Review:

1. Error detection using H
 \[\tilde{V} = \tilde{Y} + \tilde{e} \]
 \[\tilde{S} = \tilde{Y} - H^T = (\tilde{Y} + \tilde{e}) - H^T = \tilde{Y} - H^T + \tilde{e} - H^T \]
 \[= e \times 0 \]

2. Weight distribution
 Minimum weight
 probability of undetected error

3. Minimum distance
 and its connection to minimum weight and H

New:

1. Decoding:
 \[\tilde{S} = \tilde{e} \cdot H^T \]
 \[\Rightarrow \text{(n-k) equations, n unknown in } \tilde{e} \]
 \[\text{1x(n-k) } \Rightarrow 2^k \text{ solutions} \]
 \[\Rightarrow \text{pick the most likely one among } 2^k \text{ possible solutions.} \]
 \[\text{eg: } (1111111) \text{ } \tilde{e} = p^6 \approx 10^{-12} \text{ } p = 10^{-1} \]
 \[(000001) \text{ } \tilde{e} = p^5 \cdot (-p)^5 \approx 10^{-2} \text{ } \text{more likely.} \]
 \[\Rightarrow \text{depends on channel model} \]

 \[\tilde{V} = \tilde{e}^* + \tilde{V} \]

Eg: (7,3) code

\[H = \begin{bmatrix} 00 & 10 & 11 \\ 01 & 10 & 11 \\ 00 & 01 & 011 \end{bmatrix}, \quad \tilde{V} = (1001011), \quad \tilde{V} = (1001001) \]

Find \tilde{V}.

A: \[\tilde{S} = \tilde{V} \cdot H^T = (100) + (110) + (101) = (111) \]

\[\tilde{S} = \tilde{e} \cdot H^T \Rightarrow (111) = (e_1, e_2, \ldots, e_7) \]

\[\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \]
\[l = e_0 + e_3 + e_5 + e_6 \]
\[2^k = 2^4 = 16 \] solutions of \(e'. \)

possible solution: \((0000010) = \hat{e'} \in P \quad \text{(t-P)}^{n-\text{w(e')}} \)
\((01101100) \quad \text{Most likely} \)

\[
\hat{v} = y + \hat{e'}
\]
\[
= (1001001) + (\star\star\star\star1010)
\]
\[
= (1001011)
\]
\[
= v
\]

This approach is not used in practice, as \(2^k\) solutions is needed to find, too much work.

2) Another way for decoding

- These two columns are needed to be stored
- \(\hat{v}_1, \hat{v}_2, \ldots, \hat{v}_k \) \(\text{set of code word } C \)
- \(\hat{v}_1 + \hat{e}_2, \ldots, \hat{v}_k + \hat{e}_2 \) \(\text{of } C \)
- \(\hat{v}_1 + \hat{e}_3, \ldots, \hat{v}_k + \hat{e}_3 \) \(\text{of } C \)
- Suppose after \(m \) steps, all \(2^n \) vectors are here.

Properties:
1. The sum of any two vectors in the same row will be a codeword.
2. Every two vectors in the same row are different.
3. Every two vectors in different rows are different.
4. All vectors in the same row have the same syndrome, \(\hat{e}_i \cdot H \)

Proof: Suppose a vector \(y \) appears in row \(s_1 \) and \(s_2 \) \((s_1 < s_2) \)

\[
\hat{y} = \hat{e}_{s_1} + \hat{v}_i = \hat{e}_{s_2} + \hat{v}_j
\]

\[
\hat{e}_{s_2} = \hat{e}_{s_1} + \hat{v}_i + \hat{v}_j
\]
\[\Rightarrow \mathbf{v}_i \oplus \mathbf{v}_j \text{ is a codeword and } \mathbf{e}_{s_1} = \mathbf{e}_{s_2} + \mathbf{v} \Rightarrow S_2 \text{ in row } s_1 \]

Contradict with the way the table was constructed.

Properties:

(5) Different rows have different syndromes.

Proof: Suppose row i and j have the same syndrome.

\[\Rightarrow \mathbf{e}_i \cdot H^T = \mathbf{e}_j \cdot H^T \]

\[\Rightarrow (\mathbf{e}_i + \mathbf{e}_j) \cdot H^T = 0 \]

\[\Rightarrow \mathbf{e}_i + \mathbf{e}_j \text{ is a codeword: } \mathbf{e}_i + \mathbf{e}_j = \mathbf{v}_i \]

\[\Rightarrow \mathbf{e}_j = \mathbf{e}_i + \mathbf{v}_i \]

\[\Rightarrow \mathbf{e}_j \text{ is in row } i, \text{ contradict with our construction.} \]

(2) Decoding method (Rule)

\[S_i = \mathbf{v}^T \cdot H^T \rightarrow \text{go to corresponding row } i \text{ that has syndrome } S_i \]

\[\rightarrow \text{find } \mathbf{e}_i \]

\[\rightarrow \mathbf{v} = \mathbf{v}^T + \mathbf{e}_i \]

Compute all the syndromes \(S_i = \mathbf{e}_i \cdot H^T \) beforehand for standard array.

(3) Decoding ability of this rule.

\(\mathbf{v} \) was sent, \(\mathbf{\tilde{v}} = \mathbf{v} + \mathbf{x} \) \(\mathbf{v} \) was received.

a. If \(\mathbf{\tilde{x}} \) is one of the coset leaders

\[\mathbf{\tilde{v}} \cdot H^T = (\mathbf{\tilde{v}} + \mathbf{\tilde{x}}) \cdot H^T = \mathbf{\tilde{x}} \cdot H^T \]

we will find the value of \(\mathbf{\tilde{x}} \) correctly.

b. If \(\mathbf{\tilde{x}} \) is not a coset leader

\[\mathbf{\tilde{x}} = \mathbf{e}_i + \mathbf{v}_i \]

\[\mathbf{\tilde{v}} \cdot H^T = (\mathbf{\tilde{v}} + \mathbf{e}_i + \mathbf{v}_i) \cdot H^T = \mathbf{e}_i \cdot H^T \]

\[\mathbf{\tilde{v}} = \mathbf{\tilde{v}}^T + \mathbf{e}_i = \mathbf{\tilde{v}}^T + \mathbf{e}_i + \mathbf{v}_i + \mathbf{\tilde{e}_i} = \mathbf{\tilde{v}}^T + \mathbf{v}_i \]
We should pick \(\varepsilon \)'s that are more likely happen. Pick \(\varepsilon \)'s with small weight.

Eq. (6.3) code

\[
\frac{1}{2} = 1 \cdot \mathbf{\varepsilon}
\]

\[
\mathbf{C} = \mathbf{\varepsilon} \cdot \mathbf{G}
\]

Error detection \(\mathbf{S} = \mathbf{Y} \cdot \mathbf{H}^T \)

Error decoding

\[
\mathbf{G} = \begin{bmatrix}
\mathbf{P}_{\text{rx}(n-k)} & \mathbf{I}_k
\end{bmatrix}
\]

Next Question: How to construct \(\mathbf{P}_{\text{rx}(n-k)} \)?

\[\Rightarrow\text{Chap 5. Cyclic code } \mathbf{G} = \begin{bmatrix}
\mathbf{P}_{\text{rx}(n-k)} & \mathbf{I}_k
\end{bmatrix}\]

Reduce design space.

Chap 5

5.1 Definitions

- Right cyclic-shift (or simply cyclic-shift)

\[
\mathbf{V} = (V_0, V_1, \ldots, V_{m})
\]

\[
\mathbf{V}^{(1)} = (V_{m}, V_0, V_1, \ldots, V_{m-2})
\]

\[
\mathbf{V}^{(2)} = (V_{m-1}, V_m, V_0, V_1, \ldots, V_{m-3})
\]

\[
\vdots
\]

\[
\mathbf{V}^{(i)} = (V_{m-i}, V_{m-i+1}, \ldots, V_{m-1}, V_0, \ldots, V_{m-i-1})
\]
2 Cyclic code

An \((n,k)\) linear code is called a cyclic code if every cyclic shift of a codeword in \(C\) is also a codeword in \(C\).