift keyed signals)
Quadrature-amplitude modutation (QAM)
signals, digital
cyclic polyspectra of, 13540
cyclic temporal cumulants of, 13540
equalization for, 204~12, 415-33, 437-53
optimization of transmitters and receivers for,
329-59
separated by frequency-shifi fillers, 8, 28,
73-77
Quadrature components
statistics of, for squared PAM, 379-81
variances and covariances of, for PAM, 367-73
Quadrature self-noise, vanishing of, 370, 381-82,
387
Qualemary phase-shift keyed (QPSK) signals
and blind equalization with antenna arrays, 451
complex envelope of, 61
and frequency shift filiering, 73-77
measuring spectral correlation of, 64—65

R

Radio-signal analysis, 9
Random processes (see Cyclostalionary
processes; Polycyclostationary processes)
Rational CS process, 277
RD (see Reduced dimension functions)
Realization problem, 277
Reduced-dimension (RD) functions, 116-17,
122-24, 129
Representation
and estimation for periodically and almost
periodically correlated random processes,
295-321
prediction, and identification of
cyclostationary processes, 267-92
Riccati equation, periodic, 268, 278-81, 283

s

S (see Stationary time series definition)

Sampling effects on spectral moments and
cumulants, 55-58, 134-35

SAs (see Scaling amplitudes)

Scaling Amplitudes, 392

SCD (see Spectral correlation density)

SCORE (see Spectral-coherence-restoral
algorithms)

SCORE-STFDMA (see Spectral-coherence-
restoral-space-time-frequency-division
multiple access)

SDMA, (see Space division mulliple access)

Second-order cyclic specira, establishing channel
identifiability based on, 418

Second-order polycyclostationarity (SOCS), 92

Semi-invariants, 100

Sensor array processing

conclusions about, 227
for cyclostationary signals, 168~230
implications of cycloslationarity for, 177-78
Signals
of interest (SOI}, 174
nol of interest (SNOI), 174-221
introduction to cyclostationary, 1-80
selectivily, 6667, 115-16, 125, 169
stochaslic vs. nonstochastic operational
models, 13-15
types of interest to study of cyclostationarity,
11
(see also Cycloslationary signals;
Polycyclostationary signals}
Sine-wave
component extractor, 22
generation, 2, 11-13, 3439
impure ~th-order, 106-8
pure ath-order, 108—-10



Single-input, single-output (SISO) system, 329
SISO {see Single-input, single-output)
SMF (see Spectral moment function)
SNOI (see Signal not of interest)
SOCS (see Second-order cyclostationary)
S0I (see Signal of interest)
Space division multiple access (SDMA), 196
Space-time-frequency division multiple access
(STFDMA), 197-202
Spatial and fractionally spaced temporal
equalization, 204
Spatial filtering
conventional methods for adapting, 182-83
cyclostationarity-exploiting methods for
adapting, 183-92
{se¢ also Filtering)
Spatial resolution, superier, 72
Spatio-temporal equalization, 204-11
Spatio-lemporal filter (STF), 179-81
Spectral analyzer for measuring PSD, 46
Speciral-coherence-alignment (SPECCOA) 71,
156, 395-96
Spectral-coherence-restoral (SCORE) algorithms,
72,170, 183-95
Speciral-coherence-restoral-space-time-frequency
division mulliple access (SCORE-
STFDMA),199-202
Spectral correlation
analysis, 4648, 6465, 314-16, 319-20,
455-78
function (see Speciral correlation density)
Spectral correlation density (SCD)
conjugate, 47
effects of signal processing operations on,
51-62
for an AM signal, 50-51
for digital signals, 6264
for a PAM signal, 59-60
function, 34, 46-61
and HOCS, 125-27
Spectral cumulant function (SCF), 122-24
Spectral estimalion (see Spectral correlation
analysis)
Spectral faclorization, periodic 287-89
Speciral leakage, 146 (see alse Cycle leakage)
Spectral line generation (see Sine-wave
generalion)
Spectral measure, time dependent, 309
Spectral moment function (SMF), 12022
Spectral parameters of HOCS, 119-24
Spectral redundancy, 66-69
exploilation of, 2, 8, 6680
measure of the degree of, 49
Spectral theory
for the covariance, 297-301
for harmonizable case, 301-3
of PC and APC processes, 295

Spectrum analyzer, for measuring PSD, 46
Spread-spectrum signal, optimum demodulation
filter for, 257
Spread spectrum and spatial filtering, 2023
S5PS (see Symmetric periodic positive
semidefinite)
SQPSK (see Staggered quaternary phase-shift-
keying)
SSCA (see Strip spectral correlation algorithm)
Staggered quatemary phase-shift keying signals
(SQPSK), 6364
State-space approach to cyclestationary
processes, 267-92
State-space representations
equivalence of, 272
propertics of, 269, 27484
Stationary linear time-varying systems, similarily
to polyperiedic systems, 243
Stationary (S) time-series definition, 23
Statistical analysis of time-series, other theories
for, 95-97
Sltalistical inference and decision
in communications engineering, 16
and HOCS, 157
nenstochastic, 15-16
problems, 9
STF (see Spatio-temporal filter)
STFDMA (see Space-time-frequency division
multiple access)
Stochastic periodic systems, 274
evolution of moments of, 275-76
Stochastic-process
approach, advantages of, 29-30
definitions, 21-22, 24-25
framework, pitfalls of, 26-29
Stochastic processes
Iexts in, 102
Venn diagram of classes of, 21, 25
(see also Cyclostationary processes;
Polycyclosiationary processes}
Stochaslic vs. nonstochastic operational models,
13-15
Strip spectral correlation algorithm (SSCA) 457,
468-70
Submanifolds for CP, 142
Symmetric periodic positive semidefinite (SSPS)
matrices, 277
Synchronization, 362-88

T

Tapped-delay-line (TDL) filter, 253

TCF (see Temporal cumulant function)
TDL (see Tapped-delay-line filter)

TDMA (see Time division multiple access)

TDOA (see Time-difference-of-arrival
estimation)
Telemetry signals, 8
Temporal correlation coefficient, 42
Temporal crosscovariance, 42
Temporal cumulant function (TCF), 103-14
Temporal-expeclation operaticn, 19
Temporal moment function (TMF), 13, 105-6,
129, 133
Temporal parameters of HOCS, 104-19
Temporal probability
approach, 31
distribution functions, 13
Terminology, 7, 43
Theoretical frameworks, dual, 17-20
Time division multiple access (TDMA), 196
Time-dependent spectral representation, 310
Time-difference-of-arrival {TDOA) estimation,
70-71, 155-56, 391413
Time-invariant representation (TIR), 272
Time-invariantsystem identification formula, 397
Time sampling; (s2¢ Sampling effects on speciral
moments and cumulants)
Time-series
approach to cyclostationarity, 1
models, construction of, 30
vs, stochastic processes, 13-15, 95
(see also Cyclostalionary time-series;
Polycyclostationary time-series)
Time-smoothed cyclic (cross) periedogram,
456-58
Time-smoothing algorithms for spectral
correlation analysis FFT-based, 456-70
Time-spice
appreach, need to adopt, 30
theory, 20, 31,33
TIR (see Time-invariant representation)
TMF (se¢ Temporal moment function)
Transmitler and receiver optimization
(see Multiinput, multioutput models)
Translation series representation (TSRY), 248, 309,
310
TSR {see Translation series representation)

U

ULA (see Uniform linear array)
Uniform linear array (ULA), 172
Uniformly APC (UAPC) processes, 300
Uniprocessor implementation

of FAM, 466

of SSCA, 469
Unitary operators

family of, 306

of PC processes, 305-8

repiesentations based on, 308
Unitary transformation, 337

\'4

VCBM (see Variable coefficient based method)
Variable coefficient based method (VCBM), 225
Volterra series
model identification, 80, 93
in origin of temporal probability model, 11-13,
104

w

Weakly harmonizable processes, 302
Weakly stationary processes, 296
Weakly stationary vector sequences, 307
Weak-signal detection, 69, 97, 98, 151-54
Whitening filler, 282
Wideband cyclic MUSIC, 215
Wideband SCORE algorithm, 195-96, 202-3
Wide-sense cyclostationary (WSCS) processes,
32-65
Wiener filler
cyclic, 77, 179, 150-64, 331
multiinput-multioutput, 251
Wiener relation, 32, 49, 119
cyclic, 49, 119, 127, 129
Wiener’s generalized harmonic analysis, 296
Wold decompositions, 485, 489-91
WSCS (see Wide-sense cyclostationary
processes)
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