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Proposed Methodology

� Obtain coarse time-space resolution atmospheric forecasts from a 

regional/continental scale atmospheric model (eg.Eta or JMAM)            

48 hours in advance;

� Downscale the coarse time-space resolution precipitation forecasts of the 

regional/continental scale atmospheric model (eg. NCEP or JMAM) to 

fine time (hourly) and space (~2km) resolution over the watershed of fine time (hourly) and space (~2km) resolution over the watershed of 

interest by means of MM5 model, 48 hours in advance of the runoff 

event;

� Utilize the fine time-space resolution precipitation forecasts of MM5 as 

input to Watershed Environmental Hydrology (WEHY) Model in order to 

produce 48-hours-ahead runoff forecasts.
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Atmospheric Forecasts by JMAM

� 20km resolution JMAM forecasts are obtained 

from the internet;

� JMAM provides atmospheric forecasts at 12-� JMAM provides atmospheric forecasts at 12-

hour intervals for 48 hours ahead; 

� The 3D forecasts of precipitation, relative 

humidity, wind and atmospheric pressure by 

JMAM provide the boundary conditions for 

MM5 atmospheric model forecasts.



MM5 Atmospheric Model

� Fifth generation regional atmospheric model of NCAR 

(National Center for Atmospheric Research) and 

Penn State University;

� Nonhydrostatic dynamic simulation of atmospheric 

processes (JMAM is hydrostatic);processes (JMAM is hydrostatic);

� Downscaling and upscaling capabilities;

� Many modeling options for various atmospheric 

processes (eg. at least 5 options for convective 

modeling of precipitation).



WEHY Model is a physically-based, spatially-distributed 

watershed hydrology model

that is based upon

conservation equations that were upscaled from

WEHY (Watershed Environmental Hydrology) Model

conservation equations that were upscaled from

standard point-scale hydrologic conservation equations.

Therefore, the emerging parameters in the WEHY model are

areal averages and areal variance/covariances of the 

original point-scale parameter values 

(eg. grid areal average hydraulic conductivity, 

grid areal variance of the hydraulic conductivity).  



It is possible to implement and use 

WEHY model 

at any ungauged or sparsely-gauged watershed in the world

since

its parameters are estimated directly from 

the land features of the watershed, the land features of the watershed, 

and not from fitting to historical rainfall-runoff data.

Furthermore,

WEHY parameters are scalable 

with the scale of the modeling grid area sizes,

incorporating subgrid area heterogeneity.



WEHYmodel

has

areally-averaged, upscaled conservation equations

for

interception;

snow accumulation/snowmelt,

evapotranspiration, evapotranspiration, 

infiltration, unsaturated flow, subsurface stormflow,

overland flow (with interacting rill/gully flow and sheet 
flow),

and for

channel network flow and regional groundwater flow.



WEHY Model is a peer-reviewed and published watershed hydrology 

model (ASCE Journal of Hydrologic Engineering, Nov/Dec 2004 

issue).

It can be used either for event-based runoff prediction, or for long-term 

continuous-time runoff prediction.
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Schematic description of hillslope-stream interaction

A: Overland flow

B: Subsurface stormflow 

C: Groundwater flow

D: Channel flow
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Schematic description of Subdivisions and 
Contributing Areas in a Watershed
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Different 

local geomorphological conditions 

demand 

different model treatments
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1. Subsurface stormflow,
2. Return flow,
3. Regional groundwater flow,
4. Overland flow (sheet and rill flow) caused by rainfall on

variable source area,
5. Unsaturated vertical flow,
6. Seepage from subsurface stormflow.

 

1.Subsurface stormflow

2. Return flow

3.Groundwater flow
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Since all the parameters of WEHY Model are physically-based, 

they are estimated directly from 

the land use/land cover, soil, vegetation, topographic and geologic data

and 

not from fitting the model to observed runoff hydrographs.

Therefore, it is possible

to calibrate and apply the WEHY Model at ungaged watersheds.













Discharge at Yuunohara
5/21/97--5/28/97
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Contributions from Different Flow Processes to Discharge at Yuunohara
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Discharge at Yuunohara
6/17/97--6/23/97
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Discharge at Yuunohara
9/12/98--9/21/98
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Discharge at Yuunohara
10/14/98 -- 10/21/98
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MM5 Precipitation Forecasts at Shiobara Dam Watershed

� Double-nested grid

� 34 x 34 outer grid mesh with 6 km resolution = 204km x 
204km outer domain area;

� 31 x 31 inner grid mesh with 2 km resolution = 62km x 
62km inner domain area;                                            

� The initial and boundary conditions are obtained from the � The initial and boundary conditions are obtained from the 

weather forecasts of JMAM.

� Computational time increments are 20 seconds.

� Precipitation forecasts are given for a 48-hour period with 

one-hour intervals.





Runoff Forecasts by WEHY Model with 

Atmospheric Inputs from MM5 Model
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The simulation started at 1998-08-26_12:00Z. 

















Transformation of spatially-distributed precipitation data from the MM5 

grids to the computational units (MCUs) of WEHY model
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CONCLUSIONS:

1. The runoff forecasts by a hydrologic model, based upon 

48-hour-ahead precipitation forecasts by a fine 

resolution numerical atmospheric model, such as MM5, 

provides significant lead time for flood management 

decisions.

2. Technology is available for downscaling the routine weather 

forecasts of any global/continental scale atmosperic model (such 

as ECMRWF) at 6-hour time intervals and 40km spatial as ECMRWF) at 6-hour time intervals and 40km spatial 

resolution over continental U.S.A. to any desired watershed at 1-hour 

time intervals and 2km spatial resolution by means of a 

sequence of nested MM5 models, coupled with a spatially-

distributed hydrology model (such as WEHY Model). 

3. Such a technology was applied successfully over 

California and Japanese watersheds. 


