On the Adversarial Robustness of Robust Estimators
Lifeng Lai and Erhan Bayraktar

Abstract
Motivated by recent data analytics applications, we study the adversarial robustness of robust estimators. Instead of assuming that only a fraction of the data points are outliers as considered in the classic robust estimation setup, in this paper, we consider an adversarial setup in which an attacker can observe the whole dataset and can modify all data samples in an adversarial manner so as to maximize the estimation error caused by his attack. We characterize the attacker’s optimal attack strategy, and further introduce adversarial influence function (AIF) to quantify an estimator’s sensitivity to such adversarial attacks. We provide an approach to characterize AIF for any given robust estimator, and then design optimal estimator that minimizes AIF, which implies it is least sensitive to adversarial attacks and hence is most robust against adversarial attacks. From this characterization, we identify a tradeoff between AIF (i.e., robustness against adversarial attack) and influence function, a quantity used in classic robust estimators to measure robustness against outliers, and design estimators that strike a desirable tradeoff between these two quantities.

Index Terms
Robust estimators, adversarial robustness, M-estimator, non-convex optimization.

I. INTRODUCTION
Robust estimation is a classic topic that addresses the outlier or model uncertainty issues. In the existing setup, a certain percentage of the data points are assumed to be outliers. Various concepts such as influence function (IF), breakdown point, and change of variance etc were developed...
to quantify the robustness of estimators against the presence of outliers, please see [1]–[3] and references therein for details.

These concepts are very useful for the classic setup where a fraction (up to 50%) of data points are outliers while the remaining data come from the true distribution. In this paper, motivated by recent interest in data analytics, we address the issue of adversarial robustness. In a typical data analytics setup, a dataset is stored in a database. If an attacker has access to the database, he can modify all data points (i.e., up to 100%) in an adversarial manner, and hence the existing results on robust statistics are not directly applicable anymore. This scenario also arises in the adversarial example phenomena in deep neural networks that have attracted significant recent research interests [4]–[6]. In the adversarial example in deep neural networks, by making small but carefully chosen changes on the image, the attacker can mislead neural network to make wrong decisions, even though a human will hardly notice changes on the modified image. Certainly, if the attacker can modify all data and no further restrictions on attacker’s capability are imposed, then no meaningful estimator can be constructed (this can be viewed as 100% of the data are modified in the classic setup). In this paper, we investigate the scenario that the total amount of change measured by ℓ_p norm is limited, and we will study how these quantities will affect the estimation performance. This type of constraints are reasonable and are motivated by real life examples. For example, in generating adversarial examples in images [4], the total distortion should be limited, otherwise human eyes will be able to detect such changes. Towards this goal, we introduce the concept of adversarial influence function (AIF) to quantify how sensitive an estimator is to adversarial attacks.

We first focus on the scenario with a given data set. For this scenario, we characterize the optimal attack vector that the attacker, who observes the whole data set, can employ to maximize the estimation error. Using this characterization, we can then analyze AIF of any given estimator. This analysis enables us to design estimators that are robust to adversarial attacks. In particular, from the estimator’s perspective, one would like to design an estimator that minimizes AIF, which implies that such an estimator is least sensitive to adversarial attacks and hence is most robust against adversarial attacks. We derive universal lower bounds on AIF and characterize the conditions under which an estimator can achieve this lower bound (and hence is most robustness against adversarial attacks). We then illustrate these results for two specific models: location estimators and scale estimators.

With the results in the given sample scenario, we then extend our study to the population
scenario, in which we investigate the behavior of AIF as the number of samples increases. For this case, we identify a tradeoff between robustness against adversarial attacks vs robustness against outliers. In particular, we first characterize the optimal estimator that minimizes AIF. However, the estimator that minimizes AIF has a poor performance in term of IF [3], [7], a quantity that measures robustness against outliers. Realizing this fact, we then formulate optimization problems to design estimators that strike a desirable tradeoff between AIF (i.e., robustness against adversarial attack) and IF (i.e., robustness against outliers). Using tools from calculus of variations [8], [9], we are able to exploit the unique structure of our problems and obtain analytical form of the optimal solution. The obtained solution share similar interpretation as classic robust estimators that it will carefully trim data points that are from the distribution tails. However, the detailed form and thresholds are determined by different criteria.

In the above discussion, we mainly focus on a class of widely used robust estimators: M-estimator. However, the developed tools and analysis can be extended to analyze other types of robust estimators. In this paper, we will use L-estimator as an example to discuss how to extend the analysis to other types of estimators.

Our paper is related to a growing list of recent work on adversarial machine learning. Here we give several examples on data poisoning attack that is related to our work. For example, [10] considers an adversarial principal component analysis (PCA) problem in which an attacker adds an extra data point in an adversarial manner so as to maximize the error of subspace estimated by PCA. [11] investigates data poisoning attack in regression problems, in which the attacker adds data points to the training dataset with the goal of introducing errors into or guiding the results of regression models. [12] studies an attack that inserts carefully chosen data points to the training set for support vector machine. [13] considers learning problems from untrusted data. In particular, under the assumption that at least α percent of data points are drawn from a distribution of interest, [13] considers two frameworks: 1) list-decodable learning, whose goal is to return a list of answers, with the guarantee that at least one of them is accurate; and 2) semi-verified learning, in which one has a small dataset of trusted data that can be leveraged to enable the accurate extraction of information from a much larger but untrusted dataset. A major difference between our work and these interesting work is that the existing work assume that a certain percentage of data points are not compromised, while in our work all data points could be compromised.

The remainder of the paper is organized as follows. In Section II, we introduce our problem
formulation. In Section III, we introduce the necessary background. In Section IV, we investigate AIF for the given sample scenario. In Section V, we consider the population scenario. We extend the study to L-estimator in Section VI. Numerical examples are given in Section VII. Finally, we offer concluding remarks in Section VIII.

II. Model

We consider an adversarially robust parameter estimation problem in which the adversary has access to the whole dataset. In particular, we have a given data set $x = \{x_1, \cdots, x_N\}$, in which x_n are i.i.d realizations of random variable X that has cumulative density function (cdf) $F_\theta(x)$ with unknown parameter θ. We will use $f_\theta(x)$ to denote the corresponding probability density function (pdf). From this given data set, we would like to estimate the unknown parameter θ. However, as the adversary has access to the whole dataset, it will modify the data to $x^\Delta = x + \Delta x := \{x_1 + \Delta x_1, \cdots, x_N + \Delta x_N\}$, in which $\Delta x = \{\Delta x_1, \cdots, \Delta x_N\}$ is the attack vector chosen by the adversary after observing x. We will discuss the attacker’s optimal attack strategy in choosing Δx in the sequel. In the classic robust estimation setup, it is typically assume that some percentage (up to 50%) of the data points are outliers, that is some entries in Δx are nonzero while the remainders are zero. In this work, we consider the case where the attacker can modify all data points, which is a more suitable setup for recent data analytical applications. However, certain restrictions need to be put on Δx, otherwise the estimation problem will not be meaningful. In this paper, we assume that

$$\frac{1}{N}||\Delta x||_p \leq \eta^p,$$

in which $||\cdot||_p$ is the ℓ_p norm. The normalization factor N implies that the per-dimension change (on average) is upper-bound by η^p. As mentioned in the introduction, this type of constraints are reasonable and are motivated by real life examples. The classic setup can be viewed as a special case of our formulation by letting $p \to 0$, i.e., the classic setup has constraint on the total number of data points that the attacker can modify.

Following notation used in robust statistics [2], [3], we will use $T_N(x)$ to denote an estimator. For a given estimator T_N, we would like to characterize how sensitive the estimator is with respect to the adversarial attack. In this paper, we consider a scenario where the goal of the
The attacker is to maximize the estimation error caused by the attack. In particular, the attacker aims to choose Δx by solving the following optimization problem

$$
\max_{\Delta x} |T_N(x + \Delta x) - T_N(x)|,
$$

subject to

$$
\frac{1}{N}||\Delta x||_p^p \leq \eta^p.
$$

We use $\Delta T_N(x)$ to denote the optimal value obtained from the optimization problem (2), and define the adversarial influence function (AIF) of estimator T_N at x under ℓ_p norm constraint as

$$
\text{AIF}(T_N, x, p) = \lim_{\eta \downarrow 0} \frac{\Delta T_N(x)}{\eta}.
$$

This quantity, a generalization of the concept of IF used in classic robust estimation (we will briefly review IF in Section III), quantifies the asymptotic rate at which the attacker can introduce estimation error through its attack.

From the defender’s perspective, the smaller AIF is, the more robust the estimator is. In this paper, building on the characterization of $\text{AIF}(T_N, x, p)$, we will characterize the optimal estimator T_N, among a certain class of estimators \mathcal{T}, that minimizes $\text{AIF}(T_N, x, p)$. In particular, we will investigate

$$
\min_{T_N \in \mathcal{T}} \text{AIF}(T_N, x, p).
$$

We will show that, for certain class of \mathcal{T}, the optimal T_N is independent of x and p, which is a very desirable property.

Note that $\text{AIF}(T_N, x, p)$ depends on the data realization x. Based on the characterization of AIF for a given data realization x of length N, we will then study the population version of AIF where each entry of $X = \{X_1, \cdots, X_N\}$ is i.i.d generated by F_θ. We will examine the behavior of $\text{AIF}(T_N, X, p)$ as N increases. Following the convention in robust statistics, we will assume that there exists a functional T such that

$$
T_N(X) \rightarrow T(F_\theta)
$$

in probability as $N \rightarrow \infty$. We will see that for a large class of estimators $\text{AIF}(T_N, X, p)$ has a well-defined limit as $N \rightarrow \infty$. We will use $\text{AIF}(T, F_\theta, p)$ to denote this limit when it exists.

Similarly, from the defense’s perspective, we would like to design an estimator that is least sensitive to the adversarial attack. Again, we will characterize the optimal estimator T, among
a certain class of estimators \mathcal{T}, that minimizes $\text{AIF}(T, F_\theta, p)$. That is, for a certain class of estimators \mathcal{T}, we will solve

$$\min_{T \in \mathcal{T}} \text{AIF}(T, F_\theta, p).$$ \hspace{1cm} (4)

It will be clear in the sequel that the solution to the optimization problem (4), even though is robust against adversarial attacks, has poor performance in guarding against outliers. This motivates us to design estimators that strike a desirable tradeoff between these two robustness measures. In particular, we will solve (4) with an additional constraint on IF. We will need to use tools from calculus of variations for this purpose.

III. Background

In this section, we briefly review results from classic robust estimator literature that are closely related to our study.

A. Influence Function (IF)

As mentioned above, in the classic robust estimation setup, it is assumed that a fraction η of data points are outliers, while the remainder of data points are generated from the true distribution F_θ. For a given estimator T, the concept of IF introduced by Hamper [7] is defined

$$\text{IF}(x, T, F_\theta) = \lim_{\eta \downarrow 0} \frac{T((1-\eta)F_\theta + \eta \delta_x) - T(F_\theta)}{\eta}.$$

In this definition, δ_x is a distribution that puts mass 1 at point x, $T(F_\theta)$, introduced in (3), is the obtained estimate when all data points are generated i.i.d from F_θ, and $T((1-\eta)F_\theta + \eta \delta_x)$ is the obtained estimate when $1-\eta$ fraction of data points are generated i.i.d from F_θ while η fraction of the data points are at x. Hence, $\text{IF}(x, T, F_\theta)$ measures the asymptotic influence of having outliers at point x as $\eta \downarrow 0$.

To measure the influence of the worst outliers, [7] then further introduced the concept of gross-error sensitivity of T by taking \sup_x over the absolute value of $\text{IF}(x, T, F_\theta)$:

$$\gamma^*(T, F_\theta) = \sup_x |\text{IF}(x, T, F_\theta)|.$$

Intuitively speaking, $\gamma^*(T, F_\theta)$ can be viewed as the solution of our problem setup for the special case of $p = 0$.

The values of \(\text{IF}(x, T, F_\theta) \) and \(\gamma^*(T, F_\theta) \) have been characterized for various class of estimators. Furthermore, under certain conditions, optimal estimator \(T \) that minimizes these quantities have been established. Some of these results will be introduced in later sections. More details can be found in [2], [3].

B. M-Estimator

In this paper, we will mainly focus on a class of commonly used estimator in robust statistic: \(M \)-estimator [1], in which one obtains an estimate \(T_N(x) \) of \(\theta \) by solving

\[
\sum_{n=1}^{N} \psi(x_n, T_N) = 0. \tag{5}
\]

Here \(\psi(x_n, \theta) \) is a function of data \(x_n \) and parameter \(\theta \) to be estimated. Different choices of \(\psi \) lead to different robust estimators. For example, the most likely estimator (MLE) can be obtained by setting \(\psi = -f_\theta'/f_\theta \).

As the form of \(\psi \) determines \(T_N \), in the remainder of the paper, we will use \(\psi \) and \(T_N \) interchangeably. For example, we will denote \(\text{AIF}(T_N, x, p) \) as \(\text{AIF}(\psi, x, p) \). Similarly, we will denote \(\text{IF}(x, T, F_\theta) \) as \(\text{IF}(x, \psi, F_\theta) \).

It is typically assumed that \(\psi(x, \theta) \) is continuous and almost everywhere differentiable. This assumption is valid for all \(\psi \)'s that are commonly used. It is also typically assume the estimator is Fisher consistent [3]:

\[
\mathbb{E}_{F_\theta}[\psi(X, \theta)] = 0, \tag{6}
\]

in which \(\mathbb{E}_{F_\theta} \) means expectation under \(F_\theta \). Intuitively speaking, this implies that the true parameter \(\theta \) is the solution of the \(M \)-estimator if there are increasingly more i.i.d. data points generated from \(F_\theta \).

For \(M \)-estimator, \(\text{IF}(x, \psi, F_\theta) \) was shown to be

\[
\text{IF}(x, \psi, F_\theta) = \frac{\psi(x, T(F_\theta))}{-\int \frac{\partial}{\partial \theta} [\psi(y, \theta)]_{\theta=T(F_\theta)} dF_\theta(y)},
\]

see (2.3.5) of [3].

IV. THE FIXED SAMPLE CASE

In this section, we focus on analyzing \(\text{AIF}(\psi, x, p) \) for a given dataset \(x \). We will extend the study to the population case and analyze \(\text{AIF}(\psi, F_\theta, p) \) in Section V.
A. General ψ

We will first characterize $\text{AIF}(\psi, x, p)$ for general ψ, and will then specialize the results to specific problems in later sections. For any given ψ that is continuous and almost everywhere differentiable, we have the following theorem that characterizes $\text{AIF}(\psi, x, p)$.

Theorem 1. When $p = 1,$

$$\text{AIF}(\psi, x, 1) = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right|,$$

where

$$n^* = \arg \max_n \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right| \cdot \quad (7)$$

For $p > 1,$ we have

$$\text{AIF}(\psi, x, p) = \frac{\left(\frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right|^p \right)^{\frac{p-1}{p}}}{\left(\frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T_N} \right|^p \right)^{\frac{p-1}{p}}} .$$

Proof. Please see Appendix A for detailed proof.

From Theorem 1, we can characterize the form of ψ that leads to the smallest AIF, i.e., the most robust M-estimator against adversarial attacks.

Corollary 1.

$$\text{AIF}(\psi, x, p) \geq \frac{\left(\frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right| \right)^{\frac{p-1}{p}}}{\left(\frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T_N} \right| \right)^{\frac{p-1}{p}}} ,$$

and the equality holds when

$$\left| \frac{\partial}{\partial x} [\psi]_{x=x_1, \theta=T_N} \right| = \cdots = \left| \frac{\partial}{\partial x} [\psi]_{x=x_N, \theta=T_N} \right| .$$

Proof. For $p > 1$, it is easy to check that $x^{(p-1)/p}$ is a concave function when $x \geq 0$. Hence,
using Jensen’s inequality, we have
\[
\left(\frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right|^p \right)^{\frac{p-1}{p}} \geq \frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right|,
\]
and the equality holds when \(\left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right| \) is a constant with respect to \(n \).

This corollary implies that, from defender’s perspective, we should design \(\psi(x, \theta) \) such that \(\left| \frac{\partial}{\partial x} [\psi] \right| \) is constant in \(x \). It is also interesting that, this result holds for any value of \(p \). And hence we can design an estimator without knowledge about which constraint the attacker is using.

B. Specific Estimators

To illustrate the results obtained above, we specialize results to location estimators and scale estimators.

1) **Location Estimator:** For location estimator models, \(F_\theta(x) = F_0(x - \theta) \), and hence it is natural to use \(\psi(x, \theta) = \psi(x - \theta) \), see [2], [3]. For this model, it is easy to check that
\[
\frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} = \psi'(x_n - T_N),
\]
\[
\frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T_N} = -\psi'(x_n - T_N).
\]

Plugging these two equations in the AIF expressions in Theorem 1, for the case with \(p = 1 \), we have
\[
\text{AIF}(\psi, x, 1) = \frac{|N \psi'(x_n - T_N)|}{\sum_{n=1}^{N} \psi'(x_n - T_N)} \geq 1,
\]
for which the equality holds when \(\psi'(x_n - T_N) \) is a constant with respect to \(n \).

For the case with \(p > 1 \), we have
\[
\text{AIF}(\psi, x, p) = \left(\frac{1}{N} \sum_{n=1}^{N} \left| \psi'(x_n - T_N) \right|^p \right)^{\frac{p-1}{p}} \geq \left(\frac{1}{N} \sum_{n=1}^{N} \left| \psi'(x_n - T_N) \right| \right)^{\frac{p-1}{p}} \geq 1,
\]
in which (a) is due to Jensen’s inequality. Both inequalities will hold if \(\psi'(x_n - T_N)\) is a constant in \(n\).

Example 1. Consider an estimator with \(\psi(x_n - T_N) = x_n - T_N\). This estimator is simply the empirical sample mean. It is easy to see that \(\psi'(x)\) is a constant in \(n\), which implies that this choice of \(\psi\) has \(AIF(\psi, x, p) = 1\). It achieves the lower bound established above, regardless of the value of \(x\) and \(p\). Hence, it is the most robust estimator against adversarial attacks. However, as we will discuss in Section V, this choice of \(\psi\) is not robust against outliers. In Section V, we will design estimators that strike a desirable balance between robustness against outliers and robustness against adversarial attacks.

Example 2. Consider the Huber estimator \([1]\) with

\[
\psi(x_n - T_N) = \min\{b, \max\{x_n - T_N, -b\}\},
\]

parameterized by a parameter \(0 < b < \infty\). Using (8), it is easy to check that \(AIF(\psi, x, p) = \sqrt{1/\beta}\), in which \(\beta\) is the percentage of points in \(x\) such that \(|x_n - T_N| < b\). It is clear that Huber estimator, while being more robust against outliers \([2]\), is less robust against than adversarial attacks than the empirical mean estimator.

2) **Scale Estimator:** The scale model \([2], [3]\) is given by \(F_\theta(x) = F_1(x/\theta)\), and it is typical to consider \(\psi(x, \theta) = \psi(x/\theta)\). It is easy to check that for \(\psi\) with this form, we have

\[
\frac{\partial}{\partial x}[\psi]_{x=x_n, \theta=T_N} = \frac{\psi'(x_n/T_N)}{T_N},
\]

\[
\frac{\partial}{\partial \theta}[\psi]_{x=x_n, \theta=T_N} = \frac{-x_n \psi'(x_n/T_N)}{T_N^2}.
\]

Using Theorem 1, for the case with \(p = 1\), we obtain

\[
AIF(\psi, x, 1) = \frac{\left|N \frac{\psi'(x_{n^*}/T_N)}{T_N}\right|}{\sum_{n=1}^{N} \left|-x_n \psi'(x_n/T_N)/T_N^2\right|} = \frac{\left|\psi'(x_{n^*}/T_N)\right|}{\left|\frac{1}{N} \sum_{n=1}^{N} x_n/T_N \psi'(x_n/T_N)\right|},
\]

in which \(n^*\) is defined in (7).
When $p > 1$, we have

$$A \text{IF}(\psi, x, p) = \left(\frac{1}{N} \sum_{n=1}^{N} \left| \psi(x_n/T_N) \right|^\frac{p}{p-1} \right)^{\frac{p-1}{p}} \left| \frac{1}{N} \sum_{n=1}^{N} -x_n \psi'(x_n/T_N) \right|^\frac{p-1}{p} \left| \frac{1}{N} \sum_{n=1}^{N} x_n / T_N \psi'(x_n/T_N) \right|.$$

(10)

Example 3. Consider MLE for variance of zero-mean Gaussian random variables, which corresponds to $\psi(x) = -x(\phi'(x)/\phi(x)) - 1 = x^2 - 1$. Here, $\phi(x)$ is the pdf of zero mean variance one Gaussian random variable. For this choice of ψ, we have $T_N = \frac{1}{N} \sum_{n=1}^{N} x_n^2$ and $\psi'(x_n/T_N) = 2x_n/T_N$. Plugging these values into (9), we obtain

$$A \text{IF}(\psi, x, 1) = |x_n^*|.$$

Using (10), we have

$$A \text{IF}(\psi, x, p) = \left(\frac{1}{N} \sum_{n=1}^{N} |x_n|^{\frac{p}{p-1}} \right)^{\frac{p-1}{p}},$$

from which we know that when $p = 2$, $A \text{IF}(\psi, x, 2) = \sqrt{T_N} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} x_n^2}.$

V. POPULATION CASE

With the results on the fixed dataset case, we now consider the population version where X_n are i.i.d from F_θ, and analyze the behavior of AIF as $N \to \infty$. Following the convention in classic robust statistic literature, we will focus on the case in which the estimator is Fisher consistent as defined in (6). Under a broad range of regularity conditions, [2] shows that $T_N \xrightarrow{a.s.} \theta$. As a result, following similar arguments in Proposition 3 of [14], as $N \to \infty$ in Theorem 1, we have,

$$A \text{IF}(\psi, x, 1) = \frac{\left| \frac{\partial}{\partial \theta} [\psi]_{x=x_n^*, \theta=T_N} \right|}{\left| \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T_N} \right|} \xrightarrow{a.s.} \max_x \frac{\partial}{\partial x} [\psi](x, \theta) \left| \frac{\partial}{\partial \theta} [\psi](X, \theta) \right| := A \text{IF}(\psi, F_\theta, 1).$$

(11)
For $p > 1$, we have

$$\text{AIF}(\psi, x, p) = \left(\frac{1}{N} \sum_{n=1}^{N} \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T} \right|^{\frac{p}{p-1}} \right)^{\frac{p-1}{p}} \frac{\left| \frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T} \right|^{\frac{p}{p-1}}}{\left| \frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T} \right|^{\frac{p}{p-1}}}.$$

By a.s. (12)

$$\text{AIF}(\psi, F_\theta, p) := \text{AIF}(\psi, F_\theta, p).$$

A. Location Estimator

We now specialize the results to the location model mentioned above. We will first characterize ψ that minimizes $\text{AIF}(\psi, F_\theta, p)$. We will then discuss the tradeoff between the robustness to outliers and robustness to adversarial attacks, and will characterize the optimal ψ that achieves this tradeoff. In the location estimator, we will assume $\psi(x, \theta)$ is monotonic in θ, which will satisfy the regularity conditions established in [2].

1) **Minimizing $\text{AIF}(\psi, F_\theta, p)$:** For $p = 1$, using (11), we have

$$\text{AIF}(\psi, F_\theta, 1) = \max_x |\psi'(x - \theta)| \frac{1}{\left| \mathbb{E}_{F_\theta} [\psi'(X - \theta)] \right|}.$$

For $p > 1$, using (12), we obtain

$$\text{AIF}(\psi, F_\theta, p) = \left(\frac{\mathbb{E}_{F_\theta} \left[|\psi'(X - \theta)|^{\frac{p}{p-1}} \right]}{\left| \mathbb{E}_{F_\theta} [\psi'(X - \theta)] \right|^{\frac{p}{p-1}}} \right)^{\frac{p-1}{p}}.$$

In particular, for $p = 2$, we have

$$\text{AIF}(\psi, F_\theta, 2) = \sqrt{\frac{\mathbb{E}_{F_\theta} [\psi'(X - \theta)^2]}{(\mathbb{E}_{F_\theta} [\psi'(X - \theta)])^2}}.$$

From (13) and using Jensen’s equality, we have

$$\text{AIF}(\psi, F_\theta, p) \geq 1,$$

for which the equality holds when $\psi'(x - \theta)$ is constant in x.

2) **Tradeoff between $\text{AIF}(\psi, F_\theta, p)$ and $\gamma^*(\psi, F_\theta)$:** From (2.3.12) of [3], we know that the influence function of the location estimator specified by ψ is

$$\text{IF}(x, \psi, F_\theta) = \frac{\psi(x - \theta)}{\mathbb{E}_{F_\theta} [\psi'(X - \theta)]}.$$

and hence
\[\gamma^*(\psi, F_\theta) = \sup_x \left| \frac{\psi(x - \theta)}{\mathbb{E}_{F_\theta}[\psi'(X - \theta)]} \right|. \]

As a result, if \(\psi'(X - \theta) \) is a constant that minimizes AIF\((\psi, F_\theta, p)\) as discussed in Section V-A1, then \(\gamma^*(\psi, F_\theta) \) might go to \(\infty \), especially for those distributions with unbounded support. To achieve a desirable tradeoff between robustness to outliers (i.e., \(\gamma^*(\psi, F_\theta) \) is small) and robustness to adversarial attacks (i.e., AIF\((\psi, F_\theta, p)\) is small), in the following, we characterize the optimal estimator that minimizes AIF\((\psi, F_\theta, p)\) subject to a constraint on \(\gamma^*(\psi, F_\theta) \).

\[
\begin{align*}
\min & \quad \text{AIF}(\psi, F, 2) \\
\text{s.t.} & \quad \gamma^*(\psi, F_\theta) \leq \xi, \\
& \quad \mathbb{E}_{F_\theta}[\psi(X - \theta)] = 0, \\
& \quad \psi'(x) \geq 0,
\end{align*}
\]

in which constraint (15) implies that \(\gamma^*(\psi, F_\theta) \) is upperbounded by a positive constant \(\xi \), constraint (16) implies that \(\psi \) is Fisher consistent, and the last constraint comes from the condition that \(\psi \) is monotonic in \(\theta \).

For location estimator, \(f_\theta(x) = f_0(x - \theta) \), so all quantities in (14) remain the same by assuming \(\theta = 0 \) [3]. Hence, in the following, we will solve this optimization problem assuming \(\theta = 0 \).

Theorem 2. The solution to the optimization problem (14) has the following structure:

- \(\psi'(x) \) satisfies
 \[
 \psi'(x) = \begin{cases}
 \nu^* - \frac{\vartheta^*_2 + (\vartheta^*_1 - \vartheta^*_2)F_0(x)}{f_0(x)}, & \nu^* f_0(x) > \vartheta^*_1 F_0(x) + \vartheta^*_2 (1 - F_0(x)) \\
 0, & \text{otherwise},
 \end{cases}
 \]

 in which the parameters \(\nu^*, \vartheta^*_1 \geq 0 \) and \(\vartheta^*_2 \geq 0 \) are parameters chosen to satisfy the
following conditions

$$\mathbb{E}_{F_0}[\psi'(X)] = 1,$$

$$\vartheta_1^* \left(\int \psi'(x) F_0(x) dx - \xi \right) = 0,$$

$$\vartheta_2^* \left(\mathbb{E}_{F_0} \left[\int_{-\infty}^X \psi'(t) dt \right] - \xi \right) = 0,$$

along with \(\int \psi'(x) F_0(x) dx \leq \xi \) and \(\mathbb{E}_{F_0} \left[\int_{-\infty}^X \psi'(t) dt \right] \leq \xi \).

• \(\psi(-\infty) \) is set as \(-\mathbb{E}_{F_0} \left[\int_{-\infty}^X \psi'(t) dt \right]\).

\textbf{Proof.} Please see Appendix B for details.

\[\square\]

The condition \(\nu^* f_0(x) > \vartheta_1^* F_0(x) + \vartheta_2^*(1 - F_0(x)) \) has a natural interpretation. It will trim data points from the tails. In particular, when \(x \) is left tail (i.e. \(F_0 \) is small), \(1 - F_0 \) will be close to 1. On the other hand, when \(x \) is in the right tail (i.e. \(1 - F_0 \) is small), \(F_0 \) will be close to 1. In these regions, \(\psi' = 0 \) if the corresponding \(f_0(x) \) is small. Figure 1 illustrates the scenario for estimating the mean of Gaussian variables for the case assuming \(\vartheta_1^* > \vartheta_2^* \). It is easy to check that, in this example, if \(\nu^* > 2\pi(\vartheta_1^* + \vartheta_2^*) \), there exist \(a \) and \(b \) such that \(\psi'(x) = 0 \) when \(x < a \) or \(x > b \). Correspondingly, \(\psi(x) \) is given as

$$\psi(x) = \begin{cases}
\xi & x \geq b \\
-\xi + \int_a^x \psi'(t) dt & a < x < b \\
-\xi & x < a
\end{cases}$$

\[\text{Fig. 1. Gaussian mean example}\]
B. Scale Estimator

We now specialize the results to the scale model where \(F_\theta(x) = F_1(x/\theta) \). For this model, it is natural to consider \(\psi(x, \theta) = \psi(x/\theta) \) \cite{2, 3}. Similar to the location model, we will first characterize \(\psi \) that minimizes \(\text{AIF}(\psi, F_\theta, p) \). We will then discuss the tradeoff between the robustness to outliers and robustness to adversarial attacks, and will characterize the optimal \(\psi \) that achieves this tradeoff.

For the case with \(p = 1 \), using (11), we obtain

\[
\text{AIF}(\psi, x, 1) = \left| \frac{N \sum_{n=1}^{N} x_n \psi'(x_n/T_N)}{x} \right| \xrightarrow{a.s.} \max_x \left| \theta \psi'(x/\theta) \right| := \text{AIF}(\psi, F_\theta, 1).
\]

For \(p > 1 \), using (11), we have

\[
\text{AIF}(\psi, x, p) = \left(\frac{\left(\frac{1}{N} \sum_{n=1}^{N} \psi'(x_n/T_N) \right)^{p-1}}{\left(\frac{1}{N} \sum_{n=1}^{N} x_n/T_N \psi'(x_n/T_N) \right)^{p-1}} \right)^{\frac{p}{p-1}} \xrightarrow{a.s.} \left(\frac{\mathbb{E}_{\theta} \left[\left| \psi'(X/\theta) \right|^{p-1} \right]}{\mathbb{E}_{\theta} \left[X \psi'(X) \right]} \right)^{\frac{p}{p-1}} := \text{AIF}(\psi, F_\theta, p).
\]

Since in scale model \(F_\theta(x) = F_1(x/\theta) \), we have \(f_\theta(x) = f_1 \left(\frac{x}{\theta} \right) \frac{1}{\theta} \), and hence

\[
\text{AIF}(\psi, F_\theta, p) = \left(\frac{\mathbb{E}_{F_1} \left[\left| \psi'(X) \right|^{p-1} \right]}{\mathbb{E}_{F_1} \left[X \psi'(X) \right]} \right)^{\frac{p}{p-1}} := \text{AIF}(\psi, F_1, p).
\]

For \(p = 2 \), we have

\[
\text{AIF}(\psi, F_1, 2) = \left(\frac{\mathbb{E}_{F_1} \left[\psi'(X)^2 \right]}{\mathbb{E}_{F_1} \left[X \psi'(X) \right]} \right)^{\frac{3}{2}}.
\]

1) Minimizing \(\text{AIF}(\psi, F_\theta, p) \): In the following, among Fisher consistent estimators, we aim to design \(\psi' \) that minimizes \(\text{AIF}(\psi, F_1, 2) \).

Theorem 3. The optimal \(\psi \) that minimizes \(\text{AIF}(\psi, F_1, 2) \) has the following structure:

- For \(x \) in the range of \(f_1(x) \), \(\psi' \) satisfies

\[
\psi'(x) = \frac{x}{\mathbb{E}_{F_1}[X^2]}.
\]
ψ(−∞) is chosen as

\[
\psi(-\infty) = -\mathbb{E}_{F_1} \left[\int_{-\infty}^{X} \psi'(t) dt \right].
\]

With this choice of ψ(x), the minimal value of AIF(ψ, F_1, 2) is 1/√E_{F_1}[X^2].

Proof. Please see Appendix C for details.

We note that for scale estimator \(\frac{\partial \psi}{\partial \theta} = -\psi'(x/\theta)x/\theta^2 \), hence for this particular choice of \(\psi' \) in Theorem 3, \(\frac{\partial \psi}{\partial \theta} = -x^2/(\theta^3 E_{F_1}[X^2]) \), which means \(\psi(x, \theta) \) is monotone in \(\theta \). This ensures that the obtained \(\psi(x) \) satisfies the regularity conditions [2] mentioned at the beginning of this section.

2) **Tradeoff between AIF(ψ, F_θ, p) and \(\gamma^*(\psi, F_\theta) \):** Similar to the location estimation case, we can also design \(\psi \) to minimize AIF(\(\psi, F_\theta, p \)) with a constraint on \(\gamma^*(\psi, F_\theta) \). From (2.3.17) of [3], we know that for scale estimators

\[
\text{IF}(x, \psi, F_\theta) = \frac{\psi(x/\theta)\theta}{\mathbb{E}_{F_\theta}[X/\theta \psi'(X/\theta)]}.
\]

To facilitate the analysis, we will focus on \(\psi \) that is monotonic. Since in scale model, \(\psi(x, \theta) = \psi(x/\theta) \), we can simply focus on the case of \(\theta = 1 \). Hence, we will solve the following optimization problem to strike a desirable tradeoff between robustness against outliers and robustness against adversarial attacks.

\[
\min \quad \frac{\mathbb{E}_{F_1}[\psi'(X)^2]}{(\mathbb{E}_{F_1}[X\psi'(X)])^2}, \quad (22)
\]

s.t.

\[
\gamma^*(\psi, F_1) = \sup_x \left| \frac{\psi(x)}{\mathbb{E}_{F_1}[X\psi'(X)]} \right| \leq \xi, \quad (23)
\]

\[
\mathbb{E}_{F_1}[\psi] = 0, \quad (24)
\]

\[
\psi'(x) \geq 0. \quad (25)
\]

Here, constraint (23) is a constraint on the outliers influence, (24) implies that \(\psi \) is Fisher consistent.

Theorem 4. The solution to (22) has the following structure:
ψ' has the following form

\[
\psi'(x) = \begin{cases}
\nu^* x - \frac{\vartheta_2^* + (\vartheta_1^* - \vartheta_2^*)F_1(x)}{f_1(x)}, & \nu^* x f_1(x) > \vartheta_1^* F_1(x) + \vartheta_2^* (1 - F_1(x)); \\
0, & \text{otherwise},
\end{cases}
\]

in which \(\nu^*, \vartheta_1^*, \vartheta_2^* \geq 0\) are chosen to satisfy

\[
\mathbb{E}_{F_1}[X \psi'(X)] = 1,
\]

\[
\vartheta_1^* \left(\int_{-\infty}^{\infty} \psi'(x)F_1(x)dx - \xi \right) = 0,
\]

\[
\vartheta_2^* \left(\mathbb{E}_{F_1} \left[\int_{-\infty}^{X} \psi'(t)dt \right] - \xi \right) = 0,
\]

along with \(\int_{-\infty}^{\infty} \psi'(x)F_1(x)dx \leq \xi\) and \(\mathbb{E}_{F_1} \left[\int_{-\infty}^{X} \psi'(t)dt \right] \leq \xi\).

ψ(−∞) is set to be \(-\mathbb{E}_{F_1} \left[\int_{-\infty}^{X} \psi'(t)dt \right]\).

Proof. The proof follows similar strategy as that of the proof of Theorem 2 and 3. Details can be found in Appendix D.

Similar to the location estimator case, the condition \(\nu^* x f_1(x) > \vartheta_1^* F_1(x) + \vartheta_2^* (1 - F_1(x))\) will limit the influences of data points at the tails.

VI. EXTENSION: L-ESTIMATOR

In this section, we briefly discuss how to extend the analysis above to other class of estimators. We will L-estimator as an example. L-estimator has the following form \([2], [3]\):

\[
T_N(x) = \sum_{n=1}^{N} a_n x_{(n)},
\]

where \(x_{(1)} \leq \cdots \leq x_{(N)}\) are the ordered sequence of \(x\), and \(a_n\)'s are coefficients. For example, for location estimator, a natural choice of \(a_n\) is

\[
a_n = \frac{\int_{(n-1)/N}^{n/N} h(t)dt}{\int_{0}^{1} h(t)dt},
\]

for a given function \(h(t)\) such that \(\int_{0}^{1} h(t)dt \neq 0\). For example, setting \(h(t) = \delta(t - 1/2)\) leads to the median estimator.
We first look at the given sample scenario. Let $\tilde{x} = x + \Delta x$, and let $\tilde{x}_(1) \leq \cdots \leq \tilde{x}_(N)$ be the ordered sequence of \tilde{x}. Hence,

$$T_N(x + \Delta x) = \sum_{n=1}^{N} a_n \tilde{x}_(n). \tag{28}$$

For general Δx, the ordering of $x + \Delta x$ may not necessarily be the same as the ordering of x. For example, $\tilde{x}_(1)$ might come from $x_(2)$, i.e., $\tilde{x}_(1) = x_(2) + \Delta(x_(2))$. This possibility could make the following analysis messy. However, it is easy to see that when η is sufficiently small (more specifically, when $N^{1/p} \eta \leq 1/2 \min_{x_i \neq x_j} |x_i - x_j|$), the ordering of $x + \Delta x$ be the same as x for all Δx’s that satisfy the constraint (1). As the result, for the purpose of charactering AIF (which involves making $\eta \downarrow 0$), we can limit (28) to the following form

$$T_N(x + \Delta x) = \sum_{n=1}^{N} a_n (x_(n) + \Delta(x_(n))).$$

Hence

$$T_N(x + \Delta x) - T_N(x) = \sum_{n=1}^{N} a_n \Delta x_(n),$$

and (2) becomes

$$\min - \sum_{n=1}^{N} a_n \Delta x_(n),$$

s.t. $\frac{1}{N} ||\Delta x||_p^{p} \leq \eta^p.$

Using the exactly same approach as those in the proof of Theorem 1, we have the following characterization. For $p = 1$, let $n^* = \arg \max_n |a_n|$, $\Delta x^*_(n^*) = \text{sign} \{a_n^* \} N\eta$, and $\Delta x^*_(n) = 0, \forall n \neq n^*$. Hence,

$$\text{AIF}(T_N, x, 1) = N |a_n^*|.$$
Hence,

\[
\text{AIF}(\psi, x, p) = \sum a_n \left(\frac{1}{p/(p-1)} (N)^{1/p} \right) \frac{1}{p} \left(\sum |a_n|^{p/(p-1)} \right)^{1/p} \frac{|a_n|}{\sum |a_n|^{p/(p-1)}} \frac{1}{p} \frac{1}{p} \left(\sum |a_n|^{p/(p-1)} \right)^{1/p}.
\]

(29)

When \(p = 2 \), this can be simplified to

\[
\text{AIF}(T_N, x, 2) = \frac{\sqrt{N} \sum_{n=1}^{N} a_n^2}{\sqrt{\sum_{n=1}^{N} a_n^2}} = \sqrt{N \sum_{n=1}^{N} a_n^2}.
\]

(30)

For example, for \(\alpha \)-trimmed estimator [3] defined by

\[
T_N^{\alpha}(x) = \frac{1}{N - 2\lfloor \alpha N \rfloor} \sum_{n=\lfloor \alpha N \rfloor + 1}^{N-\lfloor \alpha N \rfloor} x_{(n)},
\]

for a given parameter \(0 < \alpha < 1/2 \). For this \(\alpha \)-trimmed estimator, using (29), we obtain

\[
\text{AIF}(T_N^{\alpha}, x, p) = \frac{N^{1/p}}{(N - 2|\alpha N|)^{1/p}}.
\]

If \(a_n \)'s are chosen as (27), then (30) simplifies to

\[
\text{AIF}(T_N, x, 2) = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\frac{1}{N} \int_{(n-1)/N}^{n/N} h(t) dt \right)^2}
\]

\[
\geq \sqrt{\frac{1}{N} \int_{0}^{1} h(t) dt}^2
\]

\[
\geq 1,
\]

in which the first inequality is due to Jensen’s inequality, and both inequalities become equality when \(a_n = \int_{(n-1)/N}^{n/N} h(t) dt \) is a constant in \(n \).
VII. Numerical Examples

In this section, we provide numerical examples to illustrate results obtained.

We consider location estimation and illustrate the optimal estimator obtained in Theorem 2 for the case when f_0 is exponential random variable $f_0(x) = e^{-x}, x \geq 0$, hence f_θ is shifted exponential random variable $f_\theta(x) = e^{-(x-\theta)}$, $x \geq \theta$ and the goal is to estimate θ. As the exponential random variable has a unbounded support, choosing ψ' to be a constant, which minimizes AIF, will lead to an infinite IF. Hence, we use Theorem 2 to characterize the optimal ψ that minimizes AIF while satisfying the condition that $\text{IF} \leq \xi$.

For this particular class of distribution, the condition $\nu^* f_0(x) > \vartheta_1^* F_0(x) + \vartheta_2^*(1 - F_0(x))$ becomes $0 \leq x < a$ with the parameter a chosen as

$$e^{-a} = \frac{\vartheta_1^*}{\nu^* + \vartheta_1^* - \vartheta_2^*}.$$ \hfill (31)

Hence we have

$$\psi'(x) = \begin{cases} \nu^* + \vartheta_1^* - \vartheta_2^* - \vartheta_1^* e^x, & 0 \leq x < a; \\ 0, & \text{otherwise}, \end{cases}$$

for which the parameters $\nu^*, \vartheta_1^*, \vartheta_2^*$ are chosen to satisfy the conditions specified in Theorem 2. After tedious calculation, conditions (18) - (20) can be simplified to

$$(\nu^* + \vartheta_1^* - \vartheta_2^*)(1 - e^{-a}) - \vartheta_1^* a = 1,$$

$$\vartheta_1^*((\nu^* + \vartheta_1^* - \vartheta_2^*)(a - 1 + e^{-a}) - \vartheta_1^*(e^a - 1) + a \vartheta_1^* - \xi) = 0,$$

$$\vartheta_2^*((\nu^* + \vartheta_1^* - \vartheta_2^*)(1 - e^{-a}) - \vartheta_1^* a - \xi) = 0.$$

From here, we know that if $\xi > 1$, $\vartheta_2^* = 0$, using this fact along with (31), we have that the conditions are simplified to

$$\nu^* - a \vartheta_1^* = 1,$$

$$2a \vartheta_1^* + (a - 2) \nu^* = \xi,$$

$$\vartheta_2^* = 0.$$
Using these, we can express ν^* and ϑ_1^* in terms of a:

$$\nu^* = \frac{\xi + 2}{a},$$
$$\vartheta_1^* = \frac{\xi + 2 - a}{a^2}.$$

Finally, for any given $\xi > 1$, the value of a can be determined by (31), which is simplified to

$$e^{-a} = \frac{\vartheta_1^*}{\nu^* + \vartheta_1^* - \vartheta_2^*} = \frac{\xi + 2 - a}{(\xi + 1)a + \xi + 2}.$$ \hspace{1cm} (32)

![Fig. 2. The solution of a](image)

It is easy to check that, for any given $\xi > 1$, there is always a unique positive solution to (32). For example, Figure 2 illustrates the solution for a when $\xi = 3$. In this figure, the dotted curve is the right side of (32) and the solid curve is the left side of (32). From the figure, we know that these two curves have two intersections $a = 0$ and $a = 4.8$. With these parameters, we know that

$$\psi'(x) = \begin{cases}
1.0417 - 0.0087e^x, & 0 \leq x \leq 4.8; \\
0, & \text{otherwise},
\end{cases}$$ \hspace{1cm} (33)

hence the optimal ψ is

$$\psi'(x) = \begin{cases}
\xi, & x \geq 4.8; \\
1.0417x - 0.0087(e^x - 1) - 1, & 0 \leq x \leq 4.8.
\end{cases}$$ \hspace{1cm} (34)
Figure 3 illustrates the obtained $\psi(x)$ for the case with $\xi = 3$.

![Figure 3: Illustration of $\psi(x)$ for $\xi = 3$](image)

Fig. 3. ψ that minimizes AIF when $\text{IF} \leq 3$.

Figure 4 illustrates the tradeoff curve between AIF and IF. We obtain this curve by solving (32) and other parameters using different values of ξ. As we can see from the curve, as ξ increases, AIF decreases. Furthermore, the value of AIF converges to 1, the lower bound established in Section V-A1.

![Figure 4: Tradeoff between AIF and IF](image)

Fig. 4. Tradeoff between AIF and IF of location estimator for exponential random variables.
VIII. CONCLUSION

Motivated by recent data analytics applications, we have studied adversarial robustness of robust estimators. We have introduced the concept of AIF to quantify an estimator’s sensitivity to such adversarial attacks and have provided an approach to characterize AIF for given robust estimator. We have further designed optimal estimators that minimize AIF. From this characterization, we have identified a tradeoff between AIF and IF, and have designed estimators that strike a desirable tradeoff between these two quantities.

APPENDIX A

PROOF OF THEOREM 1

From (5), we know that T_N and x satisfy

$$\sum_{n=1}^{N} \psi(x_n, T_N) = 0.$$

Hence, we have

$$\frac{\partial}{\partial x_n} T_N = \frac{-\frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N}}{\sum_{n=1}^{N} \frac{\partial}{\partial \theta} [\psi]_{x=x_n, \theta=T_N}}. \tag{35}$$

Based on Taylor expansion, we have

$$T_N(x + \Delta x) - T_N(x) = \sum_{n=1}^{N} \Delta x_n \frac{\partial}{\partial x_n} T_N + \text{higher order terms.}$$

When η is small, the adversary can solve the following problem and obtain an $o(\eta)$ optimal solution

$$\min_{\Delta x} - \sum_{n=1}^{N} \Delta x_n c_n,$$

s.t. $||\Delta x||_p^p \leq N\eta^p, \tag{36}$

in which

$$c_n := \frac{\partial}{\partial x_n} T_N.$$

For $p = 1$, this is a linear programing problem, whose solution is simple. In particular, let $n^* = \arg \max_n \left| \frac{\partial}{\partial x_n} T_N \right|$, which is the same as $\arg \max_n \left| \frac{\partial}{\partial x} [\psi]_{x=x_n, \theta=T_N} \right|$ due to (35), it is easy to
check that we have
\[\Delta x^*_n = \text{sign} \left\{ \frac{\partial}{\partial x_n^*} T_N \right\} N \eta, \]
and \(\Delta x_n^* = 0, \forall n \neq n^* \). Hence,
\[
\text{AIF}(\psi, x, 1) = N \left| \frac{\partial}{\partial x_n^*} T_N \right| = \frac{N \frac{\partial}{\partial x} [\psi]_{x=x_n^*, \theta=T_N}}{\sum_{n=1}^{N} \frac{\partial}{\partial \theta} [\psi]_{x=x_n^*, \theta=T_N}}.
\]

For \(p > 1 \), (36) is a convex optimization problem. To solve this, we form Lagrange
\[
L(\Delta x, \lambda) = - \sum_{n=1}^{N} \Delta x_n c_n + \lambda \left(||\Delta x||_p^p - N \eta^p \right)
\]
The corresponding optimality conditions are:
\[
-c_n + \lambda^* p \text{sign}(\Delta x_n^*) ||\Delta x_n^*||_p^{p-1} = 0, \forall n \tag{37}
\]
\[
\lambda^* \geq 0,
\]
\[
\lambda^* (||\Delta x^*||_p^p - N \eta^p) = 0.
\]

From (37), we know that \(\lambda^* \neq 0 \), hence
\[
||\Delta x^*||_p^p = N \eta^p, \tag{38}
\]
and
\[
\text{sign}(\Delta x_n^*) ||\Delta x_n^*||_p^{p-1} = \frac{c_n}{\lambda^* p}. \tag{39}
\]

From (39) and the fact that \(\lambda^* p \) is positive, we know \(\text{sign}(\Delta x_n^*) = \text{sign}(c_n) \), and hence we have
\[
||\Delta x_n^*||_p^{p-1} = \frac{|c_n|}{\lambda^* p},
\]
which can be simplified further to
\[
\Delta x_n^* = \left(\frac{|c_n|}{\lambda^* p} \right)^{1/(p-1)} \text{sign}(c_n).
\]
Combining these with (38), we obtain the value of λ^*:

$$\lambda^* = \frac{1}{p} \left(\sum_{n=1}^{N} |c_n|^{p/(p-1)} \right)^{(p-1)/p} \left(\frac{N \eta^p}{\sum |c_n|^{p/(p-1)}} \right).$$

As the result, we have

$$\Delta x_n^* = \frac{|c_n|^{1/(p-1)}(N)^{1/p}}{N \sum |c_n|^{p/(p-1)}} \frac{\text{sign}(c_n)}{1/p} \eta.$$

Hence,

$$\text{AIF}(\psi, x, p) = \sum_{n=1}^{N} \frac{|c_n|^{1/(p-1)}(N)^{1/p}}{\sum |c_n|^{p/(p-1)}} \frac{\text{sign}(c_n)}{1/p}.$$

Using (35), we can further simplify the expression to

$$\text{AIF}(\psi, x, p) = \left(\frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial x_n} \left[\psi \right]_{x=x_n, \theta=T_N} \right)^{\frac{p-1}{p}} \left| \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \theta} \left[\psi \right]_{x=x_n, \theta=T_N} \right|.$$

APPENDIX B

PROOF OF THEOREM 2

As $\psi'(x) \geq 0$, we have $\mathbb{E}_{F_0}[\psi'(X)] > 0$, and $\sup_x |\psi(x)|$ is either $\psi(\infty)$ or $-\psi(-\infty)$. Hence for $p = 2$, the optimization problem (14) is equivalent to

$$\min \frac{\mathbb{E}_{F_0}[\psi'(X)]^2}{(\mathbb{E}_{F_0}[\psi'(X)])^2} \psi(-\infty) + \int_{-\infty}^{\infty} \psi'(x)dx \quad \text{s.t.} \quad \frac{\psi(-\infty)}{\mathbb{E}_{F_0}[\psi'(X)]} \leq \xi, \quad -\frac{\psi(-\infty)}{\mathbb{E}_{F_0}[\psi'(X)]} \leq \xi, \quad \psi(-\infty) + \mathbb{E}_{F_0} \left[\int_{-\infty}^{X} \psi'(t)dt \right] = 0, \quad \psi' \geq 0.$$
As the objective function does not involve $\psi(-\infty)$, we can first solve

$$\min \frac{\mathbb{E}_{F_0}[\psi'(X)^2]}{(\mathbb{E}_{F_0}[\psi'(X)])^2},$$

s.t.

$$-\mathbb{E}_{F_0}\left[\int_{-\infty}^{X} \psi'(t) \, dt \right] + \int_{-\infty}^{\infty} \psi'(x) \, dx \leq \xi,$$

$$\mathbb{E}_{F_0}\left[\int_{-\infty}^{X} \psi'(t) \, dt \right] \leq \xi,$$

$$\psi'(x) \geq 0.$$

After obtaining the solution, we can simply set $\psi(-\infty) = -\mathbb{E}_{F_0}\left[\int_{-\infty}^{X} \psi'(t) \, dt \right]$ to make ψ Fisher consistent.

To simplify the notation, in the remainder of the proof, we will use $g(x)$ to denote $\psi'(x)$. We now further simplify the optimization problem. First, we have

$$\mathbb{E}_{F_0}\left[\int_{-\infty}^{X} g(t) \, dt \right] = \int_{-\infty}^{\infty} f_0(x) \left[\int_{-\infty}^{x} g(t) \, dt \right] \, dx$$

$$= \int_{-\infty}^{\infty} g(t) \left[\int_{t}^{\infty} f_0(x) \, dx \right] \, dt$$

$$= \int_{-\infty}^{\infty} g(t) [1 - F_0(t)] \, dt. \quad (40)$$

Coupled with the fact that $g(x) \geq 0$ and $f_0(x) \geq 0$, the optimization above is equivalent to

$$\min \frac{\int_{-\infty}^{\infty} g^2(x) f_0(x) \, dx}{\left(\int_{-\infty}^{\infty} g(x) f_0(x) \, dx \right)^2},$$

s.t.

$$\int_{-\infty}^{\infty} g(x) F_0(x) \, dx \leq \xi \int_{-\infty}^{\infty} g(x) f_0(x) \, dx,$$

$$\int_{-\infty}^{\infty} g(x) [1 - F_0(x)] \, dx \leq \xi \int_{-\infty}^{\infty} g(x) f_0(x) \, dx,$$

$$g(x) \geq 0.$$

It is clear that the optimization problem is scale invariant in the sense that if $g^*(x)$ is a solution to this problem, then for any positive constant c, $cg^*(x)$ is also a solution to this problem. As a result, without loss of generality, we can assume $\int_{-\infty}^{\infty} g(x) f_0(x) \, dx = 1$. Using this, we can
further simplify the optimization problem to

\[
\begin{align*}
\min \quad & \frac{1}{2} \int_{-\infty}^{\infty} g^2(x) f_0(x) \, dx, \\
\text{s.t.} \quad & \int_{-\infty}^{\infty} g(x) f_0(x) \, dx = 1, \\
& \int_{-\infty}^{\infty} g(x) F_0(x) \, dx \leq \xi, \\
& \int_{-\infty}^{\infty} g(x) [1 - F_0(x)] \, dx \leq \xi, \\
& g(x) \geq 0.
\end{align*}
\]

To solve this convex functional minimization problem, we first form the Lagrangian function

\[
\mathcal{L} = \frac{1}{2} \int_{-\infty}^{\infty} g^2(x) f_0(x) \, dx + \nu \left(- \int_{-\infty}^{\infty} g(x) f_0(x) \, dx + 1 \right) - \lambda(x) g(x)
\]

\[
+ \vartheta_1 \left(\int_{-\infty}^{\infty} g(x) F_0(x) \, dx - \xi \right) + \vartheta_2 \left(\int_{-\infty}^{\infty} g(x) [1 - F_0(x)] \, dx - \xi \right).
\]

Let \(H = \frac{1}{2} g^2(x) f_0(x) - \nu g(x) f_0(x) + \vartheta_1 g(x) F_0(x) + \vartheta_2 g(x) (1 - F_0(x)) - \lambda(x) g(x) \). As no derivative \(g'(x) \) is involved in \(H \), the optimality condition Euler-Lagrange equation [9]

\[
\frac{\partial H}{\partial g} - \frac{d}{dx} \left(\frac{\partial H}{\partial g'} \right) = 0
\]

simplifies to

\[
g^*(x) f_0(x) - \nu^* f_0(x) + \vartheta_1^* (1 - \vartheta_2^*) F_0(x) - \lambda^*(x) = 0,
\]

in which the parameters \(\vartheta_1^* \geq 0, \vartheta_2^* \geq 0, \lambda^*(x) \geq 0 \) satisfy [8]

\[
\begin{align*}
\int_{-\infty}^{\infty} g^*(x) f_0(x) \, dx &= 1, \\
\vartheta_1^* \left(\int_{-\infty}^{\infty} g^*(x) F_0(x) \, dx - \xi \right) &= 0, \\
\vartheta_2^* \left(\int_{-\infty}^{\infty} g^*(x) [1 - F_0(x)] \, dx - \xi \right) &= 0, \\
\lambda^*(x) g(x) &\geq 0.
\end{align*}
\]

From (41), for \(x \) in the range of \(f_0(x) \), we have

\[
g^*(x) = \frac{\lambda^*(x) + \nu^* f_0(x) - \vartheta_2^* - (\vartheta_1^* - \vartheta_2^*) F_0(x)}{f_0(x)}.
\]
Combining this with the condition (42), we know that if \(\nu^* f_0(x) - \vartheta_2^* - (\vartheta_1^* - \vartheta_2^*) F_0(x) > 0 \), then \(\lambda^*(x) = 0 \). On the other hand, if \(\nu^* f_0(x) - \vartheta_2^* - (\vartheta_1^* - \vartheta_2^*) F_0(x) < 0 \), then \(g^*(x) = 0 \). As a result, we have

\[
 g^*(x) = \begin{cases}
 \nu^* - \frac{\vartheta_2^* + (\vartheta_1^* - \vartheta_2^*) F_0(x)}{f_0(x)}, & \nu^* f_0(x) > \vartheta_1^* F_0(x) + \vartheta_2^* (1 - F_0(x)); \\
 0, & \text{otherwise,}
\end{cases}
\]

which completes the proof.

APPENDIX C

PROOF OF THEOREM 3

First of all, minimizing (21) is same as solving

\[
\min \frac{\mathbb{E}_{F_1} \left[\psi'(X)^2 \right]}{\left(\mathbb{E}_{F_1} [X \psi'(X)] \right)^2},
\]

s.t.

\[
\mathbb{E}_{F_1} [\psi(X)] = \psi(-\infty) + \mathbb{E}_{F_1} \left[\int_{-\infty}^{x} \psi'(t) dt \right] = 0,
\]

in which the condition \(\mathbb{E}_{F_1} [\psi(X)] = 0 \) ensures that the estimator is Fisher consistent.

As \(\psi(-\infty) \) does not appear in the objective function, we can solve (43) without the constraint (44) first. After that, we can simply set

\[
\psi(-\infty) = -\mathbb{E}_{F_1} \left[\int_{-\infty}^{X} \psi'(t) dt \right]
\]

so that the constraint (44) will be satisfied. Furthermore, similar to the proof of Theorem 2, to simplify the notation, we will use \(g(x) \) to denote \(\psi'(x) \). It is clear from (43) that the cost function is scale-invariant. Hence, without loss of generality, we can assume \((\mathbb{E}_{F_1} [X g(X)])^2 = 1 \), for which we can further focus on \(\mathbb{E}_{F_1} [X g(X)] = 1 \). Combining all these together, the optimization problem can be converted to

\[
\min \frac{1}{2} \int_{-\infty}^{\infty} g^2(x) f_1(x) dx,
\]

s.t.

\[
\int_{-\infty}^{\infty} x g(x) f_1(x) dx = 1.
\]

For this convex calculus of variations problem, we form Lagrange function

\[
\mathcal{L} = \int_{-\infty}^{\infty} \frac{1}{2} g^2(x) f_1(x) dx + \nu \left(-\int_{-\infty}^{\infty} x g(x) f_1(x) dx - 1 \right).
\]
The corresponding Euler-Lagrange equation can be simplified to
\[g^*(x)f_1(x) - \nu^*xf_1(x) = 0, \quad (45) \]
and the optimal value of \(\nu^* \) is selected to satisfy the condition
\[\int_{-\infty}^{\infty} xg^*(x)f_1(x)dx = 1. \quad (46) \]
From (45), we know that in the range of \(X \) where \(f_1(x) > 0 \), \(g^*(x) = \nu^*x \). Plugging this into (46), we obtain
\[\nu^* = \frac{1}{\int_{-\infty}^{\infty} x^2f_1(x)dx}. \]
As the result, for \(x \) in the range of \(f_1(x) \), the optimal \(g^*(x) \) is
\[g^*(x) = \frac{x}{\mathbb{E}_{F_1}[X^2]}, \]
and \(\psi(-\infty) = -\mathbb{E}_{F_1}[\int_{-\infty}^{X} g(t)dt] \).

APPENDIX D

PROOF OF THEOREM 4

Following the same strategy as those in the proof of Theorem 2, we can first solve the following problem

\[
\begin{align*}
\min & \quad \frac{\mathbb{E}_{F_1}[\psi'(X)^2]}{\left(\mathbb{E}_{F_1}[X\psi'(X)]\right)^2}, \\
\text{s.t.} & \quad -\mathbb{E}_{F_1}\left[\int_{-\infty}^{X} \psi'(t)dt\right] + \int_{-\infty}^{\infty} \psi'(t)dt \leq \xi \left|\mathbb{E}_{F_1}[X\psi'(X)]\right|, \\
& \quad \mathbb{E}_{F_1}\left[\int_{-\infty}^{X} \psi'(t)dt\right] \leq \xi \left|\mathbb{E}_{F_1}[X\psi'(X)]\right|, \\
& \quad \psi'(x) \geq 0,
\end{align*}
\]
and then set \(\psi(-\infty) = -\mathbb{E}_{F_1}\left[\int_{-\infty}^{X} \psi'(t)dt\right] \) to satisfy the Fisher consistent constraint (24).

Now, we consider two different cases depending on whether \(\mathbb{E}_{F_1}[X\psi'(X)] \) is positive or negative. In the following, to simplify notation, we will use \(g(x) \) to denote \(\psi'(x) \).

We will solve the case with \(\mathbb{E}_{F_1}[Xg(X)] > 0 \) in detail. The case \(\mathbb{E}_{F_1}[Xg(X)] < 0 \) can be solved in the similar manner. With \(\mathbb{E}_{F_1}[Xg(X)] > 0 \), the optimization problem is same as
\[
\min \frac{\mathbb{E}_{F_1}[g^2(X)]}{(\mathbb{E}_{F_1}[Xg(X)])^2},
\]
\[
s.t. \quad -\mathbb{E}_{F_1}\left[\int_{-\infty}^{X} g(t)dt \right] + \int_{-\infty}^{\infty} g(t)dt \leq \xi \mathbb{E}_{F_1}[Xg(X)],
\]
\[
\mathbb{E}_{F_1}\left[\int_{-\infty}^{X} g(t)dt \right] \leq \xi \mathbb{E}_{F_1}[Xg(X)],
\]
\[
g(x) \geq 0.
\]

Similar to the optimization problems in Theorem 2 and 3, the optimization problem is scale-invariant, and hence without loss of generality, we can focus on \(\mathbb{E}_{F_1}[Xg(X)] = 1 \). Furthermore, similar to (40), we have \(\mathbb{E}_{F_1}\left[\int_{-\infty}^{X} g(t)dt \right] = \int_{-\infty}^{\infty} g(t)\left[1 - F_1(t)\right]dt \). The problem is then converted to

\[
\min \int_{-\infty}^{\infty} g^2(x)f_1(x)dx,
\]
\[
s.t. \quad \int_{-\infty}^{\infty} xg(x)f_1(x)dx = 1,
\]
\[
\int_{-\infty}^{\infty} g(x)F_1(x)dx \leq \xi,
\]
\[
\int_{-\infty}^{\infty} g(x)[1 - F_1(x)]dx \leq \xi,
\]
\[
g(x) \geq 0.
\]

To solve this convex functional minimization problem, we first form the Lagrangian function

\[
\mathcal{L} = \frac{1}{2} \int_{-\infty}^{\infty} g^2(x)f_1(x)dx + \nu \left(-\int_{-\infty}^{\infty} xg(x)f_1(x)dx + 1 \right) - \lambda(x)g(x)
\]
\[
+ \vartheta_1 \left(\int_{-\infty}^{\infty} g(x)F_1(x)dx - \xi \right) + \vartheta_2 \left(\int_{-\infty}^{\infty} g(x)\left[1 - F_1(x)\right]dx - \xi \right).
\]

Let \(F = \frac{1}{2}g^2(x)f_1(x) - \nu xg(x)f_1(x) + \vartheta_1 g(x)F_1(x) + \vartheta_2 g(x)\left(1 - F_1(x)\right) - \lambda(x)g(x) \). As no derivative \(g'(x) \) is involved in \(F \), the Euler-Lagrange equation

\[
\frac{\partial F}{\partial g} - \frac{d}{dx} \left(\frac{\partial F}{\partial g'} \right) = 0
\]

simplifies to

\[
g^*(x)f_1(x) - \nu^*xf_1(x) + \vartheta_1^* + (\vartheta_1^* - \vartheta_2^*)F_1(x) - \lambda^*(x) = 0,
\]

(47)
in which the parameters $\vartheta_1^* \geq 0$, $\vartheta_2^* \geq 0$, $\lambda^*(x) \geq 0$ satisfy

\[
\int_{-\infty}^{\infty} x g^*(x) f_1(x) \, dx = 1,
\]
\[
\vartheta_1^* \left(\int_{-\infty}^{\infty} g^*(x) F_1(x) \, dx - \xi \right) = 0,
\]
\[
\vartheta_2^* \left(\int_{-\infty}^{\infty} g^*(x) [1 - F_1(x)] \, dx - \xi \right) = 0,
\]
\[
\lambda^*(x) g^*(x) \geq 0.
\]

(48)

From (47), for those x with $f_1(x) > 0$, we have

\[
g^*(x) = \frac{\lambda^*(x) + \nu^* x f_1(x) - \vartheta_2^* - (\vartheta_1^* - \vartheta_2^*) F_1(x)}{f_1(x)}.
\]

Combining this with the condition (48), we know that if $\nu^* x f_1(x) - \vartheta_2^* - (\vartheta_1^* - \vartheta_2^*) F_1(x) > 0$, then $\lambda^*(x) = 0$. On the other hand, if $\nu^* x f_1(x) - \vartheta_2^* - (\vartheta_1^* - \vartheta_2^*) F_1(x) < 0$, then $g^*(x) = 0$. As a result, we have

\[
g^*(x) = \begin{cases}
\nu^* x - \frac{\vartheta_2^* + (\vartheta_1^* - \vartheta_2^*) F_1(x)}{f_1(x)}, & \nu^* x f_1(x) > \vartheta_1^* F_1(x) + \vartheta_2^*(1 - F_1(x)); \\
0, & \text{otherwise}.
\end{cases}
\]

REFERENCES

