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As physically-based hydrologic modeling practice expanded its domain 

from hillslopes to 

large watersheds, geographical regions, continents and the whole globe, 

a fundamental problem has emerged:



How to upscale the existing point-scale 

hydrologic conservation equations 

for 

mass, momentum (and/or energy) 

to the increasingly larger spatial scales,

in order to have in order to have 

the conservation equations to be consistent with

the scale of the grid areas over which they will describe 

the hydrologic processes.





Various Approaches to Upscaling of Hydrologic Conservation Equations:

I.Averaging approaches:

A. Volume/areal averaging approaches

B. Ensemble averaging approaches

1. Numerical probabilistic averaging approaches

2.Analytical ensemble averaging approaches

a. Averaging based on analytical solutions to realizations

b. Averaging based on the regular perturbations approach

c. Averaging based upon decomposition theory of Adomian

d. Averaging based on projector-operator approach

e. Averaging based on cumulant expansion approach

i. Cumulant expansion combined with spectral theory

ii. Cumulant expansion combined with Lie group theory



II. Approaches based upon similarity

Lie Group Symmetries

Classical dimensional analysis



A. Volume/Areal Averaging Approach

The point-scale hydrologic conservation equation is integrated over a volumetric or 

areal domain, and then the resulting integrals are divided by the size of the domain.

With this approach it was possible to derive Darcy's Equation from the microscopic 

Navier-Stokes equations under many simplifying assumptions in order to obtain 

closure (Whittaker, 1999). 

It was used in hydrology to reduce the hydrologic conservation equations from their It was used in hydrology to reduce the hydrologic conservation equations from their 

original PDE forms at point scale to ODE forms at larger spatial scales:

a) Duffy (1996) reduced the unsaturated-saturated subsurface flow conservation 

equation from its original PDE form to a set of ODEs by means of volume averaging;

b) Tayfur and Kavvas (1994, 1998) reduced the rill and interrill overland flow 

equations from a 2-D PDE at point scale to an ODE at hillslope scale by volume 

averaging.

This approach has closure problems. 



B. Ensemble averaging approaches:

Recognize that the point-scale hydrologic conservation equations become

uncertain  (stochastic PDEs) due to the uncertain values of their point-scale

parameters and boundary conditions at the grid-area scale. 

Accordingly, the aim isAccordingly, the aim is

to obtain an ensemble average form of the

original point-scale conservation equation (as a stochastic PDE) 

which will represent its 

upscaled form at the scale of the modeling grid area. 





1. Numerical probabilistic averaging approaches:

(Avissar and Pielke, 1989; Entekhabi and Eagleson,1989; Avissar, 1991; 

Famiglietti and Wood, 1991; Kuchment, 2001, etc.)

Assign probability distributions for the parameters of the 

point-scale conservation equation 

in order to describe the parameters' 

statistical variability within a grid area (subgrid variability). statistical variability within a grid area (subgrid variability). 

Then using these probability distributions, numerically average 

the point-scale conservation equations over the grid area in order to obtain

the grid-area-scale behavior of the corresponding hydrologic process.



2. Analytical ensemble averaging approaches:

a. Averaging based on analytical solutions to realizations:

(Serrano, 1992,1993,1995; Chen et al. 1994a,b; etc.)

Approach: Obtain the pathwise analytical solution to the 

conservation equation, and then take its ensemble 

average

Advantage: Possible to obtain exact analytical closures even in Advantage: Possible to obtain exact analytical closures even in 

nonlinear problems

Successfully applied to the ensemble averaging of 

nonlinear unsaturated soil water flow and nonlinear 

Boussinesq equations

Drawback: Solutions are cumbersome and difficult to 

understand/use by third parties.



b. Averaging based on the regular perturbations approach:

The most often used approach in hydrology (Gelhar and Axness,1983; Dagan,1982,1984; 

Rubin, 1990, 1991; Graham and McLaughlin, 1989; Mantoglou and Gelhar, 1987a,b; 

Mantoglou, 1992; Tayfur and Kavvas, 1994; Horne and Kavvas, 1997; etc.)

Approach: Express each stochastic parameter and each state variable in the 

conservation equations by a sum of their corresponding mean and a small perturbation term. 

Then substitute this perturbation expression in place of the original parameter/state variable 

within the conservation equation. Then take the expectation of the resulting conservation 

equation to obtain an ensemble average equation for the considered hydrologic process.

Advantage: Straightforward to apply even in nonlinear cases.Advantage: Straightforward to apply even in nonlinear cases.

Drawbacks: 

Immediately results in a closure problem where the equation for the mean requires 

information about the behavior of higher moments. When one attempts to write an equation 

for the required higher moment, then that equation for the specific higher moment requires 

information about the behavior of even higher moments. Hence, one can close the system of 

equations only by means of some adhoc assumptions.

Its fundamental assumption of small magnitude fluctuations in the modeled process is often 

invalid in highly heterogeneous media, or when dealing with nonlinear dynamics.



c. Averaging based upon decomposition theory of Adomian:

(Adomian,1983; Serrano,1993; 1995a,b)

Approach: the state variable in the original conservation equation is 

decomposed into a series of component functions. Then, starting with the 

deterministic analytical solution to the original conservation equation, the other 

terms in the decomposition are determined recursively, where each successive 

component in the series decomposition representation is determined in terms of 

the preceding component.

Advantages: can accommodate any size of fluctuation; can be applied both to 

linear and nonlinear problems; avoids closure problems by adding successively 

smaller magnitudes to the solution.

Drawbacks: requires a pathwise analytical solution to the conservation 

equation in order to develop the corresponding ensemble average equation; 

however, such analytical solutions are unattainable for many nonlinear hydrologic 

processes.



d. Averaging based on projector-operator approach :

(Nakajima, 1958; Zwanzig,1960; Cushman,1991; Cushman and Ginn,1993)

Approach: Considers an operator which projects quantities onto their 

averages (Pu = <u>). Then applying this operator together with an operator that 

represents the difference between the actual variable and its mean (Du=u-<u>), 

derives an exact integro-differential equation for the ensemble average. This 

integro-differential equation is nonlocal.integro-differential equation is nonlocal.

Advantages: Avoids the closure problem.

Drawbacks: Applicable only to linear problems.

The obtained integro-differential equation is implicit in the state variable. 

Therefore, it requires further approximations for its explicit solution.



e. Averaging based on cumulant expansion approach :

(Kubo, 1959, 1962; van Kampen 1974,1976; Kabala and 

Sposito,1991,1994; Kavvas and Karakas,1996; Karakas and Kavvas, 

2000; Kavvas,2002, 2003; Cayar and Kavvas, 2009)

Approach: Express the original conservation equation in terms of an 

operator equation with an average component and a fluctuating dynamic 

component. Solve the resulting initial value problem in order to obtain the component. Solve the resulting initial value problem in order to obtain the 

ensemble average equation, expressed in terms of a series of cumulants

(correlation functions) of increasing order. Truncation at any order 

cumulant yields an exact closure at that order (does not require any 

information on higher cumulants unlike the regular perturbation approach).

However, the resulting ensemble average equation is in terms of 

operators which need to be expressed explicitly for practical applications.



Two approaches for explicit expressions:

i. Cumulant expansion combined with spectral theory:

(Kabala and Sposito, 1991,1994)

Takes the Fourier transform of the cumulant expansion expression in order 

to develop an equation for the ensemble average in the Fourier space. Still 

needs to be inverted to the real time-space for practical applications.

ii. Cumulant expansion combined with Lie operator theory:ii. Cumulant expansion combined with Lie operator theory:

(Kavvas and Karakas, 1996; Wood and Kavvas, 1999; Karakas and 

Kavvas, 2000; Kavvas, 2002; Yoon and Kavvas, 2002; Ohara and Kavvas, 

2007)

Reconizes that the operators in the cumulant expansion representation of 

the ensemble average conservation equation are Lie operators. Then it 

employs the Lie operator properties (Serre, 1965; Olver,1993) in order to 

obtain an explicit expression for the ensemble average conservation 

equation in real time-space.













APPLICATION TO SOLUTE TRANSPORT OBSERVATIONS 

AT BORDEN AQUIFER

(Wood,B.D. and M.L.Kavvas, WRR, 35(7),1999)





A fundamental complication:

The hydrologic conservation equations 

are mostly nonlinear!

due to their nonlinear functional forms or 

due to the parameters in these equations being dependent 

on the values of the equations’ state variables.

Therefore, most point-scale 

hydrologic conservation equations are 

nonlinear stochastic partial differential equations (SPDEs) 

or 

nonlinear stochastic ordinary differential equations 

(SODs)



∂h(x ,t)

Any hydrologic process with a state variable h, 

a parameter vector a, and a forcing function g, 

may be described by a conservation equation

in the operator ordinary differential equation form 

∂h(x ,t)

∂t
 = η(h,a,g ;x ,t) (6)
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Richards equation as the conservation equation for 

one-dimensional vertical unsaturated flow in the vadose zone 

(Bear and Verruijt,1987; Chen et al.1994a):

η3(θw,Dz,Kz;z,t) = 
∂

∂z
 Dz(θw)

∂θw

∂z
 - 
∂Kz(θw)

∂z
 

∂θw

∂t
 = η3(θw,Dz,Kz;z,t)  

Then, the Richards equation takes the operator ODE form



d<h(xt,t)> ( )

Differential Equation for the Upscaling of any original 

Point-scale Hydrologic Conservation Equation in terms of 

the Upscaled (ensemble average) State Variable <h>  

(Kavvas, JHE, 8(2), 2003)

d<h(xt,t)>

dt
 = <η(h(xt,t),a(xt,t),g(xt,t))>

 + ds

0

t

Covo[ 
∂η(h(xt,t),a(xt,t),g(xt,t))

∂h
 ; η(h(xt-s,t-s),a(xt-s,t-s),g(xt-s,t-s))] 

For predicting the ensemble average behavior 

of the hydrologic process



Eulerian-Lagrangian Fokker-Planck-Kolmogorov equation that corresponds to 

any stochastic nonlinear hydrologic conservation equation in the form of Eqn (6): 

(Kavvas, J. Hydrol. Engg., 8(2), 2003)
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For determining the probabilistic (ENSEMBLE) behavior of the upscaled

hydrologic process.  (Valid only for finite correlation lengths)



The one-to-one correspondence between 

any hydrologic  conservation equation 

as a linear or nonlinear stochastic PDE/ODE

and 

a Fokker-Planck-Kolmogorov equation 

in a mixed, nonlocal Eulerian-Lagrangian form,in a mixed, nonlocal Eulerian-Lagrangian form,

as shown above,

could be a valuable tool in modeling 

the ensemble behavior of hydrologic/hydraulic processes 

at evolving scales under uncertainty.



Snow Modeling

Short-wave radiation
Sensible heat flux

Latent heat fluxLong-wave 

radiation

Melting energy

DEM

(i,j)(i-1,j) (i+1,j)

(i,j+1)

(Flow direction)

= Aspect

slope
Melting energy

(i,j-1)

Top 2 factors affecting snow distribution

Snowmelt process

1) Shortwave radiation

2) Air temperature

Snow accumulation process

1) Precipitation distribution

2) Wind effect



PointPointPointPoint----scale snow meltscale snow meltscale snow meltscale snow melt----accumulation modelaccumulation modelaccumulation modelaccumulation model
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( )









−+−−=

+−
=

dt

dD
snME

dt

dD

CD

swMEn

dt

dT

s

s

r

s

w

ss

s

ρ
ρρ

ρ

ρ
Energy conservation eqn.
(For Snow temperature, Ts)

Mass conservation eqn.
(For Snow depth, D)

Mass exchange Depth adjustment 

of density variation

)()()(),(),( spsssoutins TQTlETHDTLLDTEn +−+−=

( )01 WL

M
M

wf

r −
=

ρ

wvL

lE
E

ρ
=

where

Energy exchange (kW):
Except short-wave radiation 

Evaporation (m):

Snowmelt (m):

M=sw+En(Ts,,D)



Evaluation of random variables and sources of Evaluation of random variables and sources of Evaluation of random variables and sources of Evaluation of random variables and sources of 
stochasticitystochasticitystochasticitystochasticity

(Ohara (Ohara (Ohara (Ohara , Kavvas and Chen, , Kavvas and Chen, , Kavvas and Chen, , Kavvas and Chen, 2008 Journal of 2008 Journal of 2008 Journal of 2008 Journal of HydrolHydrolHydrolHydrol EngrEngrEngrEngr))))

1. Snow depth � Random variables

2. Snow temperature � Random variables
State variables

1. Short-wave radiation

2. Snow fall (Precipitation)

3. Air temperature �Assumed deterministic

4. Vegetation effect �Assumed constant 

5. Wind effect �Assumed constant

In terms of heterogeneity in a single cell

Sources of 

stochasticity
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Spatial correlation Spatial correlation Spatial correlation Spatial correlation 
function of function of function of function of 

estimated daily estimated daily estimated daily estimated daily 
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Simulation period

Case 1 : Spring [2001, April 29 – May 1 (3days)] for melt process
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LIE GROUP SYMMETRIES FOR STOCHASTIC NONLINEAR DYNAMICS

The  Modeling Approach (Cayar and Kavvas, JHE 2009):

For a multi-dimensional nonlinear stochastic partial differential equation system with 

its initial and  boundary conditions that models a stochastic nonlinear dynamical 

process:

1) First, identify the Lie group of symmetry transformations that translate the original 

multi-dimensional stochastic space-time problem to a new space where the original 

problem is transformed into a (usually nonlinear) stochastic initial-value problem problem is transformed into a (usually nonlinear) stochastic initial-value problem 

whose pathwise solution is the same as that of the original problem;

2) Second, after making the Lie group of symmetry transformations and ending up 

with a stochastic nonlinear initial value problem, determine the equivalent mixed 

Lagrangian-Eulerian Fokker-Planck-Kolmogorov equation (Kavvas, 2003) for the 

ensemble solution of the problem in terms of its evolutionary probability density 

function (PDF).

3) Then back-transform to the original space-time to obtain the ensemble solution to 

the original problem in the original space-time in terms of the space-time evolving 

PDF of the process state variable/variables.  



4. From the space-time evolutionary PDF of the nonlinear stochastic process obtain 

the statistical functions of the process that are of practical interest (mean function, 

variance function, covariance function, etc.).



Stochastic 2-D Boussinesq Equation for Groundwater Flow in Heterogeneous 
Unconfined Aquifers: 

The following initial and boundary conditions are assigned for this problem: 
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After the appropriate Lie group of symmetry transformations (Cayar and Kavvas, JHE 2009):

with the boundary conditions:
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the original PDE may be reduced to the following nonlinear ODE (Cayar and Kavvas, JHE 2009)
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The above second-order nonlinear ODE can be transformed into a set of two first-order ODEs

(Cayar and Kavvas, JHE 2009):

whose equivalent mixed Lagrangian-Eulerian Fokker-Planck-Kolmogorov Eqn. may be 

expressed after some simplifications, as (Cayar and Kavvas, JHE 2009):
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Probability density functions of Boussinesq unconfined heterogeneous aquifer flow in time and space

(from Cayar and Kavvas, JHE 2009)



Mean hydraulic head comparison in x-direction (at y = 15) for Cv =1.5 (From Cayar and Kavvas, JHE 2009)

Mean hydraulic head comparison in y-direction (at x = 12) for Cv =1.5 (From Cayar and Kavvas, JHE 2009)



Comparison of variance of hydraulic head in x-direction (at y = 15) for Cv =1.5 (From Cayar and Kavvas, JHE 2009)

Comparison of variance of hydraulic head in y-direction (at x = 0) for Cv =1.5 (From Cayar and Kavvas, JHE 2009)



Welcome to the new world of ensemble 

(upscaled) hydrologic/hydraulics conservation equations !

1) While the original point-scale conservation equations are 

Eulerian;

the ensemble (upscaled) conservation equations are 

mixed Eulerian-Lagrangian;

hence: their solutions will require new computational approaches;

2) While the parameters of the existing point-scale 

conservation equations are at point-scale, 

the parameters of the ensemble (upscaled) conservation equations 

are at the scale of the grid areas being modeled (eg. areal median 

saturated hydraulic conductivity, areal variance of log hydraulic 

conductivity, areal covariance of flow velocity, etc.)

hence: new parameter estimation methodologies will be required;



3) The spatial heterogeneities due to topography, soils, 

vegetation, land use/land cover, geology are 

incorporated explicitly into ensemble 

(upscaled) conservation equations by means of 

the newly emerging parameters on the 

areal variance/covariance of the point-scale 

parameters;

Especially; the areal dispersion of the point scale 

hydrologic dynamics (due to heterogeneity in 

land conditions and atmospheric boundary 

conditions) is explicitly modeled in the 

ensemble (upscaled) equations.



4) The hydrologic/hydraulic models which are based upon point-

scale conservation equations with effective parameters may yield 

significantly incorrect predictions over highly heterogeneous flow 

domains.

In such flow domains it may be necessary to utilize ensemble 

(upscaled) conservation (governing) equations with their upscaled(upscaled) conservation (governing) equations with their upscaled

parameters.
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Energy exchange over seasonal snow coverEnergy exchange over seasonal snow coverEnergy exchange over seasonal snow coverEnergy exchange over seasonal snow cover

LinLoutSnet H lE Pt

Net 

radiation

Turbulent

exchange Sin : Short-wave radiation
(Radiation from the sun)

Lin : Incoming long-wave radiation
(Emission of atmosphere)

Lout : Outgoing long-wave radiation
(Emission of snow surface) 

Qg Snow

Soil

(Emission of snow surface) 

H : Sensible heat flux
(Heat flux from air)

lEv : Latent heat flux
(Vaporization and condensation)

Pt : Precipitation heat flux
(Heat flux from rain drops) 

Qg : Ground heat flux
(Heat flux from soil under the snow)
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FokkerFokkerFokkerFokker----Planck equation (FPE) for snow processPlanck equation (FPE) for snow processPlanck equation (FPE) for snow processPlanck equation (FPE) for snow process
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