Error Correcting Codes

Lecture 1

Chap 1 Introduction

1. Block diagram

- Notation:
 - x^k: Vector
 - $x^k = (x_1, x_2, ..., x_k)$
 - \hat{x}: Estimation of x

2. Two types of codes:
 - Block code
 - Convolutional code

 a. Divide source sequence into block of k bits.
 Denote each block as $\overrightarrow{u} = (u_0, u_1, ..., u_{k-1})$, called message.
 Each block is independent with each other.

 b. Encode \overrightarrow{u} to $\overrightarrow{v} = (v_0, v_1, ..., v_{n-1})$, called codeword.

 c. Code rate $R = \frac{k}{n}$.
 R_t: high efficiency; R_r: high reliability.

 d. Decoding for block code: $\overrightarrow{F} = (v_0, ..., v_{n-1})$
 $\left(\overrightarrow{u} = (\hat{u}_0, \hat{u}_1, ..., \hat{u}_{k-1})
 \overrightarrow{v} = (\hat{v}_0, \hat{v}_1, ..., \hat{v}_{n-1})\right)$.
2. Convolutional Code:

Encoding of each block will depend on the value of previous \(m \) blocks.

3. Optimal Decoding

\[\hat{v} \rightarrow \hat{u} \quad \begin{array}{c}
\text{\(k \) bits} \\
\text{\(n \) bits}
\end{array} \]

2^k message \(\rightarrow 2^n \) codewords \(\hat{v} \)

Goal:

\[\min P(\hat{u} \neq \hat{u}) = P(\hat{v} \neq \hat{v}) = P(E) \quad \text{probability of Error} \]

\[\min P(E) = \sum_{\hat{v}} P(E|\hat{v})P(\hat{v}) \]

If we can make \(P(E|\hat{v}) \) small for all \(\hat{v} \), then \(P(E) \) will be minimized

\[P(E|\hat{v}) = P(\hat{v} \neq \hat{v}|\hat{v}) \]

\[= 1 - P(\hat{v} = \hat{v}|\hat{v}) \]

Decoding Rule:

For a given \(\hat{v} \), we should choose \(\hat{v} \) as the one with the largest probability \(P(\hat{v}|\hat{v}) \)

Decoding steps when given \(\hat{v} \):

1. Compute \(P(\hat{v}|\hat{v}) \) for all possible values of \(\hat{v} \)
2. Set \(\hat{v} \) as the one that has the largest posterior probability \(P(\hat{v}|\hat{v}) \), i.e. \(P(\hat{v}|\hat{v}) > P(\hat{v}|\hat{v}) \) for all \(\hat{v} \neq \hat{v} \).

4. Maximum Likelihood Decoding (MLD)

\[P(\hat{v}|\hat{v}) = \frac{P(\hat{v})P(\hat{v}|\hat{v})}{P(\hat{v})} \quad \text{Bayesian Rule} \]

maximize
If \(p(v) \) is uniformly distributed over all possible \(v \), then \(\max p(v|r) \) is the same as \(\max p(r|v) \), which means we pick the codeword that has the largest likelihood.

5. Error Performance Measure

1) Block (word or frame) error Prob, \(P_w \), the probability that a codeword is in error.

\[e_{g1} : (0000) \rightarrow (0001) \rightarrow (0100) \]
Message codeword decoded codeword
One error happens, take the whole codeword as one error.

2) Bit (symbol) error Prob, \(P_b \).

\[e_{g2} : \text{two bits of error happened in } e_{g1} \]
\[e_{g3} : \begin{array}{c}
(0001) \\
\downarrow
\end{array}, \begin{array}{c}
(0100) \\
\downarrow
\end{array}, \begin{array}{c}
(010), \begin{array}{c}
111 \\
\downarrow
\end{array}
\end{array} \]
\[P_w = \frac{2}{3} \]
\[P_b = \frac{3}{12} = \frac{1}{4} \]

6. Code Gain

1) unencoded system: System without channel coding/decoding.

2) code gain: Compare coded system with unencoded system.

3) \(Eb/N0 \): Signal to noise ratio (SNR).

Given \((Eb/N0) \) coded, \((Eb/N0) \) unencoded:

Code gain: \(\eta = 10 \log_{10} \left(\frac{Eb}{N0} \text{ coded} \right) - 10 \log_{10} \left(\frac{Eb}{N0} \text{ un-coded} \right) \)

\[= 10 \log_{10} \left(\frac{Eb}{N0} \text{ coded} \right) \]