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IV. CONCLUSION

The full enumeration of Costas arrays of order 27was presented: 204
arrays were found in total, falling into 29 equivalence classes. One is a
symmetric T4; 6 are W2, and the remaining 21 are G2, out of which 6

are symmetric, and one is sporadic.
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On the Secrecy Capacity of Fading Channels
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Abstract—We consider the secure transmission of information over an
ergodic fading channel in the presence of an eavesdropper. Our eaves-
dropper can be viewed as the wireless counterpart of Wyner’s wiretapper.
The secrecy capacity of such a system is characterized under the assump-
tion of asymptotically long coherence intervals. We first consider the full
channel state information (CSI) case, where the transmitter has access
to the channel gains of the legitimate receiver and the eavesdropper. The
secrecy capacity under this full CSI assumption serves as an upper bound
for the secrecy capacity when only the CSI of the legitimate receiver is
known at the transmitter, which is characterized next. In each scenario,
the perfect secrecy capacity is obtained along with the optimal power
and rate allocation strategies. We then propose a low-complexity on/off
power allocation strategy that achieves near-optimal performance with
only the main channel CSI. More specifically, this scheme is shown to be
asymptotically optimal as the average signal-to-noise ratio (SNR) goes to
infinity, and interestingly, is shown to attain the secrecy capacity under the
full CSI assumption. Overall, channel fading has a positive impact on the
secrecy capacity and rate adaptation, based on the main channel CSI, is
critical in facilitating secure communications over slow fading channels.

Index Terms—Channel state information (CSI), fading, list decoding, se-
crecy capacity, wiretap channel.

I. INTRODUCTION

The notion of information-theoretic secrecy was first introduced by
Shannon [1]. This strong notion of secrecy does not rely on any assump-
tions on the computational resources of the eavesdropper. More specifi-
cally, perfect information-theoretic secrecy requires that I(W ;Z) = 0,
i.e., the signalZ received by the eavesdropper does not provide any addi-
tional information about the transmitted messageW . Shannon consid-
ered a scenario where both the legitimate receiver and the eavesdropper
have direct access to the transmitted signal. Under this model, Shannon
proved that the one-time pad scheme achieves perfect secrecy, if the en-
tropy of the private key K , used to encrypt the message W , is larger
than or equal to the entropy of the message itself (i.e.,H(K) � H(W )
for perfect secrecy). Wyner [2] introduced the wiretap channel which
accounts for the difference in the two noise processes, as observed by
the destination and the wiretapper. In this model, the wiretapper has no
computational limitations and is assumed to know the codebook used
by the transmitter. Under the assumption that the wiretapper’s signal is
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a degraded version of the destination’s signal, Wyner characterized the
tradeoff between the information rate to the destination and the level of
ignorance at the wiretapper (measured by its equivocation), and showed
that it is possible to achieve a nonzero secrecy capacity. This work was
.later extended to nondegraded channels by Csiszár and Körner [3]

More recently, the effect of slow fading on the secrecy capacity was
studied in [4]–[6]. In these works, it is assumed that the fading is quasi-
static and the channel state information (CSI) of the eavesdropper and
receiver is not available at the source. Under this setup, these papers
provide an alternative definition of outage probability, wherein secure
communications can be guaranteed for the fraction of time when the
main channel is stronger than the channel seen by the eavesdropper.
In this correspondence, we focus on delay-tolerant applications which
allow for the adoption of an ergodic version of the slow-fading channel,
instead of the outage-based formulation. Nonreal time data traffic, such
as e-mail and document transmission, are examples of delay-tolerant
applications. Quite interestingly, we show in the sequel that, under this
model, one can achieve a nonzero perfectly secure rate even when the
eavesdropper channel is more capable than the legitimate channel on
the average. In particular, our work here characterizes the secrecy ca-
pacity of the slow-fading channel in the presence of an eavesdropper.
Our eavesdropper is the wireless counterpart of Wyner’s wiretapper.
We first assume that the transmitter knows the CSI of both the legiti-
mate and eavesdropper channels, and derive the optimal power alloca-
tion strategy that achieves the secrecy capacity. Next, we consider the
case where the transmitter only knows the legitimate channel CSI and,
again, derive the optimal power allocation strategy. We then propose an
on/off power transmission scheme, with variable-rate allocation, which
approaches the optimal performance for asymptotically large average
signal-to-noise ratio (SNR). Interestingly, this scheme is also shown to
attain the secrecy capacity under the full CSI assumption which im-
plies that, at high-SNR values, the additional knowledge of the eaves-
dropper CSI does not yield any gains in terms of the secrecy capacity
for slow-fading channels. Finally, our theoretical and numerical re-
sults are used to argue that rate adaptation plays a more critical role
than power control in achieving the secrecy capacity of slow-fading
channels. This observation contrasts the scenario without secrecy con-
straints, where transmission strategies with constant rate are able to
achieve capacity [7].

The study of secure communications over fading channels under er-
godic setup has also been reported in [8]–[10], in which the result in
Theorem 1 was derived concurrently and independently with this corre-
spondence. But, the result for the scenario in which the source does not
have CSI of the eavesdropper has not been studied elsewhere. Other
than the study of secure communications over fading channels, there
has been recently a growing interest in the analysis and design of se-
cure wireless communication networks based on information-theoretic
principle. In particular, the secrecy capacity of networks involving relay
nodes is studied in [11], [12], while the secrecy capacity of the wiretap
channel with feedback is studied by [13]. Multiple-access channels
with secrecy constraints are considered in [14]–[17] whereas the broad-
cast channel scenario is analyzed in [18]. Also, the role of multiple an-
tennas is studied in [19], [20].

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. The source S communi-
cates with a destinationD in the presence of an eavesdropperE. During
any coherence interval i, the signal received by the destination and the
eavesdropper are given by, respectively

y(i) = gM (i)x(i) + wM(i)

z(i) = gE(i)x(i) + wE(i)

Fig. 1. The fading channel with an eavesdropper.

where gM (i); gE(i) are complex channel gains from the source to the
legitimate receiver (main channel) and the eavesdropper (eavesdropper
channel), respectively, and wM(i); wE(i) represent the independent
and identically distributed (i.i.d.) additive Gaussian noise with unit
variance at the destination and the eavesdropper, respectively. We de-
note the fading power gains of the main and eavesdropper channels by
hM(i) = jgM (i)j2 and hE(i) = jgE(i)j

2, respectively. We assume
that both channels experience block fading, where the channel gains
remain constant during each coherence interval and change indepen-
dently from one coherence interval to the next. The fading process is
assumed to be ergodic with a bounded continuous distribution. More-
over, the fading coefficients of the destination and the eavesdropper in
any coherence interval are assumed to be independent of each other.
We further assume that the number of channel uses n1 within each co-
herence interval is large enough to allow for invoking random coding
arguments. As shown in the sequel, this assumption is instrumental in
our achievability proofs.

The source wishes to send a message W 2 W = f1; 2; . . . ;Mg to
the destination. An (M;n) code consists of the following elements: 1)
a stochastic encoder fn(�) at the source that maps the message1 w to a
codeword xn 2 Xn, and 2) a decoding function �: Yn ! W at the
legitimate receiver. The average error probability of an (M;n) code at
the legitimate receiver is defined as

P
n

e =
w2W

1

M
Pr(�(yn) 6= wjw was sent): (1)

The equivocation rate Re at the eavesdropper is defined as the entropy
rate of the transmitted message conditioned on the available CSI and
the channel outputs at the eavesdropper, i.e.,

Re
1

n
H(W jZn; hnM ; h

n

E) (2)

where hnM = fhM(1); . . . ; hM(n)g and hnE = fhE(1); . . . ; hE(n)g
denote the channel power gains of the legitimate receiver and the eaves-
dropper in n coherence intervals, respectively. It indicates the level of
ignorance of the transmitted message W at the eavesdropper. In this
correspondence, we consider only perfect secrecy which requires the
equivocation rate Re to be equal to the message rate. The perfect se-
crecy rate Rs is said to be achievable if for any � > 0, there exists a
sequence of codes (2nR ; n) such that for any n � n(�), we have

P
n

e � �

Re =
1

n
H(W jZn; hnM ; h

n

E) � Rs � �:

The secrecy capacity Cs is defined as the maximum achievable perfect
secrecy rate, i.e.,

Cs sup
P ��

Rs: (3)

1The realizations of the random variables W;X;Y;Z are represented by
w; x; y; z, respectively, in the sequel.
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We note that, as pointed out in [21], the perfect secrecy notion,
defined in [2] and adopted in this correspondence, is weaker than
the strong sense perfect secrecy requirement as defined in [1] which
requires I(W ;Zn) = 0. In the definition above, we only require
I(W ;Zn) � n�. Thus, although � ! 0 as n increases, it is not clear
whether n�! 0 or not. Nevertheless, we follow the convention in the
literature and call the secrecy rate that satisfies the definition above
as perfect secrecy. Throughout the sequel, we assume that the CSI is
known at the destination perfectly. Based on the available CSI, the
transmitter adapts its transmission power and rate to maximize the
perfect secrecy rate subject to a long-term average power constraint �P .

III. FULL CSI AT THE TRANSMITTER

Here we assume that at the beginning of each coherence interval, the
transmitter knows the channel states of the legitimate receiver and the
eavesdropper perfectly. When hM and hE are both known at the trans-
mitter, one would expect the optimal scheme to allow for transmission
only when hM > hE , and to adapt the transmitted power according to
the instantaneous values of hM and hE . The following result formal-
izes this intuitive argument.

Theorem 1: When the channel gains of both the legitimate receiver
and the eavesdropper are known at the transmitter, the secrecy capacity
is given by (4) at the bottom of the page, such that

fP (hM ; hE)g � �P : (5)

Proof: A detailed proof of achievability and the converse part
is provided in the Appendix A. Here, we outline the scheme used
in the achievability part. In this scheme, transmission occurs only
when hM > hE , and uses the power allocation policy P (hM ; hE)
that satisfies the average power constraint (5). Moreover, the code-
word rate at each instant is set to be log (1 + hMP (hM ; hE)),
which varies according to the instantaneous channel gains. The
achievable perfect secrecy rate at any instant is then given [5] by
[log (1 + hMP (hM ; hE)) � log (1 + hEP (hM ; hE))]

+, in which
[x]+ = maxfx; 0g. Averaging over all fading realizations, we get
the average achievable perfect secrecy rate as shown in the second
equation at the bottom of the page. One can then optimize over all
feasible power control policies P (hM ; hE) to maximize the perfect
secrecy rate.

We now derive the optimal power allocation policy that achieves the
secrecy capacity under the full CSI assumption. It is easy to check that
when hM > hE

f(P ) = log(1 + hMP )� log(1 + hEP )

is concave in P . Also, it is well known that nonnegative weighted sums
(or integral) preserves concavity [22, Sec. 3.2.1], hence the objective
function is concave in P . Thus, by using the Lagrangian maximization
approach for solving (4), we get the following optimality condition:

@R
(F )
s

@P (hM ; hE)
=

hM

1+hMP (hM ; hE)
�

hE

1+hEP (hM ; hE)
�� = 0

whose solution is

P (hM ; hE)

=
1

2

1

hE
�

1

hM

2

+
4

�

1

hE
�

1

hM
�

1

hM
+

1

hE
: (6)

If for some (hM ; hE), the value of P (hM ; hE) obtained from (6)
is negative, then it follows from the concavity of the objective func-
tion with respect to (w.r.t.) P (hM ; hE) that the optimal value of
P (hM ; hE) is 0. Thus, the optimal power allocation policy at the
transmitter is given by

P (hM ; hE) =
1

2

1

hE
�

1

hM

2

+
4

�

1

hE
�

1

hM

�
1

hM
+

1

hE

+

(7)

where [x]+ = maxf0; xg, and the parameter � is a constant that sat-
isfies the power constraint in (5) with equality. The secrecy capacity
is then determined by substituting this optimal power allocation policy
for P (hM ; hE) in (4).

IV. ONLY MAIN CHANNEL CSI AT THE TRANSMITTER

In this section, we assume that at the beginning of each coherence
interval, the transmitter only knows the CSI of the main channel (legit-
imate receiver).

A. Optimal Power Allocation

We first characterize the secrecy capacity under this scenario in the
following theorem.

Theorem 2: When only the channel gain of the legitimate receiver
is known at the transmitter, the secrecy capacity is given by (8) at the
bottom of the page, such that

fP (hM)g � �P : (9)

C
(F )
s = max

P (h ;h )

1

0

1

h

log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE)) f(hM)f(hE)dhMdhE (4)

R
(F )
s = [log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE))]

+
f(hM)f(hE)dhMdhE

=
1

0

1

h

log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE)) f(hM)f(hE)dhMdhE :

C
(M)
s = max

P (h )
[log (1 + hMP (hM))� log (1 + hEP (hM))]+ f(hM)f(hE)dhMdhE (8)
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Proof: A detailed proof of achievability and converse part
are provided in Appendix B. Here, we outline the scheme used to
show achievability. We use the following variable-rate transmission
scheme. During a coherence interval with main channel fading state
hM , the transmitter transmits codewords at rate log(1 + hMP (hM))
with power P (hM). This variable-rate scheme relies on the assump-
tion of large coherence intervals and ensures that when hE > hM ,
the mutual information between the source and the eavesdropper is
upper-bounded by log(1+hMP (hM)). When hE � hM , this mutual
information will be log(1+hEP (hM)). Averaging over all the fading
states, the average rate of the main channel is given by

log (1 + hMP (hM)) f(hM)f(hE)dhMdhE

while the information accumulated at the eavesdropper is

log (1 + minfhM ; hEgP (hM)) f(hM)f(hE)dhMdhE :

Hence, for a given power control policy P (hM), the achievable perfect
secrecy rate is given by (10), at the bottom of the page. One can then
optimize over all feasible power control policies P (hM) to maximize
the perfect secrecy rate. Finally, we observe that our secure message is
hidden across different fading states (please refer to our proof for more
details).

We now derive the optimal power allocation policy that achieves the
secrecy capacity under the main channel CSI assumption. Similar to
Theorem 1, the objective function under this case is concave, and using
the Lagrangian maximization approach for solving (8), we get the fol-
lowing optimality condition:

@R
(M)
s

@P (hM)
=

hMPr (hE � hM )

1 + hMP (hM)

�
h

0

hE

1 + hEP (hM)
f(hE)dhE � � = 0;

where � is a constant that satisfies the power constraint in (9) with
equality. For any main channel fading state hM , the optimal transmit
power level P (hM) is determined from the above equation. If the ob-
tained power level turns out to be negative, then the optimal value of
P (hM) is equal to 0. This follows from the concavity of the objec-
tive function in (8) w.r.t. P (hM). The solution to this optimization
problem depends on the distributions f(hM) and f(hE). In the fol-
lowing, we focus on the Rayleigh fading scenario with fhMg = 
M

and fhEg = 
E in detail. With Rayleigh fading, the objective func-
tion in (8) simplifies to (11) at the bottom of the page, where

Ei(x) =
1

x

e�t

t
dt:

Specializing the optimality conditions to the Rayleigh fading scenario,
it can be shown that the power level of the transmitter at any fading
state hM is obtained by solving the equation

1�e�(h =
 ) hM

1 + hMP (hM)
��

1� e�(h =
 )

P (hM)

+
exp 1


 P (h )


E(P (hM))2
Ei

1


EP (hM)

�Ei
hM


E
+

1


EP (hM)
= 0:

If there is no positive solution to this equation for a particular hM ,
then we set P (hM) = 0. The secrecy capacity is then determined by
substituting this optimal power allocation policy for P (hM) in (11).

We observe that, unlike the traditional ergodic fading scenario,
achieving the optimal performance under a security constraint relies
heavily on using a variable-rate transmission strategy. This can be
seen by evaluating the performance of a constant rate strategy where
a single codeword is interleaved across infinitely many fading real-
izations. This interleaving will result in the eavesdropper gaining
more information, than the destination, when its channel is better
than the main channel, thereby yielding a perfect secrecy rate that is
strictly smaller than that in (10). It is easy to see that the achievable
perfect secrecy rate of the constant rate scheme, assuming a Gaussian
codebook, is given by the third equation at the bottom of the page,
such that

fP (hM)g � �P :

Unlike the two previous optimization problems, the objective func-
tion in this optimization problem is not a concave function of P (hM).
Using the Lagrangian formulation, we only get the following necessary
Karush–Kuhn–Tucker (KKT) conditions for the optimal point

P (hM) ��
hM

1+hMP (hM)
+

hE

1+hEP (hM)
f(hE)dhE

=0;

� �
hM

1 + hMP (hM)
�

hE

1 + hEP (hM)
f(hE)dhE;

fP (hM)g = �P : (12)

R
(M)
s = [log (1 + hMP (hM))� log (1 + hEP (hM))]+ f(hM)f(hE)dhMdhE : (10)

C
(M)
s = max

P (h )

1

0

1� e
�(h =
 ) log (1 + hMP (hM))�

h

0

log (1 + hEP (hM))
1


E
e
�(h =
 )dhE

1


M
e
�(h =
 )dhM

= max
P (h )

1

0

log (1 + hMP (hM))� exp
1


EP (hM)
Ei

1


EP (hM)
� Ei

hM


E
+

1


EP (hM)

1


M
e
�(h =
 )dhM ;

(11)

max
P (h )

[log (1 + hMP (hM))� log (1 + hEP (hM))]f(hM)f(hE)dhMdhE
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B. On/Off Power Control

We now propose a transmission policy wherein the transmitter sends
information only when the channel gain of the legitimate receiver hM
exceeds a predetermined constant threshold � > 0. Moreover, when
hM > � , the transmitter always uses the same power levelP . However,
it is crucial to adapt the rate of transmission instantaneously as log(1+
PhM ) with hM . It is clear that for an average power constraint �P , the
constant power level used for transmission will be

P =
�P

Pr(hM > � )
:

From Theorem 2 (since it is true for any form of power control), we
know that we can achieve the following perfect secrecy rate using this
particular form of power control and Gaussian inputs shown in the first
equation at the bottom of the page. Specializing to the Rayleigh fading
scenario, we get

P =
�P

Pr(hM > � )
= �Pe(�=
 )

and the secrecy capacity simplifies to the second equation at the bottom
of the page, which then simplifies to

R(CP )
s

= e�(�=
 ) log 1 + � �Pe(�=
 )

+ exp
1


M
�Pe(�=
 )

Ei
�


M
+

1


M
�Pe(�=
 )

+ exp
1


E
�Pe(�=
 )

�
�


M
Ei

�


E
+

1


E
�Pe(�=
 )

� Ei
1


E
�Pe(�=
 )

� exp

1



+ 1



�Pe(�=
 )
Ei

1


M
+

1


E
�+

1
�Pe(�=
 )

:

One can then optimize over the threshold � to get the maximum achiev-
able perfect secrecy rate.

Finally, we establish the asymptotic optimality of this on/off scheme
as the available average transmission power �P ! 1. For the on/off
power allocation policy, we have

R(CP )
s = lim

�P!1

1

�

h

0

log
1+hMP

1+hEP
f(hM)f(hE)dhEdhM :

Taking �� = 0, we get P = �P and (13) at the bottom of the page,
where (a) follows from the Dominated Convergence Theorem, since

log
(1= �P ) + hM

(1= �P ) + hE
� log

hM
hE

; 8 �P when hM > hE

and
1

0

h

0

log
hM
hE

f(hM)f(hE)dhEdhM <1

since fhMg <1, 1

0
log x dx = 1 <1, and f(hM); f(hE) are

continuous and bounded.
Now under the full CSI assumption, we have

C(F )
s = fh >h g log

1
P (h ;h )

+ hM
1

P (h ;h )
+ hE

� fh >h g log
hM
hE

: (14)

From (13) and (14), it is clear that the proposed on/off power alloca-
tion policy that uses only the main channel CSI achieves the secrecy
capacity under the full CSI assumption as �P !1. Thus, the absence
of eavesdropper CSI at the transmitter does not reduce the secrecy ca-
pacity at high SNR values.

V. NUMERICAL RESULTS

As an additional benchmark, we first obtain the performance when
the transmitter does not have any knowledge of both the main and
eavesdropper channels (only receiver CSI). In this scenario, the trans-
mitter is unable to exploit rate/power adaptation and always transmits
with power �P . It is straightforward to see that the achievable perfect
secrecy rate in this scenario (using Gaussian inputs) is given by the
first equation at the bottom of the following page. which reduces to the
second equation at the bottom of the following page for the Rayleigh
fading scenario.Thus, when 
E � 
M , R(R)

s = 0. The results for
the Rayleigh normalized-symmetric case (
M = 
E = 1) are pre-
sented in Fig. 2. It is clear that the performance of the on/off power con-
trol scheme is very close to the secrecy capacity (with only main channel

R(CP )
s =

1

0

1

�

[log (1 + hMP )� log (1 + hEP )]+ f(hM)f(hE)dhMdhE :

R(CP )
s =

1

�

h

0

log 1 + hM �Pe(�=
 ) � log 1 + hE �Pe(�=
 ) 1


M
e�(h =
 ) 1


E
e�(h =
 )dhEdhM ;

R(CP )
s � lim

�P!1

1

0

h

0

log
(1= �P ) + hM

(1= �P ) + hE
f(hM)f(hE)dhEdhM

(a)
=

1

0

h

0

lim
�P!1

log
(1= �P ) + hM

(1= �P ) + hE
f(hM)f(hE)dhEdhM

=
1

0

h

0

log
hM
hE

f(hM)f(hE)dhEdhM = fh >h g log
hM
hE

(13)
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Fig. 2. Performance comparison for the symmetric scenario 
 = 
 = 1.

CSI) for a wide range of SNRs and, as expected, approaches the secrecy
capacities, under both the full CSI and main channel CSI assumptions,
at high values of SNR. The performance of the constant rate scheme is
much worse than other schemes that employ rate adaptation. Here we
note that the performance curve for the constant rate scheme might be a
lower bound to the secrecy capacity (since the KKT conditions are nec-
essary but not sufficient for nonconvex optimization). We then consider
an asymmetric scenario, wherein the eavesdropper channel is more ca-
pable than the main channel, with 


M
= 1 and 


E
= 2. The perfor-

mance results for this scenario are plotted in Fig. 3. Again it is clear
from the plot that the performance of the on/off power control scheme
is optimal at high values of SNR, and that rate adaptation schemes yield
higher perfect secrecy rates than constant rate transmission schemes.

VI. CONCLUSION

We have characterized the secrecy capacity of the slow-fading
channel with an eavesdropper under different assumptions on the avail-
able transmitter CSI. Our work establishes the interesting result that a
nonzero perfectly secure rate is achievable in the fading channel even
when the eavesdropper is more capable than the legitimate receiver (on

the average). By contrasting this conclusion with the traditional additive
white Gaussian noise (AWGN) scenario, one can see the positive impact
of fading on enhancing the secrecy capacity. Furthermore, we proposed
a low-complexity on/off power transmission scheme and established
its asymptotic optimality. This optimality shows that the presence of
eavesdropper CSI at the transmitter does not offer additional gains in the
secrecy capacity for slow-fading channels, at high enough SNR levels.
The knowledge of the main channel CSI, however, is crucial since it is
easy to see that the absence of this information leads to a zero secrecy
capacity when the eavesdropper is more capable than the legitimate
receiver on the average. Finally, our theoretical and numerical results
established the critical role of appropriate rate adaptation in facilitating
secure communications over slow fading channels.

APPENDIX A
PROOF OF THEOREM 1

We first prove the achievability of (4) by showing that for any perfect
secrecy rate Rs < C

(F )
s , there exists a sequence of (2nR ; n) block

codes with average power �P , equivocation rate Re > Rs � �, and
probability of errorPne ! 0 as n!1. LetRs = C

(F )
s �3� for some

R
(R)
s =

1

0

1

0

log 1 + hM �P � log 1 + hE �P f(hM)f(hE)dhMdhE

+

=
1

0

log 1 + hM �P f(hM)dhM �
1

0

log 1 + hE �P f(hE)dhE

+

R
(R)
s = exp

1



M

�P
Ei

1



M

�P
� exp

1



E
�P

Ei
1



E
�P

+

:
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Fig. 3. Performance comparison for the asymmetric scenario 
 = 1 and 
 = 2.

� > 0. We quantize the main channel gains hM 2 [0;M1] into uniform
bins fhM;ig

q
i=1, and the eavesdropper channel gains hE 2 [0;M2]

into uniform bins fhE;jg
q
j=1. Here, the term “uniform bins” means

that all the bins have the same length. The channels are said to be in
state sij (i 2 [1; q1], j 2 [1; q2]), if hM;i � hM < hM;(i+1) and
hE;j � hE < hE;(j+1), where hM;(q +1) = M1; hE;(q +1) = M2.
We also define a power control policy for any state sij by

P (hM;i; hE;j) = inf
h �h <h ;h �h <h

P (hM ; hE)

(15)
where P (hM ; hE) is the optimal power allocation policy in (7) that
satisfies P (hM ; hE) = 0 for all hM � hE , and the power constraint

1

0

1

h

P (hM ; hE)f(hM)f(hE)dhMdhE � �P : (16)

Consider a time-invariant AWGN channel with channel gains hM 2
[hM;i; hM;(i+1)) and hE 2 [hE;j ; hE;(j+1)). It is shown in [17], [23]
that for this channel, we can develop a sequence of (2n (R ) ; nij)
codes with codeword rate log (1 + hM;iP (hM;i; hE;j)) and perfect
secrecy rate

(Rs)ij = log (1 + hM;iP (hM;i; hE;j))

� log 1 + hE;(j+1)P (hM;i; hE;j)
+

(17)

such that the average power isP (hM;i; hE;j) and with error probability
P ij
e ! 0 as nij ! 1, where

nij = n Pr hM;i � hM < hM;(i+1); hE;j � hE < hE;(j+1)

for sufficiently large n. Note that the expression in (17) is obtained by
considering the worst case scenario hM = hM;i; hE = hE;(j+1) that
yields the smallest perfect secrecy rate.

For transmitting the message index w 2 f1; . . . ; 2nR g, we first
map w to the indices fwijg by dividing the nRs bits which deter-
mine the message index into sets of nij(Rs)ij bits. The transmitter
uses a multiplexing strategy and transmits codewords fxw g at code-
word rate

log (1 + hM;iP (hM;i; hE;j))

and perfect secrecy rate (Rs)ij , when the channel is in state sij . As
n ! 1, this scheme achieves the perfect secrecy rate (using the er-
godicity of the channel), as shown in the equation at the bottom of the
page.

The equivocation calculation is similar and is actually simpler than
that of the proof in Theorem 2. For simplicity, we omit it here.

Rs =

q

i=1

q

j=1

log
1 + hM;iP (hM;i; hE;j)

1 + hE;(j+1)P (hM;i; hE;j)

+

Pr hM;i � hM < hM;(i+1); hE;j � hE < hE;(j+1) :
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Thus, for a fixed �, we can find a sufficiently large n such as shown
in (18) at the bottom of the page. For asymptotically large n, using
the ergodicity of the channel, the average power of the multiplexing
scheme satisfies the second equation at the bottom of the page, where
(a) follows from the definition of P (hM;i; hE;j) in (15) and (b) fol-
lows from (16). Moreover, the error probability of the multiplexing
scheme is upper-bounded by

P
n
e �

q

i=1

q

j=1

P
ij
e ! 0; as n!1:

Now since C(F )
s is as shown in the third the equation at the bottom

of the page (because fhMg < 1, 1

0
log x dx = 1 < 1, and

f(hM); f(hE) are continuous and bounded), there exist M1 and M2

for a fixed � such that we get (19) at the bottom of the page. More-
over, for fixed M1 and M2, the dominated convergence theorem im-
plies (20), at the bottom of the page. Choosing M1;M2 that satisfy
(19) and combining (19) and (20), we see that for a given �, there exist
sufficiently large q1; q2 such that we get (21) at the bottom of the page.
Combining (18) and (21), we get the desired result.

We now prove the converse part by showing that for any perfect se-
crecy rate Rs with equivocation rate Re > Rs � � and error prob-

Rs �

q

i=1

q

j=1

log
1 + hM;iP (hM;i; hE;j)

1 + hE;(j+1)P (hM;i; hE;j)

+

Pr hM;i � hM < hM;(i+1); hE;j � hE < hE;(j+1) � �: (18)

q

i=1

q

j=1

P (hM;i; hE;j)
h

h

h

h

f(hM)f(hE)dhMdhE

(a)

�
1

0

1

0

P (hM ; hE)f(hM)f(hE)dhMdhE
(b)

� �P

C
(F )
s =

1

0

1

0

[log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE))]
+
f(hM)f(hE)dhMdhE

�
1

0

1

h

log
hM

hE
f(hM)f(hE)dhMdhE <1

M

0

1

M

[log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE))]
+
f(hM)f(hE)dhMdhE <

�

3
1

M

M

0

[log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE))]
+
f(hM)f(hE)dhMdhE <

�

3
1

M

1

M

[log (1 + hMP (hM ; hE))� log (1 + hEP (hM ; hE))]
+
f(hM)f(hE)dhMdhE <

�

3
: (19)

lim
(q ;q )!1

q

i=1

q

j=1

log
1 + hM;iP (hM;i; hE;j)

1 + hE;(j+1)P (hM;i; hE;j)

+

Pr(hM;i �hM < hM;(i+1); hE;j � hE < hE;(j+1))

= lim
(q ;q )!1

q

i=1

q

j=1

h

h

h

h

log
1 + hM;iP (hM;i; hE;j)

1 + hE;(j+1)P (hM;i; hE;j)

+

f(hM)f(hE)dhMdhE

=
M

0

M

0

log
1 + hMP (hM ; hE)

1 + hEP (hM ; hE)

+

f(hM)f(hE)dhMdhE : (20)

q

i=1

q

j=1

log
1 + hM;iP (hM;i; hE;j)

1 + hE;(j+1)P (hM;i; hE;j)

+

Pr hM;i � hM < hM;(i+1); hE;j � hE < hE;(j+1)

�
1

0

1

0

log
1 + hMP (hM ; hE)

1 + hEP (hM ; hE)

+

f(hM)f(hE)dhMdhE � 2�: (21)
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ability Pn
e ! 0 as n ! 1, there exists a power allocation policy

P (hM ; hE) satisfying the average power constraint, shown in the first
equation at the bottom of the page. Consider any sequence of (2nR ; n)
codes with perfect secrecy rate Rs and equivocation rate Re, such that
Re > Rs � �, with average power less than or equal to �P and error
probability Pn

e ! 0 as n ! 1. Let N(hM ; hE) denote the number
of times the channel is in fading state (hM ; hE ) over the interval [0; n].
Also let

P
n(hM ; hE) =

n

i=1

jxw(i)j
2111fh (i)=h ;h (i)=h g

where fxwg are the codewords corresponding to the message w and
the expectation is taken over all codewords. We note that the equivo-
cation H(W jZn; hnM ; hnE) only depends on the marginal distribution
of Zn, and thus does not depend on whether Z(i) is a physically or
stochastically degraded version of Y (i) or vice versa. Hence, we as-
sume in the following derivation that for any fading state, either Z(i)
is a physically degraded version of Y (i) or vice versa (since the noise
processes are Gaussian), depending on the instantaneous channel state.
Thus, we have (22) at the bottom of the page. In the derivation (22), (a)
follows from the Fano inequality, (b) follows from the data processing
inequality since W ! Xn ! (Y n; Zn) forms a Markov chain, (c)
follows from the fact that conditioning does not increase entropy and
from the memoryless property of the channel, and (d) follows from the

fact that given hM and hE , the fading channel reduces to an AWGN
channel with channel gains (hM ; hE) and average transmission power
Pn(hM ; hE), for which

I(X;Y jZ; hM ; hE) � [log(1 + hMP
n(hM ; hE))

� log(1 + hEP
n(hM ; hE))]

+

as shown in [17], [23]. Since the codewords satisfy the power con-
straint, we have

P
n(hM ; hE)

N(hM ; hE)

n
dhMdhE � �P :

For any hM ; hE such that f(hM ; hE) 6= 0, fPn(hM ; hE)g are
bounded sequences in n. Thus there exists a subsequence that con-
verges to a limit P (hM ; hE) as n ! 1. Since for each n, the power
constraint is satisfied, we have

P (hM ; hE)f(hM)f(hE)dhMdhE � �P : (23)

Now, we have Re defined in the third equation at the bottom of the
page. Taking the limit along the convergent subsequence and using the
ergodicity of the channel, we get the fourth equation at the bottom page.

The claim is thus proved for sufficiently large n. Now, if there exists
a code with finite length n that can achieve a larger perfect secrecy

Rs � [log(1 + hMP (hM ; hE))� log(1 + hEP (hM ; hE))]
+
f(hM)f(hE)dhMdhE :

nRe =H(W jZn; hnM ; h
n
E)

(a)

�H(W jZn; hnM ; h
n
E)�H(W jZn; Y n

; h
n
M ; h

n
E) + n�n

= I(W ;Y njZn; hnM ; h
n
E) + n�n

(b)

� I(Xn;Y njZn; hnM ; h
n
E) + n�n

=H(Y njZn; hnM ; h
n
E)�H(Y njXn

; Z
n
; h

n
M ; h

n
E) + n�n

=

n

i=1

H(Y (i)jY i�1
; Z

n
; h

n
M ; h

n
E)�H(Y (i)jY i�1

;X
n
; Z

n
; h

n
M ; h

n
E) + n�n

(c)

�

n

i=1

[H(Y (i)jZ(i); hM(i); hE(i))�H(Y (i)jX(i);Z(i); hM(i); hE(i))] + n�n

=

n

i=1

I(X(i);Y (i)jZ(i); hM(i); hE(i)) + n�n

=

n

i=1

I(X;Y jZ; hM ; hE)111fh (i)=h ;h (i)=h gdhMdhE + n�n

= I(X;Y jZ; hM ; hE)N(hM ; hE)dhMdhE + n�n

(d)

� N(hM ; hE) [log(1 + hMP
n(hM ; hE))� log(1 + hEP

n(hM ; hE))]
+
dhMdhE + n�n: (22)

Re �
N(hM ; hE)

n
log

1 + hMPn(hM ; hE)

1 + hEPn(hM ; hE)

+

dhMdhE + �n:

Re � log
1 + hMP (hM ; hE)

1 + hEP (hM ; hE)

+

f(hM)f(hE)dhMdhE + �n:
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rate than (4), one can concatenate these codes with small length n to
a code with sufficiently large length and achieve a perfect secrecy rate
larger than (4). This is in contradiction with the claim we proved for
sufficiently large n. Hence, there does not exist a code with finite length
n that can achieve a perfect secrecy rate larger than (4). This completes
the proof.

APPENDIX B
PROOF OF THEOREM 2

Let Rs = C
(M)
s � � for some small � > 0. Let n = n1m, where

n1 represents the number of symbols transmitted in each coherence in-
terval, and m represents the number of coherence intervals over which
the messageW is transmitted. LetR = flog (1 + hMP (hM))g� �.
We first generate all binary sequences fVVV g of length nR and then
independently assign each of them randomly to one of 2nR groups,
according to a uniform distribution. This ensures that any of the se-
quences are equally likely to be within any of the groups. Each secret
message w 2 f1; . . . ; 2nR g is then assigned a group VVV (w). To en-
code a particular messagew, the stochastic encoder randomly selects a
sequence vvv from the corresponding group VVV (w), according to a uni-
form distribution. Thus, VVV is uniformly distributed over f0; 1gnR ,
and hence, its coordinates are i.i.d. uniform binary random variables
[24]. This sequence vvv consisting of nR bits is then subdivided into in-
dependent blocks fvvv(1); . . . ; vvv(m)g, where the block vvv(i) consists of
n1 [log (1 + hM(i)P (hM(i)))� �] bits, and is transmitted in the ith
coherence interval (i 2 f1; . . . ;mg). Asm!1, using the ergodicity
of the channel, we have

lim
m!1

m

i=1

n1 [log (1 + hM (i)P (hM(i)))� �]

= n1m [ flog (1 + hMP (hM))g � �] = nR:

We then generate i.i.d. Gaussian codebooks fXn (i) : i = 1; . . . ;mg
consisting of 2n [log(1+h (i)P (h (i)))��] codewords, each of length
n1 symbols. In the ith coherence interval, the transmitter encodes the
block vvv(i) into the codeword xn (i), which is then transmitted over
the fading channel. The legitimate receiver receives yn (i) while the
eavesdropper receives zn (i) in the ith coherence interval. The equiv-
ocation rate at the eavesdropper can then be lower-bounded as follows:

nRe

=H(W jZn (1); . . . ; Zn (m); hnM ; hnE)

=H(W;Zn (1); . . . ; Zn (m)jhnM ; hnE)

�H(Zn (1); . . . ; Zn (m)jhnM ; hnE)

=H(W;Zn (1); . . . ; Zn (m);Xn (1); . . . ; Xn (m)jhnM ; hnE)

�H(Zn (1); . . . ; Zn (m)jhnM ; hnE)

�H(Xn (1);� � �; Xn (m)jW;Zn (1);� � �; Zn (m); hnM ; hnE)

=H(Xn (1); . . . ; Xn (m)jhnM ; hnE)

+H(W;Zn (1);� � �; Zn (m)jXn (1);� � �; Xn (m); hnM ; hnE)

�H(Zn (1); . . . ; Zn (m)jhnM ; hnE)

�H(Xn (1);� � �; Xn (m)jW;Zn (1);� � �; Zn (m); hnM ; hnE)

�H(Xn (1); . . . ; Xn (m)jhnM ; hnE)

+H(Zn (1);� � �; Zn (m)jXn (1);� � �; Xn (m); hnM ; hnE)

�H(Zn (1); . . . ; Zn (m)jhnM ; hnE)

�H(Xn (1);� � �; Xn (m)jW;Zn (1);� � �; Zn (m); hnM ; hnE)

=H(Xn (1); . . . ; Xn (m)jhnM ; hnE)

� I(Zn (1);� � �; Zn (m);Xn (1);� � �; Xn (m)jhnM ; hnE)

�H(Xn (1);� � �; Xn (m)jW;Zn (1);� � �; Zn (m); hnM ; hnE)

=H(Xn (1);� � �; Xn (m)jZn (1);� � �; Zn (m); hnM ; hnE)

�H(Xn (1);� � �; Xn (m)jW;Zn (1);� � �; Zn (m); hnM ; hnE)

(a)
=

m

i=1

H(Xn (i)jZn (i); hM(i); hE(i))

�H(Xn (1);� � �; Xn (m)jW;Zn (1);� � �; Zn (m); hnM ; hnE):

Here, (a) follows from the memoryless property of the channel and the
independence of the Xn (i)’s.

We continue with (24) at the bottom of the page. In the deriva-
tion (24), (b) is obtained by removing all those terms which
correspond to the coherence intervals i =2 Nm, where Nm =
fi 2 f1; . . . ; mg : hM(i) > hE(i)g, and (c) follows from the ergod-
icity of the channel as m ! 1.

Now we show that the term

H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)

vanishes as m;n1 ! 1 by using a list decoding argument. In this
list decoding, at coherence interval i, the eavesdropper first constructs
a list Li such that xn (i) 2 Li if (xn (i); zn (i)) are jointly typical.
Let L = L1 � L2 � � � � � Lm. Given w, the eavesdropper declares
that x̂n = (xn (1); . . . ; xn (m)) was transmitted, if x̂n is the only

nRe
(b)

�
i2N

H(Xn (i)jZn (i); hM(i); hE(i))

�H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)

=
i2N

[H(Xn (i)jhM(i); hE(i))� I(Xn (i);Zn (i)jhM(i); hE(i))]

�H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)

�
i2N

n1 [log (1 + hM(i)P (hM(i)))� log (1 + hE(i)P (hM(i)))� �]

�H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)

�
m

i=1

n1 [log (1 + hM (i)P (hM(i)))� log (1 + hE(i)P (hM(i)))]+ � �

�H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)
(c)
=nC(M)

s �H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)� n�: (24)
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codeword such that x̂n 2 B(w) \ L, where B(w) is the set of code-
words corresponding to the message w. If the eavesdropper finds none
or more than one such sequence, then it declares an error. Hence, there
are two type of error events: 1) E1: the transmitted codeword xnt is not
in L, 2) E2: 9xn 6= xnt such that xn 2 B(w)\L. Thus, the error prob-
ability Pr(x̂n 6= xnt ) = Pr(E1[E2) � Pr(E1)+Pr(E2). Based on the
asymptotic equipartition property (AEP), we know that Pr(E1) � �1.
In order to bound Pr(E2), we first bound the size of Li. We let

�i(x
n (i)jzn (i))

=
1; when ( xn (i); zn (i)) are jointly typical,
0; otherwise.

(25)

Now

fkLikg

=
x (i)

�i(x
n (i)jzn (i))

� 1 +

x (i) 6=x (i)

�i(x
n (i)jzn (i))

� 1 +

x (i)6=x (i)

f�i(x
n (i)jzn (i))g

� 1 + 2n [log(1+h (i)P (h (i)))�log(1+h (i)P (h (i)))��]

� 2
n [log(1+h (i)P (h (i)))�log(1+h (i)P (h (i)))��] +

: (26)

Hence we get (27) at the bottom of the page. Thus, we have (28), also at
the bottom of the page, where (a) follows from the uniform distribution
of the codewords in B(w). Now as n1 !1 and m!1, we get

Pr(E2) � 2�n(C ���C +c�) = 2�n(c���)

where c = Pr(hM > hE). Thus, by choosing � > (�=c), the error
probability Pr(E2)! 0 as n !1. Now using Fano’s inequality, we
get

H(Xn (1); . . . ; Xn (m)jW;Zn (1); . . . ; Zn (m); hnM ; hnE)

� n�n ! 0; as n!1:

Combining this with (24), we get the desired result.
For the converse part, consider any sequence of (2nR ; n) codes

with perfect secrecy rate Rs and equivocation rate Re, such that Re >
Rs��, with average power less than or equal to �P and error probability
Pn
e ! 0 as n ! 1. We follow the same steps used in the proof of

the converse in Theorem 1 with the only difference that now the trans-
mission power Pn(�) only depends on hM . From (22), we get the third
equation at the bottom of the page. This follows from the fact that given
hM and hE , the fading channel reduces to an AWGN channel with
channel gains (hM ; hE) and average transmission power Pn(hM), for
which Gaussian inputs are known to be optimal [17], [23].

Similar to the proof of Theorem 1, we take the limit over the con-
vergent subsequence and use the ergodicity of the channel to obtain
(29) at the bottom of the page, where fP (hM)g � �P . The claim is
proved for sufficiently large n. Following the same argument as that of

fkLkg =

m

i=1

fkLikg � 2
n [log(1+h (i)P (h (i)))�log(1+h (i)P (h (i)))��] +

: (27)

Pr(E2) �
x 2L;x 6=x

Pr(xn 2 B(w))

(a)

� kLk2�nR

� 2�nR 2
n [log(1+h (i)P (h (i)))�log(1+h (i)P (h (i)))��] +

� 2
�n R � [log(1+h (i)P (h (i)))�log(1+h (i)P (h (i)))��] +

=2
�n R � [log(1+h (i)P (h (i)))�log(1+h (i)P (h (i)))] + +

(28)

nRe �

n

i=1

I(X;Y jZ; hM ; hE)111fh (i)=h ;h (i)=h gdhMdhE + n�n

= I(X;Y jZ; hM ; hE)N(hM ; hE)dhMdhE + n�n

� N(hM ; hE) [log(1 + hMPn(hM))� log(1 + hEP
n(hM))]+ dhMdhE + n�n:

Re � [log(1 + hMP (hM))� log(1 + hEP (hM))]+ f(hM)f(hE)dhMdhE + �n; (29)
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Theorem 1, we have that there does not exist a code with finite length
n that can achieve a larger perfect secrecy rate than (8). The proof is
complete.
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Capacity Achieving LDPC Codes Through Puncturing

Chun-Hao Hsu, Student Member, IEEE, and
Achilleas Anastasopoulos, Member, IEEE

Abstract—The performance of punctured low-definition parity-check
(LDPC) codes under maximum-likelihood (ML) decoding is studied in
this correspondence via deriving and analyzing their average weight
distributions (AWDs) and the corresponding asymptotic growth rate of
the AWDs. In particular, it is proved that capacity-achieving codes of any
rate and for any memoryless binary-input output-symmetric (MBIOS)
channel under ML decoding can be constructed by puncturing some
original LDPC code with small enough rate. Moreover, it is shown that the
gap to capacity of all the punctured codes can be the same as the original
code with a small enough rate. Conditions under which puncturing results
in no rate loss with asymptotically high probability are also given in the
process. These results show high potential for puncturing to be used in
designing capacity-achieving codes, and in rate-compatible coding under
any MBIOS channel.

Index Terms—Asymptotic growth rate, average weight distribution, ca-
pacity-achieving codes, low-density parity-check (LDPC) codes, maximum-
likelihood (ML) decoding, punctured codes, rate-adaptable codes.

I. INTRODUCTION

Low-density parity-check codes (LDPC), originally introduced by
Gallager in the early 1960s [1], were the first successful example of ca-
pacity-achieving codes with linear decoding complexity. In particular,
LDPC codes were shown in [2]–[4] to achieve the capacity of the binary
erasure channel (BEC) using iterative decoding with linear decoding
complexity with respect to the codeword length. A necessary condition
for these LDPC codes to be capacity-achieving as proved in [5] is that
their parity-check matrix density (normalized to the number of infor-
mation bits) diverges to infinity as capacity is approached. Specifically,
the density grows at least as log(1=�) with respect to the multiplicative
gap to capacity � [5]. Recently, a family of turbo-like codes, namely,
irregular repeat–accumulate (IRA) codes were shown in [6] to be ca-
pacity achieving for the BEC with constant complexity with respect
to �.

Regarding non-BEC channels, there are several examples of ca-
pacity-achieving codes for memoryless binary-input output-symmetric
(MBIOS) channels. For instance, Forney’s concatenated codes [7]
are provably capacity achieving, but require a polynomial decoding
complexity in the codeword length. Similarly, expander codes were
shown to be capacity achieving for the binary symmetric channel
(BSC) in [8]. Although the decoding complexity of expander codes
is linear in the codeword length, it grows as exp(1=�). LDPC codes
were shown in [5] to achieve the capacity of any MBIOS channel
using maximum-likelihood (ML) decoding, the necessary condition
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