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For the quantification of hydrologic water balances over 

sparsely gaged or ungaged regions/watersheds

A Central Issue:

How to model the hydrologic processes at the scale of the 

grid areas of ungaged small-mesoscale watersheds (grid size~1km),

and of sparsely gaged/ungaged regions (grid size~10km).



Since there may be very sparse or no precipitation/runoff data over  

an ungaged/sparsely gaged watershed

it may be necessary to take a computational network with sufficiently large grid areas 

over such a watershed 

in order to be able to utilize the sparse data (if there is any)

or 

to be able to utilize remotely sensed observations as areally-averaged quantities over 

such grid areas.

Then

in order to have scale-consistent description of the hydrologic processes with respect to 

both numerical modeling and remotely sensed observations

over such grid areas of an ungaged/sparsely gaged watershed

it becomes necessary to develop upscaled hydrologic conservation equations for 

the hydrologic processes of interest over such grid areas.



spatial scale = observational/computational grid size

time scale = observational/computational time interval



Current state of hydrologic science:

The hydrologic conservation equations are generally known at "point-

scale".

Point-scale = scale of differential control volume

The conservation equations for mass, momentum and/or energy

at a computational node are obtained at the scale of 

a differential control volume which surrounds that node.



Each nodal point of a computational grid network represents a surrounding 

grid area which may range from ~10m  to ~100km depending upon the 

domain being modeled .

In order to utilize these hydrologic conservation equations for modeling the 

hydrologic processes at the particular scale of a grid areahydrologic processes at the particular scale of a grid area

one makes the assumption that

the conservation equation (usually a PDE) at the node represents the 

whole hydrologic process evolving over the area that surrounds that node. 



This amounts to assuming:

Homogeneity of soils, vegetation, geology, topography ,

atmospheric inputs

over the area (volume) that surrounds any nodal point of the computational 

grid network. 



However, 

soils, vegetation, geology, topography ,

atmospheric inputs

over an area (volume) that surrounds any nodal point of the computational grid 

network

are heterogeneous.

Therefore,

a hydrologic conservation equation which is derived 

at the point scale of a node becomes uncertain (a stochastic PDE) over the grid 

area which it purports to represent due to uncertainty of its parameters and 

boundary conditions over this area.

As such,  a point-scale conservation equation can not represent

the general behavior of the hydrologic process which is taking place over the grid-

scale area that surrounds that node.





Fundamental problem:

How to upscale the existing point-scale hydrologic 

conservation equations 

for 

mass, momentum (and/or energy) to the increasingly larger spatial scales,

in order to have in order to have 

the conservation equations to be consistent with

the scale of the grid areas over which they will describe 

the hydrologic processes over ungaged/sparsely gaged watersheds.



Various Approaches to Upscaling of Hydrologic Conservation Equations:

I.Averaging approaches:

A. Volume/areal averaging approaches

B. Ensemble averaging approaches

1. Numerical probabilistic averaging approaches

2.Analytical ensemble averaging approaches

a. Averaging based on analytical solutions to realizations

b. Averaging based on the regular perturbations approach

c. Averaging based upon decomposition theory of Adomian

d. Averaging based on projector-operator approach

e. Averaging based on cumulant expansion approach

i. Cumulant expansion combined with spectral theory

ii. Cumulant expansion combined with Lie group theory



II. Approaches based upon similarity

A. Upscaling based upon dimensional similarity theory

B. Fractional Fokker-Planck equation



A. Volume/Areal Averaging Approach

The point-scale hydrologic conservation equation is integrated over a volumetric or 

areal domain, and then the resulting integrals are divided by the size of the domain.

Was possible to derive Darcy's Equation from the microscopic Navier-Stokes 

equations under many simplifying assumptions in order to obtain closure 

(Whittaker, 1999). 

Was used in hydrology to reduce the hydrologic conservation equations from their Was used in hydrology to reduce the hydrologic conservation equations from their 

original PDE forms at point scale to ODE forms at larger spatial scales:

a) Duffy (1996) reduced the unsaturated-saturated subsurface flow conservation 

equation from its original PDE form to a set of ODEs by means of volume averaging;

b) Tayfur and Kavvas (1994, 1998) reduced rill and interrill overland flow equations 

from a 2-D PDE at point scale to an ODE at hillslope scale by volume averaging.

This approach has closure problems. 



B. Ensemble averaging approaches:

Recognize that the point-scale hydrologic conservation equations become

uncertain  (stochastic PDEs) due to the uncertain values of their point-scale

parameters and boundary conditions at the grid-area scale. 

Accordingly, the aim isAccordingly, the aim is

to obtain an ensemble average form/behavior of the

original point-scale conservation equation (as a stochastic PDE) 

which will represent its 

upscaled form at the scale of the modeling grid area. 





1. Numerical probabilistic averaging approaches:

(Avissar and Pielke, 1989; Entekhabi and Eagleson,1989; Avissar, 1991; 

Famiglietti and Wood, 1991; Kuchment, 2001, etc.)

Assign probability distributions for the parameters of the 

point-scale conservation equation 

in order to describe the parameters' 

statistical variability within a grid area (subgrid variability). 

Then using these probability distributions, numerically average 

the point-scale conservation equations over the grid area in order to obtain

the grid-area-scale behavior of the corresponding hydrologic process.



2. Analytical ensemble averaging approaches:

a. Averaging based on analytical solutions to realizations:

(Serrano, 1992,1993,1995; Chen et al. 1994a,b; etc.)

Approach: Obtain the pathwise analytical solution to the 

conservation equation, and then take its ensemble 

average

Advantage: Possible to obtain exact analytical closures even in Advantage: Possible to obtain exact analytical closures even in 

nonlinear problems

Successfully applied to the ensemble averaging of 

nonlinear unsaturated soil water flow and nonlinear 

Boussinesq equations

Drawback: Solutions are cumbersome and difficult to 

understand/use by third parties.



b. Averaging based on the regular perturbations approach:

The most often used approach in hydrology (Gelhar and Axness,1983; 

Dagan,1982,1984; Rubin, 1990, 1991; Graham and McLaughlin, 1989; Mantoglou and 

Gelhar, 1987a,b; Mantoglou, 1992; Tayfur and Kavvas, 1994; Horne and Kavvas, 1997; 

etc.)

Approach: Express each stochastic parameter and each state variable in the 

conservation equations by a sum of their corresponding mean and a small perturbation 

term. Then substitute this perturbation expression in place of the original 

parameter/state variable within the conservation equation. Then take the expectation of 

the resulting conservation equation to obtain an ensemble average equation for the 

considered hydrologic process.considered hydrologic process.

Advantage: Straightforward to apply even in nonlinear cases.

Drawbacks: 

Immediately results in a closure problem where the equation for the mean requires 

information about the behavior of higher moments. When one attempts to write an 

equation for the required higher moment, then that equation for the specific higher 

moment requires information about the behavior of even higher moments. Hence, one 

can close the system of equations only by means of some adhoc assumption.

Small perturbation is often invalid in highly heterogeneous media.







Chen et al. (WRR, April 1994) have developed 

exact analytical expressions for 

ensemble averaged Green-Ampt soil water flow  conservation 

equations

under ponded, infiltration and evapotranspiration boundary conditions  
(Rectangular Profile Model)(Rectangular Profile Model)

where saturated hydraulic conductivity is taken to be

a random field





Numerical model of 3-d Richards equation with

Grid Network = 10m x 10m x 2m
Horizontal grid size = 1 m
Vertical grid size = variable (~cm)

was used (Chen et al.,WRR, 1994b) to simulate a  3-d soil moisture 
field under infiltration boundary conditions. Then the simulated soil 
moisture field was horizontally averaged in order to obtain areally-moisture field was horizontally averaged in order to obtain areally-
averaged soil moisture content profiles at different times. 

These areally-averaged soil moisture profiles were compared with 
those, predicted by areally-averaged Green-Ampt model 
(Rect.Prof.) and by a second-order regular perturbation closure to 
areally-averaged 1-d Richards equation.







c. Averaging based upon decomposition theory of Adomian:

(Adomian,1983; Serrano,1993; 1995a,b)

Approach: the state variable in the original conservation equation is 

decomposed into a series of component functions. Then, starting with the 

deterministic analytical solution to the original conservation equation, the 

other terms in the decomposition are determined recursively, where each 

successive component in the series decomposition representation is determined in 

terms of the preceding component.

Advantages: can accommodate any size of fluctuation; can be applied both to 

linear and nonlinear problems; avoids closure problems by adding 

successively smaller magnitudes to the solution.

Drawbacks: requires a pathwise analytical solution to the conservation 

equation in order to develop the corresponding ensemble average equation; 

however, such analytical solutions are unattainable in many nonlinear hydrologic 

processes.



d. Averaging based on projector-operator approach :

(Nakajima, 1958; Zwanzig,1960; Cushman,1991; Cushman and Ginn,1993)

Approach: Considers an operator which projects quantities onto their 

averages (Pu = <u>). Then applying this operator together with an operator 

that represents the difference between the actual variable and its mean 

(Du=u-<u>), derives an exact integro-differential equation for the ensemble 

average. This integro-differential equation is nonlocal.average. This integro-differential equation is nonlocal.

Advantages: Avoids the closure problem.

Drawbacks: Applicable only to linear problems.

The obtained integro-differential equation is implicit in the state variable. 

Therefore, it requires further approximations for its explicit solution.



e. Averaging based on cumulant expansion approach :

(Kubo, 1959, 1962; van Kampen 1974,1976; Kabala and 

Sposito,1991,1994; Kavvas and Karakas,1996; Karakas and Kavvas, 

2000; Kavvas,2002)

Approach: Express the original conservation equation in terms of an 

operator equation with an average component and a fluctuating dynamic 

component. Solve the resulting initial value problem in order to obtain the component. Solve the resulting initial value problem in order to obtain the 

ensemble average equation, expressed in terms of a series of cumulants 

(correlation functions) of increasing order. Truncation at any order 

cumulant yields an exact closure at that order.

However, the resulting ensemble average equation is in terms of 

operators which need to be expressed explicitly for practical applications.



Two approaches for explicit expressions:

i. Cumulant expansion combined with spectral theory:

(Kabala and Sposito, 1991,1994)

Takes the Fourier transform of the cumulant expansion expression in order 

to develop an equation for the ensemble average in the Fourier space. Still 

needs to be inverted to the real time-space for practical applications.

ii. Cumulant expansion combined with Lie group theory:ii. Cumulant expansion combined with Lie group theory:

(Kavvas and Karakas, 1996; Wood and Kavvas, 1999; Karakas and 

Kavvas, 2000; Kavvas, 2002; Yoon and Kavvas, 2002)

Reconizes that the operators in the cumulant expansion representation of 

the ensemble average conservation equation are Lie operators. Then it 

employs the Lie operator properties (Serre, 1965; Olver,1993) in order to 

obtain an explicit expression for ensemble average conservation equation 

in real time-space.













APPLICATION TO SOLUTE TRANSPORT OBSERVATIONS 

AT BORDEN AQUIFER

(Wood,B.D. and M.L.Kavvas, WRR, 35(7),1999)









APPLICATION TO THE OVERLAND FLOW PROCESS

Point-scale one-dimensional kinematic wave equation as conservation 

equation for overland flow:

(9)

Žy(x,t)
Žt

 = - 
Ž
Žx
 [ α(x) y(x,t)m] + q(x,t)

η(y,α,m,q;x,t) = - 
∂
 [ α(x) y(x,t)m] + q(x,t)

(10)

(11)

η(y,α,m,q;x,t) = - 
∂x
 [ α(x) y(x,t)m] + q(x,t)

∂y

∂t
 = η(y,α,m,q;x,t) 



Fokker-Planck Equation of the upscaled overland flow kinematic 

wave equation

∂P(y(xt,t),t )
∂t

 = - 
∂

∂y
 {P(y(xt,t),t ) [<- ∂

∂x
 [ α(xt) y(xt,t)m] + q(xt,t) > 

+ ds
0

t

Covo[ - ∂
∂x
 [ α(xt)my(xt,t)m-1] ;- 

∂

∂x
 [ α(xt-s) y(xt-s,t-s)m] + q(xt-s,t-s)]]} 

+1 
∂
2

 {2P(y(xt,t),t ) ⋅

(12) 

One may note that the FPE (12) is linear in P.

+1
2
 
∂y2
 {2P(y(xt,t),t ) ⋅

⋅ ds
0

t

Covo[- 
∂

∂x
 [ α(xt) y(xt,t)m] + q(xt,t) ;- 

∂

∂x
 [ α(xt-s) y(xt-s,t-s)m]+q(xt-s,t-s) ]}



However, in order to solve for the probability density P

for overland flow depth y, it is necessary to resolve the 

spatial gradient        .∂y
∂x



Areally averaged overland flow equation

Can be obtained from Eq. (9) using the following sine 

function as a approximation to the flow depth profile 

along the x-direction

(13)y(x,t) = y(Lx,t)Sin( πx2Lx
 )

From (13), following relation can be derived by 

integrating on both sides with respect to the x-axis

y(t) = 2
π
 y(Lx,t) (14)



Using the sine function approximation and integrating 

along the x-axis, Eq. (9) can now be transformed to an 

areally averaged form as follows.

dy(t)
dt
 = - β(Lx) y(t)3/2  + q(t)

β(L ) = 1.97
α(Lx) 

(15)

(16)β(Lx) = 1.97
α(Lx)
Lx

 (16)



Fokker-Planck equation of the upscaled overland 

flow kinematic wave equation 

∂P(y(t))

∂t
 = 

∂

∂y
 {P(y(t)) [<β(Lx)>y(t)1.5 -<q(t)> - 

- ds

t

 Covo[-1.5β(Lx)y(t)0.5  ; - β(Lx)y(t-s)1.5+ q(t-s)]]}- ds
0

 Covo[-1.5β(Lx)y(t)  ; - β(Lx)y(t-s) + q(t-s)]]}

    
+ 1
2
 
∂
2

∂y2
 {2 P(y(t)) ds

0

t

 Covo[-β(Lx)y(t)1.5+ q(t) ; - β(Lx)y(t-s)1.5+ q(t-s)]}

(17)



MC vs FPE
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MC vs FPE - continued
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Welcome to the new world of 
upscaled hydrologic conservation equations !

1) While the original point-scale conservation equations are 
Eulerian;
the upscaled conservation equations are mixed 
Eulerian-Lagrangian;

hence: their solutions will require new computational approaches;

2) While the parameters of the existing point-scale 
conservation equations are at point-scale, 
the parameters of the upscaled conservation equations are at the 
scale of the grid areas being modeled (eg. areal median 
saturated hydraulic conductivity, areal variance of log hydraulic 
conductivity, areal covariance of flow velocity, etc.)

hence: new parameter estimation methodologies will be required;



3) The spatial heterogeneities due to topography, soils, 
vegetation, land use/land cover, geology are 
incorporated explicitly into upscaled 
conservation equations by means of the newly 
emerging parameters on the 
areal variance/covariance of the point-scale 
parameters;

Especially; the areal dispersion of the point scale 
hydrologic dynamics (due to heterogeneity in 
land conditions and atmospheric boundary 
conditions) is explicitly modeled in the 
upscaled equations.



4) The hydrologic models which are based upon point-scale 
conservation equations with effective parameters may yield 
significantly incorrect predictions over highly heterogeneous 
ungaged basins.

In such basins it may be necessary to utilize upscaled hydrologic 
conservation equations with their upscaled parameters.

IT IS ESSENTIAL TO

establish a hydrologic model intercomparison project by which 
existing models (point-scale or upscaled) are tested for their 
performance when they are provided no atmospheric/hydrologic 
data over a large basin for predicting hydrological processes at 
various spatial scales within that basin.


