Selected publications:
1. Deng, W., et al., Upconversion in NaYF(4):Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology, 2011.22(32).
2. Han, J.-H., et al., Single-molecule detection of brominated dipenyl ether 47 (BDE 47) using a non-competitive phage anti-immunocomplex assay in nanowells. Proc. SPIE, 2011. 7908: p. 26.
3. Shi, J.Y., et al., To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 2011. 159(5): p. 1277-1282.
4. Lakshmana, S. and I.M. Kennedy, Optical heating and sensing with plasmonic gold shell and phosphorescent core nanoparticle Proc. SPIE, 2011. 7910: p. 17.
5. Sudheendra, L., et al., Plasmonic Enhanced Emissions from Cubic NaYF(4):Yb:Er/Tm Nanophosphors. Chemistry of Materials, 2011. 23(11): p. 2987-2993.
6. Son, A., et al., Quantitative gene monitoring of microbial tetracycline resistance using magnetic luminescent nanoparticles.Journal of Environmental Monitoring, 2010. 12: p. 1362-1367.
7. Han, J.-H., et al. High performance electrophoresis system for site-specific entrapment of nanoparticles in a nanoarray inProc. SPIE 7574. 2010.
8. Kim, Y.H., et al., Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure. Am J Respir Crit Care Med, 2010.
9. Kumfer, B.M., et al., Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state. Journal of Aerosol Science, 2010. 41(3): p. 257-265.
10. Lee, D., et al., Small particles disrupt postnatal airway development. J Appl Physiol, 2010. 109(4): p. 1115-1124.
Biosensor Research
Selected publications
1. Deng, W., et al., Upconversion in NaYF(4):Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology, 2011. 22(32).
2. Han, J.-H., et al., Single-molecule detection of brominated dipenyl ether 47 (BDE 47) using a non-competitive phage anti-immunocomplex assay in nanowells. Proc. SPIE, 2011. 7908: p. 26.
AC111507 cov
3. Shi, J.Y., et al., To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 2011. 159(5): p. 1277-1282.
4. Lakshmana, S. and I.M. Kennedy, Optical heating and sensing with plasmonic gold shell and phosphorescent core nanoparticle Proc. SPIE, 2011. 7910: p. 17.
5. Sudheendra, L., et al., Plasmonic Enhanced Emissions from Cubic NaYF(4):Yb:Er/Tm Nanophosphors. Chemistry of Materials, 2011. 23(11): p. 2987-2993.
6. Son, A., et al., Quantitative gene monitoring of microbial tetracycline resistance using magnetic luminescent nanoparticles. Journal of Environmental Monitoring, 2010. 12: p. 1362-1367.
7. Han, J.-H., et al. High performance electrophoresis system for site-specific entrapment of nanoparticles in a nanoarray in Proc. SPIE 7574. 2010.
8. Kim, Y.H., et al., Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure. Am J Respir Crit Care Med, 2010.
9. Kumfer, B.M., et al., Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state. Journal of Aerosol Science, 2010.41(3): p. 257-265.
10. Lee, D., et al., Small particles disrupt postnatal airway development. J Appl Physiol, 2010. 109(4): p. 1115-1124.