Publications

Selected publications:

1. Deng, W., et al., Upconversion in NaYF(4):Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology, 2011.22(32).

2. Han, J.-H., et al., Single-molecule detection of brominated dipenyl ether 47 (BDE 47) using a non-competitive phage anti-immunocomplex assay in nanowells. Proc. SPIE, 2011. 7908: p. 26.

3. Shi, J.Y., et al., To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 2011. 159(5): p. 1277-1282.

4. Lakshmana, S. and I.M. Kennedy, Optical heating and sensing with plasmonic gold shell and phosphorescent core nanoparticle Proc. SPIE, 2011. 7910: p. 17.

5. Sudheendra, L., et al., Plasmonic Enhanced Emissions from Cubic NaYF(4):Yb:Er/Tm Nanophosphors. Chemistry of Materials, 2011. 23(11): p. 2987-2993.

6. Son, A., et al., Quantitative gene monitoring of microbial tetracycline resistance using magnetic luminescent nanoparticles.Journal of Environmental Monitoring, 2010. 12: p. 1362-1367.

7. Han, J.-H., et al. High performance electrophoresis system for site-specific entrapment of nanoparticles in a nanoarray inProc. SPIE 7574. 2010.

8. Kim, Y.H., et al., Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure. Am J Respir Crit Care Med, 2010.

9. Kumfer, B.M., et al., Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state. Journal of Aerosol Science, 2010. 41(3): p. 257-265.

10. Lee, D., et al., Small particles disrupt postnatal airway development. J Appl Physiol, 2010. 109(4): p. 1115-1124.

Biosensor Research

Selected publications

1. Deng, W., et al., Upconversion in NaYF(4):Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology, 2011. 22(32).

2. Han, J.-H., et al., Single-molecule detection of brominated dipenyl ether 47 (BDE 47) using a non-competitive phage anti-immunocomplex assay in nanowells. Proc. SPIE, 2011. 7908: p. 26.

AC111507 cov

AC111507 cov

3. Shi, J.Y., et al., To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, 2011. 159(5): p. 1277-1282.

4. Lakshmana, S. and I.M. Kennedy, Optical heating and sensing with plasmonic gold shell and phosphorescent core nanoparticle Proc. SPIE, 2011. 7910: p. 17.

5. Sudheendra, L., et al., Plasmonic Enhanced Emissions from Cubic NaYF(4):Yb:Er/Tm Nanophosphors. Chemistry of Materials, 2011. 23(11): p. 2987-2993.

6. Son, A., et al., Quantitative gene monitoring of microbial tetracycline resistance using magnetic luminescent nanoparticles. Journal of Environmental Monitoring, 2010. 12: p. 1362-1367.

7. Han, J.-H., et al. High performance electrophoresis system for site-specific entrapment of nanoparticles in a nanoarray in Proc. SPIE 7574. 2010.

8. Kim, Y.H., et al., Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure. Am J Respir Crit Care Med, 2010.

9. Kumfer, B.M., et al., Gas-phase flame synthesis and properties of magnetic iron oxide nanoparticles with reduced oxidation state. Journal of Aerosol Science, 2010.41(3): p. 257-265.

10. Lee, D., et al., Small particles disrupt postnatal airway development. J Appl Physiol, 2010. 109(4): p. 1115-1124.

Comments are closed.