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As physically-based hydrologic modeling practice expanded its domain

from hillslopes to
large watersheds, geographical regions, continents and the whole globe,

a fundamental problem has emerged:



How to upscale the existing point-scale
hydrologic conservation equations

for

mass, momentum (and/or energy)
to the increasingly larger spatial scales,

in order to have
the conservation equations to be consistent with
the scale of the grid areas over which they will describe

the hydrologic processes.






Various Approaches to Upscaling of Hydrologic Conservation Equations:

|.Averaqging approaches:

A. Volume/areal averaging approaches

B. Ensemble averaqging approaches

1. Numerical probabilistic averaging approaches
2.Analytical ensemble averaging approaches

a. Averaging based on analytical solutions to realizations

b. Averaging based on the regular perturbations approach

c. Averaging based upon decomposition theory of Adomian

d. Averaging based on projector-operator approach

e. Averaging based on cumulant expansion approach
i. Cumulant expansion combined with spectral theory
ii. Cumulant expansion combined with Lie group theory






A. Volume/Areal Averaging Approach

The point-scale hydrologic conservation equation is integrated over a volumetric or
areal domain, and then the resulting integrals are divided by the size of the domain.

With this approach it was possible to derive Darcy's Equation from the microscopic
Navier-Stokes equations under many simplifying assumptions in order to obtain
closure (Whittaker, 1999).

It was used in hydrology to reduce the hydrologic conservation equations from their
original PDE forms at point scale to ODE forms at larger spatial scales:

a) Duffy (1996) reduced the unsaturated-saturated subsurface flow conservation
equation from its original PDE form to a set of ODEs by means of volume averaging;

b) Tayfur and Kavvas (1994, 1998) reduced the rill and interrill overland flow
equations from a 2-D PDE at point scale to an ODE at hillslope scale by volume
averaging.

This approach has closure problems.



B. Ensemble averaqging approaches:

Recognize that the point-scale hydrologic conservation equations become
uncertain (stochastic PDEs) due to the uncertain values of their point-scale

parameters and boundary conditions at the grid-area scale.

Accordingly, the aim is
to obtain an ensemble average form of the
original point-scale conservation equation (as a stochastic PDE)
which will represent its

upscaled form at the scale of the modeling grid area.
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1. Numerical probabilistic averaging approaches:

(Avissar and Pielke, 1989; Entekhabi and Eagleson,1989; Avissar, 1991;
Famiglietti and Wood, 1991; Kuchment, 2001, etc.)

Assign probability distributions for the parameters of the
point-scale conservation equation
in order to describe the parameters'

statistical variability within a grid area (subgrid variability).

Then using these probability distributions, numerically average
the point-scale conservation equations over the grid area in order to obtain

the grid-area-scale behavior of the corresponding hydrologic process.



2. Analytical ensemble averaqing approaches:

a. Averaqing based on analytical solutions to realizations:
(Serrano, 1992,1993,1995; Chen et al. 1994a,b; etc.)

Approach: Obtain the pathwise analytical solution to the
conservation equation, and then take its ensemble
average

Advantage: Possible to obtain exact analytical closures even in

nonlinear problems

Successfully applied to the ensemble averaging of
nonlinear unsaturated soil water flow and nonlinear
Boussinesq equations

Drawback: Solutions are cumbersome and difficult to
understand/use by third parties.




b. Averaqing based on the reqular perturbations approach:

The most often used approach in hydrology (Gelhar and Axness,1983; Dagan,1982,1984;
Rubin, 1990, 1991; Graham and McLaughlin, 1989; Mantoglou and Gelhar, 1987a,b;
Mantoglou, 1992; Tayfur and Kavvas, 1994; Horne and Kavvas, 1997; etc.)

Approach: Express each stochastic parameter and each state variable in the
conservation equations by a sum of their corresponding mean and a small perturbation term.
Then substitute this perturbation expression in place of the original parameter/state variable
within the conservation equation. Then take the expectation of the resulting conservation
equation to obtain an ensemble average equation for the considered hydrologic process.

Advantage: Straightforward to apply even in nonlinear cases.

Drawbacks:

Immediately results in a closure problem where the equation for the mean requires
information about the behavior of higher moments. When one attempts to write an equation
for the required higher moment, then that equation for the specific higher moment requires
information about the behavior of even higher moments. Hence, one can close the system of
equations only by means of some adhoc assumptions.

Its fundamental assumption of small magnitude fluctuations in the modeled process is often
invalid in highly heterogeneous media, or when dealing with nonlinear dynamics.



c. Averaging based upon decomposition theory of Adomian:
(Adomian,1983; Serrano,1993; 1995a,b)

Approach: the state variable in the original conservation equation is
decomposed into a series of component functions. Then, starting with the
deterministic analytical solution to the original conservation equation, the other
terms in the decomposition are determined recursively, where each successive
component in the series decomposition representation is determined in terms of
the preceding component.

Advantages: can accommodate any size of fluctuation; can be applied both to
linear and nonlinear problems; avoids closure problems by adding successively
smaller magnitudes to the solution.

Drawbacks: requires a pathwise analytical solution to the conservation
equation in order to develop the corresponding ensemble average equation;
however, such analytical solutions are unattainable for many nonlinear hydrologic
processes.




d. Averaqging based on projector-operator approach :

(Nakajima, 1958; Zwanzig,1960; Cushman,1991; Cushman and Ginn,1993)

Approach: Considers an operator which projects quantities onto their
averages (Pu = <u>). Then applying this operator together with an operator that
represents the difference between the actual variable and its mean (Du=u-<u>),
derives an exact integro-differential equation for the ensemble average. This
integro-differential equation is nonlocal.

Advantages: Avoids the closure problem.

Drawbacks: Applicable only to linear problems.
The obtained integro-differential equation is implicit in the state variable.
Therefore, it requires further approximations for its explicit solution.




e. Averaqging based on cumulant expansion approach :

(Kubo, 1959, 1962; van Kampen 1974,1976; Kabala and
Sposito,1991,1994; Kavvas and Karakas,1996; Karakas and Kavvas,
2000; Kavvas,2002, 2003; Cayar and Kavvas, 2009)

Approach: Express the original conservation equation in terms of an
operator equation with an average component and a fluctuating dynamic
component. Solve the resulting initial value problem in order to obtain the
ensemble average equation, expressed in terms of a series of cumulants
(correlation functions) of increasing order. Truncation at any order
cumulant yields an exact closure at that order (does not require any
information on higher cumulants unlike the regular perturbation approach).

However, the resulting ensemble average equation is in terms of
operators which need to be expressed explicitly for practical applications.



Two approaches for explicit expressions:

i. Cumulant expansion combined with spectral theory:
(Kabala and Sposito, 1991,1994)

Takes the Fourier transform of the cumulant expansion expression in order
to develop an equation for the ensemble average in the Fourier space. Still
needs to be inverted to the real time-space for practical applications.

ii. Cumulant expansion combined with Lie operator theory:

(Kavvas and Karakas, 1996; Wood and Kavvas, 1999; Karakas and
Kavvas, 2000; Kavvas, 2002; Yoon and Kavvas, 2002; Ohara and Kavvas,
2007)

Reconizes that the operators in the cumulant expansion representation of
the ensemble average conservation equation are Lie operators. Then it
employs the Lie operator properties (Serre, 1965; Olver,1993) in order to
obtain an explicit expression for the ensemble average conservation
equation in real time-space.



A general formula for the upscaling of linear hydrologic conservation

equations from point-scale to next larger spatial scale:

Any linear hydrologic conservation equation may be written in the operator
form:

doh(x,t)
ot

where h is the state variable and A is the operator coefficient function.

= A(X,t) h(x,t) (1)



"Master Key" differential equation
for the upscaling of any linear hydrologic conservation equation (1)

from point-scale to next larger scale (Kavvas, ASCE JHE,2002).

a<h(;‘tt’t)> = <A(xp,t)> <h(xg,t)>
t
+ | ds CovplA(Xp.t) ; A(X¢gt - 8 )] <h(X(,)> (2)
0

to the order of the covariance time of the operator A. (Exact second order.)

In equation (2), the Lagrangian location xi.g is obtained from the known
location x4 by

/ rt \
Xt_.g=CXp J dt AL(Xt’t) Xt (3)
t



A| is that portion of <A> which is made up of the linear combination of the first
spatial derivatives.

As such, the time-ordered exponential operator &xp (-) on the right-hand-side
(rhs) of Egn.(3) is a Lie operator.

Since this Lie operator is fundamentally a displacement operator, it displaces
the spatial location xt at time t to a location xt - s attime t- s,



Example: Groundwater solute transport by unsteady, spatially
nonstationary stochastic flow ( velocity v is a time-space
stochastic process)

Is expressed by the following Darcy-scale conservation
equation:

oe(x,t)

dc(x,t
. = - vi(x,t) (X0

axi

2
N D,ia c(x,t)
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Eqgn.(4) may be expressed as the operator equation

oc(x,t)
ot

= A(X,t) c(x,t) (5)

where the operator A(x,t) is defined by

A(x,t) = - vi(x,1) _8_ + Dj; 62
O 0X; J GXin

Then substituting this definition of A(x,t) into the "Master Key" upscaling
equation (2) one obtains



Upscaled conservation equation for solute transport at a spatial scale one
step larger than the Darcy scale:

(Kavvas and Karakas, J. of Hydrol.,1996)
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A fundamental complication:
The hydrologic conservation equations
are mostly nonlinear!
due to their nonlinear functional forms or
due to the parameters in these equations being dependent
on the values of the equations’ state variables.

Therefore, most point-scale
hydrologic conservation equations are
nonlinear stochastic partial differential equations (SPDEs)
or
nonlinear stochastic ordinary differential equations

(SODs)



Any hydrologic process with a state variable h,

a parameter vector a, and a forcing function g,
may be described by a conservation equation

in the operator ordinary differential equation form

oh(x,t)
ot



Richards equation as the conservation equation for

one-dimensional vertical unsaturated flow in the vadose zone
(Bear and Verruijt,1987; Chen et al.1994a):

\%\% KZ W
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Then, the Richards equation takes the operator ODE form

ae_w — T]3 (9W9 DZa KZ;Zat)

ot



Differential Equation for the Upscaling of any original
Point-scale Hydrologic Conservation Equation in terms of
the Upscaled (ensemble average) State Variable <h>

(Kavvas, JHE, 8(2), 2003)

d<h(x;,t)>
dt

— <n(h(Xt,t), a(xtat)ag(xt’t))>

; j o[ MECDID D) 4 atrst)ents)]
. ch

For predicting the ensemble average behavior
of the hydrologic process



Eulerian-Lagrangian Fokker-Planck-Kolmogorov equation that corresponds to
any stochastic nonlinear hydrologic conservation equation in the form of Eqn (6):
(Kavvas, J. Hydrol. Engg., 8(2), 2003)

oP(h(xpt)t) 8
ot oh
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+ f dSCOVO[ il (h(Xt’t)’ a0l Xt’t)) ;n(h(xt_S t-5), a(Xts,t-5),2( X¢5,t-S) )]] }
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0
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: [ dsCov, [n(h(xt,t),a(Xt,t),g(Xt,t));n(h(xt-s,t'S)aa(Xt-Sat'S)ag(Xt-Sat'S)) ] }

For determining the probabilistic (ENSEMBLE) behavior of the upscaled
hydrologic process. (Valid only for finite correlation lengths)



The one-to-one correspondence between
any hydrologic conservation equation
as a linear or nonlinear stochastic PDE/ODE
and
a Fokker-Planck-Kolmogorov equation
in a mixed, nonlocal Eulerian-Lagrangian form,
as shown above,
could be a valuable tool in modeling
the ensemble behavior of hydrologic/hydraulic processes

at evolving scales under uncertainty.



Snow Modeling
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Point-scale snow melt-accumulation model
[Non-linear system of ODESs]

dl, _ En—M +sw . Energy conservation eqn.

dt Dp,C; (For Snow temperature, Ts)

abD _p, D dp,
dr ;(_E =M, +5n)- o di +— Mass conservation eqn.

(For Snow depth, D)
- ~ _/ Y_/
Mass exchange Depth adjustment
of density variation

where

Energy exchange (kW): En(T,,D)=L, - L,,(T,,D)+ H(T,) = IE(T))+ Q,(T.)
Except short-wave radiation
Evaporation (m): E = Lli M=sw+En(T.,D)
WP

Snowmelt (m): M =
prw (1 B WO )




Evaluation of random variables and sources of

stochasticity
(Ohara , Kavvas and Chen, 2008 Journal of Hydrol Engr)

1. Snow depth = Random variables

State variables

Sources of
stochasticity | — -------Soms- et At B

3. Air temperature = Assumed deterministic
4. Vegetation effect = Assumed constant
5. Wind effect > Assumed constant



Point-scale snowmelt equations

(

dT

~=F\T.,D,sw;x,t
< dt 1( S )
dD
—=F\T ,D,sn;x,t
\dt 2( S )
where
FI(TS’D,SW):En—MJrSW
Dp C,

F,(T.,D,sn)= &(— E — Mr)+ Pu gp %pSDze(o'o“TS“ps)
J)

pS pns



Simplified FPE

oP(T,,D,t) o 9
= or (BRIl SKE )P D.1)
02 (1 Y
+ or’ P(TS ,D, t)_[o (D,Os C J Cov, [sw(xt sw(x, - s)]ds

+ (,j; {P(TS,D,t)r (&j Cov, [sn(xt,t); Si’l(Xt_S,t —S)]ds}

How to evaluate these time-space dependent covariances?

Cov, [sw(xt , t); sw(xt_s I — S)] ~ Var[sw(xt )]5 (xt — xt_s)



Spatial correlation
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estimated daily
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Simulation period
Case 1 : [2001, April 29 — May 1 (3days)] for melt process



equation and

Time evolution of pdf obtained by Fokker-Planck
Monte Carlo s

in Case 1 (b)
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equation and

Time evolution of pdf obtained by Fokker-Planck
Monte Carlo simulation in Case 1 (c)
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Computed mean
snow temperature
and total snowmelt
by pdf approach and
Monte Carlo
simulation in Case 1
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LIE GROUP SYMMETRIES FOR STOCHASTIC NONLINEAR DYNAMICS

The Modeling Approach (Cayar and Kavvas, JHE 2009):

For a multi-dimensional nonlinear stochastic partial differential equation system with

its initial and boundary conditions that models a stochastic nonlinear dynamical

process:

1) First, identify the Lie group of symmetry transformations that translate the original
multi-dimensional stochastic space-time problem to a new space where the original
problem is transformed into a (usually nonlinear) stochastic initial-value problem
whose pathwise solution is the same as that of the original problem;

2) Second, after making the Lie group of symmetry transformations and ending up
with a stochastic nonlinear initial value problem, determine the equivalent mixed
Lagrangian-Eulerian Fokker-Planck-Kolmogorov equation (Kavvas, 2003) for the
ensemble solution of the problem in terms of its evolutionary probability density
function (PDF).

3) Then back-transform to the original space-time to obtain the ensemble solution to
the original problem in the original space-time in terms of the space-time evolving
PDF of the process state variable/variables.



4. From the space-time evolutionary PDF of the nonlinear stochastic process obtain
the statistical functions of the process that are of practical interest (mean function,
variance function, covariance function, etc.).



Stochastic 2-D Boussinesq Equation for Groundwater Flow in Heterogeneous
Unconfined Aquifers:

0 oh) 0O oh | Oh

= e ) S | ) =2

Ox ox) oy oy ) ot

The following initial and boundary conditions are assigned for this problem:
h(x, y,0) = h, for )0 »)0 t=0
h(0,0,¢) = h, for x=0 y=0 t>0
I’I(C>O,C>O,t):h0 fOV X =00 y:oo t 20
Morth

B Flons

MO O
MOI4 0N

&
Constant o Mo Fliowy
haad



After the appropriate Lie group of symmetry transformations (Cayar and Kavvas, JHE 2009):
c=x+y a=t Hga)=hxy) v==  PO)=HGa)
a

the original PDE may be reduced to the following nonlinear ODE (Cayar and Kavvas, JHE 2009)

oY 1 akP_la\P_l(aksz
ov’ 4¥ ov v ov Y\ ov

with the boundary conditions:

Y(v)=h, Jor U
Y(v)=nh, Jor v=0

o0



The above second-order nonlinear ODE can be transformed into a set of two first-order ODEs

(Cayar and Kavvas, JHE 2009):

oY

—=Q(v

0 (L)
a_Q:_Q(L_F
ov 4Y

oP(Y,Quv) 0 0
P aP«Qﬂ%TAlvD -

82

2

+ (Var(Q,)P(¥,Q,v)))

ij_ﬂ_z
L v

whose equivalent mixed Lagrangian-Eulerian Fokker-Planck-Kolmogorov Eqn. may be
expressed after some simplifications, as (Cayar and Kavvas, JHE 2009):

1
—(Q
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or [ QF
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o0 | 16?2
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Tirme variation of hydraulic head PDF at = = 20 m, ¥ = 20m
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Welcome to the new world of ensemble
(upscaled) hydrologic/hydraulics conservation equations !

1) While the original point-scale conservation equations are
Eulerian;
the ensemble (upscaled) conservation equations are
mixed Eulerian-Lagrangian;

hence: their solutions will require new computational approaches;

2) While the parameters of the existing point-scale
conservation equations are at point-scale,
the parameters of the ensemble (upscaled) conservation equations
are at the scale of the grid areas being modeled (eg. areal median
saturated hydraulic conductivity, areal variance of log hydraulic
conductivity, areal covariance of flow velocity, etc.)

hence: new parameter estimation methodologies will be required;



3) The spatial heterogeneities due to topography, soils,

Especially;

vegetation, land use/land cover, geology are
incorporated explicitly into ensemble
(upscaled) conservation equations by means of
the newly emerging parameters on the

areal variance/covariance of the point-scale
parameters;

the areal dispersion of the point scale
hydrologic dynamics (due to heterogeneity in
land conditions and atmospheric boundary
conditions) 1s explicitly modeled in the
ensemble (upscaled) equations.



4) The hydrologic/hydraulic models which are based upon point-
scale conservation equations with effective parameters may yield
significantly incorrect predictions over highly heterogeneous flow
domains.

In such flow domains it may be necessary to utilize ensemble
(upscaled) conservation (governing) equations with their upscaled
parameters.
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Energy exchange over seasonal snow cover

Net Turbulent
radiation exchange S : Short-wave radiation

—_—A A (Radiation from the sun)

SpetLin Lou L. :Incoming long-wave radiation
(Emission of atmosphere)

L, . : Outgoing long-wave radiation
(Emission of snow surface)

H :Sensible heat flux
(Heat flux from air)

[E : Latent heat flux
(Vaporization and condensation)

P: : Precipitation heat flux
(Heat flux from rain drops)

Q¢ : Ground heat flux
(Heat flux from soil under the snow)
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Second spatial moments of the ensemble-averaged
concentration field as determined from the upscaled
transport equation and from the Monte Carlo
simulation. The second moments calculated directly
from the Borden aquifer data appear as points.



Solution to Equation (2) Monte Carlo Ensemble Average

t=60 | :
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Plate 1. Ensemble-averaged concentration fields plotted for 11 output times (times are in days). The fields
represent the ensemble-averaged concentration determined by the numerical solution of (2) and by the
ensemble average of the Monte Carlo simulations. The effect of the transient field can be seen as a rotation
of the principal axis of the plume.



Spatial Correlation Coefficient

Spatial correlation function of short-wave radiation based on the
distribution of radiation after the local trend is removed

— whole region —— Window size 30km Window size 10km
— Window size 5km ——Window size 1km

1km: lc = 121.6(m)
5km: Ic = 196.8(m)
10km: Ic = 277.1(m)
30km: Ic = 1549(m)
whole: Ic = 5113(m)

Lag (km)



Fokker-Planck equation (FPE) for snow process
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