
  

  

Abstract— Lung cancer is the number one cause of cancer 
deaths. Many early stage lung cancer patients have a resectable 
tumor, however, their cardiopulmonary function needs to be 
properly evaluated before they are deemed operative candidates. 
Pulmonary function is assessed via spirometry and diffusion 
capacity. If these are below a certain threshold, 
cardiopulmonary exercise testing (CPET) is recommended. 
CPET is expensive, labor intensive, and sometimes ineffective 
since the patient is unable to fully participate due to co-
morbidities, such as limited mobility. In addition, CPET is done 
using a set of physical activities that may or may not be relevant 
to the patient’s typical activities.  

This paper presents steps towards developing a solution to 
address this gap. Specifically, we present OOCOO, a mobile 
mask system designed to measure oxygen and carbon dioxide 
levels in respiration, as well as activity levels. Unlike state of 
practice, oxygen, carbon dioxide, and activity data can be 
continuously measured over a long period of time in the patient’s 
environment of choice. The mask is capable of wireless data 
transfer to commodity smartphones. We have carried out initial 
work on development of an Android application to capture, 
analyze, and share the data with authorized entities.  

I. INTRODUCTION 

Non-small cell lung cancer (NSCLC) is the number one 
cause of cancer deaths in both men and women, accounting 
for approximately 27% of such deaths [1]. Many patients with 
early stage lung cancer have a tumor that is resectable, but 
may not be operative candidates due to co-morbidities or 
inadequate pulmonary function.  

Accurate assessment of the risk of morbidity and mortality 
prior to curative resection for lung cancer is important for 
several reasons. First, preoperative assessment allows for 
appropriate treatment recommendation to the patient. If the 
patient is not a surgical candidate, an alternative therapy such 
as stereotactic ablative radiotherapy (SABR) may be a better 
option. Second, knowledge of a patient’s risk for surgery 
allows for an informed preoperative discussion between the 
surgeon and the patient. 

Our underlying observation is that the advances in 
information technology can be utilized to develop continuous, 
inexpensive, in-home, and patient-centric mechanisms for 
evaluation of patient’s pulmonary function. Specifically, we 
set out to develop a light mobile mask that can be worn for 
most of the day to collect various respiratory parameters of 
interest, such as oxygen and carbon dioxide quantities, 
respiratory rate and flow, as well as, patient’s physical 
activity.  
 

 

In this paper, we present our initial mask prototype, which 
is capable of measuring oxygen and carbon dioxide in a 
subject’s respiration. Moreover, the mask can measure the 
subject’s activity at the same time, using an embedded 
accelerometer. We also developed a smartphone application 
to collect the data from the mask, and to potentially share the 
data with authorized entities, including automated analysis 
and archival services, via the cloud. 

II. PULMONARY FUNCTION TEST FOR PATIENT EVALUATION: 
STATE OF PRACTICE AND ITS LIMITATIONS 

The role of preoperative pulmonary function testing prior 
to lung resection has been well developed. Patients undergo 
spirometry and diffusion testing, which yield FEV1 and 
DLCO measures, respectively. FEV1 denotes the forced 
expiratory volume that the patient can exhale in one second. 
DLCO refers to the diffusing capacity of the lung for carbon 
monoxide, which provides an estimate of how efficiently 
gases are exchanged at the alveolar-capillary membrane. 
Pulmonary function testing provides raw values for these 
measures, which are then compared against data of other 
individuals of the same age, height, and gender to determine 
the relative standing of the patient’s pulmonary function.  

Both FEV1 and DLCO are independent predictors of 
morbidity and mortality after lung resection for NSCLC [2,3]. 
If the predicted postoperative FEV1 and/or DLCO, which are 
typically linearly scaled down from preoperative 
measurements with respect to the bronchopulmonary 
segments that are to be resected, place the individual in the 
bottom 40% of the reference population, guidelines 
recommend that the patient undergo cardiopulmonary 
exercise testing (CPET) for further evaluation [4].  

CPET is a clinically-administered test in which, the patient 
is asked to run on a treadmill while a plethora of cumbersome 
sensors, including a face mask, are attached to her [19]. The 
mask and its connected tubing pass the subject’s intake and 
outtake breaths through a bulky expensive machine that 
measures oxygen and carbon dioxide quantities, as well as, 
respiratory rate and flow (minute ventilation). The exercise 
workload is incrementally increased until the patient achieves 
her maximum heart rate. The data from various sources, such 
as heart rate, minute ventilation, carbon dioxide production 
per minute, and oxygen uptake per minute, are fused to 
determine the maximal oxygen consumption (VO2 max). VO2 
max has been shown to stratify patients according to risk of 
morbidity and mortality after lung resection [5]. 
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VO2 max testing is expensive, labor intensive, and 
sometimes inaccurate if the patient is unable to fully 
participate due to co-morbidities, such as limited mobility 
[18]. In such cases, submaximal exercise testing, such as stair 
climbing, is sometimes used as a surrogate for CPET.  The 
maximum altitude achieved during stair stepping is associated 
with cardiopulmonary complications and mortality [6]. 
Testing cardiopulmonary function via stair climbing is also 
limited by subjectivity in terms of duration of stair climbing, 
speed of ascent, number of steps per flight, height of each 
step, and criteria for stopping the test [4]. Furthermore, some 
patients are limited more by musculoskeletal or peripheral 
vascular diseases than cardiopulmonary disease; therefore, 
stair climbing ability in such patients will not accurately 
reflect cardiopulmonary function. 

Since VO2 max testing or stair climbing tests pose the 
aforementioned limitations and inaccuracies, physicians are 
less inclined to use these tests, and instead rely on their 
experience to estimate operative risk when assessing patients. 
Therefore, a solution for data-driven evaluation of pulmonary 
function in lung resection patients needs to be developed.   

III. RELATED WORK 

The ability to personally monitor your health with devices 
has become easier than ever with the development of many 
commercial activity trackers. Wearable devices, such as the 
various Fitbit wristbands, Misfit Shine, and the Lumo Back, 
are now commercially available for individuals to increase 
their physical health awareness [7].  

The development of commercial wearable activity trackers 
can be extended to devices that are catered towards the 
specific needs of physicians and medical applications. For 
athletes to be successful, they must have an optimal 
combination of activity levels and respiration rates [12]. 
Athletes often complete testing to track their respiratory 
performance. Currently, the testing to measure a person’s 
respiration performance is only available in laboratory 
settings. Often, the test equipment used in the determination 
of an individual’s aerobic fitness level is uncomfortable and 
the lab environment obstructs natural results. A system 
comprised of two accelerometers worn around the upper torso 
has been recently developed to measure the respiration rate of 
athletes [11].  Systems of this type, which do not require 
laboratory testing or large test equipment, can enhance the 
accuracy of aerobic fitness level testing by creating a more 
comfortable and natural testing environment for individuals.  

As a complement to the development of wearable devices, 
smartphones and mobile applications have become more 
integral to healthcare. Smartphones occupy a large role in our 
lives, and therefore offer a wealth of potential for healthcare 
providers about our personal lifestyles. A mobile application 
was created that extracts information about a user’s phone 
usage to assist in medical diagnoses within the cognitive-
behavioral domains [13]. Applications that offer information 
and insight about the lifestyles of patients can provide more 
accurate diagnoses and more effective treatments. Another 
mobile application has been developed to allow doctors to 
view multiple patient’s vital signs through their smartphone 
[15]. 

There is also a current drive towards integrating Bluetooth 
into healthcare technology. One benefit of Bluetooth enabled 
healthcare is that it enables more extensive monitoring of 
patients from remote locations. Mobile applications that 
retrieve data via Bluetooth and transmit it to doctors through 
a cloud server allow doctors to view their patients’ data, 
without the need for the patient to visit the doctor’s office. 
Multiple cloud based monitoring systems with wearable 
sensors have been developed [14] [16] [17]. The sensors in 
the systems communicate to a smartphone through Bluetooth, 
and the smartphone transfers data to a medical management 
system through a cloud server.  

Aging populations present a challenge for current 
healthcare systems to find more suitable methods to provide 
care for elderly [10]. The development of remote residential 
healthcare offers potential for improvement in preventative 
care for older persons. Similar to the cloud based wearable 
sensor systems, a residential activity monitoring system based 
on Bluetooth Low Energy (BLE) was developed to monitor 
elderly patients more effectively [9].  

While some systems have taken advantage of Bluetooth 
communication and cloud servers for remote monitoring, 
other systems have used Bluetooth to control devices within 
the home. A Bluetooth-based system has been developed with 
a brain-computer interface that allows paralyzed patients to 
control devices in a smart living space with steady-state 
visually evoked potentials [8]. These types of systems can 
even enable paralyzed and currently disabled persons to live 
more independently. Such systems can significantly improve 
the efficiency and sustainability of healthcare systems.  

IV. OOCOO SMART MASK 

The system (OOCOO Smart Mask) outlined in this paper 
enables physicians to conveniently assess patients on their 
preoperative risk before lung resection surgery and their 
recovery after. The mask is a mobile system used to measure 
trends in the concentration of oxygen and carbon dioxide in a 
patient’s respiration, along with their physical activity. Data 
from the mask is sent over BLE to a smart phone, where 
doctors can view data in real-time through the mobile 
application.  

Since tubes and testing equipment can limit the testing 
locations and types of activities performed during testing, the 
mobile system allows doctors to conveniently test their 
patients in their own facilities, with the freedom to perform a 
variety of tests that are more tailored towards the patients 
needs. The development of a BLE mobile application also 
presents an opportunity for further development of the system 
as a remote at-home monitoring system, where doctors can 
view live data of patients while the patients complete their 
normal daily activities. Such systems can be used to easily 
track patients’ recovery at home following operative 
procedures.  

The respiration data collected by the mask correlates with 
physical activity intensity in a patient. The correlations can 
give insight into the pulmonary function of the patient. The 
data from the mask is an alternative or complement to current 
VO2 max testing in prognosis and decision making for lung 
re-sectioning patients.  



  

To select the oxygen and carbon dioxide sensors with 
acceptable concentration ranges for the mask, it is necessary to 
know the oxygen and carbon dioxide concentrations in the 
average human respiration. At rest, humans exhale 3.6% 
carbon dioxide and 16% oxygen on average. At higher levels 
of exertion, humans will exhale upwards of 7% carbon 
dioxide. The atmospheric concentrations of oxygen and 
carbon dioxide are, on average, 21% and 0.04% respectively. 

A. Oxygen Sensor 
We use a SST LOX-O2 Sensor as the oxygen sensor in the 

mask. This sensor uses fluorescence quenching to detect the 
changes in oxygen concentration. In particular, it uses an 
optical probe that contains an indicator dye sensitive to 
oxygen. This dye is then excited by an LED light source. The 
fluorescence emission of the dye decays; however, if oxygen 
is present, an energy transfer occurs and decreases the 
fluorescence decay, which is known as oxygen “quenching” 
the fluorescence. The amount of quenching that occurs 
determines the amount of oxygen present. This sensor has the 
oxygen detection range of 0-25%. The human breath is about 
16% oxygen, therefore, the 0-25% detection range allows this 
sensor to detect the oxygen concentration in human 
respiration. The oxygen sensor has a relatively short warm-up 
time of 15 seconds. A short warm-up time is beneficial for the 
application, since users of the mask will be able to use it 
immediately on start up. The sensor has an accuracy of +/-2% 
within the measured value and a sampling rate of once per 
second, allowing the measurement of proper trends in 
respiration. 

B. Carbon Dioxide Sensor 
The mask uses a MinIR 100% CO2 Sensor. The MinIR 100% 

CO2 sensor uses Non-Dispersive Infrared (NDIR) detection. 
NDIR detection works by using an infrared lamp and infrared 
light detector. The infrared lamp directs waves of light through 
a tube filled with air towards an infrared light detector. As light 
passes through the tube, the CO2 molecules absorb their 
corresponding wavelength of light while letting the rest of the 
light pass through. This remaining light is then passed through 
an optical filter that absorbs every wavelength of light, except 
for the one absorbed by CO2. An infrared light detector then 
measures the amount of light not absorbed by CO2. The 
difference between the light radiated from the infrared lamp 
and the light detected by the infrared light detector determines 
the number of CO2 molecules in the air inside the tube. The 
utilized sensor has high measurement accuracy of +/- 70 ppm 
+/- 5% within the measured value, allowing mask users to 
observe small variations in CO2 concentrations. The CO2 
sensor is refreshed at twice per second to allow the mask to 
exhibit trends in respiration. 

C. Accelerometer 
Activity data can be matched with respiration data to 

correlate exertion levels with CO2 and O2 respiration levels. 
The accelerometer is used in 2g mode, where the magnitude of 
the maximum output is at 2 times gravity, or 19.6 m/s2. The 2g 
activity data is filtered and placed into 11 different thresholds 
of activity. Numbers between 0 and 10 are assigned to each 
threshold of activity, with a 0 corresponding to the lowest level 
of activity and a 10 corresponding to the highest level of 
activity.  

D. Energy Analysis 

TABLE I.   SENSOR VOLTAGES AND CURRENTS 

Component Iavg (mA) Vavg (V) 

Oxygen Sensor 10 5 

Carbon Dioxide Sensor 1.5 3.3 

Accelerometer 0.184 3.3 

PSoC 1.7 3.3 

 

TABLE II.  SENSOR POWER CONSUMPTION 

Component Pavg (mW) 

Oxygen Sensor 50 

Carbon Dioxide Sensor 4.95 

Accelerometer 0.607 

PSoC 5.61 

Total Power: 61.17 

 
Power is supplied by a 9V battery to allow users to easily 

replace the battery in between uses, as commonly done before 
using medical equipment. The 9V from the battery is 
regulated down to 3.3V and 5V. Both regulators have an 
output current of 800mA. The 3.3V regulator output powers 
the PSoC 4 BLE micro-controller, accelerometer, and CO2 
sensor, which require 1.7mA, 0.184mA, and 1.5mA of current 
respectively. The 5V regulator powers the O2 sensor, which 
requires 10mA of current. 

The 9V battery has about 4950 mWh. Therefore, each 
battery should last about 81 hours of continuous run time 
before it needs to be replaced 

E. Integration 
The oxygen and carbon dioxide sensors both use a universal 

asynchronous receiver/transmitter (UART) to communicate 
with the PSoC 4 microcontroller, while the accelerometer 
uses I2C, as shown in Fig. 1. Both the carbon dioxide and 
oxygen sensor output eight bytes of data at a baud rate of 
9600. 

The accelerometer is a three axis accelerometer with x, y, 
and z data available. For this implementation, the 
accelerometer is configured for 8-bit data output, which 
allows for faster read times. With a sampling rate set at 800 
Hz, the axes data is first passed through an internal high pass 
filter with a cutoff frequency of 2 Hz. By doing so, the offset 
due to gravitational acceleration is removed from the output 
and all axes read zero when not moving. The data from all 
three axes are then passed through a moving filter to average 
the magnitudes; from there, the activity level can be 
calculated. The PSoC UART blocks are configured for eight 
data bits and one stop bit for both the oxygen and carbon 
dioxide sensors. The sensors are set into polling mode, in  



  

 
Figure 1.  Communications Diagram 

which, it will only respond when given a request for data. 
When the data comes in, it is parsed to separate the five data 
bytes and then converted into integers to be stored into an 
array. This array of integers allows the sensor data to be sent 
over BLE to the phone and easily displayed on the Android 
application. 

F. Mask Design 
The OOCOO Mask, as shown in Fig. 2, is comprised of a 

rubber face mask and a neoprene cover to hold the rubber face 
mask in place. The rubber face mask contains three holes: one 
for free air flow, one for the oxygen sensor, and one for the 
carbon dioxide sensor. The carbon dioxide and oxygen 
sensors are contained on circular Printed Circuit Boards 
(PCBs) sized to fit neatly into the mask holes. The carbon 
dioxide and oxygen sensor PCBs are then sealed into the two 
mask holes with glue. The battery and main PCB are housed 
in a 3D printed encasing on the back strap of the neoprene 
cover. 

G. Device Firmware 
Motion and the human breath are the two main sources of 

information. The accelerometer axes data are collected into 
three separate arrays that are then passed through a moving 
average filter and placed into 11 different thresholds. Each 
threshold is assigned a number between 0 and 10, with a 0 
corresponding to the lowest level of activity and a 10 
corresponding to the highest level of activity. From there, the 
activity level can be determined in correlation to the threshold 
number reached. For example, an activity level 3 corresponds 
to the user walking at a moderate pace, and an activity level 
10 is reached when the user sprints. The human breath is 
observed through oxygen and carbon dioxide sensors. 
Because data from the UARTs are in ASCII, each character 
must first be parsed and then converted into integers, so that 
the mobile application can easily display the oxygen and 
carbon dioxide levels as percentages. The integers are stored 
into an array before they are sent over BLE to the mobile 
application. 

The system is governed by a simple state machine, where 
the operation begins in the start state. It automatically moves 
into the searching state, where no data is being transmitted. In 
the searching state, the PSoC initializes the gas sensors and  

 
Figure 2.  OOCOO Mask Design 

accelerometer. The PSoC puts the oxygen and carbon dioxide 
sensors into polling mode, where the sensors output data only 
when receiving the request from PSoC. The accelerometer is 
initialized by the PSoC into 2g fast read mode. In this mode 
the data from the accelerometer is 8 bits long and the 
resolution is 2g. This resolution and data length make it so 
that each bit is 15.6 mG. Once the phone and the PSoC are 
paired over BLE, the system moves into the active state. The 
respiration and activity data are both read by the PSoC and 
displayed on the phone application in the active state. Once 
the phone application and the PSoC disconnect, the system 
moves back into the searching state. 

H. Mobile Application 
The mask connects and transfers data to a cellphone through 

a BLE connection with a Qt Android Mobile Application. 
This mobile application shows live carbon dioxide, oxygen, 
and activity data. The mobile application also displays the 
current battery level percentage of the device.  

V. EVALUATION 

A. Testing Procedures 
To verify the mask design and functionality of the two gas 

sensors, three tests were completed. The first test that was 
performed, served to establish a baseline reading for the 
sensors and acted as the control. The volunteer wore the mask 
for a session of 20 minutes and was told to remain sitting. 
Data was recorded every three minutes.  

After establishing the resting data, the volunteer then 
performed a running test. The test was run for 15 minutes: 10 
minutes of running on a treadmill plus 5 minutes of rest. Data 
was recorded every minute to establish the trend. The 
volunteer’s height, weight, age, sex, and average running 
speed were also collected.  

The third test that was performed shows respiration level 
trends for varying levels of exertion. The volunteer completed 
21 minutes of testing: 5 minutes of resting, 5 minutes of 
walking, 5 minutes of speed-walking, 1 minute of running, 
and 5 minutes of resting. CO2 and O2 levels were recorded 
every 15 seconds during the running portion, and every 
minute throughout the rest of the test. The height, weight, age, 
sex, and treadmill speeds during all exertion levels were 
collected as well.  



  

All three tests were repeated on multiple users in order to 
verify the results from the mask. 

B. Results and Discussion 
The baseline resting test results yielded an average of 18.1% 

oxygen and 2.35% carbon dioxide in respiration at rest. Fig. 3 
displays the observed trends in carbon dioxide and oxygen 
levels resulting from the running test. The values graphed in 
Fig. 3 are the change in oxygen and carbon dioxide values 
from the baseline values observed in the initial test. When 
users initially put on the mask at time 0 minutes, the O2 and 
CO2 levels rose from the atmospheric levels to the 5 users’ 
resting respiration levels. Once the users began to workout at 
one minute, their carbon dioxide levels increased, while their 
oxygen levels decreased. At ten minutes when the users 
stopped working out and began the resting period, oxygen and 
carbon dioxide respiration levels returned to the resting levels 
observed at the start of the testing period. As expected, the 
specific oxygen and carbon dioxide levels varied from user to 
user, however, each test yielded the same trends mentioned 
above. 

The exertion level test results yielded similar trends to the 
running test. However, there was a gradual increase in carbon 
dioxide and decrease in oxygen as the volunteer progressed 
from resting, to walking, and then to running. The values 
displayed in Fig. 4 are the change in oxygen and carbon 
dioxide values from average resting carbon dioxide and 
oxygen levels during the 5 minutes of resting at the start of 
the test. From 0 to 4 minutes, the oxygen and carbon dioxide 
levels remained relatively flat with minor variations.  

At time 5 minutes when the volunteer began to run, the 
carbon dioxide levels increased and the oxygen levels 
decreased as expected. Both oxygen and carbon dioxide levels 
saw minor fluctuations, but remained relatively flat until time 
10 minutes. At time 10 minutes when the volunteer began to 
walk at quicker pace, the carbon dioxide levels again rose and 
the oxygen levels also saw an overall decrease. However, the 
oxygen levels experienced a much smaller decrease than the 
increase the carbon dioxide levels saw.  

The levels remained relatively constant with minor 
fluctuations until time 15 minutes. When the volunteer began 
to run at time 15 minutes, there was a larger increase in carbon 
dioxide and a larger decrease in oxygen from their initial 
values. At time 16 minutes when the volunteer began the final 
resting period, carbon dioxide levels decreased to below their 
initial resting levels, and the oxygen levels increased to above 
their initial resting levels. It is expected for carbon dioxide 
and oxygen levels to further increase and decrease, 
respectively, as the volunteers increase their exertion levels. 
However, since the OOCOO Mask is developed to display 
respiratory trends in correlation to activity levels, rather than 
analyze them, the details and analysis of the correlation 
between respiration and activity levels go beyond the scope 
of this paper.  

Possible sources of error in the results are imperfect mask 
seal and user biasing. The rubber mask seal works very well 
for some face shapes, while it may leak very slightly for other 
face shapes. However, the imperfect mask seal only results in 
small amounts of leakage and does not affect testing results. 

User biasing is accounted for by performing the same test on 
multiple users.  

The initial tests were performed on OOCOO designer team 
members, where it was found that members often attempted 
to adjust their breathing patterns to produce the results they 
wanted. Tests were then performed on users who had no 
knowledge of the functionality of the mask to verify trends 
were not caused by user biasing. These tests yielded the same 
trends as the initial tests on OOCOO Mask team members. 
Therefore, user biasing does not create a large enough error 
to affect testing results.  

 

TABLE III.  RUNNING TEST DATA 

Time (min) O2 (%) CO2 (%) 
0 18.10 2.47 
1 16.81 3.10 
2 17.09 3.19 
3 17.21 3.27 
4 17.29 3.09 
5 17.32 3.00 
6 17.37 3.05 
7 17.52 2.90 
8 17.46 2.88 
9 17.19 2.95 

10 17.47 2.87 
11 17.67 2.82 
12 17.87 2.53 
13 18.26 2.08 
14 17.94 2.32 
15 18.08 2.20 

 

TABLE IV.  EXERTION LEVEL TEST DATA 

Time (min) O2 (%) CO2 (%) 
0 18.10 2.47 
1 16.81 3.10 
2 17.09 3.19 
3 17.21 3.27 
4 17.29 3.09 
5 17.32 3.00 
6 17.37 3.05 
7 17.52 2.90 
8 17.46 2.88 
9 17.19 2.95 

10 17.47 2.87 
11 17.67 2.82 
12 17.87 2.53 
13 18.26 2.08 
14 17.94 2.32 
15 18.08 2.20 

15.25 17.25 3.18 
15.5 17.20 3.38 

15.75 17.12 3.42 
16 17.44 3.63 
17 18.18 3.44 
18 18.57 3.01 
19 18.64 2.67 
20 18.54 2.55 

 



  

 
Figure 3.  Results from Running Testing 

 
Figure 4.  Results from Exertion Level Testing 
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