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Analysis of KNN Density Estimation
Puning Zhao and Lifeng Lai

Abstract

We analyze the `α and `∞ convergence rates of k nearest neighbor density estimation method. Our analysis
includes two different cases depending on whether the support set is bounded or not. In the first case, the
probability density function has a bounded support. We show that if the support set is known, then the kNN
density estimator is minimax optimal under both `α and `∞ criteria. If the support is unknown, the kNN density
estimator is still minimax optimal under `1, but is suboptimal under `α for α > 1, and not consistent under
`∞. In the second case, the support is unbounded and the probability density function is smooth everywhere.
Moreover, the Hessian is assumed to decay with the density values. For this case, our result shows that the `∞
error of kNN density estimation is nearly minimax optimal. The `α error for the original kNN density estimator
is not consistent. To address this issue, we design a new adaptive kNN estimator, which can select different
k for different samples. Using this adaptive estimator, the `α bound is minimax optimal. For comparison, we
show that the popular kernel density estimator is not minimax optimal for this case.

Index Terms

Density estimation, KNN, Functional approximation

I. INTRODUCTION

Nonparametric density estimation, whose goal is to estimate the probability density function (pdf)
based on a finite set of identically and independently distributed (i.i.d) samples, is widely used
in statistics and machine learning. For example, nonparametric density estimation can be used in
mode estimation [1], nonparametric classification [2, 3], Monte Carlo computational methods [4], and
clustering [5–7], etc. Common methods for the nonparametric density estimation include histogram
method, kernel method and k-Nearest Neighbor (kNN) method [8–11], etc. Among these approaches,
the kernel and kNN methods are popular ones. The kernel method [1, 12] estimates the density
by calculating the convolution of the empirical distribution with a symmetric and normalized kernel
function. The kNN method [13] estimates the density value at point x based on the distance between
x and its k-th nearest neighbor. A large kNN distance indicates that the density is usually small, and
vice versa. Compared with other methods, the kNN density estimation method has several advantages.
It is purely nonparametric and hence can flexibly adapt to any underlying pdf, as long as the pdf is
continuous. Moreover, the kNN method is convenient to use and has desirable time complexity. The
parameter tuning is simple since the only parameter we need to adjust is k.

Depending on the purpose of the density estimation, we may use different criteria to evaluate an
estimator’s performance. In some applications, we use the uniform bound, i.e. ||f̂ − f ||∞, in which f
is the real pdf and f̂ is the estimated pdf. For example, if we hope to find the mode, which is the point
with maximum pdf [1], then the accuracy guarantee relies heavily on the supremum estimation error.
For other purposes, such as nonparametric classification and bootstrapping, it may be better to consider
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the estimation error in the whole domain, instead of only considering its supremum value. For example,
in nonparametric classification with Bayes rule, the excess risk of classification can be bounded with
the `1 error of the density estimation. The convergence properties of the kernel density estimation
method under different criteria have already been discussed in many previous literatures, see [14–18]
and references therein. However, the understanding of the convergence properties of the kNN method is
less complete, and still needs further analysis. In [19], it was shown that the kNN method is uniformly
consistent if the pdf is smooth everywhere. However, the convergence rate is still unknown. [20]
derived the uniform convergence rate of the kNN density estimate for one dimensional distributions,
under the condition that the density is bounded away from zero and the support is a continuous closed
interval. The analysis in [20] is not suitable for other commonly seen pdfs, especially for those with
high dimensions, and those with unbounded supports such as Gaussian distributions. Therefore, it is
important to extend the analysis of the kNN density estimators to other types of distributions.

In this paper, we analyze the `α with α ≥ 1 and uniform convergence rate of the kNN density
estimator for a broad range of distributions. To the best of our knowledge, this is the first attempt to
analyze the `α and uniform convergence rates of the kNN density estimator in general. Our analysis
involves two different cases, depending on whether the support is bounded or not. For both cases, our
analysis includes an upper bound of the estimation error of the kNN method, and a minimax lower
bound on the performance of all methods. The analysis of both upper and lower bounds is based on
some assumptions on the smoothness of the pdf, as well as an additional assumption on the shape of
the boundary or the strength of the tail.

In the first case, the pdf has bounded support. To begin with, we analyze distributions whose pdf is
bounded away from zero. For example, uniform distribution and truncated Gaussian distribution belong
to this case. If the shape of the support set is unknown, the estimation error near the boundary of the
support will be relatively large. We show that the `α error converges with the minimax optimal rate
for α = 1, and the error due to the boundary effect will not make the convergence rate of the `1 error
worse. However, the impact of the boundary effect becomes more serious as α increases. Moreover,
the `∞ error does not converge to zero. This is inevitable since without the knowledge of the support
set, it is impossible to design a density estimator that ensures uniform consistency. If we have full
knowledge of the shape of the support set and the boundary, then we can slightly modify the kNN
estimator to correct the estimation bias at the region near the boundary. With the boundary correction,
we show that the `∞ error converges to zero and the convergence rate is nearly minimax optimal. We
remark that, for the kernel density estimator, there are also some boundary correction methods based
on data reflection and transformation [21, 22], but the `α or `∞ rates of these methods have not been
established. We then analyze distributions whose pdf can approach zero arbitrarily close. In this case,
the distribution can have both boundary and tail, which means that the pdf drops to zero sharply at
some locations, and go smoothly to zero at other locations. For this case, it is hard for the kNN density
estimator to find an appropriate k for every locations. We derive an upper and lower bound of the `α
and `∞ error of the kNN density estimator.

In the second case, the pdf is smooth everywhere, and can approach zero arbitrarily close. For
example, Gaussian distributions belong to this case. Since the pdf is smooth everywhere, boundary
correction is no longer necessary. However, the density estimation is no longer accurate at the tail of
the distribution. The reason is that f̂(x) can actually be viewed as an estimate of the average pdf in the
neighborhood of x with the radius equal to the k nearest neighbor distance of x, hence the estimation
bias depends on whether the pdf in such neighborhood is sufficiently uniform. If f(x) is very low, then
the kNN distance and thus the size of the neighborhood will be large. As a result, the density in the
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neighborhood of x is far from uniform, and thus the average pdf in the neighborhood of x can deviate
from f(x) significantly, which will cause a large estimation bias. If the criterion is the `∞ error, we do
not need to worry about the bias occurring at the tail of the distribution, since both f̂(x) and f(x) are
small. Therefore, we can just use a simple kNN estimator and derive its convergence rate. However,
if we use the `α error as the performance criterion, then we need to consider the estimation error
over the whole support, instead of only considering its supremum value. As a result, the tail effect
is serious and the `α error does not converge to zero. To address this issue, we design an adaptive
kNN estimator and derive the convergence rate of its `α error. Our analysis shows that under the `α
criterion, if the first and second order derivatives of the pdf decay simultaneously with the pdf itself,
then the adaptive kNN estimator is minimax optimal, and is significantly better than the kernel density
estimator. This result appears to contradict with previous studies such as [20], which claims that the
kNN estimator performs worse than the kernel density estimator since it does not handle the tail well.
However, the difference is that previous analysis is based on the assumption on the uniform bound of
the Hessian, while we assume that the distribution has decaying gradient and Hessian, which holds for
many common distributions, such as Gaussian, exponential and Cauchy distributions etc.

The remainder of this paper is organized as follows. In Section II, we provide a simple description of
the kNN density estimator. The convergence properties of the kNN density estimator for distributions
of the first and the second cases are discussed in Section III and Section IV, respectively. We then
provide some numerical examples in Section V. Finally, in Section VI, we offer concluding remarks.

II. KNN DENSITY ESTIMATOR

Consider a distribution with an unknown pdf f : Rd → R. There are N i.i.d samples, X1, . . . ,XN .
Our goal is to estimate the pdf f using these samples. For each point x ∈ S, in which S is the support
set of the random variable, denote ρ(x) as the distance between x and its k-th nearest neighbor among
{X1, . . . ,XN}, in which k ≥ 2. Then we construct the kNN density estimator as follows:

f̂(x) =
k − 1

NV (B(x, ρ(x)))
, (1)

in which B(x, ρ(x)) is the ball with center at x and radius ρ(x), while V (B(x, ρ(x))) denotes the
volume of B(x, ρ(x)).

An intuitive explanation of (1) is that the estimator constructed in (1) is approximately unbiased.
Denote P (B(x, ρ(x))) as the probability mass in B(x, ρ(x)), then from order statistics [23], we know
that P (B(x, ρ(x))) follows Beta distribution Beta(k,N − k + 1). As a result, we have

E
[

1

P (B(x, ρ(x)))

]
=

N

k − 1
, (2)

therefore with approximation P (B(x, ρ(x))) ≈ f(x)V (B(x, ρ(x))),

E[f̂(x)] ≈ k − 1

N
E
[

f(x)

P (B(x, ρ(x)))

]
= f(x). (3)

If the pdf is uniform in B(x, ρ(x)), then P (B(x, ρ(x))) = f(x)V (B(x, ρ(x))). In this case, the first
step in (3) holds with equal sign, which means that the kNN density estimator (1) is unbiased at x.
Note that it is impossible that P (B(x, ρ(x))) = f(x)V (B(x, ρ(x))) holds uniformly for all x and ρ(x).
In particular, the difference between the average pdf in B(x, ρ(x)) and the pdf at its center x comes
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from two sources. Firstly, B(x, ρ(x)) may exceed the boundary of the support, thus the average pdf
is lower than f(x). Secondly, even if B(x, ρ(x)) is a subset of the support set, the pdf in B(x, ρ(x))
may not be uniform. Both sources are considered in our analysis.

Our analysis includes the bound of the estimation error under both `α and `∞ criteria. The `α error
for α ≥ 1 is defined as ∥∥∥f̂ − f∥∥∥

α
=

(∫
S

|f̂(x)− f(x)|αdx
) 1

α

,

and the `∞ error is defined as ∥∥∥f̂ − f∥∥∥
∞

= sup
x∈S
|f̂(x)− f(x)|.

If k is chosen properly, both the `α and `∞ errors of the kNN estimator (or slightly modified kNN
estimator, as will be explained in details in the sequel) will go to zero as the number of samples
N increases. In this paper, we will analyze the convergence rates at which these errors converge to
zero for two different types of distributions: distributions with bounded supports and distributions with
unbounded supports.

III. DISTRIBUTIONS WITH BOUNDED SUPPORT

In this section, we analyze the convergence rate of the kNN density estimator for distributions that
have bounded supports. In particular, we assume that f(x) > 0 only for x ∈ S, in which S ⊂ Rd is a
bounded set. We will analyze two different cases: 1) pdfs that are bounded away from zero; 2) pdfs
that are not bounded away from zero.

For the case where the pdfs are bounded away from zero, the analysis is based on the following
assumption.

Assumption 1. Assume that the following conditions hold:
(a) f is upper bounded, and is also bounded away from zero, i.e. there exist two constants m and

M , such that m ≤ f(x) ≤M for all x ∈ S;
(b) f is L-Lipschitz, i.e. for all x,x′ ∈ S,

|f(x)− f(x′)| ≤ L ‖x− x′‖ ; (4)

(c) The surface area (or Hausdorff measure) of S is no more than CS .

In Assumption 1, we assume in (a) that the pdf is both bounded above and is also bounded away
from zero. (b) bounds the gradient of the pdf, which can decide the accuracy of the approximation in
(3). It would be tempting to consider some more general smoothness classes for f . For example, some
distributions may be second order continuous, which means that both ‖∇f‖ and ‖∇2f‖ is bounded
above. However, with the standard kNN algorithm, the `∞ convergence rate will not be further improved
comparing with only assuming the bounded gradient. The reason is that we are bounding the supremum
of the estimation error, which usually happens at the region near the boundary of the support of the
distribution. If we use the `1 criterion instead, then it is possible that the convergence rate can be
improved for distributions with higher smoothness level. However, for simplicity, we only assume that
f is Lipschitz here. Moreover, in (c), we assume the boundedness of the surface area in (c). This
assumption is important because it restricts the volume of the region near the boundary, and is thus
crucial to bound the estimation error due to the boundary effect.
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A. `α bound
To begin with, we show the convergence rate of the `α error for distributions with bounded supports.

The result is shown in Theorem 1. Throughout the paper, notation a . b means that there exists a
constant C such that a ≤ Cb. a & b is defined in a similar manner.

Theorem 1. Under Assumption 1, the kNN density estimator (1) satisfies the following bound:

E
[∥∥∥f̂ − f∥∥∥

α

]
. C

1
α
S

(
k

N

) 1
αd

+ k−
1
2 . (5)

Moreover, define ΣA as the set of all distributions with support sets that satisfy Assumption 1. If L,M
are sufficiently large and m is sufficiently small, then

inf
f̂

sup
f∈ΣA

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−

1
d+2 + C

1
α
S N

− 1
αd . (6)

Proof. Please see Appendix A for details.

In Theorem 1, the upper bound (5) can be proved by bounding the bias due to the two sources
mentioned above, including the boundary bias and the bias caused by the local nonuniformity of the
pdf. After that, the random estimation error f̂ − E[f̂ ] can be bounded using techniques from order
statistics [23]. The detailed proof is shown in Appendix A. The lower bound (6) can be shown simply
by standard minimax analysis techniques in [24].

Comparing the upper bound (5) and the minimax lower bound in (6), it can be observed that if
k ∼ N2/(d+2), then the convergence rate of the estimation error of the kNN density estimator under `1

is minimax optimal. This result indicates that for the `1 bound, the boundary bias does not make the
convergence rate of the kNN density estimation worse, even if the support is unknown and boundary
correction methods have not been implemented. An intuitive explanation is that with the increase of
sample size N , the kNN distances ρ(x) becomes smaller, hence the probability that B(x, ρ(x)) exceeds
the boundary of the support becomes lower, and correspondingly, the convergence rate of the bias due
to the boundary effect is the same as that due to the local nonuniformity of the density. As a result,
the `1 error performance of the kNN density estimator is not seriously affected by the boundary effect.

However, as α increases, the kNN estimator becomes suboptimal even if we select the best k
to minimize the right hand side of (5). An intuitive explanation is that kNN method is not good at
estimating the density near the boundary, since when the k nearest neighbor distance of a point exceeds
the boundary, the estimated pdf will be lower than the ground truth. With the increase of α, the overall
error under `α depends more and more on the region in which |f̂(x) − f(x)| is high. Therefore, the
kNN estimator is no longer minimax optimal under `α with α > 1.

Furthermore, we would like to remark that (6) can be improved if the Lipschitzness of f holds for
the entire Rd, which means that the sharp boundary is replaced by a smooth one, such that the density
decays to zero continuously.

B. `∞ bound
From (5) and (6), it can be observed that with the increase of α, the convergence rates of both the

upper bound of `α error of kNN method and the minimax lower bound become slower. If α → ∞,
these two bounds do not converge to zero. The reason is that if x is near the boundary, on which
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f(x) changes sharply, the approximation in (3) does not hold and the bias can be large, and the effect
of such bias is crucial if we use `∞ error. Note that the minimax lower bound in (6) has indicated
that without the knowledge of support set S, we can not find a method such that `∞ error converges
to zero. Therefore, we now assume that the support set S is known to us, and then modify the kNN
estimator by boundary correction.

Our modified kNN method is designed as following:

f̂BC(x) =
k − 1

NVS(B(x, ρ(x)))
, (7)

in which f̂BC means the boundary corrected estimator, and VS(B(x, ρ(x))) = V (B(x, ρ(x)) ∩ S).

Theorem 2. Under Assumption 1, if the support S is known, using the boundary corrected estimator
(7), with probability at least 1− ε, the `∞ bound satisfies∥∥∥f̂BC − f∥∥∥

∞
.

(
k

N

) 1
d

+ k−
1
2

√
ln
N

ε
. (8)

Moreover, define ΣA as the set of all distributions with arbitrary support sets that satisfy Assumption
1, and define ΣA(S) as a subset of ΣA, such that all distributions in ΣA(S) have a common support
S. The difference between ΣA and ΣA(S) is that the support of the latter one is fixed. If L,M,H are
sufficiently large and m is sufficiently small, then

inf
f̂

sup
f∈ΣA

E
[∥∥∥f̂ − f∥∥∥

∞

]
& 1; (9)

inf
f̂

sup
f∈ΣA(S)

E
[∥∥∥f̂ − f∥∥∥

∞

]
&

(
lnN

N

) 1
d+2

. (10)

Proof. (10) was proved in [25]. For (8) and (9), please see Appendix B for detailed proof.

In Theorem 2, (8) provides an upper bound of the boundary corrected kNN density estimator (7).
For the proof of (8), we use the following steps. Firstly, we construct some grid points in the support.
Then we find the uniform bound of estimation error among these grid points. Finally, we generalize
the uniform bound among finite number of grid points to the whole space. We let the number of grid
points increase with the number of samples, so that the extra estimation error due to the generalization
is not large. The detailed proof is shown in Appendix B. Moreover, (9) and (10) provide the minimax
lower bound of the `∞ error with unknown and known support set, respectively. (9) can be shown by
simply using Le Cam’s lemma [24], while (10) can be proved easily by standard minimax analysis
[24]. We provide a simple proof of (9) at the end of Appendix B, and omit the detailed proof of (10)
for simplicity. According to (9), if the support set S is unknown, then it is not possible to construct an
estimator with the `∞ error converging to zero. If the support set is known, then the minimax lower
bound becomes (10). Comparing with (8), it can be observed that if k ∼ N2/(d+2)(lnN)d/(d+2), then
the kNN density estimator with boundary correction (7) is exactly minimax rate optimal, which means
that the upper and lower bounds match including the logarithm factor.

We then have the following remarks.

Remark 1. The convergence rate derived in Theorem 2 appears to be slower than the result in [20].
In particular, [20] assumes that the second order derivative of f exists and is bounded, then its eq.(k2)
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and eq.(7) show that it is possible to select an appropriate k, so that the convergence rate can be
made faster. However, the analysis in [20] does not take the boundary effect into consideration. In fact,
using similar techniques in Theorem 2, we can show that the uniform convergence rate of the kNN
density estimator for distributions with bounded support does not improve even if the second order
derivative of f exists and is bounded, since the boundary bias is actually dominant in this case.

Remark 2. Recall that for `α bound, we assume that the support S is unknown and use the original
kNN estimator. For `∞ bound, we assume that S is known, and use the boundary corrected estimator.
We would like to remark that if the criterion is `α and S is known, then

inf
f̂

sup
f∈ΣA(S)

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−

1
d+2 . (11)

Moreover, if we still use boundary corrected estimator (7), then

E
[∥∥∥f̂ − f∥∥∥

α

]
.

(
k

N

) 1
d

+ k−
1
2 . (12)

(11) and (12) can be proved by just following steps in Appendix A, in which the boundary effect is not
considered. We omit the detailed proof here. From these equations, we see that if we set k ∼ N2/(d+2)

the upper and lower bound match.

We now consider the case where pdfs are not bounded away from zero. In particualr, in Assumption
1 (a), we have assumed that f(x) is lower bounded by m. If this assumption does not hold, then the
kNN density estimator is still consistent but the convergence rate will be slower. In particular, we have

E
[∥∥∥f̂ − f∥∥∥

α

]
.

(
k

N

) 1
d+1

+ C
1
α
S

(
k

N

) 1
αd

+ k−
1
2 , (13)

sup
f∈ΣA

E
[∥∥∥f̂ − f∥∥∥

α

]
&

(
k

N

) 1
d+1

+ C
1
α
S

(
k

N

) 1
αd

+ k−
1
2 , (14)

Moreover, with probability 1− ε,

E
[∥∥∥f̂BC − f∥∥∥

∞

]
.

(
k

N

) 1
d+1

+ k−
1
2

√
ln
N

ε
, (15)

sup
f∈ΣA

E
[∥∥∥f̂BC − f∥∥∥

∞

]
&

(
k

N

) 1
d+1

+ k−
1
2 . (16)

The minimax lower bound (6) still holds. The proof can be found in Appendix C.
This suggests that for bounded distribution whose pdf is not bounded away from zero, there exists

some gap between the convergence rate of kNN density estimator and the minimax lower bound. Note
that since the density does not have a lower bound, the kNN method can not achieve the best bias
and variance tradeoff simultaneously at the region with high density and that with low density. This
explains the gap between the kNN method and the minimax lower bound.

We now summarize our results for distributions with bounded support in Table I, in which we
compare the convergence rates of the kNN density estimator with the minimax lower bound for various
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cases. For simplicity, we only list the convergence rate under the condition that k has been tuned to
optimize the convergence rate. The value in the table is δ if the convergence rate is Õ(N−δ), which
means that we ignore the logarithm factors. Moreover, value 0 indicates that the bound does not
converge. The ‘Unknown S’ column shows the results of the original kNN estimator (1), while the
‘Known S’ column shows the results of the boundary corrected kNN estimator (7), in which the latter
requires the knowledge of support S.

Assume f(x) ≥ m Do not assume f(x) ≥ m
Unknown S Known S Unknown S Known S

kNN, `α 1
αd+2

1
d+2 min

{
1
d+3 ,

1
αd+2

}
1
d+3

Minimax, `α min
{

1
d+2 ,

1
αd

}
1
d+2 min

{
1
d+2 ,

1
αd

}
1
d+2

kNN, `∞ 0 1
d+2 0 1

d+3

Minimax, `∞ 0 1
d+2 0 1

d+2

TABLE I: Convergence rates of the kNN density estimator and the minimax lower bound for various
types of distributions with bounded support.

IV. KNN DENSITY ESTIMATOR FOR DISTRIBUTIONS WITH UNBOUNDED SUPPORT

In this section, we investigate the `α and uniform convergence of the kNN density estimator for
distributions that are smooth everywhere and have unbounded support. For these distributions, the
pdf can approach zero arbitrarily close in its tail, at which kNN distances are usually large and the
approximation in (3) no longer holds, i.e. the average pdf in the neighborhood of x can be far away
from f(x) at the tail of the distribution. As a result, the density estimation at the tails is hard. Unlike
the case with bounded support, the assumptions for deriving `α and `∞ bounds are slightly different,
hence we state the assumptions separately in Theorem 3 and Theorem 5.

A. `α bound
Now we analyze the convergence rate of the `α error. To begin with, we show that the `α error

of the original kNN estimator defined in (1) is actually infinite. Recall that Xi, i = 1, . . . , N are the
samples for density estimation. Define R as their maximum distance to x = 0, i.e.

R = max
i=1,...,N

{‖Xi‖}. (17)

Then for all x such that ‖x‖ > R, we have ρ(x) < ‖x‖+R, since the distance of all the samples can
not be more than ‖x‖+R away from x. Hence∫

f̂(x)dx ≥
∫
‖x‖>R

f̂(x)dx ≥ k − 1

Nvd

∫
‖x‖>R

1

(‖x‖+R)d
dx =∞. (18)

The above result shows that the `1 error of the original kNN density estimator is always infinite, and
is thus not suitable for distributions with tails. In fact, the estimated pdf does not decay sufficiently
fast with the pdf itself. As a result, the estimation error at the tail distribution is serious.
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To improve the performance of the kNN density estimator, we design an adaptive estimator as
following:

f̂(x) =

{
k−1

NV (B(x,ρ(x)))
if n ≥ nc

0 if n < nc,
(19)

in which

n =
N∑
i=1

1(Xi ∈ B(x, a)) (20)

is the number of samples in B(x, a), and

k = bnqc. (21)

In this estimator, we select k adaptively according to (21). Here a, nc and q are three parameters. a
has some effect on the performance of the estimator, but the convergence rate does not depend on a.
For nc, from Theorem 3 shown below, we need to ensure that bnqcc > α. q is a crucial parameter. In
Theorem 3, we show that the performance is optimized if we select q = 4/(d + 4), which depends
only on the dimension of X.

This new estimator can be viewed as density estimation in two steps. In the first step, we count the
number of samples in B(x, a). This roughly estimates the density at x. Then we select k adaptively.
If the rough estimation of f(x) is higher, then we use a larger k, and vice versa. The motivation of
the design is that we try to select k to achieve the best bias and variance tradeoff. If the density is
high, then the kNN distance is usually small, thus we do not need to worry too much about the bias,
and we can then use a larger k. On the contrary, in the region with small density, we use a smaller k.
Furthermore, from (18), we know that as long as k− 1 > 0, the `1 estimation error is always infinite.
To solve this problem, we set f̂(x) = 0 if n is below a threshold nc.

We now bound the convergence rate of the `α error of the kNN density estimator (19). The results
are summarized in Theorem 3.

Theorem 3. Assume that there exist four constants Cb, Cc, Cd and β ∈ (0, 1], such that
(a) The gradient of pdf satisfies

‖∇f(x)‖
f(x)

≤ Ca; (22)

(b) The Hessian of pdf satisfies

‖∇2f(x)‖op
f(x)

≤ Cb, (23)

in which ‖·‖op denotes the operator norm;
(c) For any t > 0,

P(f(X) < t) ≤ Cct
β. (24)

If we set q = 4/(d+ 4), and set nc such that bnqcc > α, then

E
[∥∥∥f̂ − f∥∥∥

α

]
.

{
N−min{ 2

d+4
,1+β−1

α } if β 6= 1− d+2
d+4

α

N−(1+β−1
α ) lnN if β = 1− d+2

d+4
α.

(25)
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Proof. Please refer to Appendix D for details.

Here, Assumptions (a) and (b) assume that the first and second order derivatives decay simultaneously
with f(x). These two assumptions ensure that the bias of the kNN density estimator is not too large.
If we only bound the gradient and the Hessian without making them decay with f(x), which means
that the first and second order derivatives can still be high even at the tail of the distribution, then the
convergence rate of `α bound will become much slower. In particular, there is no estimator whose `1

error is uniformly consistent, i.e. the minimax lower bound is Ω(1) and does not even converge to zero
with the increase of sample size N . This can be seen from [26], eq.(1). Therefore, it is necessary to
make a more restrictive assumption on the gradient and Hessian of pdf f . Note that for some common
distributions, Assumptions (a) and (b) are slightly violated. For example, for the Gaussian distribution,
we have ‖∇f(x)‖ . f(x)(1+

√
ln(1/f(x))) and ‖∇2f(x)‖op . f(x)(1+ln(1/f(x))). The logarithm

factor violates Assumptions (a) and (b). However, since the gradient and Hessian still decays with
the pdf f , the convergence rate is only slightly affected. For these distributions, follow the proof of
Theorem 3 in Appendix D, it can be shown that

E
[∥∥∥f̂ − f∥∥∥

α

]
. N−min{ 2

d+4
,1+β−1

α }+δ (26)

for arbitrarily small δ > 0. We omit the detailed proof here.
Assumption (c) restricts the tail strength of the distribution. A smaller β indicates that the tail is

stronger. We assume that β ≤ 1, since if β > 1, it can be proved that the support set is bounded, while
in this section we hope to analyze distributions with unbounded support. In fact, from Assumptions (a)
and (b), it can be shown that f(x) > 0 everywhere, and thus the support must be unbounded. Now we
provide some examples of distributions satisfying Assumption (c). For one or two dimensional Gaussian
distributions, Assumption (c) is satisfied for β = 1. For Gaussian distributions with higher dimensions,
Assumption (c) is satisfied for β arbitrarily close to 1. For Cauchy distributions, Assumption (c) is
satisfied with β = 1/2. For tn distributions, Assumption (c) is satisfied with β = n/(n+1). Moreover, if
a distribution has finite moments up to infinite order, i.e. E[‖X‖θ] <∞ for all θ > 0, then Assumption
(c) holds for all β < 1.

For the proof of Theorem 3, we bound E[|f̂(x)−f(x)|α] separately depending on whether n ≥ nc, in
which n is the number of samples in B(x, a). If n ≥ nc, then given the value of n, the samples within
B(x, a) are conditional independent. Based on such property, we can then bound E[|f̂(x) − f(x)|α].
If n < nc, then the estimated value is zero, hence E[|f̂(x) − f(x)|α] = fα(x). From the bound of
E[|f̂(x)− f(x)|α] at each x, we can then bound the overall `α error. The detailed proof is shown in
Appendix D.

Now we show the minimax lower bound of the `α error.

Theorem 4. Define ΣB as the set of all functions that satisfy Assumptions (a)-(d) in Theorem 3, if Cb,
Cc, Cd are sufficiently large, then

inf
f̂

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−min{ 2

d+4
,1+β−1

α }. (27)

Proof. Please refer to Appendix E for details.

Comparing Theorem 3 with Theorem 4, we observe that the upper bound of the adaptive kNN
method and the minimax lower bound match except for the case β = 1 − (d + 2)α/(d + 4), under
which the adaptive kNN method has a logarithm factor.



11

We would like to remark that the performance of the density estimator (19) is better than the
kernel density estimator for distributions with heavy tails. To be more precise, we have the following
Proposition.

Proposition 1. For a kernel density estimator

f̂(x) =
1

Nhd

N∑
i=1

K

(
Xi − x

h

)
, (28)

in which K(·) is supported on B(0, 1),
∫
K(u)du = 1 and K(u) ≤ Km for some constant Km. Then

inf
h

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−min{ 2(α+β−1)

(d+2)α+βd−d ,
2
d+4}. (29)

Proof. Please refer to Appendix F for details.

In (29), we take the supremum over all distributions satisfying Assumptions (a)-(d) in Theorem 3,
and take the infimum over all possible h. The rate in the right hand side of (29) indicates the theoretical
limit such that the kernel density estimator can not perform better than this limit for any bandwidth h.
This can be proved by analyzing the bias and the random error separately. Note that E[f̂(x)] = f ?Kh,
in which ? denotes convolution and Kh(·) = K(·/h)/hd. The convolution will induce roughly h2 bias.
We also provide a lower bound of the random error. The detailed proof is shown in Appendix F.

Comparing (29) with (25), it can be observed that if β ≥ 1 − α/2, then the adaptive kNN density
estimator and the kernel density estimator have the same convergence rate and are both minimax
optimal, except a logarithm factor. For distributions with heavy tails such that β < 1 − α/2, the
adaptive kNN density estimator performs better than the kernel density estimator. In some previous
literatures such as [20], it was believed that the kNN estimator performs worse than the kernel density
estimator for distributions with heavy tails. However, the previous analysis is based on the uniform
bound of Hessian, while in our Assumptions (b) and (c), the gradient and Hessian also decay with the
pdf. As a result, the comparison between these two estimators are reversed due to the difference of
assumptions. We provide an intuitive explanation of the reason why the kNN estimator has a better
convergence rate than the kernel density estimator as following. In the tail of the distribution, the
kNN distances are large, while for the kernel density estimation, the kernel size is constant all over
Rd. As a result, comparing with the kernel density estimator, the kNN method has a larger bias but
smaller variance at the tail of the distribution. If the pdf only has bounded Hessian without decaying,
than the larger bias of the kNN method is more obvious. However, under our assumption, the Hessian
decays with roughly the same rate as the pdf f , hence the bias will not increase much, and thus the
kNN method achieves a better tradeoff between bias and variance than the kernel density estimator,
especially when k is selected based on the adaptive rule (21).

B. `∞ bound
We now analyze the uniform convergence rate of the kNN density estimator. For the uniform

convergence rate, we only care about the maximum estimation error. As a result, it is not necessary
to adaptively select k, hence we just use the simple kNN density estimator (1). The result is shown in
Theorem 5.
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Theorem 5. Suppose f satisfies Assumptions (a), (b) and (c) in Theorem 3, and the following additional
assumption

N ({x|f(x) > m}, r) ≤ N0

mγrd
, (30)

for some γ > 0 and all m > 0, in which N denotes the covering number. Then with probability at
least 1− ε,

sup
x
|f̂(x)− f(x)| .


(
k
N

) 2
d lnN + k−

1
2

√
ln N

ε
if d > 2

k
N

lnN + k−
1
2

√
ln N

ε
if d = 1, 2.

(31)

Proof. Please refer to Appendix G for details.

In Theorem 5, we do not have the Assumption (d) in Theorem 3. Actually, the tail strength does not
affect the uniform convergence rate, since the `∞ bound only cares about the supremum error. However,
we impose another assumption on the regularity of {x|f(x) ≥ m}. This additional assumption is
actually very weak and is satisfied by almost all pdfs.

The proof of Theorem 5 can be divided into two parts. Firstly, in the region with high pdf, the
uniform convergence rate can be bounded using similar techniques as is used in the proof of Theorem
2, which involves constructing some grid points, finding the uniform bound in the grid points, and
then generalizing to the overall uniform bound over the whole region. However, since the support is
unbounded, such technique can not be simply generalized to the whole space Rd, especially to the
region with low density, since the number of grid points will be infinite, and thus the related union
bound does not work. Hence, we provide the uniform bound of kNN estimator by finding the lower
bound of the kNN distances.

The corresponding minimax lower bound is shown in Theorem 6.

Theorem 6. Define ΣC as the set of all functions that satisfy Assumptions (a)-(c) in Theorem 3 and
the additional assumption (30), then

inf
f̂

sup
f∈ΣC

E
[∥∥∥f̂ − f∥∥∥

∞

]
& N−

2
d+4 . (32)

Proof. Please see Appendix H for the detailed proof.

We observe that if d ≥ 2, with a proper selection of k, i.e. k ∼ N4/(d+4), the upper bound of the
kNN density estimator (1) nearly matches the minimax lower bound. If d = 1, then the upper bound
does not match the minimax lower bound. To explain such gap between (31) and the minimax lower
bound, we can divide the estimation error of f̂(x) into two parts. The first part is the inherent difficulty
in the density estimation reflected in the minimax lower bound. The second part is the estimation error
caused by the kNN method, since k can not be selected to achieve the best bias and variance tradeoff
everywhere. When d = 1, the second part dominates. In higher dimensional spaces, the first part, i.e.
the inherent difficulty of the density estimation increases, hence the second part of the estimation error
caused by imperfect bias and variance tradeoff is no longer dominant. As a result, the `∞ bound is
nearly minimax optimal when d ≥ 2.
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V. NUMERICAL EXAMPLES

In this section, we provide several numerical experiments to illustrate the theoretical results derived
in this paper. Our simulation has three parts.

In the first part, we show the convergence plots of the `α for α = 1, 2, 3 and `∞ estimation errors. For
simplicity, we assume that the support is known, and use the boundary corrected kNN density estimator
(7) for uniform distributions, which is a typical example of distributions with bounded support. In the
simulation, k is selected to minimize the `α and `∞ error. The optimal growth rate of k determined
by Theorem 1 and 2 are the same, i.e. k ∼ N

2
d+2 can optimize both `α and `∞ rate. Therefore, we use

this rate in the simulation. This part is shown in Figure 1 (a) and (b).
In the second part, we show the convergence plots for Gaussian distributions, which is an example

of distributions with unbounded support, as is shown in Figure 1 (c) and (d). We fix a = 0.5 in the
simulation, in which a is the parameter in (20). For the first and the second part, for each k and each
sample size N , our simulation involves the following steps.

(1) Generate N i.i.d samples according to a distribution, such as the standard Gaussian distribution;
(2) Find a region on which the probability mass of the distribution is sufficiently close to 1. For

example, for one dimensional standard Gaussian distribution, this region can be [−5, 5]. Then divide
the region into grids of size 0.01;

(3) For each grid point, estimate its pdf value using the kNN density estimation method, and find
its difference with the true value. Calculate the average and the maximum of such difference over all
grids, in which the former one can be used as an estimate of the `1 error by multiplying an appropriate
factor, while the latter one can be used as an estimate of the `∞ error;

(4) Repeat (1)-(3) for T = 5000 times, and find the average `1 and `∞ error.
In the third part, we compare the `1 error of the kNN density estimator and the kernel density

estimator for two heavy tailed distributions. One is the Cauchy distribution, f1(x) = 1/(π(1 + x2)),
and the other one is f2(x) = (|x| + 1)−2/3/4. In our experiment, if the dimension is higher than 1,
then the high dimensional distribution is just the simple joint of i.i.d one dimensional distributions.
For a fair comparison, the parameters for both methods are tuned optimally in the simulation, which
means that we try multiple a in (20) for the kNN estimator, as well as multiple bandwidths for the
kernel density estimator, and only compare their best performance. In Fig. 1 (e) and (f), we plot the
ratio between the `1 error of the adaptive kNN (19) and the kernel density estimators. If the ratio is
lower than 1, then the kNN method performs better than the kernel density estimator, and vice versa.

We further list the empirical and theoretical convergence rates in Table II. In Table II, the empirical
convergence rates are the negative slopes of the curves in Fig. 1 (a)-(d), and the theoretical convergence
rates are the results in Theorem 1, 2, 3 and 5. For simplicity, we only show the exponents in Table
II, and ignore the logarithm factor. To be more precise, we fill δ in the table if the convergence rate
is Õ(N−δ).

Case `1 error `2 error `3 error `∞ error
Empirical Theoretical Empirical Theoretical Empirical Theoretical Empirical Theoretical

Uniform, d = 1 0.33 0.33 0.31 0.33 0.31 0.33 0.30 0.33
Uniform, d = 2 0.24 0.25 0.24 0.25 0.25 0.25 0.25 0.25
Gaussian, d = 1 0.42 0.40 0.42 0.40 0.41 0.40 0.42 0.40
Gaussian, d = 2 0.40 0.40 0.41 0.40 0.41 0.40 0.42 0.40

TABLE II: Empirical and theoretical convergence rates of density estimation
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(a) 1d Uniform distribution
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(b) 2d Uniform distribution
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(c) 1d Gaussian distribution

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
log(N)

3.0

2.5

2.0

1.5

1.0

lo
g(

Es
tim

at
io

n 
Er

ro
r)

1

2

3

(d) 2d Gaussian distribution
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(e) f1(x) = 1/(π(1 + x2))
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(f) f2(x) = (|x|+ 1)−2/3/4

Fig. 1: Numerical simulation results of kNN density estimation. (a) and (b) show the convergence plot
of the `1, `2, `3 and `∞ estimation errors with respect to N for one and two dimensional uniform
distributions. (c) and (d) correspond to one and two dimensional Gaussian distributions. In this case,
k ∼ N2/3. (e) and (f) compare the adaptive kNN method with the kernel density estimator for two
types of heavy tailed distributions. In (e), f(x) = 1/(π(1 + x2)). In (f), f(x) = (|x| + 1)−2/3/4. The
vertical axis is the ratio between the `1 and `2 error of the kNN method and that of the kernel method.

The results in Figure 1 (a)-(d) and Table II show that the empirical convergence rates of the kNN
density estimator (1), the boundary corrected one (7) or the adaptive one (19) agree with the theoretical
analysis in general. From Figure 1(e), it can be observed that for Cauchy distributions, the ratios for
both `1 and `2 are slightly below 1. This suggests that the adaptive kNN method performs slightly
better than the kernel density estimator, when the parameters for both methods are carefully tuned.
However, the ratio does not appear to decrease with the increase of N . This can be explained by
Theorem 3, since the Cauchy distribution satisfies its Assumption (d) with β = 1/2. According to the
theorem and Proposition 1, the convergence rates of the adaptive kNN method and the kernel method
are nearly the same and are both minimax optimal. As a result, the ratio does not decrease with N . If
the tail is heavier, then the performance of the kNN method becomes obviously better than the kernel
density estimator. The distribution in Figure 1 (f) satisfies Assumption (d) in Theorem 3 with β = 1/3.
Our theoretical analysis in Theorem 3 and Proposition 1 indicate that the convergence rates of the
adaptive kNN estimator are faster than that of the kernel density estimator under this β. This can be
observed in Figure 1 (f), in which the ratios are all below 1 except very small sample size N , and
decay with the increase of N .
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VI. CONCLUSION

In this paper, we have analyzed the convergence property of the estimation errors of the kNN density
estimator under `α and `∞ criteria. The analysis is conducted for two types of distributions, including
those with bounded support, and those with unbounded support. We have shown the following results:

Firstly, for distributions with bounded support, if the support set is unknown, then the kNN density
estimator is optimal only under the `1 criterion. With the increase of α, the kNN method becomes
suboptimal under `α. Moreover, the `∞ error does not converge. In fact, there exists no estimator that
is uniformly consistent under `∞. On the contrary, if the support set is known to us, then we can
design a proper boundary correction method. With this correction method, both `α and `∞ bounds of
the kNN estimator are minimax optimal.

Secondly, for distributions with unbounded support, the `∞ bound is nearly minimax optimal.
However, under the `α criterion, the original kNN estimator does not have a good performance. In
particular, if α = 1, the original kNN estimator is not even consistent, since the estimated pdf does
not decay sufficiently fast with the real pdf. Therefore, we have designed an adaptive kNN density
estimator, and have showed that the new adaptive kNN estimator is minimax optimal. For comparison,
we have shown that the kernel density estimator is not minimax optimal in this case. This result appears
to conflict with previous works, but the previous works only assume the uniform bound of Hessian.
If the gradient and Hessian of the pdf do not decay, then the bias at the tail is indeed large. We have
compared the convergence rates of these two methods for distributions with decaying Hessian, and
have shown that the kNN density estimator with our new adaptive method actually performs better
than the kernal density estimator.

APPENDIX A
PROOF OF THEOREM 1

Recall that

f̂(x) =
k − 1

NV (B(x, ρ(x)))
. (33)

We decompose the estimation error as

f̂(x)− f(x) =

[
k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

]
+

[
k − 1

NP (B(x, ρ(x)))
− 1

]
f(x)

:= I1 + I2. (34)

Therefore

E[|f̂(x)− f(x)|α] ≤ 2α−1 (E[|I1|α] + E[|I2|α]) . (35)

Bound of E[|I1|α].

E[|I1|α] = E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α] . (36)

Denote ∆(x) as the distance from x to the boundary of S, i.e. for all x ∈ S,

∆(x) = inf{‖x− u‖ |u ∈ ∂S}, (37)
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in which ∂S is the boundary of S. If ρ(x) ≤ ∆(x), then B(x, ρ(x)) ⊂ S. Since f is Lipschitz,

|P (B(x, ρ(x)))− f(x)V (B(x, ρ(x)))| ≤ Lρ(x)V (B(x, ρ(x))). (38)

Hence for sufficiently large k,

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(ρ(x) ≤ ∆(x))

]
=

(
k − 1

N

)α
E
[

1

Pα(B(x, ρ(x)))

∣∣∣∣P (B(x, ρ(x)))− f(x)V (B(x, ρ(x)))

V (B(x, ρ(x)))

∣∣∣∣α 1(ρ(x) ≤ ∆(x))

]
≤

(
k − 1

N

)α
E
[

Lαρα(x)

Pα(B(x, ρ(x)))
1(ρ(x) ≤ ∆(x))

]
(a)

≤
(
k − 1

N

)α
E

[
Lα

Pα(B(x, ρ(x)))

(
P (B(x, ρ(x)))

mvd

)α
d

1(ρ(x) ≤ ∆(x))

]

.

(
k

N

)α
E
[
P

α
d
−α(B(x, ρ(x)))

]
(b)

.

(
k

N

)α
d

. (39)

Here, (a) uses the assumption that the pdf is lower bounded by m. If ρ(x) ≤ ∆(x), then B(x, ρ(x)) ∈
S, therefore P (B(x, ρ(x))) ≥ mvdρ

d(x). For (b), we use the following fact

E[P
α
d
−α(B(x, ρ(x)))] =

1

B(k,N − k + 1)

∫
u
α
d
−αuk−1(1− u)N−kdu

=
Γ
(
k + α

d
− α

)
Γ(N + 1)

Γ
(
N + α

d
− α + 1

)
Γ(k)

.

(
k

N

)α
d
−α

, (40)

in which Γ(x) =
∫∞

0
tx−1e−tdt and B(x, y) =

∫
tx−1(1 − t)y−1dt are Gamma and Beta functions,

respectively.
If ρ(x) > ∆(x), since m ≤ f(x) ≤M ,

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(ρ(x) > ∆(x))

]
≤ E

[(
k − 1

NP (B(x, ρ(x)))
M

)α
1(ρ(x) > ∆(x))

]
(a)

≤ Mα

(
k − 1

N

)α
E
[

1

Pα(B(x, ρ(x)))

]
P(ρ(x) > ∆(x))

(b)

. P(ρ(x) > ∆(x)), (41)

in which (a) holds because 1/P (B(x, ρ(x))) and 1(ρ(x) > ∆(x)) are negatively correlated. (b) can
be shown in the same way as (40).
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Combining (39) and (41), we have

E[|I1|α] .

(
k

N

)α
d

+ P(ρ(x) > ∆(x)). (42)

Bound of E[|I2|α].

E[|I2|α] = fα(x)E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α] . (43)

To bound the right hand side of (43), we use the following lemma whose proof can be found in
Appendix A-A.

Lemma 1. For k > α,

E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α] . k−
α
2 . (44)

Therefore E[|I2|α] . k−
α
2 . Combining this with the bound of I1 in (42), we have

E[|f̂(x)− f(x)|α] .

(
k

N

)α
d

+ P(ρ(x) > ∆(x)) + k−
α
2 . (45)

Now integrate the above result over x ∈ S. Define

r0 =

(
k − 1

mvdN

) 1
d

, (46)

then P (B(x, r0)) ≥ (k − 1)/N . Hence, if ∆(x) > r0,

P (B(x,∆(x))) ≥ mvd∆
d(x) = mvdr

d
0

(
∆(x)

r0

)d
=
k − 1

N

(
∆(x)

r0

)d
. (47)
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Then ∫
P(ρ(x) > ∆(x))1(∆(x) > 2

1
d r0)dx

(a)

≤
∫

exp(−NP (B(x,∆(x))))

(
eNP (B(x,∆(x)))

k − 1

)k−1

f(x)1(∆(x) > 2
1
d r0)dx

(b)

≤
∫

exp

[
−(k − 1)

(
∆(x)

r0

)d](
e

(
∆(x)

r0

)d)k−1

1(∆(x) > 2
1
d r0)dx

(c)

≤
∫

exp

[
−(1− ln 2)(k − 1)

(
∆(x)

r0

)d]
dx

(d)

≤ V (S)E

[
exp

[
−(1− ln 2)(k − 1)

(
∆(U)

r0

)d]]

= V (S)

∫ 1

0

P

(
exp

[
−(1− ln 2)(k − 1)

(
∆(U)

r0

)d]
> t

)
dt

= V (S)

∫ 1

0

P

(
∆(U) <

(
ln 1

t

(1− ln 2)(k − 1)

) 1
d

r0

)
dt

(e)

≤ CS

∫ 2

0

ln
1
d t

(1− ln 2)
1
d (k − 1)

1
d

r0dt

=
CSΓ

(
1 + 1

d

)
r0

(1− ln 2)
1
d (k − 1)

1
d

. (48)

For (a), note that ρ(x) > ∆(x) is equivalent to the event that the number of samples in B(x,∆(x))
is less than k. Therefore the probability can be bounded using Chernoff’s inequality:

P(ρ(x) > ∆(x)) = P(n(x,∆(x)) < k − 1)

≤ exp(−NP (B(x,∆(x))))

(
eNP (B(x,∆(x)))

k − 1

)k−1

. (49)

Here n(x,∆(x)) is the number of samples in B(x,∆(x)), which follows a Binomial distribution with
parameter N and P (B(x,∆(x))).

(b) uses the fact that e−t(et/(k−1))k−1 is monotonically increasing for t > k−1. (c) holds because
t− 1− ln t ≥ (1− ln 2)t for t ≥ 2. In (d), V (S) is the volume of the support S, and U is a random
variable following a uniform distribution in S. In (e), CS is the constant in Assumption 1 (c), which
refers to the surface area of the support S. In addition,∫

P(ρ(x) > ∆(x))1(∆(x) ≤ 2
1
d r0)dx ≤

∫
1(∆(x) ≤ 2

1
d r0)dx ≤ 2

1
d r0CS. (50)
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Hence

E
[∥∥∥f̂ − f∥∥∥

α

]
=

(∫
E
[
|f̂(x)− f(x)|α

]
dx

) 1
α

.

[∫ ((
k

N

)α
d

+ P(ρ(x) > ∆(x)) + k−
α
2

)
dx

] 1
α

∼

[(
k

N

) 1
d

CS + k−
α
2

] 1
α

∼ C
1
α
S

(
k

N

) 1
αd

+ k−
1
2 . (51)

The proof of the upper bound is now complete. The lower bound can be proved simply by standard
minimax analysis in [24]. We prove the following two statements separately:

sup
f∈ΣA

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−

1
d+2 , (52)

and

sup
f∈ΣA

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−

1
αd . (53)

Proof of (52). Find 2n points ai, i = −n,−n+ 1, . . . ,−1, 1, . . . , n, such that B(ai, r) ∈ S for any i,
and ‖aj − ai‖ ≥ 2r for any j 6= i, in which the value of r will be determined later. For v ∈ {−1, 1}n,
let

fv(x) = f0(x) + virg

(
x− ai
r

)
− virg

(
x− a−i

r

)
, (54)

in which

f0(x) = 1/V (S) (55)

is the pdf of the uniform distribution in support S and

g(u) = 1− ‖u‖ . (56)

Then for any estimator f̂ , let V be a random variable, which is uniform in {−1, 1}n, then

sup
f∈ΣA(S)

E
[∥∥∥f̂ − f∥∥∥α

α

]
≥ sup

v∈{−1,1}d
E
[∥∥∥f̂ − fv∥∥∥α

α

]
≥ E

[∥∥∥f̂ − fV∥∥∥α
α

]
=

n∑
i=1

E
[∫

B(ai,r)∪B(a−i,r)

|f̂ − fV|αdx
]

= nE
[∫

B(a1,r)∪B(a−1,r)

|f̂ − fV|αdx
]
. (57)
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Let v1 = (1, . . . , 1), and v2 = (−1, 1, . . . , 1), then from Le Cam’s lemma [24], we have

E
[∫

B(a1,r)∪B(a−1,r)

|f̂ − fV|αdx
]
≥ 1

2α+1

[∫
B(a1,r)∪B(a−1,r)

|fv1 − fv2|αdx
]
e−ND(fv1 ||fv2 )

& rd+αe−Nr
d+2

, (58)

in which D(·||·) is the KL divergence. Hence, with r ∼ N−1/(d+2),

sup
f∈ΣA(S)

E
[∥∥∥f̂ − f∥∥∥α

α

]
& nrd+αe−Nr

d+2 ∼ N−
α
d+2 , (59)

i.e.

sup
f∈ΣA(S)

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−

1
d+2 . (60)

Proof of (53). We still find 2n points, ai, i = −n,−n+ 1, . . . ,−1, 1, . . . , n, such that ‖aj − ai‖ ≥ 2r
for any j 6= i, and ‖ai‖ > R + r for all i. This indicates that B(0, R) and B(ai, r) are mutually
disjoint.

For any v ∈ {−1, 1}n, let

fv(x) = f0(x) +

(
M +m

2
+
M −m

2
vi

)
1(x ∈ B(ai, r)), (61)

in which r and R will be determined later, and

f0(x) = m1(x ∈ B(0, R)). (62)

(57) still holds. (58) becomes

E
[∫

B(a1,r)∪B(a−1,r)

|f̂ − fV|αdx
]
≥ 1

2α+1

[∫
B(a1,r)∪B(a−1,r)

|fv1 − fv2|αdx
]
e−ND(fv1 ||fv2 )

& rde−Nr
d

. (63)

From Assumption 1 (c), which bounds the total surface area, we have

(nrd−1 +Rd−1)vd−1 ≤ Cs, (64)

since R and CS are fixed, we have nrd−1 = 1. Therefore, let r ∼ N−1/d, then

E
[∥∥∥f̂ − f∥∥∥α

α

]
& nrd ∼ CSr ∼ CSN

− 1
d , (65)

i.e.

E
[∥∥∥f̂ − f∥∥∥

α

]
& C

1
α
S N

− 1
αd . (66)

Combining (52) and (53), the proof is complete.
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A. Proof of Lemma 1

E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α]
=

∫ ∞
0

P
(∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α > t

)
dt

=

∫ 1

0

P

(
P (B(x, ρ(x)))) >

k − 1

N(1− t 1
α )

)
dt+

∫ ∞
0

P

(
P (B(x, ρ(x)))) ≤ k − 1

N(1 + t
1
α )

)
dt.(67)

To bound the right hand side of (67), we show the following inequality: if |x| < 1/2, then

1

1 + x
+ ln(1 + x)− 1 ≥ 2

27
x2. (68)

To show this inequality, we can define g(x) to be the left hand side of (68). Then

g′′(x) =
1− x

(x+ 1)3
. (69)

If |x| < 1/2, then g′′(x) ≥ 4/27. Then (68) can be proved using Taylor expansion to the second order.
We bound the first term of (67) first. If t > k−α, then

k − 1

N(1− t 1
α )

>
k

N
. (70)

From Chernoff inequality and (68), we know that if k−α < t < 2−α, then

P

(
P (B(x, ρ(x))) >

k − 1

N(1− t 1
α )

)
≤ e

− k−1

1−t
1
α

e k−1

1−t
1
α

k

k

≤ e
− k−1

1−t
1
α ek

(
1

1− t 1
α

)k
(71)

= e
− k−1

1−t
1
α ek−k ln(1−t

1
α )

≤ e
1

1−t
1
α exp

[
−k
(

1

1− t 1
α

+ ln
(

1− t
1
α

)
− 1

)]
≤ e

1

1−t
1
α e−

2
27
kt

2
α . (72)

Hence ∫ 1

0

P

(
P (B(x, ρ(x)))) >

k − 1

N(1− t 1
α )

)
dt

≤
∫ k−α

0

1dt+

∫ 2−α

k−α
e

1

1−t
1
α e−

2
27
kt

2
α dt+

∫ 1

2−α
e2e−

k
54dt

≤ k−α + e2

∫ ∞
0

e−
2
27
kt

2
α dt+ e2e−

k
54 . (73)
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Let u = (2/27)kt
2
α , then ∫ ∞

0

e−
2
27
kt

2
α dt ≤

∫ ∞
0

e−u
(

27u

2k

)α
2
−1

27k

2
du

=

(
27

2k

)α
2

Γ
(α

2

)
. (74)

Therefore ∫ 1

0

P

(
P (B(x, ρ(x)))) >

k − 1

N(1− t 1
α )

)
dt . k−

α
2 . (75)

Then we bound the second term of (67).

P

(
P (B(x, ρ(x))) ≤ k − 1

N(t
1
α + 1)

)
≤ e

− k

1+t
1
α

e k

t
1
α+1

k

k

≤ exp

[
−k
(

1

1 + t
1
α

+ ln(1 + t
1
α )− 1

)]

≤


e−

2
27
kt

2
α if t < 1

2α

e−
1
54
k if 1

2α
≤ t < (2e)α(

e

1+t
1
α

)k
if t ≥ (2e)α.

(76)

Hence if k > α, ∫ ∞
0

P

(
P (B(x, ρ(x)))) ≤ k − 1

N(1 + t
1
α )

)
dt

≤
∫ 1

2α

0

e−
2
27
kt

2
α dt+

∫ (2e)α

1
2α

e−
1
54
kdt+

∫ ∞
(2e)α

(
e

1 + t
1
α

)k
dt

≤
(

27

2k

)α
2

Γ
(α

2

)
+ (2e)αe−

1
54
k + ek

∫ ∞
(2e)α

t−
k
αdt

≤
(

27

2k

)α
2

Γ
(α

2

)
+ (2e)αe−

1
54
k +

(2e)α

k
α
− 1

2−k

. k−
α
2 . (77)

Therefore

E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α] . k−
α
2 . (78)

The proof is complete.
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APPENDIX B
PROOF OF THEOREM 2

Since S is compact, there exists a constant N0, such that for sufficiently small r, the covering number
of S with balls with radius r is bounded by N0/r

d. Therefore, we use n balls with radius r to cover
the support set S, in which n ≤ N0/r

d, and

r = min

{(
k

N

) 2
d

, k−
1
2

}
. (79)

Denote a1, . . . , an as the centers of these balls. For any ε > 0, define ∆(N, k) such that

max

{
D

(
k − 1

N
||k − 1

N
+ ∆(N, k)

)
, D

(
k − 1

N
||k − 1

N
−∆(N, k)

)}
=

1

N
ln

2n

ε
, (80)

in which D(p||q) = p ln p
q

+ (1− p) ln 1−p
1−q . Then we have the following lemma:

Lemma 2. If k/N → 0 as N →∞, and n < 1
2
e

1
8

(k−1)ε, then

∆(N, k) ≤ 4
k

1
2

N

√
ln

2n

ε
. (81)

Proof. Please see Appendix B-A for the proof.

Now we provide a high probability bound of P (B(x, ρ(x))). Denote n(B(x, ρ(x))) as the number
of samples in B(x, ρ(x)), and define r0(x, p) such that P (B(x, r0(x, p))) = p. Then

P
(
P (B(x, ρ(x))) ≥ k − 1

N
+ ∆(N, k)

)
= P

(
n

(
x, r0

(
x,
k − 1

N
+ ∆(N, k)

))
≤ k − 1

)
(a)

≤ exp

[
−ND

(
k − 1

N
||k − 1

N
+ ∆(N, k)

)]
(b)

≤ ε

2n
, (82)

in which n
(
x, r0

(
x, k−1

N
+ ∆(N, k)

))
is the number of samples in B

(
x, r0

(
x, k−1

N
+ ∆(N, k)

))
.

From the definition of r0, we have P (B
(
x, r0

(
x, k−1

N
+ ∆(N, k)

))
) = (k − 1)/N + ∆(N, k). Hence,

n
(
x, r0

(
x, k−1

N
+ ∆(N, k)

))
follows Binomial distribution with parameter N and (k−1)/N+∆(N, k).

Then using Chernoff inequality, we get (a). Step (b) comes from (80).
Using similar arguments, we can also obtain

P
(
P (B(x, ρ(x))) ≤ k − 1

N
−∆(N, k)

)
≤ ε

2n
. (83)

Using (82) and (83), with probability at least 1− ε, we have∣∣∣∣P (B(ai, ρ(x)))− k − 1

N

∣∣∣∣ < ∆(N, k),∀i ∈ {1, . . . , n}. (84)

In the remainder of this proof, we assume (84) is satisfied. We decompose |f̂(x)−f(x)| as following:
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sup
x∈S
|f̂(x)− f(x)| ≤ sup

x∈S
|f̂(x)− f̂(ai)|+ max

i
|f̂(ai)− f(ai)|+ sup

x∈S
|f(ai)− f(x)|

:= I1 + I2 + I3, (85)

in which ai is the nearest point to x among {a1, . . . , an}.
We now bound these three terms separately.
Bound of I1.

|f̂(x)− f̂(ai)| =

∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NV (B(ai, ρ(ai)))

∣∣∣∣
≤ (k − 1)M

NP (B(ai, ρ(ai)))

∣∣∣∣V (B(ai, ρ(ai))

V (B(x, ρ(x)))
− 1

∣∣∣∣ . (86)

Here, M is the constant in Assumption 1 (a), which upper bounds f(x) for all x ∈ S. If (84) is
satisfied, then for sufficiently large N ,

I1 ≤
(k − 1)M

N
(
k−1
N
−∆(N, k)

) ∣∣∣∣ ρd(ai)

(ρ(ai)− r)d
− 1

∣∣∣∣
≤ 2M

∣∣∣∣∣∣∣
1(

1− r
ρ(ai)

)d − 1

∣∣∣∣∣∣∣ . (87)

According to the definition of r in (79), we have

r

ρ
≤

(
Mvd

P (B(x, ρ))

) 1
d

r

≤

(
Mvd

k−1
N
−∆(N, k)

) 1
d

r

≤

(
Mvd

k−1
N
−∆(N, k)

) 1
d (

k

N

) 2
d

. (88)

Therefore there exists a constant A1, such that

I1 .

(
k

N

) 1
d

. (89)

Bound of I2. For all x ∈ S,

|f̂(x)− f(x)| ≤
∣∣∣∣ k − 1

NV (B(x, ρ))
− k − 1

NP (B(x, ρ))
f(x)

∣∣∣∣+

∣∣∣∣ k − 1

NP (B(x, ρ))
− 1

∣∣∣∣ f(x). (90)

According to (81), if k/ lnN →∞ and k/N → 0, for sufficiently large N , when (84) holds,∣∣∣∣ k − 1

NP (B(x, ρ))
− 1

∣∣∣∣ . k−
1
2

√
ln
n

ε
. (91)
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Moreover, under (84),∣∣∣∣ k − 1

NV (B(ai, ρ))
− k − 1

NP (B(ai, ρ))
f(ai)

∣∣∣∣ =
k − 1

NP (B(ai, ρ))

∣∣∣∣P (B(ai, ρ))− f(ai)V (B(ai, ρ))

V (B(ai, ρ))

∣∣∣∣
(a)

≤ k − 1

NP (B(ai, ρ))
Lρ

(b)

≤ k − 1

NP (B(ai, ρ))
L(mvd)

− 1
dP

1
d (B(ai, ρ))

≤ L(mvd)
− 1
d
k − 1

N

1(
k−1
N
−∆(N, k)

)1− 1
d

.

(
k

N

) 1
d

. (92)

In (a), we use the Lipschitz assumption:

|P (B(ai, ρ))− f(ai)V (B(ai, ρ))| =

∣∣∣∣∫
B(ai,ρ)

(f(x)− f(a))dx

∣∣∣∣
≤

∣∣∣∣∫
B(ai,ρ)

L ‖x− ai‖ dx
∣∣∣∣

≤ LρV (B(ai, ρ)). (93)

(b) uses the fact that P (B(ai, ρ)) ≥ mvdρ
d.

Plugging (91) and (92) into (90), we can show that as long as (84) holds, the following result holds
for all i = 1, . . . , n:

|f̂(ai)− f(ai)| . k−
1
2

√
ln
n

ε
+

(
k

N

) 1
d

. (94)

According to (30), the additional assumption in Theorem 5, it is possible to let

n ≤ N0/r
d ≤ N0 max

{(
N

k

)2

, k
d
2

}
. (95)

Hence, from (94) and (95),

|f̂(ai)− f(ai)| . k−
1
2

√
ln
N

ε
+

(
k

N

) 1
d

. (96)

Bound of I3. According to Assumption (b) and the definition of r in (79),

|f(x)− f(ai)| ≤ Lmin
i
‖x− ai‖ ≤ Lr . k−

1
2 . (97)

Recall that (89), (96) and (97) are all obtained under (84), which holds with probability at least 1− ε.
Based on these three equations, and use the upper bound of n in (95), we know that there exist two
constants C1 and C2 such that

|f̂(x)− f(x)| .
(
k

N

) 1
d

+ k−
1
2

√
ln
N

ε
(98)

holds for all x ∈ S with probability at least 1− ε. The proof is complete.
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A. Proof of Lemma 2
From the definition of KL divergence, we have

∂2D(p||q)
∂q2

=
p

q2
− 1− p

(1− q)2
. (99)

If 1
2
p < q < 2p, and p is sufficiently small, we have

∂2D(p||q)
∂q2

≥ p

4p2
− 1− p

(1− 2p)2
≥ 1

8p
. (100)

Here we let p = (k − 1)/N . Since k/N → 0, for sufficiently large N , p will be sufficiently small.
Therefore

∂2

∂q2
D

(
k − 1

N
||q
)
≥ N

8(k − 1)
≥ N

8k
(101)

holds for (k−1)/(2N) < q < 2(k−1)/N . Moreover, it can be shown that lim
p→0

D(p||1
2
p)/p = ln 2−1/8 >

1/8, and lim
p→0

D(p||2p)/p = 1 − ln 2 > 1/8. Hence for sufficiently large N , k/N is sufficiently small,

we have

min

{
D

(
k − 1

N
||k − 1

2N

)
, D

(
k − 1

N
||2(k − 1)

N

)}
≥ k − 1

8N
. (102)

According to the condition n < 1
2
e

1
8

(k−1)ε, we have

1

N
ln

2n

ε
<
k − 1

8N
. (103)

Therefore, using the second order Taylor expansion,

D

(
k − 1

N
||k − 1

N
+ ∆(N, k)

)
(a)
= D

(
k − 1

N
||k − 1

N

)
+

1

2

∂2D
(
k−1
N
||q
)

∂q2

∣∣∣∣∣
q=ξ

∆2(N, k)

(b)

≥ 1

2
inf

k−1
2N

<q<
2(k−1)
N

∂2D
(
k−1
N
||q
)

∂q2
∆2(N, k)

≥ N

16k
∆2(N, k). (104)

In (a), ξ is in between (k − 1)/N and (k − 1)/N + ∆(N, k). (b) holds because (102), (103) and the
definition of ∆(N, k) in (80) imply that (k−1)/N+∆(N, k) < 2(k−1)/N and (k−1)/N−∆(N, k) >
(k − 1)/(2N).

Similarly,

D

(
k − 1

N
||k − 1

N
−∆(N, k)

)
≥ N

16k
∆2(N, k) (105)

also holds. According to (80), we have

N

16k
∆2(N, k) ≤ 1

N
ln

2n

ε
. (106)
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Thus (81) holds. The proof of Lemma 2 is complete.
Now we prove the corresponding minimax lower bound of the `∞ bound with unknown support,

and show that no method is uniformly consistent. Let the distribution be one dimensional, f1(x) = 1
in (0, 1), and f2(x) = N/(N − 1) in (0, 1− 1/N). Use Le Cam’s lemma [24],

inf
f

sup
f∈Σ

E
[∥∥∥f̂ − f∥∥∥

∞

]
≥ 1

2
‖f1 − f2‖∞ e

−ND(f2||f1) ≥ 1

2
e−N ln N

N−1 → 1

2e
6= 0. (107)

On the contrary, if the support is known, then the minimax bound for known boundary has been
derived in [25].

APPENDIX C
WITHOUT LOWER BOUND ON THE DENSITY

In this appendix, we analyze the `α and `∞ convergence rates of the kNN density estimator with
bounded support but without the lower bound on the density, which means that the pdf can approach
zero.

A. `α bound
Upper Bound. Similar to Appendix A, we still decompose f̂(x)− f(x) into I1 and I2. E[Iα2 ] can

be bounded in the same way as Appendix A. Now we bound E[Iα1 ]. Note that if B(x, r) ⊂ S, then
from the Lipschitz assumption, we have

|P (B(x, r))− f(x)V (B(x, r))| ≤ LrV (B(x, r)). (108)

Therefore, if f(x) ≥ 2Lr, then

1

2
f(x)V (B(x, r)) ≤ P (B(x, r)) ≤ 3

2
f(x)V (B(x, r)). (109)

Define

∆(x) = min

{
f(x)

2L
, inf{‖x− u‖ |u ∈ ∂S}

}
. (110)

Then for sufficiently large k,

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(ρ(x) ≤ ∆(x))

]
(a)

≤
(
k − 1

N

)α
E
[

Lαρα(x)

Pα(B(x, ρ(x)))
1(ρ(x) ≤ ∆(x))

]
(b)

≤
(
k − 1

N

)α
E

[
Lα

Pα(B(x, ρ(x)))

(
2P (B(x, ρ(x)))

f(x)vd

)α
d

1(ρ(x) ≤ ∆(x))

]

.

(
k

N

)α
E
[
P

α
d
−α(B(x, ρ(x)))

]
f−

α
d (x)

.

(
k

N

)α
d

f−
α
d (x), (111)
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in which (a) follows the same steps as (39), and (b) comes from (109). Moreover,

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(ρ(x) ≤ ∆(x))

]
≤ E

[
max

{(
k − 1

NV (B(x, ρ(x)))

)α
,

(
k − 1

NP (B(x, ρ(x)))
f(x)

)α}
1(ρ(x) ≤ ∆(x))

]
(a)

≤ E
[(

3(k − 1)

2NP (B(x, ρ(x)))
f(x)

)α
1(ρ(x) ≤ ∆(x))

]
.

(
k

N

)α
E
[

1

Pα(B(x, ρ(x)))

]
fα(x)

∼ fα(x), (112)

in which (a) uses (109).
Hence

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(ρ(x) ≤ ∆(x)

]
≤ min

{(
k

N

)α
d

f−
α
d (x), fα(x)

}
. (113)

Now we analyze the case ρ(x) > ∆(x). In particular, we discuss the following two cases, denoted by
event E1 and E2:
E1: ρ(x) > ∆(x), f(x)/2L < ρ(x) ≤ inf{‖x− u‖ |u ∈ ∂S}, P (B(x, ρ(x))) ≥ k/(2N).
E2: ρ(x) > ∆(x), but at least one of the other two conditions of E1 are not satisfied.
If E1 happens, then from the Lipschitz assumption, we have

P (B(x, ρ(x))) ≤ (f(x) + Lρ(x))V (B(x, ρ(x))). (114)

Since P (B(x, ρ(x))) ≥ k/(2N), and f(x) < 2Lρ(x), we have
k

2N
≤ 3Lρ(x)V (B(x, ρ(x))), (115)

i.e.

ρ(x) ≥
(

k

6vdNL

) 1
d+1

. (116)

Then

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(E1)

]
≤ E

[
max

{(
k − 1

NV (B(x, ρ(x)))

)α
,

(
k − 1

NP (B(x, ρ(x)))
f(x)

)α}
1(E1)

]
≤ E

[
max

{(
k − 1

Nvd

(
6vdNL

k

) d
d+1

)α

,

(
2(k − 1)

k
f(x)

)α}
1(E1)

]

. E

[
max

{(
k

N

) α
d+1

, fα(x)

}
1(E1)

]
. (117)
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Note that from (109), we have

P

(
B

(
x,
f(x)

2L

))
≥ 1

2
f(x)V

(
B

(
x,
f(x)

2L

))
=

vd
2d+1Ld

fd+1(x). (118)

If

f(x) ≥
(

2d+2kLd

Nvd

) 1
d+1

, (119)

then

P

(
B

(
x,
f(x)

2L

))
≥ 2k

N
, (120)

then

P(E1) ≤ P
(
ρ(x) >

f(x)

2L

)
≤ e−(1−ln 2)k. (121)

Hence

(117) ≤ max

{(
k

N

) α
d+1

, fα(x)

}
1

(
f(x) <

(
2d+2kLd

Nvd

) 1
d+1

)

+ max

{(
k

N

) α
d+1

, fα(x)

}
1

(
f(x) ≥

(
2d+2kLd

Nvd

) 1
d+1

)
e−(1−ln 2)k

.

(
k

N

) α
d+1

+ fα(x)e−(1−ln 2)k. (122)

Now we discuss E2.

E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(E2)

]
. P (ρ(x) > inf{‖x− u‖ |u ∈ ∂S}) + P

(
B(x, ρ(x)) <

k

2N

)
≤ P (ρ(x) > inf{‖x− u‖ |u ∈ ∂S}) + exp

[
−
(

ln 2− 1

2

)
k

]
. (123)

Combine (113), (122), (123), we can get the bound of E[|I1|α]. Moreover, note that the bound of
E[|I2|α] derived in Appendix A still holds. Therefore

E
[
|f̂(x)− f(x)|α

]
. min

{(
k

N

)α
d

f−
α
d (x), fα(x)

}
+

(
k

N

) α
d+1

+ fα(x)e−(1−ln 2)k

+P (ρ(x) > inf{‖x− u‖ |u ∈ ∂S}) + exp

[
−
(

ln 2− 1

2
k

)]
+ k−

α
2 .(124)
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Since (48) still holds, we have

E
[∥∥∥f̂ − f∥∥∥

α

]
=

(∫
E
[
|f̂(x)− f(x)|α

]
dx

) 1
α

.

((
k

N

) α
d+1

+ CS

(
k

N

) 1
d

+ k−
α
2

) 1
α

∼
(
k

N

) 1
d+1

+ C
1
α
S

(
k

N

) 1
αd

+ k−
1
2 . (125)

Lower Bound. Note that now we derive the lower bound of kNN method instead of the minimax
lower bound.

Given a compact set S, find an n-packing of S, i.e. a1, . . . , an, such that ‖ai − aj‖ ≥ 12r0, in which

r0 =

(
k

16Nvdf0

) 1
d

, (126)

and f0 = 1/V (S). n is set to be the packing number, therefore

n ∼ 1

rd0
. (127)

Then let

f(x) = f0 +
n∑
i=1

g(x− ai), (128)

in which

g(u) =


−Lr0 if ‖u‖ ≤ r0

−L(2r0 − ‖u‖) if r0 < ‖u‖ ≤ 2r0 + δ
L(2δ + 2r0 − ‖u‖) if 2r0 + δ < ‖u‖ ≤ 2r0 + 2δ

0 if 2r0 + 2δ < ‖u‖ ≤ 6r0,

(129)

with δ being selected such that ∫
B(0,6r0)

g(u)du = 0. (130)

Then if x ∈ B(ai, r0) for some i, if 2r0 + 2δ ≤ ρ(x) ≤ 5r0, then P (B(x, ρ(x))) = f0V (B(x, ρ(x))).
Hence

E[|f̂(x)− f(x)|α]

≥ P (2r0 + 2δ ≤ ρ(x) ≤ 5r0)E[|f̂(x)− f(x)|α|2r0 + 2δ ≤ ρ(x) ≤ 5r0]

= P(2r0 + 2δ ≤ ρ(x) ≤ 5r0)E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− f(x)

∣∣∣∣α |2r0 + 2δ ≤ ρ(x) ≤ 5r0

]
= P(2r0 + 2δ ≤ ρ(x) ≤ 5r0)E

[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
f0 − f(x)

∣∣∣∣α |2r0 + 2δ ≤ ρ(x) ≤ 5r0

]
= E

[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
f0 − f(x)

∣∣∣∣α]
−P(ρ(x) /∈ [2r0 + 2δ, 5r0])E

[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
f0 − f(x)

∣∣∣∣α |ρ(x) /∈ [2r0 + 2δ, 5r0]

]
.(131)
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Define

ε = P(ρ(x) /∈ [2r0 + 2δ, 5r0])E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
f0 − f(x)

∣∣∣∣α |ρ(x) /∈ [2r0 + 2δ, 5r0]

]
. (132)

ε decays exponentially with k. Then

E[|f̂(x)− f(x)|α] ≥ E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
f0 − f(x)

∣∣∣∣α]− ε
≥

∣∣∣∣E [ k − 1

NP (B(x, ρ(x)))
f0

]
− f(x)

∣∣∣∣α − ε
= |f0 − f(x)|α − ε
= Lαrα0 − ε. (133)

Then ∫
E[|f̂(x)− f(x)|α]dx ≥

∫
∪ni=1B(ai,r0)

E[|f̂(x)− f(x)|α]dx

& nLαrα0V (B(a1, r0))

∼ nLαrα+d
0

∼ Lαrα0

∼
(

k

Nf0

)α
d

. (134)

To ensure that f(x) > 0 everywhere, especially in B(ai, r), we need to ensure

f0 − Lr0 > 0, (135)

i.e.

f0 > L

(
k

16Nvdf0

) 1
d

, (136)

we let f0 ∼ (k/N)1/(d+1), then∫
E[|f̂(x)− f(x)|α]dx &

(
k

N

) α
d+1

, (137)

i.e.

E
[∥∥∥f̂ − f∥∥∥

α

]
&

(
k

N

) 1
d+1

. (138)

Moreover, we can construct a uniform distribution, by analyzing the variance of f̂(x), it is straight-
forward to show that there exists an f such that

E
[∥∥∥f̂ − f∥∥∥

α

]
& k−

1
2 . (139)
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The estimation error is Ω(1) at the locations whose distance to the boundary is less than (k/N)1/d,
hence

E
[∥∥∥f̂ − f∥∥∥

α

]
& C

1
α
S

(
k

N

) 1
αd

. (140)

As the result,

sup
f∈ΣA

E
[∥∥∥f̂ − f∥∥∥

α

]
&

(
k

N

) 1
d+1

+ C
1
α
S

(
k

N

) 1
αd

+ k−
1
2 . (141)

B. `∞ bound
Upper Bound. Most of the steps are the same as Appendix B, except (92), which changes since

we have removed the lower bound on the density.
Now we derive the bound of∣∣∣∣ k − 1

NV (B(ai, ρ(a)i))
− k − 1

NP (B(ai, ρ(ai)))
f(ai)

∣∣∣∣
again. We discuss two cases seperately: ρ(x) ≤ f(x)/(2L) and ρ(x) > f(x)/(2L).

If ρ(x) ≤ f(x)/(2L), then∣∣∣∣ k − 1

NV (B(ai, ρ(a)i))
− k − 1

NP (B(ai, ρ(ai)))
f(ai)

∣∣∣∣ =
k − 1

NP (B(ai, ρ(ai)))
Lρ(ai)

(a)

≤ k − 1

NP (B(ai, ρ(ai)))
L

(
2P (B(ai, ρ(ai)))

f(ai)vd

) 1
d

.
k

N
P

1
d
−1(B(ai, ρ(ai)))f

− 1
d (x)

(b)

≤ k

N

(
k − 1

N
−∆(N, k)

) 1
d
−1

f−
1
d (ai)

∼
(
k

N

) 1
d

f−
1
d (ai), (142)

in which (a) comes from the Lipschitz condition, and (b) comes from (84).
Moreover, using similar steps as those used in (112), we can show that∣∣∣∣ k − 1

NV (B(ai, ρ(a)i))
− k − 1

NP (B(ai, ρ(ai)))
f(ai)

∣∣∣∣ . f(ai). (143)

Hence ∣∣∣∣ k − 1

NV (B(ai, ρ(a)i))
− k − 1

NP (B(ai, ρ(ai)))
f(ai)

∣∣∣∣ . min

{(
k

N

) 1
d

f−
1
d (ai), f(ai)

}

.

(
k

N

) 1
d+1

. (144)
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If ρ(x) > f(x)/(2L), then similar to (117), we can show that∣∣∣∣ k − 1

NV (B(ai, ρ(a)i))
− k − 1

NP (B(ai, ρ(ai)))
f(ai)

∣∣∣∣ . max

{(
k

N

) 1
d+1

, f(ai)

}
. (145)

From (84) and ρ(x) > f(x)/(2L), it can be shown that

f(x) .

(
k

N

) 1
d+1

. (146)

Therefore from (144) and (145),∣∣∣∣ k − 1

NV (B(ai, ρ(a)i))
− k − 1

NP (B(ai, ρ(ai)))
f(ai)

∣∣∣∣ . ( k

N

) 1
d+1

. (147)

Other steps are the same as Appendix B. Then∥∥∥f̂BC − f∥∥∥
∞

.

(
k

N

) 1
d+1

+ k−
1
2

√
ln
N

ε
. (148)

Lower Bound. The lower bound can just be obtained from (141), by taking the limit α→∞.

APPENDIX D
PROOF OF THEOREM 3

In this section we show the `α convergence rate of the kNN density estimator with adaptive k.
Define

f+(x, r) = sup
x′∈B(x,r)

f(x′), (149)

f−(x, r) = inf
x′∈B(x,r)

f(x′). (150)

Then we have the following two lemmas.

Lemma 3. For all r > 0,

f+(x, r) ≤ eCarf(x), (151)
f−(x, r) ≥ e−Carf(x). (152)

Proof. Please see Appendix D-A for the detailed proof.

Lemma 4. For r ≤ a,

|P (B(x, r))− f(x)V (B(x, r))| ≤ C1r
2V (B(x, r))f(x), (153)

in which

C1 =
1

2
Cbe

aCa . (154)

Proof. Please see Appendix D-B for the detailed proof.
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Define

I1 =

{
k−1

NV (B(x,ρ(x)))
− k−1

NP (B(x,ρ(x)))
f(x) if n ≥ nc

0 if n < nc,
(155)

I2 =

{ (
k−1

NP (B(x,ρ(x)))
− 1
)
f(x) if n ≥ nc

0 if n < nc.
(156)

Bound of E[|I1|α].
We discuss two different cases:
Case 1: f(x) ≥ 1/N . Denote n as the number of samples in B(x, a). If n ≥ nc, then

|I1| =
k − 1

NP (B(x, ρ(x)))

∣∣∣∣P (B(x, ρ(x)))

V (B(x, ρ(x)))
− f(x)

∣∣∣∣
(a)

≤ k − 1

NP (B(x, ρ(x)))
C1ρ

2(x)f(x)

(b)

≤ k − 1

NP (B(x, ρ(x)))
C1f(x)

(
eaCaP (B(x, ρ(x)))

vdf(x)

) 2
d

≤ C1e
2aCa
d v

− 2
d

d f 1− 2
d (x)P

2
d
−1(B(x, ρ(x)))

k

N
, (157)

in which (a) uses Lemma 4. For (b), note that ρ(x) ≤ a always holds, hence

P (B(x, ρ(x))) ≥ f−(x, r)vdρ
d(x) ≥ e−aCavdρ

d(x). (158)

Then

E[|Iα1 ||n] . fα(1− 2
d)(x)

(
k

N

)α
E
[
Pα( 2

d
−1)(B(x, ρ(x)))|n

]
(a)

.

(
k

N

)α
fα(1− 2

d)(x)Pα( 2
d
−1)(B(x, a))

(
k

n

)α( 2
d
−1)

(b)

. N−αk
2α
d nα(1− 2

d)

≤ N−αnα(1− 2
d

(1−q)). (159)

If n < nc, then I1 = 0. Hence

E[|I1|α] . N−αE[nα(1− 2
d

(1−q))]

. N−α(NP (B(x, a)))α(1− 2
d

(1−q))

∼ N−
2α
d

(1−q)fα(1− 2
d

(1−q))(x), (160)

in which the last step uses

P (B(x, a)) ≤ f+(x, a)vda
d ≤ eaCaf(x)vda

d. (161)

Now we use the following lemma.
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Lemma 5. ([27], Lemma 6) If P(f(X) < t) ≤ Cdt
β for any t > 0, then for any p > 0 and any

sequence sN → 0, ∫
f 1−p(x)1(f(x) > sN)dx .


1 if β > p

ln 1
sN

if β = p

sβ−pN if β < p.

(162)

With this lemma,∫
E[|I1|α1

(
f(x ≥ 1

N
)

)
]dx .

 N−
2α
d

(1−q) if β > 1 + 2α
d

(1− q)− α
N−(α+β−1) lnN if β = 1 + 2α

d
(1− q)− α

N−(α+β−1) if β < 1 + 2α
d

(1− q)− α.
(163)

Case 2: f(x) < 1/N .
In this case,

E[|I1|α] = E
[∣∣∣∣ k − 1

NV (B(x, ρ(x)))
− k − 1

NP (B(x, ρ(x)))
f(x)

∣∣∣∣α 1(n ≥ nc)

]
≤ E

[(
eaCa(k − 1)

NP (B(x, ρ(x)))
f(x)

)α
1(n ≥ nc)

]
.

(
k

N

)α
fα(x)E

[
E
[

1

Pα(B(x, ρ(x)))
|n
]
1(n ≥ nc)

]
.

(
k

N

)α
fα(x)E

[
1

Pα(B(x, a))

(
n

k − 1

)α
1(n ≥ nc)

]
.

(
k

N

)α
fα(x)

Nα

(k − 1)α

∼ fα(x). (164)

Then ∫
E[|I1|α1(f(x <

1

N
))]dx .

∫
fα(x)1

(
f(x) ≤ 1

N

)
dx

. N−(α+β−1). (165)

Hence ∫
E[|I1|α]dx .

{
N−min{ 2α

d
(1−q),α+β−1} if β 6= 1− α

(
1− 2

d
(1− q)

)
N−(α+β−1) lnN if β = 1− α

(
1− 2

d
(1− q)

)
.

(166)

Bound of E[|I2|α].
Case 1: f(x) ≥ eaCanc/(Nvd). If n ≥ nc, then

E[|I2|α|n] = E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α |n] fα(x)

= E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− n

NP (B(x, a))
+

n

NP (B(x, a))
− 1

∣∣∣∣α |n] fα(x)

≤ 2α−1fα(x)

(
E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− n

NP (B(x, a))

∣∣∣∣α |n]+

∣∣∣∣ n

NP (B(x, a))
− 1

∣∣∣∣α) .
(167)
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Similar to Lemma 1, it can be shown that

E
[∣∣∣∣(k − 1)P (B(x, a))

nP (B(x, ρ(x)))
− 1

∣∣∣∣α |n] . k−
α
2 . (168)

Hence

E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− n

NP (B(x, a))

∣∣∣∣α |n] .
nα

NαPα(B(x, a))
k−

α
2

∼ nα(1− q
2)

NαPα(B(x, a))
. (169)

If n < nc, then

|I2|α = fα(x). (170)

Therefore,

E[|I2|α] . fα(x)

(
E

[
nα(1− q

2)

NαPα(B(x, a))

]
+ E

[∣∣∣∣ n

NP (B(x, a))
− 1

∣∣∣∣α]
)

+ fα(x)P(n ≤ nc)

(a)

. fα(x)
Nα(1− q

2)Pα(1− q
2)(B(x, a))

NαPα(B(x, a))
+ fα(x)(NP (B(x, a)))−

α
2 + fα(x)P(n ≤ nc)

(b)∼ N−
q
2
αfα(1− q

2)(x) +N−
α
2 f

α
2 (x) + fα(x)P(n ≤ nc)

(c)∼ N−
q
2
αfα(1− q

2)(x) + fα(x)P(n ≤ nc). (171)

Now we integrate each term over x. Use Lemma 5, we have∫
N−

q
2
αfα(1− q

2)(x)1

(
f(x) ≥ eaCanc

Nvd

)
dx .

 N−
q
2
α if β > 1−

(
1− q

2

)
α

N−(α+β−1) lnN if β = 1−
(
1− q

2

)
α

N−(α+β−1) if β < 1−
(
1− q

2

)
α.

(172)

Moreover, from the Chernoff inequality,

P(n ≤ nc) ≤ exp[−e−aCaNvdf(x)]

(
eNe−aCavdf(x)

nc

)nc
. (173)

Then ∫
fα(x)P(n ≤ nc)1

(
f(x) ≥ eaCanc

Nvd

)
dx . N−(α+β−1). (174)

Therefore∫
E[|I2|α]1

(
f(x) ≥ eaCanc

Nvd

)
dx .

 N−
q
2
α if β > 1−

(
1− q

2

)
α

N−(α+β−1) lnN if β = 1−
(
1− q

2

)
α

N−(α+β−1) if β < 1−
(
1− q

2

)
α.

(175)
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Case 2: f(x) < eaCanc/(Nvd). Then

E[|I2|α] = E
[∣∣∣∣ k − 1

NP (B(x, ρ(x)))
− 1

∣∣∣∣α fα(x)1(n ≥ nc)

]
+ fα(x)P(n < nc)

≤ 2α−1E
[(

k − 1

NP (B(x, ρ(x)))

)α
fα(x)1(n ≥ nc)

]
+ 2α−1fα(x)P(n ≥ nc) + fα(x)P(n < nc)

. fα(x). (176)

Hence ∫
E[|I2|α]1

(
f(x) <

eaCanc
Nvd

)
dx . N−(α+β−1). (177)

Combining Case 1 and Case 2, we have∫
E[|I2|α]dx .

{
N−min{ q2α,α+β−1} if β 6= 1−

(
1− q

2

)
α

N−(α+β−1) lnN if β = 1−
(
1− q

2

)
α.

(178)

Let q = 4/(d+ 4), then∫
E[|f̂(x)− f(x)|α]dx .

{
N−min{ 2α

d+4
,α+β−1} if β 6= 1− d+2

d+4
α

N−(α+β−1) lnN if β = 1− d+2
d+4

α,
(179)

i.e.

E
[∥∥∥f̂ − f∥∥∥

α

]
.

{
N−min{ 2

d+4
,1+β−1

α } if β 6= 1− d+2
d+4

α

N−(1+β−1
α ) lnN if β = 1− d+2

d+4
α.

(180)

A. Proof of Lemma 3

∂f+(x, r)

∂r
= sup

x′∈B(x,r)

‖∇f(x′)‖

≤ Ca sup
x′∈B(x,r)

f(x′)

≤ Caf+(x, r). (181)

By solving the above equation,

f+(x, r) ≤ eCarf(x). (182)

Similarly,

f−(x, r) ≥ e−Carf(x). (183)
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B. Proof of Lemma 4

|P (B(x, r))− f(x)V (B(x, r))| =

∫
B(x,r)

(f(u)− f(x))du

=

∫
B(x,r)

[
∇Tf(x)(u− x) + (u− x)T∇2f(ξ)(u− x)

]
du

=
1

2
r2V (B(x, r)) sup

v∈B(x,r)

∥∥∇2f(v)
∥∥
op

≤ Cb
2
r2V (B(x, r))f+(x, r)

≤ Cb
2
r2V (B(x, r))f(x)eaCa , (184)

in which the last step comes from Lemma 3.

APPENDIX E
PROOF OF THEOREM 4

Define f0(x) such that

f0(x) =

{
1
N

if ‖x‖ < r
1

2vdRd
if ‖x− c‖ < R,

in which R is fixed and r = N
1−β
d . ‖c‖ is sufficiently large, so that B(0, r) and B(c, R) do not

intersect. For other x, i.e. for x /∈ B(0, r)∪B(c, R), f0 is designed such that f0 satisfies Assumptions
(a)-(d) with constant Cb, Cc and Cd/2.

Let g(x) be a function supported in B(0, 1), with ‖g‖∞ ≤ gm, in which

gm =
ln 2

32vd ln 3
, (185)

and ∥∥∇2g(x)
∥∥
op
≤ 1

2
Cb. (186)

The above constructions are possible for sufficiently large Cb, Cc and Cd. Find ai, i = −n,−(n−
1), . . . ,−1, 1, . . . , n, such that B(ai, 1) are mutually disjoint, and B(ai, 1) ⊂ B(x, r) for all i. Define

fv(x) = f0(x) +
vi
N
g(x− ai)−

vi
N
g(x− a−i), (187)

in which v ∈ {−1, 1}d.
According to Varshamov-Gilbert Lemma [28], there exists NG elements v(j), j = 1, . . . , NG, NG ≥

2n/8, such that H(v(j),v(k)) ≥ n/8 for all 0 ≤ j < k < NG, in which H is the Hamming distance.
Denote

V = {v(j), j = 1, . . . , NG}. (188)
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Then the KL divergence between fv(j) and fv(k) is bounded by

D(fv(j)||fv(k)) ≤ H(v(i),v(j))

∫
B(ai,1)∪B(a−i,1)

(
f0(x) +

1

N
g(x− ai)−

1

N
g(x− a−i)

)
ln
f0(x) + 1

N
g(x− ai)− 1

N
g(x− a−i)

f0(x)− 1
N
g(x− ai) + 1

N
g(x− a−i)

dx

(a)

≤ H(v(i),v(j))

[∫
B(ai,1)∪B(a−1,1)

1

N
|g(x− ai)− g(x− a−i)| ln 3dx

]
≤ 2 ln 3

vdgm
N

H(v(i),v(j)). (189)

For (a), we observe that due to symmetry,∫
B(ai,1)∪B(a−i,1)

f0(x) ln
f0(x) + 1

N
g(x− ai)− 1

N
g(x− a−i)

f0(x)− 1
N
g(x− ai) + 1

N
g(x− a−i)

dx = 0. (190)

Also note that gm ≤ 1/4, f(x) = 1/N for x ∈ B(ai, 1) ∪B(a−i, 1), we have∣∣∣∣ln f0(x) + 1
N
g(x− ai)− 1

N
g(x− a−i)

f0(x)− 1
N
g(x− ai) + 1

N
g(x− a−i)

∣∣∣∣ ≤ ln 3, (191)

thus (a) holds.
Since we have N samples, denote Pv(j) as the joint distribution of these N samples, then

D(Pv(j)||Pv(k)) ≤ 2 ln 3vdgmH(v(j),v(k)) ≤ 2 ln 3nvdgm =
1

16
n ln 2. (192)

Define

v̂ = arg min
v

∥∥∥f̂ − fv∥∥∥
1
. (193)

Let V be a random variable that is uniformly distributed in V , and the corresponding estimate is V̂,
then from Fano’s inequality,

sup
v

P(V̂ 6= V) ≥ 1−
max
j,k

D(Pv(j)||Pv(k)) + ln 2

lnNG

≥ 1−
1
16
n ln 2 + ln 2

n
8

ln 2
. (194)

For sufficiently large N ,

P(V̂ 6= V) ≥ 1

3
. (195)

Note that if V̂ 6= V, then∥∥∥f̂ − fV∥∥∥α
α
≥ 1

2α
‖fV̂ − fV‖

α
α

≥ 1

2α
H(V̂,V)× 2

∫ (
2g(x)

N

)α
dx

≥ n

4Nα

∫
gα(x)dx. (196)
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To satisfy the assumptions, the maximum n we can take is n ∼ 1/rd ∼ N1−β . Then

E
[∥∥∥f̂ − fV∥∥∥α

α

]
≥ 1

3

n

4Nα

∫
gα(x)dx & N−(α+β−1). (197)

Moreover, from the standard minimax analysis in [24], it can be proved that

E
[∥∥∥f̂ − fV∥∥∥α

α

]
& N−

2α
d+4 . (198)

Combine these two bounds, we have

inf
f̂

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−min{ 2

d+4
,1+β−1

α } (199)

the proof of the minimax lower bound of density estimation with `1 criterion is complete.

APPENDIX F
PROOF OF PROPOSITION 1

In this appendix, we show a lower bound of the `1 estimation error of the kernel density estimator.
Recall that the kernel density estimator is defined as

f̂(x) =
1

Nhd

N∑
i=1

K

(
Xi − x

h

)
, (200)

in which
∫
K(u)du = 1. For simplicity, we assume that K is supported in B(0, 1).

Firstly,

E
[∥∥∥f̂ − f∥∥∥α

α

]
=

∫
E[|f̂(x)− f(x)|α]dx

≥
∫
|E[f̂(x)]− f(x)|αdx

= ‖f ? Kh − f‖αα , (201)

in which ? means convolution and Kh(·) = K(·/h)/hd. f ? Kh(x) is a weighted average of pdf in
B(x, h). Then there are many ways to construct f so that

‖f ? Kh − f‖αα & h2α. (202)

We omit the detailed construction for simplicity. Moreover, define

f0(x) =

{ 1
Nvdhd

if ‖x‖ < r
1

2vdRd
if ‖x− c‖ < R,

(203)

in which ‖c‖ is sufficiently large so that B(0, r) and B(c, R) do not intersect.
In order to ensure that f0(x) satisfies Assumption (d), we set

r = (Nvdh
d)

1−β
d , (204)

and for x /∈ B(0, r) ∪B(c, R), f0 is constructed so that Assumptions (a)-(d) are satisfied.
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If B(x, h) ⊂ B(0, r), denote n(x, h) as the number of samples in B(x, h), then

P(f̂(x) = 0) = P(n(x, h) = 0) =

(
1− 1

N

)N
→ e−1 as N →∞. (205)

Thus for all x such that B(x, h) ∈ B(0, r), i.e. x ∈ B(0, r − h),

E[|f̂(x)− f(x)|α] ≥ P(f̂(x) = 0)fα(x) = e−1fα(x), (206)

and

E
[∫
|f̂(x)− f(x)|αdx

]
≥
∫
B(0,r−h)

e−1fα(x)dx = e−1

(
1

Nvdhd

)α
vd(r − h)d. (207)

From (204), for sufficiently large N , h < r/2, hence

E
[∥∥∥f̂ − f∥∥∥α

α

]
& (Nhd)−(α+β−1). (208)

Combining (201), (202) and (208), we have

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥α

α

]
& (Nhd)−(α+β−1) + h2α, (209)

thus

inf
h

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥α

α

]
& N−

2α(α+β−1)
(d+2)α+βd−d , (210)

i.e.

inf
h

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−

2(α+β−1)
(d+2)α+βd−d , (211)

Moreover, the minimax lower bound is

inf
f̂

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−min{ 2

d+4
,1+β−1

α }. (212)

Kernel density estimator can not have a better convergence rate than the minimax lower bound.
Therefore

inf
h

sup
f∈ΣB

E
[∥∥∥f̂ − f∥∥∥

α

]
& N−min{ 2(α+β−1)

(d+2)α+βd−d ,
2
d+4}. (213)

APPENDIX G
PROOF OF THEOREM 5

Despite that for the `∞ error we do not use an adaptive kNN estimator, for the convenience of
analysis, we still pick an arbitrary a > 0, and define

fc =
2eaCak

Nvdad
. (214)

This construction ensures that if f(x) ≥ fc, then Lemma 4 holds for all r ≤ a. Define

S = {x|f(x) > fc} , (215)
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and divide S into two parts:

S1 = {x|B(x, h) ⊂ S}, (216)
S2 = S \ S1, (217)

in which

h = min

{(
1

16

) 1
d

,
1

2

}
a. (218)

We provide the uniform bound of the estimation error within S and Sc separately.
Bound in S. Similar to the case with bounded support, find a1, . . . , an, such that ∪B(ai, r) covers

S. Define ∆(N, k) such that

max

{
D

(
k − 1

N
||k − 1

N
+ ∆(N, k)

)
, D

(
k − 1

N
||k − 1

N
−∆(N, k)

)}
=

1

N
ln

4n

ε
. (219)

Then follow steps in the proof for distributions with bounded support, with probability at least 1− ε/2,∣∣∣∣P (B(ai, ρ))− k − 1

N

∣∣∣∣ < ∆(N, k), (220)

for all i = 1, . . . , n. Similar to Lemma 2, it can be shown that

∆(N, k) ≤ 4
k

1
2

N

√
ln

4n

ε
. (221)

From Lemma 3,

P (B(ai, a)) ≥ f−(x, a)vda
d ≥ e−aCaf(x)vda

d ≥ e−aCafcvda
d ≥ 2k

N
. (222)

As long as (220) holds, for sufficiently large N , P (B(ai, ρ)) < (k − 1)/N + ∆(N, k) < 2k/N .
Therefore, ρ < a.

Then the bounds of I1, I2 and I3 are the same as Appendix B, except that (92) becomes∣∣∣∣ k − 1

NV (B(ai, ρ))
− k − 1

NP (B(ai, ρ))
f(ai)

∣∣∣∣
=

k − 1

NP (B(ai, ρ))

∣∣∣∣P (B(ai, ρ))− f(ai)V (B(ai, ρ))

V (B(ai, ρ))

∣∣∣∣
(a)

≤ k − 1

NP (B(ai, ρ))
Ccρ

2f(ai)

(
1 + ln

1

f(ai)

)
≤ k − 1

NP (B(ai, ρ))
Cc

(
eaCaP (B(ai, ρ))

vdf(ai)

) 2
d

f(ai)

(
1 + ln

1

f(ai)

)
.

{ (
k
N

) 2
d lnN if d ≥ 2

k
N

lnN if d = 1,
(223)

in which (a) comes from Lemma 4.
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Therefore, following the remaining steps in Appendix B, we have

sup
x∈S
|f̂(x)− f(x)| .


(
k
N

) 2
d lnN + k−

1
2

√
ln N

ε
if d ≥ 2

k
N

lnN + k−
1
2

√
ln N

ε
if d = 1.

(224)

Bound in Sc.
Recall the definition of S1 in (216), for all x /∈ S1, there exists a x′ such that ‖x′ − x‖ < h and

x′ /∈ S. Since x′ /∈ S, f(x′) ≤ fc. Hence for all x /∈ S1,

P (B(x, h)) ≤ f+(x, h)V (B(x, h)) ≤ f+(x′, 2h)V (B(x, h)) ≤ 2fcV (B(x, h)). (225)

From (218),

2fcV (B(x, h)) ≤ k

2N
. (226)

Define event Ej , such that Xj /∈ S1 and ρk−1(Xj) < r0, in which ρk−1(Xj) is the (k− 1)-th nearest
neighbor distance of point Xj , and E = ∪Nj=1Ej . Then according to Chernoff inequality,

P(Ej) = P (Xj /∈ S1, ρk−1(Xj) < r0)

≤ E

[
e−(N−1)P (B(x,r0))

(
e(N − 1)P (B(Xj, r0))

k − 1

)k−1

1(Xj /∈ S1)

]

≤ e−
1
2
k

(
1

2
e

)k
= e−(ln 2− 1

2)k. (227)

Hence

P(E) = P
(
∪Nj=1Ej

)
≤ Ne−(ln 2− 1

2)k. (228)

If k/ lnN → ∞, then for sufficiently large N , P(E) < ε/2. The remaining proof assumes that E
does not happen. This condition holds with probability at least 1− ε/2. Then ρ(Xj) ≥ h if Xj /∈ S1.
For all x ∈ Sc, we have ρ(x) ≥ h/2, because if ρ(x) < h/2, then there exists at least k points in
B(x, h/2). According to the definition of S, S1 and S2, B (x, h/2) ∩ S1 = ∅, thus B(x, h/2) ⊂ Sc1.
Therefore ∃Xj ∈ Sc1, and ρk−1(Xj) < h, which contradicts with the assumption that E does not
happen. Therefore ρ(x) ≥ h/2 holds for all x ∈ Sc. Then

V0(B(x, h)) ≥ 1

2d
vdh

d, (229)

and

f̂(x) ≤ k − 1

NV0(B(x, ρ(x)))
≤ k − 1

NV
(
B
(
x, 1

2
h
)) =

2d(k − 1)

Nvdhd
,∀x ∈ Sc. (230)

From (218),

f̂(x) .
k

N
. (231)

From (223) and (231), for sufficiently large N , with probability at least 1− ε,

sup
x
|f̂(x)− f(x)| .


(
k
N

) 2
d lnN + k−

1
2

√
ln N

ε
if d > 2

k
N

lnN + k−
1
2

√
ln N

ε
if d = 1, 2.

(232)
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APPENDIX H
PROOF OF THEOREM 6

Define

fv(x) = f0(x) + vr2g

(
x− a1

r

)
− vr2g

(
x− a2

r

)
, (233)

in which f0 is a fixed pdf, which ensures that f0(x) ≥ m for x ∈ B(a1, r) ∩ B(a2, r). g(u) is an
arbitrary function that supports on B(0, 1), has bounded Hessian and reaches its maximum gm at
u = 0. Then for any estimator f̂ ,

sup
f∈ΣC

E
[∥∥∥f̂ − f∥∥∥

∞

]
≥ sup

v∈{−1,1}
E
[∥∥∥f̂ − fv∥∥∥

∞

]
≥ E

[∥∥∥f̂ − fV ∥∥∥
∞

]
≥ 1

4
‖fv1 − fv2‖∞ e

−ND(fv1 ||fv2 )

≥ r2e−Nr
d+4

. (234)

Let r ∼ N−1/(d+4), then

sup
f∈ΣC

E
[∥∥∥f̂ − f∥∥∥

∞

]
& N−

2
d+4 . (235)
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