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Abstract— In wireless networks with energy limited nodes,
user cooperation is usually exploited to reduce the network en-
ergy consumption. In many practical scenarios, however, nodes’
selfishness raises doubts on whether each node will be willing
to spend its valuable energy in forwarding packets for other
users. To analyze this problem, a non-cooperative game theoretic
framework is adopted in our work. Using this framework, the
critical role of altruistic nodes in encouraging cooperation is
established, both for small and large scale networks. In a small
network, where nodes utilize the Decode-Forward scheme to
cooperate, we show that a relay node, with appropriate strategy
and location, successfully turns the Nash Equilibrium from no-
cooperation to full-cooperation. In the large scale network, we
show that it is sufficient to have a vanishingly small fraction of
the nodes to be altruistic, i.e., relay nodes, in order to ensure full
cooperation from all the nodes in the network. This result hinges
on using the appropriate forwarding policies by the altruistic
nodes, as detailed in the sequel. Our work also establishes the
sub-optimality of traditional relaying strategies, which ignore the
game-theoretic aspect of the problem. An important aspect of our
work is that only reward/punishment policies that can be realized
on the physical layer are used, and hence, our results establish
the achievability of full cooperation without requiring additional
incentive mechanisms at the application layer.

Index Terms— Cooperation, energy efficiency, ad-hoc net-
works, selfish and altruistic users, non-cooperative game.

I. INTRODUCTION

SEVERAL recent works have shown that user cooperation
plays a fundamental role in wireless networks. From

an information theoretic perspective, the idea of cooperative
communications can be traced back to the relay channel [2].
More recent works have generalized the cooperation strategies
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proposed in [2] and established the utility of cooperative
communications in many relevant practical scenarios [3]–[5].
In another line of work, Gupta and Kumar have shown that
the simplest form of physical layer cooperation, namely multi-
hop forwarding, is an indispensable element in achieving the
optimal capacity scaling law in networks with asymptotically
large numbers of nodes [6]. Multi-hop forwarding has also
been shown to offer significant gains in the efficiency of
energy limited wireless networks [7], [8]. These physical
layer studies assume that each user is willing to spend energy
in forwarding packets for other users. This assumption is
reasonable in a network with a central controller with the
ability to enforce the optimal cooperation strategy on each
wireless user. The popularity of ad-hoc networks and the
increased programmability of wireless devices, however, raises
serious doubts on the validity of this assumption, and hence,
motivates investigations on the impact of user selfishness on
the performance of wireless networks.

One important thrust in these efforts focuses on design-
ing high-level protocols that prevent users from misbehaving
and/or provide incentives for cooperation. To prevent misbe-
havior, several protocols based on reputation propagation have
been proposed in the literature, e.g., [9], [10]. Other works
have used ideas from micro-economy to construct protocols
that reward cooperation. In [11], for example, a protocol based
on virtual currency is proposed. Overall, these protocols are
based on ideas rooted in game theory, but, in most cases, are
not derived from the equilibrium perspective and are hard to
analyze, due to the complicated underlying network models.

Another thrust of research analyzes the impact of user
selfishness from a game theoretic perspective, e.g., [12], [13].
Since the problem is typically too involved, several simpli-
fications to the network model are usually made to facilitate
analysis and allow for extracting insights. For example, in [12],
the wireless nodes are assumed to be interested in maximizing
energy efficiency. At each time slot, a certain number of nodes
are randomly chosen and assigned to serve as relay nodes
on the source-destination route. The authors derive a Pareto
optimal operating point and show that a certain variant of
the well known TIT-FOR-TAT algorithm converges to this
point. In [12], the authors assume that the transmission of
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each packet costs the same energy and each session uses
the same number of relay nodes. Another example is [13],
which studies the Nash equilibrium of packet forwarding
in a static network by taking the network topology into
consideration. More specifically, the authors assume that the
transmitter/receiver pairs in the network are always fixed
and derive the equilibrium conditions for both cooperative
and non-cooperative strategies. Similar to [12], the cost of
transmitting each packet is assumed fixed. It is worth noting
that most, if not all of, the works in this thrust utilize the
repeated game formulation, where cooperation among users
is sustainable by credible punishment for deviating from the
cooperation point.

In this paper, we adopt a game-theoretic approach to analyze
the impact of user selfishness on the energy efficiency of wire-
less networks. The energy efficiency of ad hoc networks has
been studied in [7], [8] under the assumption that all the nodes
are interested in minimizing the overall energy consumption
of the network. In the wireless setting, the transmission power
must scale polynomially with the transmitter-receiver distance
in order to guarantee reliable decoding of the information.
In the no-cooperation scenario, where the wireless users are
not willing to relay packets for each other, each user must
reach its destination directly. It is then easy to see that this
requires significantly higher energy levels, as compared with
the globally optimal solution characterized in [7], [8]. This
observation motivates our work where we consider wireless
networks consisting of both selfish nodes, interested in min-
imizing their own energy consumption, and altruistic nodes,
interested in minimizing the overall energy expenditure of the
network. In practice, those altruistic nodes may correspond to
wireless relay nodes endowed with more processing powers
and tasked with fostering cooperation among the wireless
users. Unlike the traditional approach, these relay nodes are
not assumed to have any control on the behavior of the selfish
nodes directly. However, the sequel establishes the critical role
of these altruistic nodes in encouraging cooperation among
the selfish nodes. More specifically, our work establishes the
sub-optimality of traditional relaying strategies, which ignore
the game theoretic aspect of the problem, and characterizes
forwarding strategies that allow the relay nodes to change the
cost function of the other selfish nodes such that full coop-
eration emerges at the equilibrium point. One of the central
questions addressed in our work is: how many altruistic nodes
are sufficient to guarantee full cooperation, and hence, achieve
the same energy efficiency as the globally optimal solution?
Interestingly, as shown in the sequel, full cooperation becomes
a Nash Equilibrium in networks where only a vanishingly
small fraction of the total number of nodes are altruistic.
One distinguishing aspect of our work is that we confine our
strategies to the physical layer and avoid introducing elements,
like virtual currency, which may add significant complexity to
the higher layers.

The rest of this paper is organized as follows. In Section II,
we present our network model and associated notation. Sec-
tion III establishes the role of one altruistic, i.e., relay, node in
facilitating cooperation in a small network composed of two
source-destination pairs. In section IV, we proceed to the large
network scenario where a sufficient condition on the fraction

of altruistic nodes needed to ensure full cooperation is derived.
Finally, we offer some concluding remarks in Section V.

II. NETWORK MODEL

We consider an ad-hoc wireless network with a set of half-
duplex wireless nodes N , each located at Xi, i ∈ N . Our
nodes are assumed to have very low rate requirements but
a stringent energy budget. Among these N = |N | wireless
nodes, there exists a set of transmitters T ⊆ N that wish to
send packets to different destinations. A time division multiple
access (TDMA) approach is used where the nodes will take
turns in transmitting their packets (no frequency reuse). This
multiple access scheme is known [7], [8], [14] to be optimal
from a minimum energy per bit perspective1, the figure of
merit considered in this paper. In the frame assigned to the
transmitter i, it will first send a relay request to nodes in the
route (we will specify the routing scheme in the sequel) to its
destination. Once the relay request is received, transmitter j ∈
T will decide whether to accept or reject the relay request and
send back its decision. We adopt the discrete additive white
Gaussian noise (AWGN) model, i.e., when node i transmits,
the signal received by node j at time t is given by

yj [t] = hijxi[t] + zj [t],

where the channel gain hij from node i to node j is h2
ij = d−γ

ij ,
dij = |Xi−Xj | is the distance between the two nodes, γ > 2
is the channel attenuation coefficient, zj [t] is the zero-mean
unit-variance Gaussian noise at node j. The noise process is
assumed to be spatially and temporally white.

Our work focuses on analyzing the decision making process
of accepting/rejecting relay requests generated by the different
transmitters. In a fully cooperative scenario, each node will ac-
cept all relay requests in order to minimize the overall energy
consumption of the network. However, the selfishness of the
nodes in our network leads to a significantly more complicated
process. By accepting a relay request, the individual node is
committing to spend some of its valuable energy in forwarding
other nodes’ packets. From a selfish perspective, therefore,
each node will be tempted to reject the relay requests in
order to minimize its own energy consumption. This motivates
our formulation which differentiates between two classes of
nodes in our network, namely selfish and altruistic nodes. A
selfish node is assumed to be interested in minimizing its own
energy consumption whereas an altruistic node is interested
in minimizing the overall energy expenditure of the network.
In practice, those altruistic nodes may correspond to wireless
relay nodes tasked with rewarding cooperation in the network.
This correspondence justifies our assumption that the altruistic
nodes are endowed with more processing power, storage, and
monitoring capabilities as compared with the selfish ones. In
the sequel, we will refer to the set of altruistic nodes as U ⊆ N
and let θ(N) = |U| be the number of such nodes.

We model the behavior of selfish nodes as a static non-
cooperative game G = {M,F , C}, where M = T \U is the set
of selfish transmitters, Fi is the strategy space of node i, and

1As pointed out by [14], TDMA is only first-order optimal. If, besides
minimum energy per bit, one is also interested with spectral efficiency, super-
position schemes like code-division multiple access are more efficient [14].
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Fig. 1. A small wireless network with two selfish senders, one altruistic
node and two receivers.

Ci is the cost function of node i. The strategy space is given by
Fi = {pi : pi ∈ [0, 1]}, where pi is the probability that node i
will accept a relay request. Here, we observe that our strategy
space allows for mixed strategies but does not allow the selfish
nodes to offer differentiated service based on the origin of the
relay request. In our formulation this latter feature is reserved
for the altruistic nodes. More specifically, an altruistic node
will monitor the behavior of the selfish nodes and accept the
relay request of selfish node i with probability g(pi). Under
the assumption that the function g(·) is known a-priori by
all the nodes, one should construct g(·) in order to encourage
cooperation between all nodes (i.e., convince node i to work
with a higher pi). To simplify our task, we limit ourselves to
linear functions of the form g(pi) = pi + (1 − pi)pnc, where
pnc ∈ [0, 1]. Intuitively, this form can be interpreted as a mixed
strategy where the altruistic node deterministically accept
the relay requests originated from cooperative nodes (i.e.,
g(1) = 1), but only accepts the requests of non-cooperative
node with probability pnc (i.e.,g(0) = pnc). We note that
pnc = 1 corresponds to the traditional relaying where the
altruistic nodes accept all the relay requests. For simplicity
of presentation, and motivated by the results of [7], [8], our
cost function corresponds only to the transmission energy2.
Therefore, the cost function is given by Ci = Ei,tr + Ei,re

where Ei,tr is the energy spent on transmitting the ith node
own packets, and Ei,re is the energy spent by the ith node on
forwarding packets for other transmitters.

A set of strategies p∗ = (p∗1, ..., p
∗
M ) is said to constitute a

Nash Equilibrium (NE) if for any i ∈ M

Ci(p∗i ,p
∗
−i) ≤ Ci(p

′
i,p

∗
−i),∀p

′
i ∈ [0, 1], (1)

where p−i is the strategies of all the players except user
i. Our work seeks to characterize the Nash Equilibria of
the aforementioned non-cooperative game in the two extreme
cases of small and large networks. This characterization estab-
lishes rigorously the critical role of wireless altruistic nodes
in stimulating cooperation in ad-hoc networks.

III. THE SMALL NETWORK SCENARIO

Aiming towards a succinct development of our ideas, we
start in this section with a small network composed of five
nodes as shown in Figure 1. In this setup, N = {1, 2, 3, 4, r},

2As pointed out in [7], [8], the transmission energy is the dominant factor
in the energy consumption in the large scale limit. We also note that our
conclusions will still hold if the receiving energy is incorporated into our
model but the development of the results will be more involved.

Node 1 transmits Node 3 transmits

T T

Fig. 2. The TDMA data frame.

T = {1, 3, r}, and U = {r}. In other words, nodes 1, 3 take
turns to transmit information to nodes 2, 4 at rate R and r is
our altruistic relay node which does not have information to
send (as illustrated in Figure 2). Due to the strict energy limi-
tation imposed on the nodes, we operate in the asympticitally
low rate regime, i.e., R → 0, which is known to be the most
energy efficient operating point [15].

The following lemma motivates the idea of using the relay
node to stimulate cooperation.

Lemma 1: In the absence of the relay node r, no-
cooperation is the only NE of our static game. Moreover,
no-cooperation remains the only NE under the repeated game
setup if it is known a-priori that the nodes will only interact
for a finite number of stages and the nodes know the end of
the game.

Proof: Let’s consider the last stage in the repeated game
scenario. In this stage, it is easy to see that the optimal strategy
for any selfish node i ∈ M is to use adopt pi = 0. The
reason is that, for any other pi �= 0, node i can reduce Ei,re

without affecting Ei,tr, and hence, reduce its overall cost by
adopting pi = 0. The selfish wireless users can apply the
same reasoning backward until the first stage. No cooperation
at each stage is, therefore, the only Nash equilibrium.

At this no-cooperation equilibrium, each user will have to
use sufficient transmission energy to allow the packet to reach
the destination directly. For γ > 2, this implies a strictly higher
energy consumption by each user, as compared to the globally
optimal solution. By introducing the node r, which adopts the
appropriate cooperation strategy, we will show in the following
that cooperation emerges at the NE, which translates into a
significant reduction in the energy per bit requirements. Note
that if the relay always helps, the reasoning in Lemma 1 still
applies, and hence, no-cooperation remains the only NE.

A. The Cooperation Scheme

Before proceeding further, we describe here the underlying
cooperation scheme used in this section. Assuming that a
certain node decided to cooperate with the source node, the
small size of our network allows for using a more sophisticated
approach, as compared with simple multi-hop forwarding. We
adopt the classical Decode-Forward (DF) algorithm from [2],
[16]. We illustrate in this section DF cooperation in the tradi-
tional three terminal setting (i.e., one source, one destination,
and one relay which is always willing to help). This setting
is sufficient to capture the main idea behind DF cooperation
and, moreover, the following section outlines the generalized
scenario with multiple helpers. In this setting, the relay node
attempts to decode the information from the source first,
then the source and the relay cooperate in transmitting the
information to the destination. The basic idea is that signals
from the source and the relay will add up coherently at the
receiver, and hence, we can reap the beam-forming gain.
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Fig. 3. The cooperation scheme in the small network: a) both the relay and
node 2 keep receiving, lasting μT b) both node 1 and the relay transmit,
lasting (1 − μ)T .

Without loss of generality, we let node 1 be our source, node
2 be our destination, and node r be our relay.

In the absence of the relay node, the source-destination
channel capacity and minimum energy per bit are given
by [17]

C =
1
2

log2(1 + h2
12P ), E1 = lim

C→0

P

C
=

2 ln 2
h2

12

, (2)

where h12 is the source-destination channel gain and P is the
normalized transmit power (assuming a unit variance AWGN
process). Throughout the sequel, we will simplify our analysis
by assuming that a capacity achieving code is used, i.e., R =
C. This assumption will allow for using the minimum energy
per bit, e.g., (2), as our figure of merit.

The DF scheme, consisting of two phases, is illustrated
in Figure 3. Using Gaussian codebook of length L and rate
R, the source sends information with power P in the first
phase (Figure 3(a)). The relay node keeps listening until the
accumulated mutual information becomes larger than LR, and
then tries to decode. The decoding at the relay node will be
successful with probability going to 1 as L increases (Lemma
1, [4]). After decoding, the relay joins in the transmission,
while the source keeps sending but with a lower power level
in the second phase (Figure 3(b)).

More specially, the relay node will be able to decode the
message after receiving �μL	 symbols [4], where

μ = lim
P→0

log2(1 + h2
12P )

log2(1 + h2
1rP )

=
h2

12

h2
1r

.

After successful decoding, the relay starts sending the
decoded information using the same codebook as the source
node with power α2

rP whereas the source node now lowers
its transmit power to α2

1P (α1 ≤ 1 and αr ≤ 1). The signal
received at the destination during this phase is

y2[t] = h12α1x1[t] + hr2αrx1[t] + z2[t].

Here α1, αr are obtained by solving the following optimiza-
tion problem

min α2
1 + α2

r, (3)

s.t. h12α1 + hr2αr = h12, α1, αr ∈ [0, 1].

This constrained optimization minimizes the total transmit
power while maintaining the same effective capacity, from
the destination perspective. Straightforward calculations yield
the following optimal values for α1, α2, the energy per bit
expended by node 1, and the minimum total energy per bit

TABLE I

THE GAME PAYOFF MATRIX WITH ONE RELAY NODE.

cooperation no-cooperation
cooperation (C1,cc, C3,cc) (C1,cn, C3,cn)

no-cooperation (C1,nc, C3,nc) (C1,nn, C3,nn)

1

3

r

(a) (c)

4

1

3

r

(b)

4

1

3

r

4

Fig. 4. The operation sequence when node 1 helps node 3 and h31 > h3r ,
(a) node 1 and the relay keep listening , lasting μ

′
3,1T (b) node 1 helps

transmitting, lasting μ
′
3,2T part of the time (c) both node 1 and the relay

help, lasting (1 − μ
′
3,1 − μ

′
3,2)T .

expended by the network (i.e., nodes 1 and r), under DF
cooperation

α1 =
h2

12

h2
12 + h2

r2

, αr =
h12hr2

h2
12 + h2

r2

.

E1,s =
2 ln 2
h2

1r

+
(
1 − h2

12

h2
1r

) 2 ln 2h2
12

(h2
12 + h2

r2)2
,

Et =
2 ln 2
h2

1r

+
(
1 − h2

12

h2
1r

) 2 ln 2
h2

12 + h2
r2

. (4)

Comparing (2) and (4) shows that, as expected, the relay
node offers gains in the energy consumption for h1r > h12

(i.e., setting h1r = h12 yields Et = E1).

B. Equilibrium Analysis

To obtain the equilibrium point of our non-cooperative
game, it is sufficient to calculate the cost functions under the
pure strategies, i.e., cooperation and no-cooperation, as shown
in the Table I.

1)(no-cooperation, no-cooperation)
In this case, the relay will help the two nodes with prob-

ability pnc (g(0) = pnc). Using the results developed in
the previous section on DF cooperation, we can see that the
average energy per bit required for the two nodes are

C1,nn = (1 − pnc)E1 + pncE1,s,

C3,nn = (1 − pnc)E3 + pncE3,s,

where E3, E3,s can be obtained from (2) and (4) by replacing
subscripts 1 and 2 with 3 and 4, respectively.

2)(cooperation, no-cooperation)
Let’s first consider a packet transmitted by node 1. Since

the relay node always cooperates (g(1) = 1) but node 3
doesn’t, this scenario reduces to the classical three terminal DF
cooperation described in section III-A, and hence, the energy
consumption for node 1 on its packet is E1,tr = E1,s and the
energy consumption by node 3 on relaying is E3,re = 0.

On the other hand, when a packet is generated by node
3, we have two distinct scenarios. When the relay doesn’t
cooperate, which happens with probability 1−pnc, the energy
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consumption of the nodes can be written as ϕ1, E3 − ϕ3

respectively, where

ϕ1 =
(
1 − h2

34

h2
31

) h2
14h

2
34

(h2
34 + h2

14)2
E3,

ϕ3 =
(
1 − h2

34

h2
31

)2h2
34h

2
14 + h4

14

(h2
34 + h2

14)2
E3,

based on the DF cooperation scheme with node 1 now playing
the role of the helper node. If the relay node also cooperates,
which happens with probability pnc, the energy consumption
of the nodes depends on the decoding order of node 1 and
the relay nodes. Here, we assume that both h31, h3r are larger
than h34 since otherwise this scenario is reduced to the three
terminal case considered earlier. If h31 > h3r, the operation
sequence is shown in Figure 4. After a

μ
′
3,1 = lim

P3→0

1
2 log2(1 + h2

34P3)
1
2 log2(1 + h2

31P3)
=
h2

34

h2
31

fraction of the frame, node 1 will decode the information and
start to help. In this period, the relay node will still keep on
listening, and

y4[t] = h14α
′
1x3[t] + h34α

′
3x3[t] + z4[t],

yr[t] = h1rα
′
1x3[t] + h3rα

′
3x3[t] + zr[t],

where α
′
1 = h14h34

h2
14+h2

34
, α

′
3 = h2

34
h2
14+h2

34
are the solution to

an optimization problem similar with (3). Then, after an
additional

μ
′
3,2 = lim

P3→0

1
2 log2(1 + h2

34P3) −
μ
′
3,1
2 log2(1 + h2

3rP3)
1
2 log2(1 + (h1rα

′
1 + h3rα

′
3)2P3)

=
(h2

31 − h2
3r)(h

2
14 + h2

34)
2

(h1rh14 + h34h3r)2h2
31

fraction of the frame, the relay will be able to decode the
message [4], [16], and then join in transmitting. In this period,
the signal that node 4 receives is given by

y4[t] = h14β1x3[t] + hr4β2x3[t] + h34β3x3[t] + z4[t].

Similar to (3), the value of βis are obtained as β1 =
h14h34

h2
14+h2

r4+h2
34
, β2 = hr4h34

h2
14+h2

r4+h2
34
, β3 = h2

34
h2
14+h2

r4+h2
34

which
correspond to the solution to the following optimization prob-
lem

min
3∑

i=1

β2
i , (5)

s.t. h14β1 + hr4β2 + h34β3 = h34, βi ∈ [0, 1].

Hence if h31 > h3r, the energy consumptions of the two nodes
are

ϕ
′
1 = μ

′
3,2α

′2
1 E3 + (1 − μ

′
3,1 − μ

′
3,2)β

2
1E3,

ϕ
′
3 = μ

′
3,1E3 + μ

′
3,2α

′2
3 E3 + (1 − μ

′
3,1 − μ

′
3,2)β

2
3E3.

The case where h31 ≤ h3r is similar, with the decoding
order of node 1 and the relay node interchanged. The energy
consumption of the nodes can, therefore, be written as

ϕ
′′
1 = (1 − μ

′′
3,1 − μ

′′
3,2)β

2
1E3,

ϕ
′′
3 = μ

′′
3,1E3 + μ

′′
3,2α

′′2
3 E3 + (1 − μ

′′
3,1 − μ

′′
3,2)β

2
3E3.

Combining these two cases together, we obtain the follow-
ing relationship for the energy consumption of the two nodes

ϕ
′′′
1 = ϕ

′
1I(h31 > h3r) + ϕ

′′
1 I(h31 ≤ h3r),

ϕ
′′′
3 = ϕ

′
3I(h31 > h3r) + ϕ

′′
3 I(h31 ≤ h3r),

where I(·) is the indicator function. Finally, the cost functions
of the two nodes under the (cooperation, no-cooperation) pure
strategy is

C1,cn = E1,s + (1 − pnc)ϕ1 + pncϕ
′′′
1 ,

C3,cn = (1 − pnc)(E3 − ϕ3) + pncϕ
′′′
3 .

3)(no-cooperation, cooperation)
For this case, we can follow the same steps as above, and

get the cost functions of the nodes

C1,nc = (1 − pnc)(E1 − ψ1) + pncψ
′′′
1 ,

C3,nc = E3,s + (1 − pnc)ψ3 + pncψ
′′′
3 .

Here the expressions for ψi, ψ
′′′
i are similar with ϕi, ϕ

′′′
i with

the roles of node 1 and node 3 interchanged.
4)(cooperation, cooperation)
It’s easy to see that when node 3 transmits, the transmission

energy of the nodes are ϕ
′′′
1 , ϕ

′′′
3 respectively. When node 1

transmits, the transmission energy of the nodes are ψ
′′′
1 , ψ

′′′
3

respectively. Hence the cost functions are

C1,cc = ψ
′′′
1 + ϕ

′′′
1 , C3,cc = ψ

′′′
3 + ϕ

′′′
3 .

Theorem 2: If C1,cn < C1,nn or C3,nc < C3,nn, then the
relay node will stimulate cooperation (i.e., no-cooperation is
not a NE anymore). More strongly, If C1,cc < C1,nc, C3,cc <
C3,cn, C1,cn < C1,nn, C3,nc < C3,nn, then full cooperation is
the only NE.

Proof: If C1,cn < C1,nn, node 1 can reduce its cost
by deviating from no-cooperation to cooperation. Similarly,
if C3,cn < C3,nn, node 3 can reduce its cost by deviating
from no-cooperation to cooperation. If C1,cc < C1,nc, C3,cc <
C3,cn, C1,cn < C1,nn, C3,nc < C3,nn, no-cooperation is a
dominated strategy, and hence, full-cooperation is the only
equilibrium with p∗ = 1. When pure strategies do not yield
a NE, the users will adopt mixed strategies to arrive at an
equilibrium point. For our two users matrix form game, we
can readily compute those mixed strategies. At the NE, user 1
will choose p∗1 such that user 3 will have the same cost under
either cooperation or no-cooperation:

C∗
3 = (1 − p∗1)C3,nn + p∗1C3,cn = (1 − p∗1)C3,nc + p∗1C3,cc.

User 3 will choose p∗3 in a similar way, hence

p∗1 =
C3,nn − C3,nc

C3,cc − C3,cn + C3,nn − C3,nc
,

p∗3 =
C1,nn − C1,cn

C1,cc − C1,nc + C1,nn − C1,cn
.

and C∗
1 = (1 − p∗3)C1,nn + p∗3C1,cn.

Under the equilibrium strategy (p∗1, p
∗
3), the average total

energy per bit is Et = 1
2

(
C∗

1 + C∗
3 + E∗

r ), where E∗
r is the

energy consumption of the relay node. Therefore, the altruistic
node determines the optimal strategy which corresponds to
finding p∗nc = argmin

pnc∈[0,1]

Et. In summary, the main insight from
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Theorem 2 is that, by adopting the appropriate cooperation
strategy, the altruistic node can stimulate cooperation among
nodes 1 and 3 under certain conditions on the topology of
the networks, which determines the channel gain between
every pair of nodes. If we have freedom to choose the
altruistic node’s location, we can use Theorem 2 to compute
an optimum region, in which the altruistic node can ensure
full-cooperation to be the unique NE of this non-cooperative
game. Noting that the conditions in Theorem 2 are polynomial
functions of the altruistic node’s coordinate, the optimum
region, hence, is the intersection of the four regions specified
by these polynomial functions, which are easy to calculate.

C. Phase Fading Channels

In this section, besides attenuation, we assume that the sig-
nal also experiences phase fading, i.e. h2

ij = d−γ
ij e

jθij , where
θij is uniformly distributed over [0, 2π) and is independent
with everything else3. We assume that θij is only known at
the corresponding receiver j but not at the transmitter i. In the
following, we show that the scheme described in Section III-A
becomes multi-hop packet forwarding, a simple and popular
scheme in large scale networks [6].

Recall that after receiving �LR	 symbols, the relay can
decode successfully and will then send xr with power α2

rP to
help the source. The signal received at the destination during
the second phase is y2[t] = h12α1x1[t]+hr2αrxr[t]+z2[t]. Let
ρ1r be the correlation coefficient between x1, xr, the capacity
is then

C = max
ρ1r

E

{
1
2

log2

(
1 + (α2

1|h12|2 + α2
r|hr2|2

+2R(ρ1re
j(φ12−φr2))α1αr|h12||hr2|)P

)}

≤ max
ρ1r

{
1
2

log2

(
1 + (α2

1|h12|2 + α2
r|hr2|2

+2E

{
R(ρ1re

j(φ12−φr2))
}
α1αr|h12||hr2|)P

)}

=
1
2

log2(1 +
(
α2

1|h12|2 + α2
r|hr2|2

)
P ), (6)

where R(x) is the real part of x. The inequality is due to
Jensen’s inequality. Since E{ej(φ12−φr2))} = 0, the equality
is achieved with ρ1r = 0.

To minimize the energy expenditure while maintaining the
same effective capacity from the destination’s perspective, we
solve

min α2
1 + α2

r,

s.t. α2
1|h12|2 + α2

r|hr2|2 = |h12|2. (7)

It easy to see that if hr2 > h12, the solution to (7) is α2
1 =

0, α2
r = |h12|2/|hr2|2, i.e., only the altruistic node relays the

information to the destination. On the other hand, if h12 >
hr2, the solution is α2

1 = 1, α2
r = 0, i.e., only the source node

sends.

3θij depends on the distance between nodes modulo the wave length [18].
Hence it is reasonable to assume that the channel gain is fixed while the phase
is fading, since the phase will change significantly if the nodes move in an
order to wave length [19]. The scenario with general fading is out of scope
of this paper and is an important direction of our future research.
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Fig. 5. The region corresponding to the relay node positions where full-
cooperation is the only equilibrium for the selfish nodes.
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Fig. 6. Comparison between relay strategies (dumb relaying refers to the
case where the relay always helps).

In summary, during the second phase, only the node closer
to the destination will transmit, a situation similar to the
multi-hop packet forwarding with the only difference that, the
destination will combine the signal received both during the
first and second stage to decode. The analysis in Section III-B
follows naturally and similar conclusion holds, as evident in
the numerical part.

D. Numerical Results

Armed with Theorem 2, we now give various examples to
show the effectiveness of the altruistic node.

We first consider the case where there is no phase fading.
In this example, we place nodes 1 and 3 (the transmitters) at
coordinates (0, 0.1), (0,−0.1), respectively, and nodes 2 and
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Fig. 7. Comparison between relay strategies in the channel with phase fading.

4 (the receivers) at (1, 0.2), (1,−0.2), respectively. The relay
node is placed at position (x, y). In the simulation, we let
γ = 3. Figure 5 shows the region corresponding to the optimal
location(s) for the relay node, i.e., if the relay node is located
in this region full-cooperation becomes the only equilibrium
of our non-cooperative game. Figure 6 further illustrates the
gain offered by the altruistic node as a function of its position.
As benchmarks, we use 1) the average transmission energy per
bit, Eco, in the idealistic cooperative network where node 1
and 3 are not selfish and 2) the dumb relaying strategy where
the altruistic node always helps the sender (hence, based on
Lemma 1, no-cooperation is the only equilibrium among the
transmitters.). We also define

ζt = 10 log10

{ Et(p∗nc)
(E1 + E3)/2

}
,

ζco = 10 log10

{ Eco

(E1 + E3)/2

}
to quantify the gain resulting from cooperation in our non-
cooperative game (ζt) and the idealistic case (ζco). In Figure 6,
we show the gain by letting this node move at the x-axis,
that is the position of the relay is (x, 0). We can see that the
introduction of the relay node reduces the energy consumption
of the network at the equilibrium significantly (e.g., a gain as
large as 7 dB). It is also shown that full-cooperation is the
NE when the relay node is between −0.2 and 0.7, since the
curve of ζt coincides with that of ζco.

Figure 7 shows the numerical result when the channel also
experiences phase fading. In generating this figure, we place
nodes 1 and 3 at coordinates (0, 0.1), (0,−0.1), respectively,
and nodes 2 and 4 (the receivers) at (1,−0.3), (−1, 0.3),
respectively. We can see that when the relay is between 0.2
and 0.5, full-cooperation is NE. Compared with the no phase
fading case, the gain is reduced, since we can only exploit
the packet forwarding thus lose the beamforming gain. But,

Selfish node
unselfish node

source

destination

Fig. 8. Our large random network with altruistic nodes.

the existence of altruistic node with appropriate strategy still
successfully stimulate the cooperation among the nodes.

IV. LARGE RANDOM NETWORK

The detailed analysis of the small network scenario shows
the effectiveness of the altruistic node in fostering cooperation
among the nodes. This motivates us to investigate whether
the same conclusion is valid in a larger scale network or
not. Toward this end, we consider ad-hoc networks with large
numbers of nodes N . We consider the case where these N
nodes are randomly distributed on the surface of a sphere of
area A(N) according to a uniform distribution as shown in
Figure 8. We keep the density ρ of the node as constant, and
hence, as the number of nodes in the network N increases, the
area of the network A(N) = N/ρ increases accordingly. This
corresponds to the extended network model considered in the
literature [7], [8]. Without loss of generality, we let ρ = 1
resulting in A(N) = N . As before, we let Xi be the position
of node i and dij = |Xi −Xj | be the distance between nodes
i and j. In our model, we allow all the nodes in the set N to
be transmitters, that is T = N .

It is easy to see that the design and analysis of the DF
cooperation scheme, adopted in the small network scenario,
will become intractable in this large network. Therefore, in
the large network, we will limit ourselves to the simplest
form of cooperation, namely packet forwarding4. This choice
can also be partially justified by the results of section III-C,
where simple packet forwarding is also shown to be effective
in fostering cooperation among users in the small network.
More specifically, the packets propagate in the network in a
hop-by-hop fashion. We assume that, at each frame, each node
randomly picks another node in the network as its destination
and sends a packet to it. Also at the beginning of each trans-
mission, the source node identifies a route to the destination.
Let Γij be the set of nodes in the route from the source i
to the destination j. We use the routing scheme described
in [6]: divide the whole area into small Voronoi cells5, whose

4Though sophisticated cooperation scheme may bring some extra gains,
packet forwarding is shown [20] to be order optimal in large scale random
networks under certain specific conditions.

5Given a set of points a1, ..., an in the surface of sphere, the Voronoi cell
V (ai) is the set of all points which are closer to ai than to any of the other
aj ’s [6].
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size is properly chosen to guarantee that there is at least one
node at each cell, and the packet hops from the source to the
destination through the cells that have intersection with a line
connecting the source and the destination. If a particular cell
has multiple nodes, the relay request is assigned randomly
to any of the nodes in this cell. Before sending a message
to its destination j, source i first broadcasts a relay request
to the nodes on the route Γij , then node k on this route
will decide whether to accept this request or not and sends
back a response to the source node. We assume that the nodes
always respond to the relay requests and are not allowed to
misbehave later 6. Each node only needs to send these short
protocol packets to the nearest node with small transmission
power. The protocol overhead is the same for any decision
each node makes, hence for the sake of simplicity, we ignore
this common protocol overhead and only compare the energy
used to transmit data packets (relatively long compared with
protocol packets) to reflect the effects of selfishness in the
sequel. Furthermore, we assume that if a selfish node accepts
a relay request, it will use a sufficient power level to ensure
successful decoding only at the next hop on the route (this
assumption is consistent with the node selfishness). Therefore,
if any node on the route rejects the relay request, the route
is interrupted. In this case, the source node will transmit the
packet to the destination in one hop (i.e., direct transmission).
Clearly, one can envision more sophisticated routing strategies
where the source attempts to establish another route when
the first route is interrupted. Here, we limit ourselves to the
aforementioned routing strategy for the sake of simplicity,
and analytical tractability. It also appears that the potential
gains from more sophisticated routing strategies will be rather
marginal due to the selfishness of the majority of nodes in our
network (i.e., every selfish nodes will not be willing to waste
energy in forwarding a packet for a long hop). Finally, the
source node is assumed to have no prior information about
the identity of the nodes in the routes (whether a certain node
is selfish or altruistic). On the other hand, every node knows
the fraction of altruistic nodes present in the network and the
functional form of the strategy employed by those nodes (i.e.,
g(.)).

To ensure successful decoding of the transmitted signal at
a receiver dij away from the transmitter, the energy spent
on sending one packet (in the low rate regime) is given by
Etr(dij) = c1/h

2
ij = c1d

γ
ij , where c1 is a constant. Therefore,

the required energy per hop scales polynomially, in the hop
length, with order γ. It follows that, if all the nodes in the
network are cooperative and accept all the relay requests, the
optimal energy per packet scales as Θ

(√
N log(γ−1)/2(N)

)
as shown in [7], [8]7. This optimal scaling is achieved by the
routing scheme used here. On the other hand, if all the nodes
are selfish then the result in Lemma 1 will hold, implying
that no-cooperation will be the unique NE. At this equilibrium

6The design of cheating-proof mechanisms is out of the scope of this paper;
relevant works could be found in [21], [22] and references therein.

7In this paper, we use the following Knuth’s asymptotic notations:
1)f(N) = o(g(N)) means ∀c > 0, ∃N0, ∀N > N0, f(N) < cg(N),
2) f(N) = ω(g(N)) means ∀c > 0, ∃N0,∀N > N0, g(N) < cf(N), 3)
f(n) = Θ(g(N)) means ∃c1, c2 > 0, N0, ∀N > N0, c1g(N) ≤ f(N) ≤
c2g(N).

point, each source node must send the packet to the destination
in one hop resulting in an average energy per packet which
scales as Θ(Nγ/2). In the following, we show how altruistic
nodes can be utilized to close the huge gap between those two
scenarios.

We now recall that there are θ(N) altruistic nodes among
these N nodes, that is |U| = θ(N), as shown in Figure 8. For
simplicity, in the function g(pi) = pi + (1 − pi)pnc, we set
the parameter pnc to be 0, that is g(pi) = pi. Let Ψ̂i = {j :
j �= i, j ∈ N , s.t. ∃k ∈ Γij , k ∈ U}, which means that Ψ̂i is
the set of possible destinations for node i such that the route
between it and node i includes at least one altruistic node.

The probability that node i can transmit its packet to the
destination j through the relays is

∏
k∈Γij

pk (note that, if k ∈

U , pk = pi). Let i
′
(j) be the first node on the route Γij , then

with probability
∏

k∈Γij

pk, the energy that node i spends on

sending this packet is c1d
γ

ii′ (j)
. If the relay request is rejected,

which happens with probability 1 −
∏

k∈Γij

pk, node i has to

transmit the packet directly to its destination j with an energy
expenditure of c1d

γ
ij . Therefore, the expected energy that node

i spends on sending its own packet is

Ei,tr=
1

N − 1

{ N∑
j=1
j �=i

[ ∏
k∈Γij

pkc1d
γ

ii′ (j)

+
(
1 −

∏
k∈Γij

pk

)
c1d

γ
ij

]}
,

since node i will choose its destination among other N −
1 nodes with equal probability. Besides spending energy for
sending its own packets, node i also needs to relay packets
for the other nodes. Let Λi = {Γkj : i ∈ Γkj , k, j ∈ N , k �=
i, j �= i} be the set of routes that include node i. Λi is a
random set, but at each TDMA super-frame which includes
one slot assigned to each source node, |Λi| is upper-bounded
by N , since there are at most N relay requests asking for node
i to help. Let Γ ∈ Λi be one of the routes and Γ(i) be node
i’s direct next hop in the route Γ. We have

Ei,re = E

{ ∑
Γ∈Λi

pi

∏
k∈Γ
k �=i

pkc1d
γ
iΓ(i)

}
,

here E{·} means the expectation.
Hence the total cost for node i is

Ci =
1

N − 1

{ N∑
j=1
j �=i

[ ∏
k∈Γij

pkc1d
γ

ii′ (j)

+
(
1 −

∏
k∈Γij

pk

)
c1d

γ
ij

]}
+ E

{ ∑
Γ∈Λi

pi

∏
k∈Γ
k �=i

pkc1d
γ
iΓ(i)

}
.

Now, we proceed to establish a sufficient condition on θ(N)
that ensures full cooperation in the network. Since we consider
random networks, our results hold in a probabilistic sense, i.e.,
we use the notion w.h.p to mean that a certain result is true
for any realization of the random network with probability
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which goes to 1 as the number of nodes in the network
increases. First, we need to recall some preliminary results
on the topology of random network.

Lemma 3 (see [6]): Let r(N) be the radius of a disk with
area 100 logN in the surface of a sphere. If we divide the
total area A(N) = N into Voronoi cells, each contains a
disk of area 100 logN and is contained in a disk with radius
2r(N), then there exists a sequence δ(N) → 0, such that
Prob(every cell contains a node) ≥ 1 − δ(N).

Based on the described routing scheme, the packet will hop
from cell to the adjacent cell. Since the radius of each cell,
needed to ensure the presence of at least one node, is at most
2r(N), the maximum distance of any hop is 8r(N). Hence,
this lemma shows the existence of a constant c2 > 0 such that
the distance of any hop in the route is at most c2

√
logN . That

is, for any route Γij , we have

dii′ (j) ≤ c2
√

logN, diΓ(i) ≤ c2
√

logN. (8)

Next, we focus on the set of destination nodes which are
far away from the source i, since the transmission to these
destinations requires large energy expenditure, especially if
the node has to transmit the packet directly. Let Di = {j :
j ∈ N , dij ≥

√
N/4}, which is the set of nodes that are more

than
√
N/4 away from node i. Let S be area of a disc in the

sphere with radius
√
N/4, and c4 = (N − S)/N . Then it is

easy to prove that |Di| = c4N+o(N) w.h.p. This says that the
number of nodes that are at least

√
N/4 far from the source

i is c4N , i.e., has the same order as the number of nodes in
the network. Let ηij be the number of hops that a packet has
to travel from its source node i to a destination j ∈ Di via
the preferred route assuming that all the relay requests are
accepted. Then w.h.p, we have

ηij ≥ dij

c2
√

logN
≥

√
N

4c2
√

logN
, (9)

since the length of each hop is at most c2
√

logN and dij ≥√
N/4.
Let D̂i = {j : j ∈ Di, s.t. ∃k ∈ Γij , k ∈ U} be the set

of node destinations (for source node i), which are at least√
N/4 away from node i and have at least one altruistic node

in the routes between them and node i. The following result
lower bounds the cardinality of the set D̂i.

Lemma 4:

|D̂i| ≥ c4

(
N −N(1 − θ(N)/N)

√
N/(4c2

√
log N)

)
+o
(
N(1 − θ(N)/N)

√
N/(4c2

√
log N)

)
,∀i,

w.h.p. In particular, if θ(N) = ω(
√
N logN), then |D̂i| ≥

c5N + o(N),∀i, w.h.p.
Proof: Please refer to Appendix I.

Roughly speaking, Lemma 4 argues that if the number of
altruistic nodes in the network scales as ω(

√
N logN), then

almost all the routes from source i to its destinations that
are more than

√
N/4 away from it, will contain at least one

altruistic node as one of the hops. This fact allows the altruistic
nodes to efficiently enforce the reward/punishment strategy by
accepting the relay requests from only the cooperative nodes.
Based on this observation, the following result establishes an

upper bound on the fraction of altruistic nodes needed to
ensure full cooperation.

Theorem 5: If θ(N) = ω(
√
N logN), then full cooperation

p = 1 is a Nash equilibrium. At this equilibrium, the average
energy per packet approaches the optimal scaling law of
Θ
(√

N log(γ−1)/2(N)
)

.
Proof: Please refer to Appendix II.

Finally, we observe that

lim
N→∞

θ(N)/N = 0,

implying the need for only a vanishingly small fraction of the
nodes to be altruistic in order to converge to a full cooperation
equilibrium in our energy limited wireless network.

We note that full-cooperation may not be the unique NE.
However, operating at this point will minimize the total energy
expenditure of the network, and is also compatible with the
selfish nature of users in the network.

V. CONCLUSIONS

In this work, we adopted a game theoretic approach for
analyzing the impact of user selfishness on the performance
of energy limited ad-hoc network. Our results have established
the critical role of altruistic, i.e., relay, nodes in stimulating
full cooperation between all nodes. In the small network
setting, our numerical results show that the introduction of
one relay node, which employs the appropriate cooperation
strategy, yields significant energy savings. In the large network
scenario, we have derived an upper bound on the number of
altruistic nodes required to ensure full cooperation. This upper
bound shows that full cooperation is possible in networks
where only a vanishingly small fraction nodes is altruistic.
Our results also shed light on the structure of optimal physical
layer reward policies and established the strict sub-optimality
of the traditional relaying approach, where the relay node
offers the same forwarding service to all the nodes in the
network.

APPENDIX I
PROOF OF LEMMA 4

For any destination j ∈ Di, let Yij be a Bernoulli random
variable, such that Yij = 1 if ∀k ∈ Γij , k /∈ U , and Yij = 0
otherwise. This means that if the route Γij only consists of
selfish nodes, then Yij = 1, otherwise, if there exists at least
one altruistic nodes in the route Γij , Yij = 0. Since these
θ(N) altruistic nodes are distributed in the network randomly,
we have

P{Yij = 1} =
ηij−1∏
k=0

(
1 − θ(N)

N − k

)
< (1 − θ(N)/N)ηij

≤ (1 − θ(N)/N)
√

N/(4c2
√

log N)

due to (9) and the fact that 1 − θ(N)/N < 1.
We want to bound the number of routes that only consists

of selfish nodes. Let Yi =
∑

j∈Di

Yij , then

E{Yi} = E{
∑
j∈Di

Yij} =
∑
j∈Di

E{Yij}

≤ c4N(1 − θ(N)/N)
√

N/(4c2
√

log N).
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For any given i, Yijs are not independent. For example, let
j1, j2 ∈ Di be such that Γij2 includes all the nodes in Γij1

and some other nodes k ∈ N , that is Γij1 ⊂ Γij2 , then if
yij1 = 0, yij2 also equals to 0. The reason is that yij1 = 0
means that ∃k ∈ U , s.t. k ∈ Γij1 . Now, since Γij1 ⊂ Γij2 , we
have k ∈ Γij2 , hence, yij2 = 0. Due to this dependence, we
couldn’t use the Chernoff bound for i.i.d. Bernoulli random
variables directly. Instead, we use similar technique as [23]
and define Ŷi =

∑
j∈Di

Ŷij , where Ŷij be the i.i.d. Bernoulli

random variables with

Pr(Ŷij = 1) = (1 − θ(N)/N)
√

N/(4c2
√

log N). (10)

We know that if ∀yij1 = 0, and Γij1 ⊂ Γij2 , we will have
yij2 = 0, thus, it is easy to check that

E{Y m
i } ≤ E{Ŷ m

i } (11)

for any m > 0. Hence E{exp(φYi)} ≤ E{exp(φŶi)} for any
φ > 0.

Let P (Ŷi, δ) = Pr{Ŷi ≥ (1 + δ)E{Ŷi}}, P (Yi, δ) =
Pr{Yi ≥ (1 + δ)E{Yi}}, by the Chernoff bound for i.i.d.
Bernoulli random variables, we have for any δ > 0,

P (Ŷi, δ) ≤ exp(−δ2E{Ŷi}/2).

From (11), and follows [23], we have

P (Yi, δ) ≤ P (Ŷi, δ) ≤ exp(−δ2E{Ŷi}/2). (12)

Let δ = 2
√

logN/E{Ŷi}, we have

Pr
(
Ŷi ≥ E{Ŷi} + 2

√
logNE{Ŷi}

)
≤ 1/N2. (13)

We know that |D̂i| = c4N − Yi, hence combin-
ing (10)(12)(13), we have that with probability larger than
1 − 1/N2, there are

c4

(
N −N(1 − θ(N)/N)

√
N/(4c2

√
log N)

)
+o
(
N(1 − θ(N)/N)

√
N/(4c2

√
log N)

)
destinations in Di, whose routes from node i includes at least
one altruistic node.

Using union bound, we have

|D̂i| > c4

(
N −N(1 − θ(N)/N)

√
N/(4c2

√
log N)

)
+o
(
N(1 − θ(N)/N)

√
N/(4c2

√
log N)

)
,∀i ∈ N

with probability larger than 1 − 1/N .
In particular, if θ(N) = ω(

√
N logN),

0 ≤ lim
N→∞

E{Yi}
N

≤ lim
N→∞

[
(1 − θ(N)/N)N/θ(N)

]θ(N)/(4c2
√

N log N)

= 0,

since
lim

N→∞
(1 − θ(N)/N)N/θ(N) = 1/e,

and θ(N) = ω(
√
N logN). Hence

N(1 − θ(N)/N)
√

N/(4c2
√

log N) = o(N),

the claim is proved.

APPENDIX II
PROOF OF THEOREM 5

If p = 1, then

Ei,tr =
1

N − 1

∑
j �=i

c1d
γ

ii′ (j)
, Ei,re = E

{ ∑
Γ∈Λi

c1d
γ
iΓ(i)

}
,

since all its relay requests will be accepted.

Hence the cost under this point is

Ci,co = Ei,tr + Ei,re

≤ c1c
γ
2 logγ/2N + c1Nc

γ
2 logγ/2N

= Θ(N logγ/2N),

due to the bound in (8), and at each frame, there are at most
N relay requests for node i at each frame.

On the other hand if node i changes its strategy to pi < 1,
then

Ei,tr(pi) =
1

N − 1

( ∑
j∈Ψi\Ψ̂i

c1d
γ

ii′ (j)
+
∑
j∈Ψ̂i

p
f(Γij)
i c1d

γ

ii′ (j)

+
∑
j∈Ψ̂i

(
1 − p

f(Γij)
i

)
c1d

γ
ij

)
,

where f(Γij) is the number of altruistic nodes in the route
Γij , and

Ei,re(pi) = E

{
pi

∑
Γ∈Λi

c1d
γ
iΓ(i)

}
.

Hence for ∀ε > 0, pi < 1 − ε, we have

Ci(pi) = Ei,tr(pi) + Ei,re(pi)

≥ 1
N − 1

∑
j∈Ψ̂i

(
1 − p

f(Γij)
i

)
c1d

γ
ij (14)

≥ 1
N − 1

∑
j∈D̂i

(
1 − p

f(Γij)
i

)
c1d

γ
ij (15)

≥ εc1
c5N

N − 1
Nγ/2/4γ (16)

= Θ(Nγ/2) > Ci,co. (17)

(14) is true, since we only consider the energy spent on direct
transmission and ignore the energy spends on helping. (15)
is true, since D̂i ⊆ Ψ̂i. (16) is true, because: 1)|D̂i| ≥ c5N

(see lemma 4), 2) ∀j ∈ D̂i, dij ≥
√

N
4 (definition), and 3)

1 − p
f(Γij)
i ≥ 1 − pi ≥ ε, since f(Γij) ≥ 1,∀j ∈ D̂i. (17) is

true when N is large, since γ > 2.
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Also

∂Ci

∂pi
|pi=1 = − 1

N − 1

∑
j∈Ψ̂i

f(Γij)c1
(
dγ

ij − dγ

ii′ (j)

)

+E

{ ∑
Γ∈Λi

c1d
γ
iΓ(i)

}

≤ − 1
N − 1

∑
j∈D̂i

c1

(
dγ

ij − dγ

ii′ (j)

)

+c1Nc
γ
2 logγ/2N (18)

≤ −c1c5N
N − 1

(Nγ/2/4γ − cγ2 logγ/2N)

+c1Nc
γ
2 logγ/2N (19)

< 0, (20)

for sufficiently large N .
(18) is true since: 1) D̂i ⊆ Ψ̂i, 2)∀j ∈ Ψ̂i, f(Γij) ≥ 1,

and 3) at each frame, there are at most N relay requests for
each node. (19) is true, because of lemma 4, and ∀j ∈ D̂i,
dij ≥

√
N/4. (20) is true since γ > 2. (20) is true for all the

nodes in the network w.h.p.
Hence no user will deviate from pi = 1, full-cooperation

is a nash-equilibrium. At this equilibrium, the average energy
per packet scales the same as the cooperative network, which
is Θ

(√
N log(γ−1)/2(N)

)
given by [7], [8].
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