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For the quantification of hydrologic water balances over

sparsely gaged or ungaged regions/watersheds

A Central Issue:

How to model the hydrologic processes at the scale of the
grid areas of ungaged small-mesoscale watersheds (grid size~1km),

and of sparsely gaged/ungaged regions (grid size~10km).



Since there may be very sparse or no precipitation/runoff data over
an ungaged/sparsely gaged watershed

it may be necessary to take a computational network with sufficiently large grid areas
over such a watershed

in order to be able to utilize the sparse data (if there is any)
or
to be able to utilize remotely sensed observations as areally-averaged quantities over
such grid areas.

Then

in order to have scale-consistent description of the hydrologic processes with respect to
both numerical modeling and remotely sensed observations
over such grid areas of an ungaged/sparsely gaged watershed

it becomes necessary to develop upscaled hydrologic conservation equations for
the hydrologic processes of interest over such grid areas.



spatial scale = observational/computational grid size

time scale = observational/computational time interval



Current state of hydrologic science:
The hydrologic conservation equations are generally known at "point-

scale".

Point-scale = scale of differential control volume

The conservation equations for mass, momentum and/or energy
at a computational node are obtained at the scale of

a differential control volume which surrounds that node.



Each nodal point of a computational grid network represents a surrounding
grid area which may range from ~10m to ~100km depending upon the
domain being modeled .

In order to utilize these hydrologic conservation equations for modeling the
hydrologic processes at the particular scale of a grid area

one makes the assumption that

the conservation equation (usually a PDE) at the node represents the
whole hydrologic process evolving over the area that surrounds that node.



This amounts to assuming:

Homogeneity of soils, vegetation, geology, topography ,
atmospheric inputs

over the area (volume) that surrounds any nodal point of the computational
grid network.



However,
soils, vegetation, geology, topography ,
atmospheric inputs

over an area (volume) that surrounds any nodal point of the computational grid
network

are heterogeneous.

Therefore,

a hydrologic conservation equation which is derived
at the point scale of a node becomes uncertain (a stochastic PDE) over the grid
area which it purports to represent due to uncertainty of its parameters and
boundary conditions over this area.

As such, a point-scale conservation equation can not represent

the general behavior of the hydrologic process which is taking place over the grid-
scale area that surrounds that node.






Fundamental problem:

How to upscale the existing point-scale hydrologic
conservation equations

for
mass, momentum (and/or energy) to the increasingly larger spatial scales,
in order to have
the conservation equations to be consistent with
the scale of the grid areas over which they will describe

the hydrologic processes over ungaged/sparsely gaged watersheds.



Various Approaches to Upscaling of Hydrologic Conservation Equations:

|.Averaqging approaches:

A. Volume/areal averaging approaches

B. Ensemble averaqging approaches

1. Numerical probabilistic averaging approaches
2.Analytical ensemble averaging approaches

a. Averaging based on analytical solutions to realizations

b. Averaging based on the regular perturbations approach

c. Averaging based upon decomposition theory of Adomian

d. Averaging based on projector-operator approach

e. Averaging based on cumulant expansion approach
i. Cumulant expansion combined with spectral theory
ii. Cumulant expansion combined with Lie group theory



1. Approaches based upon similarity
A. Upscaling based upon dimensional similarity theory

B. Fractional Fokker-Planck equation



A. Volume/Areal Averaging Approach

The point-scale hydrologic conservation equation is integrated over a volumetric or
areal domain, and then the resulting integrals are divided by the size of the domain.

Was possible to derive Darcy's Equation from the microscopic Navier-Stokes

equations under many simplifying assumptions in order to obtain closure
(Whittaker, 1999).

Was used in hydrology to reduce the hydrologic conservation equations from their
original PDE forms at point scale to ODE forms at larger spatial scales:

a) Duffy (1996) reduced the unsaturated-saturated subsurface flow conservation
equation from its original PDE form to a set of ODEs by means of volume averaging;

b) Tayfur and Kavvas (1994, 1998) reduced rill and interrill overland flow equations
from a 2-D PDE at point scale to an ODE at hillslope scale by volume averaging.

This approach has closure problems.



B. Ensemble averaqing approaches:

Recognize that the point-scale hydrologic conservation equations become
uncertain (stochastic PDEs) due to the uncertain values of their point-scale

parameters and boundary conditions at the grid-area scale.

Accordingly, the aim is
to obtain an ensemble average form/behavior of the
original point-scale conservation equation (as a stochastic PDE)
which will represent its

upscaled form at the scale of the modeling grid area.
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1. Numerical probabilistic averaging approaches:

(Avissar and Pielke, 1989; Entekhabi and Eagleson,1989; Avissar, 1991;
Famiglietti and Wood, 1991; Kuchment, 2001, etc.)

Assign probability distributions for the parameters of the
point-scale conservation equation
in order to describe the parameters’

statistical variability within a grid area (subgrid variability).

Then using these probability distributions, numerically average
the point-scale conservation equations over the grid area in order to obtain

the grid-area-scale behavior of the corresponding hydrologic process.



2. Analytical ensemble averaqing approaches:

a. Averaqing based on analytical solutions to realizations:
(Serrano, 1992,1993,1995; Chen et al. 1994a,b; etc.)

Approach: Obtain the pathwise analytical solution to the
conservation equation, and then take its ensemble
average

Advantage: Possible to obtain exact analytical closures even in

nonlinear problems

Successfully applied to the ensemble averaging of
nonlinear unsaturated soil water flow and nonlinear
Boussinesq equations

Drawback: Solutions are cumbersome and difficult to
understand/use by third parties.




b. Averaqing based on the reqular perturbations approach:

The most often used approach in hydrology (Gelhar and Axness,1983;
Dagan,1982,1984; Rubin, 1990, 1991; Graham and McLaughlin, 1989; Mantoglou and
Gelhar, 1987a,b; Mantoglou, 1992; Tayfur and Kavvas, 1994; Horne and Kavvas, 1997;
etc.)

Approach: Express each stochastic parameter and each state variable in the
conservation equations by a sum of their corresponding mean and a small perturbation
term. Then substitute this perturbation expression in place of the original
parameter/state variable within the conservation equation. Then take the expectation of
the resulting conservation equation to obtain an ensemble average equation for the
considered hydrologic process.

Advantage: Straightforward to apply even in nonlinear cases.

Drawbacks:
Immediately results in a closure problem where the equation for the mean requires
information about the behavior of higher moments. When one attempts to write an
equation for the required higher moment, then that equation for the specific higher
moment requires information about the behavior of even higher moments. Hence, one
can close the system of equations only by means of some adhoc assumption.

Small perturbation is often invalid in highly heterogeneous media.




Spatial Horizontally Averaged Richards' Equation
(SHARE) Model

Areal averaging of point-scale Richards' equation:
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The system of equations for <s> and Cov[s,K;]

in SHARE model
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Chen et al. (WRR, April 1994) have developed
exact analytical expressions for

ensemble averaged Green-Ampt soil water flow conservation
equations

under ponded, infiltration and evapotranspiration boundary conditions
(Rectangular Profile Model)

where saturated hydraulic conductivity 1s taken to be

a random field



Rectanqular Profile Model Solutions:

Areally-Averaged Green-Ampt Model

Surface held at saturation (Ponded condition)
s(0,t)=1, <s>(0,t)=1, Cov][s,K¢](0,t)=0

Exact analytical solutions:
1
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Numerical model of 3-d Richards equation with

Grid Network =10m x 10m x 2m
Horizontal grid size =1m
Vertical grid size = variable (~cm)

was used (Chen et al., WRR, 1994b) to simulate a 3-d soil moisture
field under infiltration boundary conditions. Then the simulated soil
moisture field was horizontally averaged in order to obtain areally-
averaged soil moisture content profiles at different times.

These areally-averaged soil moisture profiles were compared with
those, predicted by areally-averaged Green-Ampt model
(Rect.Prof.) and by a second-order regular perturbation closure to
areally-averaged 1-d Richards equation.
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c. Averaging based upon decomposition theory of Adomian:
(Adomian,1983; Serrano,1993; 1995a,b)

Approach: the state variable in the original conservation equation is
decomposed into a series of component functions. Then, starting with the
deterministic analytical solution to the original conservation equation, the

other terms in the decomposition are determined recursively, where each
successive component in the series decomposition representation is determined in
terms of the preceding component.

Advantages: can accommodate any size of fluctuation; can be applied both to
linear and nonlinear problems; avoids closure problems by adding
successively smaller magnitudes to the solution.

Drawbacks: requires a pathwise analytical solution to the conservation
equation in order to develop the corresponding ensemble average equation;
however, such analytical solutions are unattainable in many nonlinear hydrologic
processes.




d. Averaqging based on projector-operator approach :

(Nakajima, 1958; Zwanzig,1960; Cushman,1991; Cushman and Ginn,1993)

Approach: Considers an operator which projects quantities onto their
averages (Pu = <u>). Then applying this operator together with an operator
that represents the difference between the actual variable and its mean
(Du=u-<u>), derives an exact integro-differential equation for the ensemble
average. This integro-differential equation is nonlocal.

Advantages: Avoids the closure problem.

Drawbacks: Applicable only to linear problems.
The obtained integro-differential equation is implicit in the state variable.
Therefore, it requires further approximations for its explicit solution.




e. Averaqging based on cumulant expansion approach :

(Kubo, 1959, 1962; van Kampen 1974,1976; Kabala and
Sposito,1991,1994; Kavvas and Karakas,1996; Karakas and Kavvas,
2000; Kavvas,2002)

Approach: Express the original conservation equation in terms of an
operator equation with an average component and a fluctuating dynamic
component. Solve the resulting initial value problem in order to obtain the
ensemble average equation, expressed in terms of a series of cumulants
(correlation functions) of increasing order. Truncation at any order
cumulant yields an exact closure at that order.

However, the resulting ensemble average equation is in terms of
operators which need to be expressed explicitly for practical applications.



Two approaches for explicit expressions:

i. Cumulant expansion combined with spectral theory:
(Kabala and Sposito, 1991,1994)

Takes the Fourier transform of the cumulant expansion expression in order
to develop an equation for the ensemble average in the Fourier space. Still
needs to be inverted to the real time-space for practical applications.

ii. Cumulant expansion combined with Lie group theory:

(Kavvas and Karakas, 1996; Wood and Kavvas, 1999; Karakas and
Kavvas, 2000; Kavvas, 2002; Yoon and Kavvas, 2002)

Reconizes that the operators in the cumulant expansion representation of
the ensemble average conservation equation are Lie operators. Then it
employs the Lie operator properties (Serre, 1965; Olver,1993) in order to
obtain an explicit expression for ensemble average conservation equation
in real time-space.



A general formula for the upscaling of linear hydrologic conservation

equations from point-scale to next larger spatial scale:

Any linear hydrologic conservation equation may be written in the operator
form:

dh(x,t)
ot

where h is the state variable and A is the operator coefficient function.

= A(X,t) h(x,t) (1)



"Master Key" differential equation
for the upscaling of any linear hydrologic conservation equation (1)

from point-scale to next larger scale (Kavvas, ASCE JHE,2002).

a<h(;‘tt’t)> = <A(xp,t)> <h(xg,t)>
t
+ | ds CovplA(Xp.t) ; A(X¢gt - 8 )] <h(X(,)> (2)
0

to the order of the covariance time of the operator A. (Exact second order.)

In equation (2), the Lagrangian location xi.g is obtained from the known
location x4 by

/ rt \
Xt_.g=CXp J dt AL(Xt’t) Xt (3)
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A| is that portion of <A> which is made up of the linear combination of the first
spatial derivatives.

As such, the time-ordered exponential operator &xp (-) on the right-hand-side
(rhs) of Egn.(3) is a Lie operator.

Since this Lie operator is fundamentally a displacement operator, it displaces
the spatial location xt at time t to a location xt - s attime t- s,



Example:  Groundwater solute transport by unsteady, spatially
nonstationary stochastic flow ( velocity v is a time-space
stochastic process)
is expressed by the following Darcy-scale conservation
equation:

ac(x,t)

dc(Xx,t
pn = - vi(X,t) (x.1

.

2
+ ]:).1a C(Xst)

J 8Xj 0X; (4)

Egn.(4) may be expressed as the operator equation

dc(X,t)
ot

= A(X,t) c(x,t) (5)

where the operator A(x,t) is defined by

0
A(X,) = - vi(x,1) . + Dji
1

Then substituting this definition of A(x,t) into the "Master Key" upscaling
equation (2) one obtains



Upscaled conservation equation for solute transport at a spatial scale one
step larger than the Darcy scale:

(Kavvas and Karakas, J. of Hydrol.,1996)
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APPLICATION TO SOLUTE TRANSPORT OBSERVATIONS
AT BORDEN AQUIFER

(Wood,B.D. and M.L.Kavvas, WRR, 35(7),1999)
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Solution to Equation (2) Monte Carlo Ensemble Average

t=60 | :
=240 § &

t =540 |

t=600 §

£
c('l

0.0 0.2 0.4 0.6 0.8 1.0

Plate 1. Ensemble-averaged concentration fields plotted for 11 output times (times are in days). The fields
represent the ensemble-averaged concentration determined by the numerical solution of (2) and by the
ensemble average of the Monte Carlo simulations. The effect of the transient field can be seen as a rotation
of the principal axis of the plume.



APPLICATION TO THE OVERLAND FLOW PROCESS

Point-scale one-dimensional kinematic wave equation as conservation
equation for overland flow:

Zyg,t) _ _ZZ; [ a(x) y(x,t)™M] + q(x,t) (9)

0
n(Y9aam9q;Xat) - — [ OL(X) Y(Xat)m] + q(Xot)
Ox (10)

oy
—= T] (y: aamaq;xat)
ot

(11)



Fokker-Planck Equation of the upscaled overland flow kinematic
wave equation

aP(y(;t,t),t) _ _% {P(y(xt,t),t) [ %[ (%) Y(xeD)™ + q(x,t) >

+ jo dsCovO[ - %[ a(x)my(x, )™ 1] ;- %[ OL(Xts) Y(Xist=8)™] + q(xt_s,t-s)]] }
&
%ﬁ {2P(y(xt,t),t) :
: tdsCovO[- i[ (X)) Y(Xpt)™] + q(Xpt) ;- i[ 0U(Xs) Y(Xeesot-8) "Hq(Xios,t-5) | }
0 ox oX

(12)
One may note that the FPE (12) is linear in P.



However, in order to solve for the probability density P

for overland flow depth vy, it is necessary to resolve the

spatial gradient ék



Areally averaged overland flow equation

Can be obtained from Eq. (9) using the following sine
function as a approximation to the flow depth profile
along the x-direction

y(x,t) = y(Lx,t)Sin( % (13)

From (13), following relation can be derived by
iIntegrating on both sides with respect to the x-axis

¥(O) =2 y(Lx.H (14)



Using the sine function approximation and integrating
along the x-axis, EqQ. (9) can now be transformed to an
areally averaged form as follows.

D B(L T2 + ) (15)
B(L,) = 1.974L0) (16)

Lx



Fokker-Planck equation of the upscaled overland
flow kinematic wave equation

PO _ 2 Loy [<BLo=3) <q)>-
ot oy
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(17)
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MC vs FPE - continued
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Welcome to the new world of
upscaled hydrologic conservation equations !

1) While the original point-scale conservation equations are
Eulerian;
the upscaled conservation equations are mixed
Eulerian-Lagrangian;

hence: their solutions will require new computational approaches;

2) While the parameters of the existing point-scale
conservation equations are at point-scale,
the parameters of the upscaled conservation equations are at the
scale of the grid areas being modeled (eg. areal median
saturated hydraulic conductivity, areal variance of log hydraulic
conductivity, areal covariance of flow velocity, etc.)

hence: new parameter estimation methodologies will be required;



3) The spatial heterogeneities due to topography, soils,

Especially;

vegetation, land use/land cover, geology are
incorporated explicitly into upscaled
conservation equations by means of the newly
emerging parameters on the

areal variance/covariance of the point-scale
parameters;

the areal dispersion of the point scale
hydrologic dynamics (due to heterogeneity in
land conditions and atmospheric boundary
conditions) 1s explicitly modeled in the
upscaled equations.



4) The hydrologic models which are based upon point-scale
conservation equations with effective parameters may yield
significantly incorrect predictions over highly heterogeneous
ungaged basins.

In such basins it may be necessary to utilize upscaled hydrologic
conservation equations with their upscaled parameters.

IT IS ESSENTIAL TO

establish a hydrologic model intercomparison project by which
existing models (point-scale or upscaled) are tested for their
performance when they are provided no atmospheric/hydrologic
data over a large basin for predicting hydrological processes at
various spatial scales within that basin.



