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The Relay–Eavesdropper Channel:
Cooperation for Secrecy

Lifeng Lai, Member, IEEE, and Hesham El Gamal, Senior Member, IEEE

Abstract—This paper establishes the utility of user cooperation
in facilitating secure wireless communications. In particular, the
four-terminal relay–eavesdropper channel is introduced and an
outer-bound on the optimal rate-equivocation region is derived.
Several cooperation strategies are then devised and the corre-
sponding achievable rate-equivocation region are characterized.
Of particular interest is the novel noise-forwarding (NF) strategy,
where the relay node sends codewords independent of the source
message to confuse the eavesdropper. This strategy is used to
illustrate the deaf helper phenomenon, where the relay is able to
facilitate secure communications while being totally ignorant of
the transmitted messages. Furthermore, NF is shown to increase
the secrecy capacity in the reversely degraded scenario, where the
relay node fails to offer performance gains in the classical setting.
The gain offered by the proposed cooperation strategies is then
proved theoretically and validated numerically in the additive
white Gaussian noise (AWGN) channel.

Index Terms—Cooperation, eavesdropper, noise-forwarding
(NF), relay, security.

I. INTRODUCTION

S HANNON introduced the notion of information theoretic
secrecy in [1]. The model in [1] assumed that the transmis-

sion is noiseless, and used a key to protect the confidential
message . Taking the transmission uncertainty into consider-
ation, Wyner introduced the wiretap channel in [2]. In the three-
terminal wiretap channel, a source wishes to transmit confiden-
tial messages to a destination while keeping the messages as se-
cret as possible from a wiretapper. The wiretapper is assumed to
have an unlimited computation ability and to know the coding/
decoding scheme used in the main (source-destination) channel.
Under the assumption that the source-wiretapper channel is a
degraded version of the main channel, Wyner characterized the
trade-off between the throughput of the main channel and the
level of ignorance of the message at the wiretapper using the
rate-equivocation region concept. Loosely speaking, the equiv-
ocation rate measures the residual ambiguity about the trans-
mitted message at the wiretapper. If the equivocation rate at the
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wiretapper is arbitrarily close to the information rate, the trans-
mission is called perfectly secure. Csiszár and Körner extended
this work to the broadcast channel with confidential messages,
where the source sends common information to both the des-
tination and the wiretapper, and confidential messages are sent
only to the destination [3].

Our work here is motivated by the fact that if the wiretapper
channel is less noisy than the main channel,1 the perfect secrecy
capacity of the channel is zero [3]. In this case, it is infeasible to
establish a secure link under Wyner’s wiretap channel model.
Our main idea is to exploit user cooperation in facilitating
the transmission of confidential messages from the source to
the destination. More specially, we consider a four-terminal
relay–eavesdropper channel, where a source wishes to send
messages to a destination while leveraging the help of a relay
node to hide those messages from the eavesdropper. The
eavesdropper in our model can be viewed as the wireless
counterpart of Wyner’s wiretapper. This model generalizes the
relay channel [4] and the wiretap channel [2].

The relay channel without security constraints was studied
under various scenarios [4]–[12]. In most of these works, co-
operation strategies were constructed to increase the transmis-
sion rate and/or reliability function. In this paper, we identify a
novel role of the relay node in establishing a secure link from the
source to the destination. Toward this end, several cooperation
strategies for the relay–eavesdropper channel are constructed
and the corresponding achieved rate-equivocation regions are
characterized. An outer bound on the optimal rate-equivoca-
tion region is also derived. The proposed schemes are shown
to achieve a positive perfect secrecy rate in several scenarios
where the secrecy capacity in the absence of the relay node
is zero. Quite interestingly, we establish the deaf-helper phe-
nomenon where the relay can help while being totally ignorant
of the transmitted message from the source. Furthermore, we
show that the relay node can aid in the transmission of confiden-
tial messages in some settings where classical cooperation fails
to offer performance gains, e.g., the reversely degraded relay
channel. Finally, we observe that the proposed noise-forwarding
(NF) is intimately related with the multiple access channel with
security constraints, as evident in the sequel.

At this point, we wish to differentiate our investigation from
earlier relevant works. The relay channel with confidential mes-
sages was studied in [13], [14], where the relay node acts both
as an eavesdropper and a helper. In the model of [14], the source
sends common messages to the destination using the help of the

1The source-wiretapper channel is said to be less noisy than the source-re-
ceiver channel, if for every V ! X ! Y Z; I(V ;Z) � I(V ;Y ), where X is
the signal transmitted by the source, Y;Z are the received signal of the receiver
and the wiretapper respectively.
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relay node, but also sends private messages to the destination
while keeping them secret from the relay. In contrast with [14],
the relay node in our work acts as a trusted “third-party” whose
sole goal is to facilitate secure communications (imposing an
additional security constraint on the relay node is also consid-
ered in Section IV). The idea of using a “third-party” to fa-
cilitate secure communications also appeared in [15]. Contrary
to our work, which considers noisy channels, [15] focused on
the generation of common random secret keys at two nodes
under the assist of a third-party using a noiseless public dis-
cussion channel. The users then use the secret key to establish
a secure link between the source-destination pair. Other recent
works on secure communications investigated the multiple-ac-
cess channel (MAC) with confidential messages [16], [17], the
MAC with a degraded wiretapper [18], and multiple-input–mul-
tiple-output (MIMO) secure communications [19]. In summary,
it appears that our relay–eavesdropper model is fundamentally
different from the models considered in all previous works.

Throughout the paper, upper case letter denotes a random
variable, lower case letter denotes a realization of the random
variable, calligraphic letter denotes a finite alphabet set. Bold-
face letter denotes a vector, denotes transpose and
denotes conjugate transpose. We also let .

The rest of the paper is organized as follows. In Section II,
we introduce the system model and our notation. Section III
describes the proposed cooperation strategies and characterizes
the corresponding achievable performance. The rate-equivoca-
tion outer-bound is also developed in this section. In Section IV,
we discuss several examples that illustrate interesting aspects of
the relay–eavesdropper channel. Finally, Section V offers some
concluding remarks and briefly outlines possible venues for fu-
ture research.

II. THE RELAY-EAVESDROPPER CHANNEL

We consider a four-terminal discrete channel consisting of fi-
nite sets and a transition probability distribu-
tion , as shown in Fig. 1. Here, are the
channel inputs from the source and the relay respectively, while

are the channel outputs at the destination, relay and
eavesdropper respectively. We impose the memoryless assump-
tion, i.e., the channel outputs at time only depend
on the channel inputs at time . The source wishes to
send the message to the destination
using the code consisting: 1) a stochastic encoder at
the source that maps the message to a codeword , 2)
a relay encoder that maps the signals re-
ceived before time to the channel input , using the mapping

: , 3) a decoding function :
. The average error probability of a code is

defined as

was sent (1)

The equivocation rate at the eavesdropper is defined as

(2)

Fig. 1. The relay eavesdropper channel.

The rate-equivocation pair is said to be achievable
if for any , there exists a sequence of codes such
that for any , we have

(3)

(4)

(5)

We further say that the perfect secrecy rate is achievable
if the rate-equivocation pair is achievable. Notice that
if , our model reduces to the classical relay channel
without security constraints.

III. MAIN RESULTS

Our first result establishes an outer bound on the optimal rate-
equivocation region of the relay–eavesdropper channel.

Theorem 1: In the relay–eavesdropper channel, for any rate-
equivocation pair with and the equivocation
rate at the eavesdropper larger than , there exist some
random variables ,
such that satisfies the following conditions:

(6)

Proof: Please refer to Appendix A.
We now turn our attention to constructing cooperation strate-

gies for the relay–eavesdropper channel. Our first step is to char-
acterize the achievable rate-equivocation region of Cover–El
Gamal Decode and Forward (DF) Strategy [4]. In DF cooper-
ation strategy, the relay node will first decode codewords and
then re-encode the message to cooperate with the source. Here,
we use the regular coding and backward decoding scheme de-
veloped in the classical relay setting [20], [7], with the impor-
tant difference that each message will be associated with many
codewords in order to confuse the eavesdropper.

Theorem 2: The rate pairs in the closure of the convex hull
of all satisfying

(7)
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Fig. 2. The rate region of the compound MACs of the relay eavesdropper channel for a fixed input distribution p(x )p(x ).

for some distribution
, are achiev-

able using the DF strategy.
Hence, for the DF scheme, the following perfect secrecy rate

is achievable

(8)

Proof: Please refer to Appendix B.

The channel between the source and the relay becomes a
bottleneck for the DF strategy when it is noisier than the
source–destination channel. This motivates our noise-for-
warding (NF) scheme, where the relay node does not attempt to
decode the message but sends codewords that are independent
of the source’s message. The enabling observation behind this
scheme is that, in the wiretap channel, in addition to its own
information, the source should send extra codewords to confuse
the wiretapper. In our setting, this task can be accomplished by
the relay by allowing it to send independent codewords, which
aid in confusing the eavesdropper.

Our NF scheme transforms the relay–eavesdropper channel
into a compound MAC, where the source/relay to the receiver is
the first MAC and source/relay to the eavesdropper is the second
one. Fig. 2 shows the rate region of these two MACs for a fixed
input distribution . In the figure, is the codeword
rate of the source, and is the codeword rate of the relay.
We can observe from Fig. 2(a) that if the relay node does not
transmit, the perfect secrecy rate is zero for this input distribu-
tion since . On the other hand, if the relay and
the source coordinate their transmissions and operate at point ,
we can achieve the equivocation rate , which is strictly larger
than zero. On the other hand, in Fig. 2(b), we can still get a pos-
itive perfect secrecy rate by operating at point in the absence
of the relay. But by moving the operating point to , we can get
a larger secrecy rate. This illustrates the main idea of our NF
scheme. The next result establishes the achievable rate-equivo-
cation region for the NF scheme.

Theorem 3: The rate pairs in the closure of the convex hull
of all satisfying

(9)

for some distribution

are achievable using the NF scheme.
Hence, for the NF scheme, the following perfect secrecy rate

is achievable:

(10)

Proof: Please refer to Appendix C.

The following comments are now in order.
1) The NF scheme is customized to the relay channel with

security constraints which make the transmission of code-
words that are independent of the source message reason-
able. Also, in the NF scheme, the relay node does not need
to listen to the source, and hence, this scheme works for
relay nodes limited by the half-duplex constraint [11], [9],
[21].

2) In NF cooperation, each user sends independent messages
to the destination, which resembles the MAC. Hence, NF
cooperation can be adapted to the multiple access eaves-
dropper channel where the multiple users in the MAC
channel can help each other in communicating securely
with the destination without listening to each other (note
that the results in [18] were limited only to the case where
the eavesdropped channel is a degraded version of the
channel seen by the destination). Our related results will
be reported elsewhere.

Now, we study another cooperation scheme that does not re-
quire decoding at the relay: Compress and Forward (CF). The
CF cooperation strategy can be viewed as a generalization of NF
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where, in addition to the independent codewords, the relay also
sends a quantized version of its noisy observations to the desti-
nation. This noisy version of the relay’s observations helps the
destination in decoding the source’s message, while the inde-
pendent codewords help in confusing the eavesdropper. The fol-
lowing result establishes the achievable rate-equivocation pair
in the case when , i.e.,
the source–eavesdropper channel is better than the source–re-
ceiver channel, a situation of particular interest to us.

Theorem 4: The rate pairs in the closure of the convex hull
of all satisfying

(11)

subject to

(12)

for some distribution
are achiev-

able using CF strategy.
Proof: Please refer to Appendix D.

Three comments are now in order.
1) In Theorem 4, is the rate of pure noise gener-

ated by the relay to confuse the eavesdropper, while
is the part of the rate

allocated to send the compressed signal to help the des-
tination. If we set ,
this scheme becomes the NF scheme.

2) In order to enable analytical tractability, the coding/de-
coding scheme used in the proof is slightly different from
that of [4]. In [4], the destination uses sliding-window de-
coding, while our proof uses backward decoding. Hence,
the bound for provided here is a lower bound for the
achieved by the CF scheme. One may be able to achieve
a larger using exactly the CF scheme proposed in [4].
But, unfortunately, we are not yet able to bound when
sliding-window decoding is used.

3) Compared with CF decoding, the proposed NF strategy en-
joys the advantage of simplicity. Also, if one only focuses
on the perfect secrecy rate, it is easy to see that these two
schemes achieve identical performance. Again, this obser-
vation is limited to our lower bound on in Theorem 4.

IV. EXAMPLES

This section discusses several examples that illustrate some
unique features of the relay–eavesdropper channel. For sim-
plicity, we only focus on the perfect secrecy rate of various
schemes.

A. Physically Degraded Relay Channel

In the following, we show that the decode-forward strategy
achieves the perfect secrecy capacity for a class of physically
degraded relay–eavesdropper channel. In this class of physically

degraded relay–eavesdropper channel, the output at the destina-
tion is a degraded version of the output at the relay node.

Definition 1: The relay–eavesdropper channel is called phys-
ically degraded, if

Notice that in this definition, we do not put any degradedness
assumption at the output of the eavesdropper.

Theorem 5: The perfect secrecy capacity of the physically
degraded relay–eavesdropper channel is

Proof: Please refer to Appendix E.

B. The Deaf Helper Phenomenon

The security constraints imposed on the network bring about
a new phenomenon which we call the deaf helper phenomenon,
where the relay node can still help even it is totally ignorant
of the message transmitted from the source. In this setup, we
impose an additional security constraint on the relay node, and
say a rate is achievable for a deaf helper if for any ,
there exists a sequence of codes such that for any

, we have

(13)

In this case, the signal received by the relay node does not
leak any information about the transmitted message . This
model describes a more conservative scenario where the source
does not trust the relay but still wishes to exploit the benefit
brought by cooperation. We assume that the relay node is not
malicious and, hence, is willing to cooperate with the source.2

The following theorem characterizes the achievable perfect se-
crecy rate of the NF strategy in the deaf-helper setting.

Theorem 6: The perfect secrecy rate of the NF scheme with
an additional security constraint on the relay node is

where

Proof: Please refer to Appendix F.

C. The Reversely Degraded Relay-Eavesdropper Channel

In the classical relay channel without security constraints,
there exist some scenarios where the relay node does not pro-

2If the relay node is malicious, it can then send signals that are dependent with
signal received and then could even block the transmission of the main channel.
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vide any gain, for example, the reversely degraded relay channel
shown in [4]. Here, we focus on this scenario and show that the
relay node can still offer a gain in the presence of the eaves-
dropper.

Definition 2: [[4]] The relay channel is called reversely de-
graded, if .

The following result, borrowed from [4], states the capacity
of the classical reversely degraded relay channel.

Theorem 7 [4, Th. 2]: The capacity of the reversely degraded
relay channel is

(14)

This result implies that the relay node should send a constant,
and hence, does not contribute new information to the destina-
tion. In most channel models, the constant sent by the relay does
not result in any capacity gain. The question now is whether the
same conclusion holds in the presence of an eavesdropper. We
first observe that the degradedness of the relay channel implies
that DF and CF cooperation will not provide the destination with
additional useful information. The relay node, however, can still
send codewords independent of the received signal to confuse
the eavesdropper, as proposed in the NF scheme. Since we do
not require decoding at the relay node in the Proof of Theorem 3,
the degradedness imposed here does not affect the performance.
Hence, we get the following achievable perfect secrecy rate for
the reversely degraded relay–eavesdropper channel.

Corollary 1: The following rate is achievable for the re-
versely degraded relay–eavesdropper channel:

(15)

D. The AWGN Channel

Now we consider the Gaussian relay–eavesdropper channel,
where the signal received at each node is

here is the channel coefficient between node and
node , and is the i.i.d Gaussian noise with unit
variance at node . The source and the relay have average power
constraint , respectively.

In [22], it was shown that the secrecy capacity of the degraded
Gaussian wiretap channel is , where
are the capacity of the main channel and wiretap channel, re-
spectively. This result is also shown to be valid for stochasti-
cally degraded channel [17]. In our case, if the relay does not

transmit, the relay eavesdropper channel becomes a Gaussian
eavesdropper channel, which can always be converted into a
stochastically degraded channel as done in the Gaussian broad-
cast channel [23]. Applying this result to our case, the secrecy
capacity of the Gaussian eavesdropper channel without the relay
node is given by .
Hence if and the relay does not transmit, the se-
crecy capacity is zero, no matter how large is. On the other
hand, as shown later, the relay can facilitate the source-destina-
tion pair to achieve a positive perfect secrecy rate under some
conditions even when . In the following, we
focus on such scenarios.

1) DF and NF: At this point, we do not know the optimal
input distribution that maximizes . Here, we let

to be a constant, and use a Gaussian
input distribution to obtain an achievable lower bound.

For DF cooperation scheme, we let
, where is the Gaussian distribution with zero

mean and variance . Also, we let

where is a constant to be specified later. In this relationship,
the novel information is modeled by , whereas repre-
sents the part of the signal which the source and the relay coop-
erate in beamforming toward the destination. To satisfy the av-
erage power constraint at the source, we require

.
Straightforward calculations result in

Hence, we have (16) shown at the bottom of the page. For NF,
we let , . Here are
independent, resulting in

(16)
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Hence, we have

(17)

2) Amplify and Forward: In this subsection, we quantify the
achievable secrecy rate of Amplify and Forward (AF) cooper-
ation.3 In AF, the source encodes its messages into codewords
with length each, and divides each codeword into sub-
blocks each with symbols, where is chosen to be suffi-
ciently large. At each subblock, the relay sends a linear com-
bination of the received noisy signal of this subblock so far.
For simplicity, we limit our discussion to . In this case,
the source sends at the first symbol interval of each sub-
block, the relay receives ; At the
second symbol interval, the source sends ,
while the relay sends . Here are chosen to satisfy
the average power constraints of the source and the relay. Thus,
this scheme allows beam-forming between the source and relay
without requiring the relay to fully decode.

Writing the signal received at the destination and the eaves-
dropper in matrix form, we have

(18)

where

(19)

The channel under consideration can be viewed as an equivalent
standard memoryless eavesdropper channel with input and
outputs at the destination and the eavesdropper respec-
tively. Then, based on the result of [3], an achievable perfect
secrecy rate is . Choosing a Gaussian
input with covariance matrix where is the
identity matrix, we get the following perfect secrecy rate:

3We did not consider this scheme in the discrete case since, in general, it does
not lend itself to a single letter characterization.

(20)

where

and the maximization is over the set of power constraints

(21)

3) Numerical Results: In this section, we give numerical re-
sults under two channel models. The first is the real channel
where , with being the distance between node
and and is the channel attenuation coefficient. In the
second model, we assume that each channel experiences an in-
dependent phase fading, that is , where is
uniformly distributed over . We believe that the second
model is more practically relevant than the real channel sce-
nario.

Fig. 3 shows the achievable perfect secrecy rate of the pro-
posed schemes for the first channel model. In generating this
figure, we use the network topology shown in Fig. 4, where
we put the source at , the destination at , the eaves-
dropper at , and the relay node at . We let

. Since , the perfect secrecy capacity of
the eavesdropper channel without the relay node is zero. But, as
shown in the figure, we can achieve a positive secrecy rate by
introducing a relay node. In computing the upper bound, we set

with a correlation coefficient
, and maximize over . We also set to be a con-

stant. Notice that the Gaussian input is not necessarily optimal
for the upper bound. We can see that, when the relay is near
the source, the DF scheme touches the Gaussian upper bound.
Also, when , it is clear that DF cooperation does not offer
any gain, while NF and AF still offer positive rates. Notice that
when , both is larger than . The interesting ob-
servation here is that though both the destination and relay are
not in advantageous positions compared with the eavesdropper,
they can cooperate with each other and gain some advantage
over the eavesdropper. If the relay is at , our model is equiva-
lent to the case where the source has two antennas. Notice that
the upper-bound of the perfect secrecy capacity is zero under
this scenario. Hence, increasing the number of transmitting an-
tenna at the source does not increase the secrecy capacity under
the real channel model and this particular network topology. On
the other hand, if there is a relay node at an appropriate position,
we can exploit this relay node to establish a secure source–des-
tination link.

In the second scenario, we assume that before transmission,
the source knows the phases , but does not know

. The random phase will not affect the achievable
perfect secrecy rate of NF since it does not depend on beam-
forming between the source and relay. But, the rates of DF
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Fig. 3. The achievable perfect secrecy rate of the proposed schemes in the Gaussian relay eavesdropper channel.

Fig. 4. The network topology.

and AF are different here. In both cases, the source can adjust
its phase according to the knowledge of the phase information
about . In this way, the signals of the source and the
relay will add up coherently at the destination, but not at the
eavesdropper since are independent of .
The secrecy rate of DF and AF could then be obtained by
averaging (16), (20) over the random phases. Fig. 5 shows the
achievable perfect secrecy rates of the proposed strategies for
the same setup as the first scenario. Due to the random phases,
the achievable perfect secrecy capacity when the relay is at
the same position as the source is not zero anymore. In this
case, it will be beneficial to have multiple transmitting antennas
at the source. Similar to the first scenario, when , DF
cooperation does not offer any benefit. But both NF and AF
still enjoy nonzero secrecy rates.

V. CONCLUSION

In this paper, the relay–eavesdropper channel was studied. In
particular, several cooperation strategies were proposed and the
corresponding achievable performance bounds were obtained.
Furthermore, an outer bound on the optimal rate-equivocation
region for this channel was developed. Of particular interest

is the proposed NF strategy that was used to illustrate the
deaf-helper phenomenon, and to demonstrate the utility of
the relay node in the reversely degraded relay–eavesdropper
channel. Overall, our results establish the critical role of user
cooperation in facilitating secure wireless communications
and shed light on the unique feature of the relay–eavesdropper
channel.

Among the many open problems posed by our work, how
to close the gap between the achievable performance and the
outer bound is arguably the most important one. This problem
is expected to be challenging since the capacity of the classical
relay channel remains unknown. The investigation of the role
of feedback in the relay–eavesdropper channel is another in-
teresting problem. In the relay channel without security con-
straints, noiseless/noisy feedback was shown to be beneficial.
On the other hand, in the presence of an eavesdropper, the role
and optimal mechanism of feedback is not yet known, since the
eavesdropper could also benefit from the feedback signal. Fi-
nally, extending our work to a large scale network is expected
to be of practical significance.

APPENDIX A
PROOF OF THEOREM 1

The proof follows that of [3].

(22)

(23)

(24)

(25)
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Fig. 5. The achievable perfect secrecy capacity for various schemes in the Gaussian relay eavesdropper channel with phase fading.

where ,
and as . We get this by using the chain rule
to expand from and expand from

, also we use the Fano’s inequality to bound .
We continue

(26)

(27)

(28)

(29)

since
which is proved in

the Lemma 7 of [3]. Now

(30)

(31)

(32)

since ,
which is also proved in [3].

Now, let be a random variable uniformly distributed over
, set

, we have

(33)

Since the channel is memoryless, one can then check that
is a Markov chain.

Also, continuing from (32), we have

(34)
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In the following, we bound :

(35)

Hence

(36)

Also

(37)

Hence, we have

(38)

So, we have

(39)

The claim is proved.

APPENDIX B
PROOF OF THEOREM 2

The proof is a combination of the coding schemes of Csiszár
et al. [3] and the regular coding and backward decoding scheme
in the relay channel [7], [20]. We first replace in Theorem
2 with . After proving Theorem 2 with replaced
by , we then prefix a memoryless channel with input

and transmission probability as reasoned
in [3] to finish our proof.

1) Codebook Generation: Randomly generated a typ-
ical sequence with probability .

We assume that all the terminals know . We first gen-
erate at random independent and identically distributed
(i.i.d.) -sequence at the relay node each drawn according to

, index them as ,
where .
For each , generate conditionally independent -se-
quence drawn randomly according
to . Define

,
and .

In the following, we assume that .
If this is not the case, we set and .
This DF strategy does not achieve any security level. In this case,
we achieve which is still inside the region given in this
theorem.

2) Encoding: We exploit the block Markov coding scheme,
as argued in [4], the loss induced by this scheme is negligible as
the number of blocks .

For a given rate pair with and ,
we give the following coding strategy. Let the message to be
transmitted at block be , where

.
The stochastic encoder at the transmitter first forms the fol-

lowing mappings.
• If , then we let ,

where

We let be the partition that partitions into
equal size subsets. The stochastic encoder at trans-
mitter will choose a mapping for each message

, where is
chosen randomly from the set with uni-
form distribution.

• If , the stochastic encoder will
choose a mapping , where is
chosen uniformly from the set .

Assume that the message transmitted at block
is associated with and the message
intended to send at block is associated with by
the stochastic encoder at the transmitter. We let

and . The encoder then
sends . The relay has an estimation (see
the decoding part), and thus sends the corresponding codeword

.
At block 1, the source sends , the relay sends

.
At block , the source sends , and the relay

sends .
3) Decoding: At the end of block , the relay already has an

estimation of the , which was sent at block , and
will declare that it receives , if this is the only pair such that

are jointly typical.
Since

, then based on the AEP, one has
with probability goes to .
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The destination decodes from the last block, i.e., block .
Suppose that at the end of block , the relay decodes suc-
cessfully, then the destination will declare that is re-
ceived, if are jointly typ-
ical. It’s easy to see that if , we will have

with probability goes to 1, as increases.
After getting , the receiver can get an estimation of

in a similar way.
Having , the destination can get the estimation of the

message by letting 1)
if ,

2) if .
The probability that goes to one for

sufficiently large .
4) Equivocation Computation:

(40)

(41)

First, let us calculate . Given , the
eavesdropper can also do backward decoding as the receiver. At
the end of block , given , the eavesdropper knows

, hence it will decode , by letting ,
if is the only one such that

are jointly typical. Since
, we have

(42)

Then based on Fano’s inequality, we have

(43)

Hence, we have

(44)

when is sufficiently large.
Since the channel is memoryless, we have

, where
as [2].

Now, from the code construction, we have
if . In this case, we get

. If
, , in

this case, we get the perfect secrecy, since

The claim is proved.

APPENDIX C
PROOF OF THEOREM 3

As [3], we first prove the result for the case where in
Theorem 3 are replaced with , then prefix a memoryless
channel with transition probability to finish
our proof.

We first consider the case ,
i.e., the channel between the source and the eaves-
dropper is better than the channel between the source
and the destination. In this case, we only need to con-
sider , other-
wise, the secrecy rate will be zero. Thus in this case, the
last equation in (9) changes to

.
1) Codebook Generation: For a given distribution

, we generate at random i.i.d. -sequence at
the relay node each drawn according to ,
index them as , where we set

. We also generate random
i.i.d -sequence at the source each drawn according to

, index them as ,
where . Let

and define and
.

In the following, we assume that . If this is not the
case, we set and . This NF strategy
does not achieve any security level. In this case, we achieve

which is still inside the region given in this theorem.
2) Encoding: For a given rate pair with

, we give the following coding strategy. Let the
message to be transmitted at block be ,
where .

The stochastic encoder at the transmitter first forms the fol-
lowing mappings.

• If , then we let , where
. We let be the partition that partitions

into equal size subsets. The stochastic encoder at trans-
mitter will choose a mapping for each message

, where is chosen randomly
from the set with uniform distribution.
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• If , the stochastic encoder will choose a map-
ping , where is chosen uniformly
from the set .

Suppose the message intended to send at block is asso-
ciated with by the stochastic encoder at the trans-
mitter. The encoder then sends . The relay uni-
formly picks a code from , and sends

.
3) Decoding: At the end of block , the destination de-

clares that is received, if is the only one such that
are jointly typical. If there does not exist or there

exist more than one such sequences, the destination declares
an error. Since

, then based on AEP, we know that the error
probability will be less than any given positive number , when
the codeword length is long enough.

The destination then declares that is received, if is the only
one such that are jointly typical, otherwise
declares an error. Since , then based on
AEP, we know that we will have error probability goes to zero,
when is sufficiently large.

Having , the destination can get the estimation of the mes-
sage by letting

1) , if ;
2) , if .

The probability that goes to one for sufficiently
large .

4) Equivocation Computation:

(45)

Now let’s calculate . Given , the eaves-
dropper can do joint decoding. At any block , given , the
eavesdropper knows , hence it will decode and sent
by the relay, by letting , if are
the only one such that are jointly
typical. Then, since

, we get

(46)

Also, we have .
So

Then based on Fano’s inequality, we have

(47)

Hence, we have

(48)

when is sufficiently large.
Now,

where as .
Also we have since

and are independent. If , we have
.

Combining these, we get

On the other hand, if , we have

hence we have . We get
perfect secrecy rate, since .

This case is proved.
Now, consider the case .

If , then we
have , be-
cause since are
independent. Under this case, we only need to prove

are achievable, which can
be achieved by letting the codeword rate be and

. Now the equivocation rate
of the eavesdropper can be calculated as

(49)

since are independent. This can then be shown to be
larger than .

If , the
last line in (9) changes to

, then we
can use a coding/decoding scheme similar to the one developed
above to show the achievability.

The claim is achieved.
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APPENDIX D
PROOF OF THEOREM 4

The proof is a combination of the coding scheme of Csiszár
et al. [3] and a revised CF scheme in the relay channel [4].

1) Codebook Generation: We first generate at random
i.i.d. -sequence at the source node each drawn according
to , index them as ,
with .

Generate at random i.i.d. -sequence each
with probability . Index these as

, where

For each , generate at random i.i.d. , each
with probability . Label

these , where we set
. Equally divide these sequences into bins,

hence there are sequences at each bin. Let be this
mapping, that is .

Let
.

Define , and
.

In the following, we assume that . If this is not the
case, we set and . This NF strategy
does not achieve any security level. In this case, we achieve

which is still inside the region given in this theorem.
2) Encoding: We exploit the block Markov coding scheme.
For a given rate pair , where ,

we give the following coding strategy. Let the message to be
transmitted at block be , where

. We require .
The stochastic encoder at the transmitter first forms the fol-

lowing mappings.
• If , we let , where

. We let be the partition that
partitions into equal size subsets. The stochastic
encoder at transmitter will choose a mapping for each
message , where
is chosen randomly from the set with
uniform distribution.

• If , the stochastic encoder will choose a map-
ping , where is chosen uniformly
from the set .

At first consider block , where , which means it is
not the first or the last block. Assume that the message
intended to send at block is associated with by the
stochastic encoder at the transmitter. We let .
Then the encoder at the source sends at block . At
the end of block , we assume that

are jointly typical,4 then we choose
uniformly from bin , and the relay sends

at block .

4See the decoding part, such z(i � 1) exists.

When , the source sends , the relay sends
. When , the source sends , the relay sends

.
3) Decoding: First consider the relay node. At the end of

block , the relay already has ,5 it then decides by
choosing such that are
jointly typical. There exists such , if

(50)

and is sufficiently large. Choose uniformly from bin
.

The destination does backward decoding. The decoding
process starts at the last block , the destination decodes
by choosing unique such that are
jointly typical. We will have , if

(51)

and is sufficiently large.
Next, the destination moves to the block . Now it already

has , hence we also have . It first
declares that is received, if is the unique
one such that are jointly typical. If
(51) is satisfied, with high probability.
After knowing , the destination gets an estimation of

, by picking the unique such that
are jointly

typical. We will have with high probability,
if

(52)

and is sufficiently large.
When the destination moves to block , the destination has

and hence . It first declares that
is received, by choosing unique such that
are jointly typical. If (51) is satisfied, with high
probability. After knowing , the destination declares
that is received, if is the unique one such that

are jointly typical. If
(52) is satisfied, with high probability when is
sufficiently large.

Having , the destination can get the estimation of
the message by letting 1)

, if , 2) , if
. The probability that goes to one

for sufficiently large .
4) Equivocation Computation:

5At the end of block 1, relay knows s(i) = 1, this is the starting point.
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(53)

Following [2], we will have
, where as .

Now let’s calculate . Given , the
eavesdropper can do joint decoding. It does backward de-
coding. We pick up the story at block , we suppose it
already decodes and hence .
Given , the eavesdropper knows , hence it will
decode and sent by the relay, by letting

, if are the only ones such that
are jointly typ-

ical. Then, if and (52) is satisfied, we have

(54)

Also, we have

Thus, we have

(55)

Then based on Fano’s inequality, we have

(56)

Hence, we have

(57)

when is sufficiently large.
We know .
If , we have , then we get

If , we have , hence

The claim is proved.

APPENDIX E
PROOF OF THEOREM 5

The achievable part follows from the achievability Proof of
Theorem 2.

In the following, we modified the converse Proof of Theorem
1 to take the degradedness assumption into consideration. The
condition

is the same as Theorem 1.
Meanwhile, from (34), we have

(58)

In (a), , because given
is independent with everything, according to the physi-

cally degradedness definition. Thus, the proof is complete.

APPENDIX F
PROOF OF THEOREM 6

The proof follows closely with that of Theorem 3. We
first consider the case ,
i.e., the channel between the source and the eavesdropper
is better than the channel between the source and the
destination. In this case, we only need to consider the
case , otherwise,
the perfect secrecy rate will be zero. Thus, in this case,

.
1) Codebook Generation: For a given distribution

, we generate at random i.i.d. -sequence at
the relay node each drawn according to ,
index them as . Here we set

. We also generate random
i.i.d -sequence at the source each drawn according to

, index them as with
. Let

where
. We now
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define ,
and .

2) Encoding: Here, we consider perfect secrecy rate. For a
given rate , we give the following coding strategy
to show that for any given , the equivocation rate at the
eavesdropper and the relay node can be made to be larger or
equal .

Let the message to be transmitted at block be
, where . The stochastic encoder will choose

a mapping , where are
chosen uniformly from the set , respectively. We write

.
Suppose the message intended to send at block is as-

sociated with by the stochastic encoder at the trans-
mitter. The encoder then sends . The relay uni-
formly picks a code from , and sends

.
3) Decoding: At the end of block , the destination de-

clares that is received, if is the only one such that
are jointly typical. If there does not exist or there

exist more than one such sequences, the destination declares
an error. Since

, then based on AEP, we know that the error
probability will be less than any given positive number , when
the codeword length is long enough.

The destination then declares that is received, if is the only
one such that are jointly typical, otherwise,
declares an error. Since , then based on
AEP, we know that we will have error probability goes to zero,
when is sufficiently large.

Having , the destination can get the estimation of the
message by letting . The probability that

goes to one for sufficiently large .
4) Equivocation Computation: We first calculate the equiv-

ocation rate of the eavesdropper when .

(59)

Now let us calculate . Given , the
eavesdropper can do joint decoding. At any block , given

, the eavesdropper knows , hence it will decode
and sent by the relay, by letting

, if are the only one pair
such that are jointly typical. Since

,
we have

(60)

Also, we have .
So

Then based on Fano’s inequality, we have

(61)

Hence, we have

(62)
when is sufficiently large.

Now,
where as . Also, we have

since and are
independent. Now

hence
.

We get .
Now we calculate the equivocation rate at the relay node

where the first term of (a) comes from the fact that are
independent, and the fourth term comes from the fact that
are independent.

Now, ,
. Given , the

relay can just choose the in the bin which is jointly
typical with . Since , we
have .

Then based on Fano’s inequality, we have

(63)

Hence, we have

(64)

when is sufficiently large.
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Also, based on the encoding part, we have
.

Combining these, we get

(65)

The equivocation rate of the relay and the eavesdropper when
can be calculated similarly, with the only differ-

ence that we bound the equivocation rate of the eavesdropper
by giving it . This case is proved.

Now, consider the case .
If , then we have

, because
since are indepen-

dent. Under this case, we only need to prove the case
, which can be

achieved by using a scheme similar to the one developed in
proving (49). If ,
and we only need to consider

, then we
can use a coding/decoding scheme similar to the one developed
above to show the achievability.

The claim is achieved.
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