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The Water-Filling Game in Fading
Multiple-Access Channels
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Abstract—A game-theoretic framework is developed to design
and analyze the resource allocation algorithms in fading mul-
tiple-access channels (MACs), where the users are assumed to be
selfish, rational, and limited by average power constraints. The
maximum sum-rate point on the boundary of the MAC capacity
region is shown to be the unique Nash equilibrium of the corre-
sponding water-filling game. This result sheds a new light on the
opportunistic communication principle. The base station is then
introduced as a player interested in maximizing a weighted sum
of the individual rates. A Stackelberg formulation is proposed in
which the base station is the designated game leader. In this setup,
the base station announces first its strategy defined as the decoding
order of the different users, in the successive cancellation receiver,
as a function of the channel state. In the second stage, the users
compete conditioned on this particular decoding strategy. This
formulation is shown to be able to achieve all the corner points of
the capacity region, in addition to the maximum sum-rate point.
On the negative side, it is shown that there does not exist a base
station strategy in this formulation that achieves the rest of the
boundary points. To overcome this limitation, a repeated game
approach, which achieves the capacity region of the fading MAC,
is presented. Finally, the study is extended to vector channels
highlighting interesting differences between this scenario and the
scalar channel case.

Index Terms—Fading, multiple access, Nash equilibrium, power
control, resource allocation.

I. INTRODUCTION

THE design and analysis of efficient resource allocation
algorithms for wireless channels has received significant

research interest for many years. In a pioneering work, Tse
and Hanly have characterized the capacity region of the fading
multiple-access channel (MAC) and the corresponding optimal
power and rate allocation policies [1]. The centralized nature of
these policies relies on the assumption that the multiple access
users will implement the power and rate allocation schemes
dictated by the base station. On the other hand, when the users
are selfish, there maybe an incentive for some, or all, of them
to deviate from the centralized policies if the policies are not
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compatible with their individual interests. This motivates our
work here on the design and analysis of distributed strategies
that approach the optimal performance and are compatible with
the selfish nature of the users. Arguably, such algorithms are
more desirable from a practical perspective, since there is no
incentive for the users to deviate from the specified policies.

We adopt a game-theoretic framework where the users are
typically modeled as rational and selfish players interested
in maximizing the utilities they obtain from the network.
The selfish behavior implies that individual users do not care
about the overall system performance. Over the last ten years,
game-theoretic tools have been used to design distributed
resource allocation strategies in a variety of contexts. For
example, Mackenzie et al. consider the collision channel [2],
Yu et al. focus on the digital subscriber line setup [3], Etkin
et al. investigate the power allocation game in the Gaussian
interference channel [4], [5], and La et al. model the power
control problem in Gaussian MACs as a cooperative game
where the users are allowed to form coalitions [6]. Probably the
scenario closest to our work is the design of distributed power
control algorithms for the uplink of code division multiple
access (CDMA) systems considered in e.g., [7]–[12]. These
papers focus on time-invariant channels and construct utility
functions that allow the users to reach a socially optimal equi-
librium. These works, however, reach the negative conclusion
that the selfish behavior entails a fundamental performance
loss in the sense that the achievable utilities at the equilibria
points,1 if they exist, are usually inefficient as compared with
the centralized policy [7], [11]. The central contribution of this
paper is showing how to overcome this negative conclusion
in fading channels by exploiting the time varying nature of
fading, modeling the base station as an additional player with
the appropriate decoding strategy, and resorting to a repeated
game formulation if needed.

We start with a static Nash formulation which only models
the multiple access users as players interested in maximizing its
achievable rate subject to an average power constraint. In this
formulation, the base station is not allowed to explicitly influ-
ence the decision-making process of the multiple access players.
It is assumed that every player treats the signals of other users
as Gaussian noise, with the appropriate variance. This worst
case assumption achieves our objective of eliminating the in-
fluence of the base station on the game, since the signal can be
decoded by the receiver with any reasonable decoder. Remark-
ably, we show that the unique Nash equilibrium of this game
is the sum-rate optimal point on the boundary of the capacity
region [1]. Hoping to achieve other boundary points of the ca-
pacity region, we then introduce the base station as a player in-
terested in maximizing a weighted sum of the individual rates.

1The rigorous definition of equilibria points will be given in the sequel.
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By allowing the base station to adopt the appropriate succes-
sive cancellation decoding strategy, which is announced at the
first stage of the game, we transform our game into a Stackel-
berg formulation [13]. Here, we establish the ability of this ap-
proach to achieve all the corner points of the capacity region in
addition to the sum-rate optimal point. The key idea is for the
base station to use a successive cancellation decoding strategy
while altering the decoding order as a function of the channel
state. The final step, that allows for achieving all points on the
boundary of the capacity region, is to use a dynamic game ap-
proach. In this setup, the base station can use the decoding order
as a punishment tool forcing the multiple access users to adopt
the optimal power control policies. We then extend our results to
vector channels where different conclusions (as compared with
the scalar case) are drawn. It is worth noting that our approach
is purely information theoretic, and hence, we do not introduce
other elements such as pricing mechanisms [7] into the problem.
In particular, we limit the payoff functions to depend only on the
achievable rate(s), and define the multiple access user strategy
as a power allocation policy and the base station strategy as a
decoding algorithm.

The rest of the paper is organized as follows. In Section II, we
present the system model and review, briefly, known results on
the capacity of fading MACs. Section III includes our results on
the water-filling game for scalar fading channels. In particular,
we devote Section III-A to the Nash formulation, Section III-B
to the Stackelberg formulation, and Section III-C to the dynamic
game scenario. Section IV highlights some interesting struc-
tural differences between scalar and vector channels. Finally,
we close with some concluding remarks in Section V.

II. BACKGROUND

We consider a discrete-time flat fading MAC with users
and one base station. The signal received by the base station at
time is2

(1)

where and are the transmitted signal and fading
channel gain of the th user at time . Similar to [1], we assume
the fading process to be jointly stationary and ergodic. We
further assume that the stationary distribution has a continuous
density and is bounded. User has an average power constraint

and is a sample of a zero-mean white Gaussian noise
process with variance . The capacity region of this channel
depends on the fading process characteristics and the avail-
ability of the channel state information (CSI).

If the channel gains are assumed to be fixed and known a
priori (i.e., time-invariant channel) then we are reduced to the
Gaussian MAC where the capacity region is well known [14].
For the two-user case, this region is given by

(2)

2In this paper, we use lower case letters for scalars, bold face lower case letters
for vectors, and bold face upper case letters for matrices.

Fig. 1. The capacity region of the two-user fading MAC.

It is easy to see that the boundary of is a pentagon. The two
corner points are achieved by employing a successive cancella-
tion decoding strategy at the base station and other boundary
points can be achieved by appropriate time sharing between
the two decoding strategies used at the corner points [14]. For
time-varying channels with only receiver CSI, the capacity re-
gion is also known [15]. For the two-user case, the new capacity
region can be interpreted as the average of the rate expressions
in (2) with respect to the fading channel distribution.

Tse and Hanly [1] considered time-varying channels where
the CSI is available a priori at all the transmitters and the re-
ceiver. In practice, this assumption can be realized by estimating
the CSI at the base station and then broadcasting the informa-
tion to the multiple access users. As pointed out in [1], this as-
sumption is justified when the channel varies much slower than
the data rate, resulting in a negligible cost for the estimation
and feedback mechanism. Tse and Hanly characterized the ca-
pacity region along with the corresponding centralized power
and rate allocation policies for this scenario. It was
also shown in [1] that the power and rate allocation policies are
unique and each boundary point corresponds to the maximiza-
tion of a weighted sum of the individual rates. All the boundary
points are achieved by successive cancellation decoding, where
the decoding order is determined by the rate award vector [1].

The capacity region for the two-user case is shown in Fig. 1.
The corner point is achieved by using the following
policy: user 1 water-fills over the background noise and user
2 water-fills over the sum of the interference from user 1 and
the background noise. At the base station user 2 is decoded
first followed by user 1. We denote the rate pair at this point
as . At point , the roles of users 1 and 2
are reversed and we refer to the rate pair by .
Another boundary point of particular interest is the maximum
sum-rate point . Unlike the additive white Gaussian noise
(AWGN) MAC, this point is unique and is achieved by a
time-sharing policy where only one user is allowed to transmit
at any fading state [1], [16]. This observation will prove instru-
mental in the development of the main result in Section III-A.

The centralized nature of the optimal power and rate allo-
cation policies motivates our pursuit for distributed
strategies that approach the capacity region of the fading MAC
with selfish users who might have incentive to deviate from the
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centralized policy. Our assumption that the CSI is known ev-
erywhere implies that the games considered here are games with
complete information [3], [5], [7]–[12]. Finally, we observe that
the utility functions of the multiple access users in our games are
concave in their own power control and the strategy spaces are
convex. This allows for limiting our discussion to pure strate-
gies without any loss of generality [13], [17].

III. THE WATER-FILLING GAME

For simplicity of presentation, we first consider in details the
two-user scenario. Our arguments extend to the -user channel
as briefly outlined in Section III-D.

A. Nash Formulation

Here, we consider a static noncooperative game where the
players are the multiple access users. In this game, the strategy
of user is the power control policy . The corresponding
payoff function is defined as the average achievable rate

with . The goal of user is to

s.t. (3)

where is the set of all
feasible power control policies of user , and represents the
power control policy of the other user (in the more general case

refers to the strategies of all users except user ). Since the
base station is not a player of the game, we assume that each
user will treat the signal of the other user as interference. This
assumption is consistent with the lack of coordination among
the users,3 and allows the base station to use low-complexity
single-user decoders. Given the power control policy
of user 2, the payoff of user 1 is given by

(4)
Here, is the joint probability density function of the
two fading coefficients. The payoff function of user 2 is defined
similarly. As we can see that the payoff function of each user
depends on the two power control policies ( , ). Before pro-
ceeding further, we need the following definition from [17].

Definition 1: A Nash equilibrium is a policy pair
such that

(5)

This definition means that at the Nash equilibrium, no user
can benefit by unilaterally deviating. Given a fixed power con-
trol policy of user 2, the optimal strategy of user 1

3Even if there is a coordination among them, the coordination is not trustful,
since the users are selfish.

is the solution to the optimization problem shown in (6) at the
bottom of the page.

The solution to this optimization problem is the well-known
water-filling power allocation, i.e.,

(7)

in which and is the power level that
satisfies

(8)
Similarly, the optimal policy of user 2, given a fixed policy

for user 1, is given by

(9)

From these expressions, one can see that the optimal policy of
each user depends largely on its guess of the other user’s policy.
Based on this guess, each user will determine its policy and
adjusts its water-filling level to maximize its own average rate.
At the Nash equilibrium, the water-filling pair satisfies
the two average power constraints with equality. Now we are
ready to prove our first result.

Theorem 1: The maximum sum-rate point of the capacity
region is the unique Nash equilibrium of our water-filling
game.

Proof: At first, let us show the existence of only
time-sharing equilibria using similar argument as [18], [19].
Suppose there exists a non-time-sharing equilibrium with the
corresponding water-level pair . Then for some channel
realizations , , we have , ,
and

(10)

From these two equations, we get

(11)

Since , are constants, and the fading coefficients are char-
acterized by a continuous distribution, (11) is satisfied with a
zero probability. This implies the existence of only time-sharing
Nash equilibria.

Under the time-sharing equilibrium, when ,
the sum of the background noise and the interference from user
1 should be larger than the water level of user 2. Thus, when user

s.t. (6)
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1 transmits, the channel conditions should satisfy the following
inequality:

Similarly, when user 2 transmits, the channel conditions
should satisfy the following condition:

The water-filling levels can now be obtained by solving the
following two equations:

(12)

Let be the solution to (12). The corresponding power
control policies are unique and given by

when (13)

when (14)

with and in other cases.
It was shown in [1] that the centralized policy corresponding

to the point is time sharing with the same power allocation
levels as (13), (14). Finally, the fact that the solution to (12) is
unique [1] implies that the only Nash equilibrium of the dis-
tributed power control game is the maximum sum-rate point of
the capacity region (i.e., ).

Theorem 1 establishes the remarkable fact that the selfish
behavior of the users will lead them to jointly optimize the
sum-rate of the channel. In fact, this result provides a new inter-
pretation of the opportunistic communication principle [16]. At
any particular instance, the user with the strongest channel sees
a relatively weak interference from the other user, and hence,
decides to transmit with a high power level. On the other hand,
the other user sees a strong interference in addition to a weak
channel, and hence, decides to conserve the power for later
usage. This way, they reach the opportunistic time-sharing equi-
librium distributively. The underlying idea is that the selfishness
of the different users will balance-out at the maximum sum-rate
point. In this work, we only focus on the case where the channel
state information is known by all the users. One possible justifi-
cation is that the base station can estimate and then broadcast
it to all the users in the network. Developing models that only
depend on local channel state information is an interesting av-
enue of future work. Theorem 1 contrasts the negative conclu-
sions drawn in earlier works on the efficiency of game-theoretic
approaches in CDMA uplink power control (e.g., [7]–[12]). The
enabling vehicle behind this result is the time varying nature of
the fading channel. With this temporal variations, the CSI (avail-
able at all transmitter) acts like a common randomness that al-
lows the users to reach a more efficient equilibrium based on a

selfish rationale. This is yet another manifestation of the posi-
tive impact that fading, if properly exploited, can have on cer-
tain aspects of wireless systems. We wish to stress the fact that,
in our formulation, each user needs only to know the average
power constraint of the other user (i.e., no need for knowing the
instantaneous interference level). The two users, then, can com-
pute the water levels off-line based on the statistics of
the channel, and will adjust their own instantaneous power level
according to these water levels and the CSI. The users do not
need to adjust their instantaneous rate, instead, they can use a
codebook that spans several fading blocks with rate set to be
the average rate achievable in these blocks. This approach relies
on the assumption that the two users are rational and each user
trusts that the other user is rational.

B. Stackelberg Formulation

In the previous section, we have shown that the only boundary
point achievable by our Nash game is the maximum sum-rate
point. One can attribute this limitation to the assumption that
every user (player) will treat the other user’s signal as noise.
While this assumption does not entail a loss at the time-sharing
point , it does not allow for achieving other boundary points.
Such points require the base station to employ a more sophis-
ticated decoding rule. In [1], it was shown that successive can-
cellation decoding, with the appropriate ordering, is sufficient
to achieve all the boundary points. This observation motivates a
game-theoretic formulation where the base station is introduced
as an additional player. The base station strategy corresponds to
a particular choice of the decoding order, as detailed next.

We wish to stress that, unlike the centralized scenario [1], the
base station in our formulation does not dictate the power level
and rate of the individual users.4 Still, it is reasonable to assume
that the roles of the base station and multiple access users are
not totally symmetric. Therefore, we do not model the base sta-
tion as an ordinary player in our game but rather appeal to the
bi-level programming notion [20]. Bi-level programming is typ-
ically used in modeling a decision making process where there
is a hierarchical relationship between the decision makers. In
our context, bi-level programming corresponds to a Stackelberg
game [17], [20], where the leader announces its strategy first and
then the remaining players react according to a specific equilib-
rium concept among them. Here, we designate the base station
as the game leader, and hence, it will announce its decoding
strategy in the high-level game. This way, the base station can
rely on the rational and selfish nature of the multiple access
players to influence their behavior in the second stage (i.e., low
level game).

In this work, we consider a class of successive decoding
strategies parameterized by the decoding order as a function of
the fading gains . More precisely, the base station di-
vides the whole possible space of into two subsets ,

. When , the base station will decode user 1’s
information first whereas implies decoding user
2’s signal first. After the base station announces its strategy,
i.e., , the multiple access users play the low-level game

4Even if the base station dictates the power and rate of individual user, each
user will have an incentive to deviate from it if the dictated policy is not com-
patible with its own utility, as argued before.
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using the Nash equilibrium concept. The strategy space of user
is still , and the payoff function of user is defined as the

supremum of the achievable rate. Here supremum refers to the
fact that in the rate expressions to follow we always assume the
users to be decoded successfully (which is a critical assumption
in the successive decoding approach). We will show later that,
at the Nash equilibrium this condition indeed holds. Hence, the
supremum corresponds exactly to the achieved payoff. With
a slight abuse of notation, the payoff function of each user
is written as (15) at the bottom of the page. Here is the
indicator function. In order to achieve the average rate in (15),
for a given base-station strategy , each user will use two
codebooks. The low-rate codebook is multiplexed across the
fading states in which the user is decoded first and the high-rate
codebook is multiplexed across the other fading states. The
payoff function of the base station is defined as

(16)

This payoff function has a natural economic interpretation as
the revenue of the base station where can be viewed as the
payment that user owes per unit rate. The value of can be
decided using an auction process [21], where each user submits
its proposed payment to the base station in order to maximize
its own utility. In this work, we do not consider this auction
process and assume that is given.

We first study the properties of the low level game. The Nash
equilibrium under a fixed base station strategy is a power
control pair that satisfies

For any given power control policy , the optimal power
control policy of user 1 is the solution to the optimization
problem shown in (17), also at the bottom of the page. The
optimal power control policy of user 2 is also the solution to a
similar optimization problem for any power control policy of
user 1. For a given , the solution set for this low level game
is written as

is a Nash equilibrium of the low-level game

The following result characterizes the pure-strategy Nash equi-
libria of our low-level game. The algorithm developed in the
proof is reminiscent of the iterative algorithm in [1], [3].

Theorem 2: For any strategy of the base station, there
exist Nash equilibria for the low-level power/rate control game.

Proof: At the Nash equilibrium, no user can benefit by
deviating unilaterally. Suppose is given, user 1’s
strategy is the solution to (17), which is still the water-filling
solution

(18)
where is the power level chosen to satisfy the power con-
straint of user 1 with equality. For the same reason, if we fix

, the optimal response of user 2 is also water-filling
over the sum of the interference from user 1 and the background
noise, which is

(19)
The key of our proof is to establish the existence of a pair

that simultaneously satisfies the two power constraints
with equality, and hence, constitutes a Nash equilibrium. If such

exists, we have solutions to the (18) and (19). One can
easily check that if

(20)

Similarly, if

(15)

s.t. (17)
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Thus, if the water-filling level pair exists, it should
be the solution to the following equation array:

(21)

Before proceeding further, we first observe the fol-
lowing. If there are two pairs and , where

, , then we have ,
.5 One can easily verify this by ob-

serving that is a nondecreasing function of and
a nonincreasing function of . At the same time,
is a nonincreasing function of and a nondecreasing function
of . Based on these observations, we have the following
iterative method to solve (21). Set , , then
fix and increase until . This can be
done by solving the following equation:

Let represent the solution to this equation. At this
time, we will have . Then we can
increase to such that .
After this step, , thus, we can increase

again. Through this process, we can get nondecreasing
sequences , and ,

. Since , are limited, ,
are nondecreasing sequences with upper bounds. Then

there exists constants , such that

(22)

(23)

This pair is therefore a Nash equilibrium of our power
allocation game.

5Here �P (� ; � ) refers to the average power of user i when the users do
water-filling according to the water levels (� ; � ).

Theorem 2 only establishes the existence of a Nash equilib-
rium, but it tells nothing about the uniqueness of this equilib-
rium. To prove uniqueness, one is typically forced to find a con-
traction mapping whose fixed point is the Nash equilibrium.
In [3], [5], the authors apply this method to the interference
game and find that uniqueness requires very restrictive condi-
tions. Fortunately, we are able to prove uniqueness in our setup
by using the concept of admissible Nash equilibrium ([17, Def-
inition 3.3]).

Definition 2: A Nash equilibrium strategy pair
is said to be admissible if there exists no other Nash equi-
librium strategy pair such that

, , and at
least one of these equalities is strict.

Intuitively, this notion allows for eliminating Nash equilibria
which are Pareto dominated by other equilibrium points. One
would expect the rationality of the players to led them to choose
one of the admissible Nash equilibria to operate, since these
points are preferred for all the users. This approach allows for
modifying the solution set for our low-level game to only in-
clude admissible Nash equilibria as shown in the equation at
the bottom of the page.

The following result establishes the existence of a single ad-
missible Nash equilibrium in this set (for any choice of ).

Theorem 3: For any strategy of the base station, there
exists a single admissible Nash equilibrium for the low-level
power game (i.e., for any , is a singleton).

Proof: First consider the case

where as given in the proof of Theorem 1. Based on
the proof of Theorem 2, the power control policy of users will
be water-filling. Let be the water-filling level of these
two users at the equilibrium given this . Then it is easy to
check that , hence, the optimal solution is
time-sharing and the Nash equilibrium is unique. For other ,
we establish uniqueness of the admissible Nash equilibrium by
contradiction.

We let and be the two pairs of water-levels
corresponding to equilibria. Then, by definition, the two average
power constraints are satisfied with equality with these two pairs
of water-levels, that is, , ,

, . Noting that we are not at
a time sharing point, we claim the following.

1) If , we have . If not, we will have
, when and

, when . Thus,
we come to a contradiction.

2) If , we have . If not, we will have
, when . Thus,

we come to a contradiction.

is an admissible Nash equilibrium of the low-level game
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3) If , we have . If not, we will have
, when . Thus,

we come to a contradiction.
The two water-level pairs, therefore, have a strict order.

We can define the relationship for the water-level pairs
and say , if and . Sup-
pose , we claim that

and .
Without loss of generality, we only need to prove the first
part. To show this, we can see that the sum of the interfer-
ence from user 2 and the background noise is ,
if , and if

.
Since our solution is not time sharing, we can see that

is a increasing function of . Thus, implies that
and our claim is true.

This claim means that the achievable utility pairs also have
strict order, i.e., the smaller the water-filling pair, the larger the
utility pair. With this strict order relationship among the achiev-
able utilities at the Nash equilibria, the unique admissible Nash
equilibrium is achieved with the minimum water-level pair. This
completes the proof.

An explicit approach for achieving the unique admissible
equilibrium in our game is for all the users to follow the iterative
algorithm used in the proof of Theorem 2 and agree off-line on
the convention of starting the iteration with . To see
this, suppose that the users start with other , then
after one round of iteration, we will have by the
proof of Theorem 2. Based on the same argument, we will have

. Thus, , which

means that the final water-levels when the users begin at are
smaller than the final water-levels if the users begin at any other

. Hence, if the users start with , the operating
point will converge to the admissible Nash equilibrium. This
agreement, that is to start the off-line iterative process with

, is clearly in the best interest of the two users since
each of them achieves the largest throughput among all possible
equilibria, and hence, is consistent with the selfish behavior
assumption.

Now, we turn our attention to characterizing efficient base
station strategies. In the following, we use to refer to the
unique power control policy of each user, under strategy , at
the admissible Nash equilibrium. Here, we borrow the following
definition from [17].

Definition 3: A strategy is called a Stackelberg equilib-
rium strategy for a given , if with strategy , the base
station achieves

Moreover, for any , a strategy is called an -Stackel-
berg strategy if

(24)

Corollary 1: For every pair , ,
, an -Stackelberg strategy exists.

Proof: Based on Property 4.2 of [17], the only thing we
need to prove is that is bounded. Define as the average
rate the th user can get when the other user is absent, then

(25)

This completes the proof.

Combining Theorem 3 and Corollary 1, we see that the pro-
posed Stackelberg game setup has a very desirable structure. For
any given vector , the existence of a base station policy which
achieves a utility within an –difference from the optimal one is
guaranteed; and for every rational multiple access user, the op-
timal policy in the low level game is unique. Therefore, the users
will have no difficulty in deciding the power and rate levels in a
distributed way. The following result characterizes the achiev-
able performance of the proposed Stackelberg game.

Theorem 4: Let

Then, includes the three boundary points , , of
the capacity region . However, does not include any other
boundary points of .

Proof: It is easy to verify that can be achieved by set-
ting , which means that the base station will always de-
code user 2’s signal first. The corresponding policy for user 1 is
to water-fill over the background noise, while the optimal policy
for user 2 is also water-filling but over the sum of the interfer-
ence from user 1 and the background noise. This is exactly the
same as the centralized policy that achieves the boundary point

. Similarly, can be achieved by setting , and
can be achieved by setting

where as given in the proof of Theorem 1.
We prove our second claim by contradiction. Now, suppose

that includes another boundary point . Without
loss of generality, suppose that at this point , the corre-
sponding optimal central policy is , the partition region
that achieves this point is given by , and the corresponding
admissible power control pair is , . It was shown in [1]
that the power control policy that achieves any boundary point
is unique. Thus, if the partition achieves this point, at any
fading state , we have and

.
Then at any fading state, the capacity region pentagons

formed by these two policies are the same, which is also shown
on Fig. 2.

For every fading state, the optimal rate control policy cor-
responds to the corner point . While for the distributed power
control, when , the operating point is , and
when , the operating point is . Thus

(26)
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Fig. 2. The capacity region of the Gaussian MAC with fixed channel gains
(h ; h ).

which is a contradiction. This shows the nonexistence of that
achieves any other boundary point of the capacity region .

Theorem 4 shows that the introduction of the base station
as a leader of the game enlarges the achievable rate region
(as compared with the Nash game discussed earlier) but this
approach falls short of achieving the whole capacity region.
Fig. 3 compares the capacity region with the Stackelberg
achievable rate region assuming the following simple base
station strategy: when the base station decodes user
1 first and when the base station decodes user 2 first.
Under this strategy, the rates at the Nash-equilibrium are as
shown in (27)–(28) at the bottom of the page, where , are
the solutions to the following equations:

(29)

It is easy to verify that is achieved by setting ,
is achieved by setting , and is achieved by set-

Fig. 3. The equilibria points of the Stackelberg power game.

ting , where , are the water-filling levels given
in the proof of Theorem 1. One can also prove the following
statement.

Corollary 2: For the base station that adopts the simple region
partition strategy, there always exists a Stackelberg equilibrium
solution for any pair , if the support sets of the channel
gains are compact and do not include .

Proof: Since and are compact,
and , , then

is a compact set. And for every , we have proved in Theorem 3,
is a singleton, thus based on [17], for any pair ,

there exists a Stackelberg equilibrium solution.

C. Repeated Game Formulation

The inability of our Stackelberg game to achieve all the
boundary points of the capacity region can be attributed to the
structural difference between our successive decoding strategy
and the optimal decoding strategy characterized in [1]. In
particular, the optimal decoding strategy will always decode
user 1 first (i.e., for all channel states) if , whereas in
our formulation the decoding order is a function of the channel
state. Unfortunately, if we adopt any static decoding order,
the game will always settle at one of the corner points of the

(27)

(28)
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capacity region as argued in the previous section. To solve this
problem, we pursue our last resort of replacing the static game
formulation with a dynamic one.

The static formulation assumes that the players interact with
each other only once. This assumption models the case where
the topology of the network changes quickly. In a more slowly
varying environment, a dynamic game formulation seems to be
more appropriate. Specifically, we call a game where the players
interact for instances a dynamic game.6 An example of a
dynamic game is the repeated game where the same static game
is played many times. Obviously, the users can play this game by
repeating the same static strategy [13]. But, the advantage of the
repeated game framework is that the players can do better than
just repeating the same static strategy. The idea is that, since the
players will interact with each other many times, they can learn
each other’s strategies, which may allow them to cooperate to
obtain higher payoffs for both of them. In this case, the players
can start cooperating and if one player deviates from the co-
operation phase, the other players will adjust their strategies to
punish the deviating player. The punishment threat is credible
only if the deviating player achieves a lower payoff under pun-
ishment as compared with the cooperating phase. Under these
circumstances, the users will have no desire to deviate from the
cooperation phase, thus all the users can achieve higher utilities
as compared with the static scenario.

In our repeated game setup, the players are the multiple access
users and the base station. The strategy of the multiple access
user is the power control policy. The strategy of the base station
is the decoding order. The users choose their strategy simulta-
neously at each stage. The utility of each player can be defined
as the time average, which assumes completely patient users, or
as a discounted sum of the payoff achieved in each stage, where
the discount factor models the level of patience:
the larger is the more patient the player is. In the proof of the
following theorem, we use a generalized version of a result due
to Aumann and Shapley [13], [22] and define the payoff of the
repeated game as the time-average of payoff at each stage. We
later discuss briefly the discounted version of our game.

Theorem 5: As , all the boundary points of the
capacity region are achievable under the repeated game setup.
Moreover, the corresponding equilibria are subgame perfect.

Proof: In order to prove our claims, we need to construct
a subgame perfect strategy that achieves every boundary point.
Consider the following strategy: The base station announces its
rate award vector , then the game proceeds in the following
way.

1) , each user uses the optimal centralized control policy
and rate control policy that maximize .

Under this point, each user gets a rate .
2) If user 1 deviates from the centralized control policy at

stage , then the base station and user 2 punish user 1
by moving to the corner point for periods (i.e., the
base station decodes user 1 first for stages, and user 2

6We note that every game stage is assumed long enough to justify invoking
the ergodic assumption within every stage.

does water-filling over background noise during this pe-
riod). The parameter is chosen such that

(30)

After periods, regardless of whether there are any de-
viations during the punishment period, the players return
to the cooperative phase. If user 2 deviates, the base sta-
tion and user 1 can also punish it for phases, which can
be chosen in a similar way, by moving to the corner point

.
The conditions on ensures that any gain obtained from de-
viating is removed at the punishment phase, so no sequence of
a finite or infinite number of deviations can increase user ’s
payoff. Moreover, although it is costly for the base station to
carry out the punishment, any finite number of such losses are
costless in the long run. This proves the subgame perfection of
the strategy.

In the previous proof, we assume that the users do not care
about the loss they might incur by carrying out the punishment
for the deviating user. If the users do care about this finite loss, as
postulated by the overtaking criterion studied in [23], the users
may deviate from the punishment period. In this case, we can
modify our strategy to the following exponentially punishment
strategy (inspired by Proposition 4.1 in [23]). The basic idea
is to punish the user who deviates from the punishment period
even more severely, and hence, ensuring that the punishment
will be carried out. The first deviator is punished for period.
If during this punishment period, a punishing user (we call it
the second deviator) deviates from the punishment for the first
deviator, then the first punishment is terminated and all the re-
maining users punish the second deviator for period. If a
punishing user (the third deviator) deviates from the punishment
for the second deviator, then second punishment is terminated,
and all the users punish the third deviator for period, and so
on. Using a similar argument as [23], if is large enough, no
user will deviate. We note that the base station, as a user, can
be punished by the multiple access users by adopting power al-
location policies that correspond to a point outside the capacity
region (resulting in a zero-utility for the base station).

When the users are not completely patient, the discounted
version of our game becomes more appropriate. To prove our
claim in this case, we need the following Fudenberg–Maskin
theorem [13], [24]. Let be the minimax utility
vector, in which is the maximum utility user can get when
all the other users are punishing it. Let be any
feasible utility vector, and .
Fudenberg–Maskin theorem states that if has a nonempty
interior, then for any , there exists
such that for all , there exist a subgame-perfect
equilibrium of the infinitely repeated game with discount
factor in which player ’s average payoff is . Now for the
fading MAC under consideration, one can easily check that the
minimax utility of user 1 is , the minimax utility of user



LAI AND EL GAMAL: THE WATER-FILLING GAME IN FADING MULTIPLE-ACCESS CHANNELS 2119

2 is , the minimax utility of the base station is zero,
any boundary points strictly Pareto dominates this minimax
vector, and hence, the interior of the set that strictly Pareto
dominates this minimax vector is nonempty. Applying the
Fudenberg–Maskin theorem, we prove the discounted version
of Theorem 5.

D. Arbitrary Number of Users

In this subsection, we briefly outline the extension to the
user channel.
In the Nash formulation, every user treats the signals from

other users as noise. The optimal power control policy of each
user is to water-fill over the sum of the interference and the
background noise, i.e.,

(31)

Each user will adjust its water-level depending on the levels of
the other users. At the Nash equilibrium points the water-levels

satisfy all power constraints with equality.
In order to show that the only Nash equilibrium of this game is
the maximum sum-rate point, we generalize the proof of The-
orem 1. In particular, we show that at the equilibrium only one
user will transmit at any fading state, then it is easy to verify
that the power control policy of each user at the equilibrium
is exactly the same as the corresponding central policy for the
point . Without loss of generality, suppose that users 1 to
are transmitting simultaneously at certain fading states, then for
each transmitting user, we have

(32)

These conditions imply that , , .
With continuous probability density functions, this happens
with probability zero. Then with probability one, at any fading
state, only one user will transmit. If user transmits, the sum of
background noise and the signal of user should be larger than
the water level of user , and hence, should satisfy

(33)

In the Stackelberg formulation, the receiver still uses the de-
coding order as its strategy. Given an arbitrary partition, using a
similar argument to Theorem 2, it can be shown that is an
nondecreasing function of , and is a nonincreasing function of

, . Hence, following the footsteps of Theorem 2, we can
show that there always exist Nash equilibria in the lower level
game. Unfortunately, the arguments used in the proof of The-
orem 3 do not guarantee the uniqueness of the admissible Nash
equilibrium with . But the -Stackelberg equilibria set
still includes all the corner points and maximum sum rate point
and does not include any other boundary points. To achieve any
corner point, the base station can just fix its decoding order and
to achieve the maximum sum rate point, the base station can
choose the region as the time-sharing region. Further, the admis-
sible power control policies of the multiple access users at these

corner points and the maximum sum-rate point are unique. We
can use a similar contradiction argument to Theorem 4 to show
that we cannot achieve any other boundary point. In the repeated
game formulation, the base station and multiple access users can
punish the deviating user by operating at a nonfavorable corner
point for this user, for an appropriate number of rounds. There-
fore, the users will have no incentive to deviate which implies
the achievability of any boundary point on the capacity region.

IV. VECTOR CHANNELS

Thus far, we have presented our results for the scalar channel
where the base station is only equipped with one receive an-
tenna. In this section, we extend our study to the vector MAC,
where the base station is equipped with receive antennas.
Our goal is to see if our previous conclusions carry through or
not. Again to simplify the presentation, we focus on the two-user
scenario. The signal received at any time is given by

(34)

where is the fading
vector from user to the receive antennas. As before, we as-
sume that the fading processes have a joint continuous distribu-
tion with a bounded density. is the Gaussian noise vector
at the receive antenna with correlation matrix

.
Similar to the scalar channel case, we first consider the static

Nash formulation where the players of the game are the multiple
access users and the base station employs single-user decoders.
The strategy space of user is still

with . The payoff function of user is still the
average achievable rate . It is easy to see that for
any power control strategy of user 2, the optimal
power control policy of user 1 is the solution to the following
optimization problem:

s.t. (35)

Given any power control strategy of user 1, the op-
timal power control strategy of user 2 is a solution to a similar
problem. The difference between the vector and scalar channels
is highlighted in the following result.

Theorem 6: There exists a unique Nash equilibrium for the
power allocation game in the vector MAC. At this equilibrium,
the power control policy of each user is the same as the cen-
tral policy that achieves the maximum sum-rate point . The
achieved rates, however, are strictly smaller than the rates cor-
responding to .
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Proof: Given the power control policy , it is
easy to see that

is a constant, thus the solution to the optimization problem
(35) is the same as the solution to the following optimization
problem:

s.t. (36)

Since is posi-
tive definite, and the function is concave in the set
of positive-definite matrices, then the objective function is con-
cave in the set of power allocation policies. The constraint set
is convex. It is also of users’ interest to meet the equality in the
power constraint, that is, . Hence, there exists a
constant , such that the solution to (35) is the same as the so-
lution to the following optimization problem:

(37)

The Karush–Kuhn–Tucker (KKT) necessary and sufficient
conditions of this optimization problem is

(38)

Using the matrix inversion lemma [25]

(39)

we come to

(40)

Taking the constraint into consideration, we get

(41)

where is a constant that satisfies the average power
constraint of user 1 with equality. Similarly, given ,
we get the following optimality condition:

(42)
The optimal policy of user 2 is therefore

(43)
where is the constant that satisfies the average power con-
straint of user 2 with equality. Applying the results of [26] to
the fading MAC with receive antennas, we know that (38)
and (42) are exactly the optimality conditions for the following
optimization problem:

s.t. (44)

One can easily verify that the optimization problem (44) will
maximize the sum-rate at the base station. This means that the
optimal policy of each user aiming to maximize its own rate
while treating the signal of the other user as interference is ex-
actly the same as the power control policy that maximizes the
sum-rate at the base station. A similar observation has been
made in the vector Gaussian MAC in [27].

Therefore, we can apply the following iterative process to get
the power control policy at the Nash equilibrium point. Starting
at , , each user takes a turn to water-fill over
the combined interference and the background noise. At each
step, the objective function of (44) increases. But with limited
average power at the users, the objective function (44) has an
upper bound. Thus, this process will converge, which means
that the Nash equilibrium exists. At the convergence point, the
optimality conditions (38) and (42) hold, which means that the
power control policy of each user at the Nash equilibrium is the
same as the optimal policy that maximizes the sum-rate at the
base station. The uniqueness of the power control policy that
maximizes the sum-rate [26] implies the uniqueness of the Nash
equilibrium point. This proves our first two claims.

From [26], we know that the optimal central control policy
is not time-sharing. Hence, in some channel fading states, the
transmission power of both users will be larger than zero. In
these cases, the capacity region pentagon is shown in Fig. 4.
We can easily see that the central rate control policy will always
operate on one of the boundary points (the line between and

), but the distributed scheme will always choose the point
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Fig. 4. The capacity region pentagon for fixed channel gains.

. We have either or
. This completes the proof.

Theorem 6 contrasts the scalar scenario, where the Nash equi-
librium rate is the same as the maximum sum-rate. The reason is
that in the scalar MAC, the strategy that maximizes the sum-rate
is time-sharing. In the vector case, on the other hand, we have

degrees of freedom, and hence, more than one user
are allowed to transmit at any fading state. The central control
policy will choose to operate at one of the boundary points, but
because of the interference, the multiple access users will dis-
tributively choose a point that is strictly inside the capacity re-
gion at the Nash equilibrium point.

Our Stackelberg game can also be extended to the vector
MAC. Similar to the scalar case, the base station partitions the
space of into two region , , and decodes user 1
first in and decode user 2 first in the region . The fol-
lowing results do not depend on the specific choice of . The
strategy space of user is still , and the payoff function of
each user is still the supremum of achievable average rate.

Theorem 7: For any base station strategy , there exists a
unique admissible Nash equilibrium for the low-level game. The
Stackelberg game achieves the two corner points of the capacity
region but does not achieve the maximum sum-rate point.

Proof: The proof of the existence of a unique admissible
Nash equilibrium for the low-level game under any base station
strategy follows essentially the same lines as the proofs of
Theorems 2 and 3. The only additional requirement is to prove
that is a nondecreasing function of and a nonin-
creasing function of .

Based on the proof of Theorem 6, we know that the optimal
power control policy of user 1 is

if

if (45)

in which

It is easy to verify that is a nondecreasing function of
. To show that is a nonincreasing function of ,

we only need to show that is a nonincreasing function
of .

Using the matrix inversion lemma (39), we have

(46)

in which

(47)

It is easy to verify that is a nondecreasing function
of , thus, we come to the conclusion that is a non-
decreasing function of and a nonincreasing function of .
To achieve the corner points, the base station can just set to
be the whole set, in one case, and the empty set in the other case.

We prove the nonexistence of a base station strategy that
achieves the sum-rate point by contradiction. Suppose that a
partition achieves the sum-rate point. Since the unique
power control policy that achieves the maximum sum-rate
point is to water-fill over the sum of the interference and the
background noise for both users, then in the region , user
1 should stop sending. Because in this region, the optimal
distributed power control policy of user 2 is to water-fill only
over the background noise. Similarly, in the region , user
2 should also stop sending. Then we come to a time-sharing
solution, which cannot achieve the maximum sum-rate point
and we have our contradiction.

Finally, if the users have the opportunity to interact many
times then any boundary point of the capacity region of the
vector MAC can be achieved as a subgame perfect equilibrium.
Moreover, the users can use the same strategies developed in
Theorem 5 to achieve these boundary points.

V. CONCLUSION

This paper has developed a game-theoretic framework for dis-
tributed resource allocation in fading MACs. In our first result,
we showed that the opportunistic communications principle can
be obtained as the unique Nash equilibrium of a water-filling
game. By introducing the base station as a player, we were able
to achieve all the corner points of the capacity region, in ad-
dition to the maximum sum-rate point, distributively. In slow-
varying environments, where the multiple access users can be
assumed to interact many times, the repeated game formulation
was shown to achieve all the boundary points of the capacity
region. Finally, we elucidated the limitations of our game-theo-
retic framework in vector MACs.
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An interesting avenue for future work is to further investigate
the practical aspects of our framework. For example, a natural
extension is to consider the case with partial and/or distorted
channel state information by borrowing tools from game theory
with incomplete information.
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