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Abstract—In this work, the critical role of noisy feedback in en-
hancing the secrecy capacity of the wiretap channel is established.
Unlike previous works, where a noiseless public discussion channel
is used for feedback, the feed-forward and feedback signals share
the same noisy channel in the present model. Quite interestingly,
this noisy feedback model is shown to be more advantageous in the
current setting. More specifically, the discrete memoryless modulo-
additive channel with a full-duplex destination node is considered
first, and it is shown that the judicious use of feedback increases the
secrecy capacity to the capacity of the source–destination channel
in the absence of the wiretapper. In the achievability scheme, the
feedback signal corresponds to a private key, known only to the
destination. In the half-duplex scheme, a novel feedback technique
that always achieves a positive perfect secrecy rate (even when the
source–wiretapper channel is less noisy than the source–destina-
tion channel) is proposed. These results hinge on the modulo-addi-
tive property of the channel, which is exploited by the destination
to perform encryption over the channel without revealing its key
to the source. Finally, this scheme is extended to the continuous
real valued modulo-� channel where it is shown that the secrecy
capacity with feedback is also equal to the capacity in the absence
of the wiretapper.

Index Terms—Feedback, modulo-additive, noisy, secrecy ca-
pacity, wiretap channel.

I. INTRODUCTION

T HE study of secure communication from an information-
theoretic perspective was pioneered by Shannon [1]. In

Shannon’s model, both the sender and the destination possess
a common secret key , which is unknown to the wiretapper,
and they use this key to encrypt and decrypt a message .
Shannon considered a scenario in which both the legitimate re-
ceiver and the wiretapper have direct access to the transmitted
signal and introduced the perfect secrecy condition

, where denotes mutual information between its two ar-
guments. This implies that the signal received by the wire-
tapper does not provide any additional information about the
source message . Under this model, he proved that a one-time
pad achieves perfect secrecy if the entropy of the shared private
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key is at least equal to the entropy of the message itself (i.e.,
for perfect secrecy, where denotes the

entropy of its argument).
In a second pioneering work [2], Wyner introduced the

wiretap channel and established the possibility of creating an
almost perfectly secure source–destination link without relying
on private (secret) keys. In the wiretap channel, both the wire-
tapper and destination observe the source’s encoded message
through noisy channels. Similar to Shannon’s model, the wire-
tapper is assumed to have unlimited computational resources.
Wyner showed that when the source–wiretapper channel is
a degraded version of the source–destination channel, the
source can send perfectly secure1 messages to the destination
at a nonzero rate. The main idea is to hide the information
stream in the additional noise impairing the wiretapper by
using a stochastic encoder which maps each message to many
codewords according to an appropriate probability distribution.
This way, one induces maximal equivocation at the wiretapper.
By ensuring that the equivocation rate is arbitrarily close to the
message rate, one achieves perfect secrecy in the sense that the
wiretapper is now limited to learn almost nothing about the
source–destination messages from its observations. Follow-up
work by Leung-Yan-Cheong and Hellman has characterized the
secrecy capacity of the additive white Gaussian noise (AWGN)
wiretap channel [4]. In a landmark paper, Csiszár and Körner
generalized Wyner’s approach by considering the transmission
of confidential messages over broadcast channels [5]. This work
characterized the secrecy capacity of the broadcast channel,
and showed that the secrecy capacity is positive unless the
source–wiretapper channel is less noisy than the source–desti-
nation channel (referred to as the main channel in the sequel).2

Positive secrecy capacity is not always possible to achieve
in practice. In an attempt to transmit messages securely in
these unfavorable scenarios, [6] and [7] considered the wiretap
channel with noiseless feedback.3 They showed that one may
leverage the feedback to achieve a positive perfect secrecy rate,
even when the feed-forward secrecy capacity is zero. In this
model, there exists a separate noiseless public channel, through
which the transmitter and receiver can exchange information.
The wiretapper is assumed to obtain a perfect copy of the
messages transmitted over this public channel. Upper and lower

1Wyner’s notion of per-symbol equivocation is weaker than Shannon’s notion
of perfect secrecy [3].

2The source–wiretapper channel is said to be less noisy than the main channel
if, for every � satisfying the Markov chain relationship � � � � � � ,
��� ��� � ��� �� �, where � is the signal transmitted by the source, and
where � and � are the signal received at the receiver and the wiretapper, re-
spectively.

3The authors also considered a more general secret sharing problem.
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bounds were derived for the secrecy capacity with noiseless
feedback in [6], [7]. In several cases, as discussed in detail in
the sequel, these bounds coincide. But, in general, the secrecy
capacity with noiseless feedback remains unknown. Along the
same lines, [8] established the critical role of a trusted/untrusted
helper in enhancing the secret key capacity of public discussion
algorithms. The multiterminal generalization of the basic setup
of [6], [7] was studied in [9]. Finally, in [10]–[12], the public
discussion paradigm was extended to handle the existence of
active adversaries.

Our work represents a marked departure from the public
discussion paradigm. In our model, we do not assume the
existence of a separate noiseless feedback channel. Instead,
the feedback signal from the destination, which is allowed to
depend on the signal received so far, is transmitted over the
same noisy channel used by the source. Based on the noisy
feedback signal, the source can then causally adapt its transmis-
sion scheme, hoping to increase the perfect secrecy rate. The
wiretapper receives a mixture of the signal from the source and
the feedback signal from the destination. Quite interestingly, we
show that in the modulo-additive discrete memoryless channel
(DMC) with a full-duplex destination, the secrecy capacity
with noisy feedback equals the capacity of the main channel
in the absence of the wiretapper. Furthermore, the capacity is
achieved with a simple scheme in which the source ignores
the feedback signal and the destination feeds back randomly
generated symbols from a certain alphabet set. This feedback
signal plays the role of a private key, known only by the des-
tination, and encryption is performed by the modulo-additive
channel. The more challenging scenario with a half-duplex
destination, which cannot transmit and receive simultaneously,
is considered next. Here, the active transmission periods by
the destination will introduce erasures in the feed-forward
source–destination channel. In this setting, we propose a novel
feedback scheme that achieves a positive perfect secrecy rate
for any nontrivial channel distribution. The feedback signal
in our approach acts as a private destination only key which
strikes the optimal tradeoff between introducing erasures at the
destination and errors at the wiretapper. Finally, the proposed
scheme is extended to the continuous modulo- lattice channel
where it is shown to achieve the capacity of the main channel.

Overall, our work proposes a novel approach for encryption
where 1) the feedback signal is used as a private key known only
to the destination; and 2) the encryption is performed by ex-
ploiting the modulo-additive property of the channel. This en-
cryption approach is shown to be significantly superior to the
classical public discussion paradigm. The achievable scheme
proposed here for the full-duplex scenario also appeared con-
currently and independently in [13] under a different setup. In
[13], a two-way wiretap channel is considered, in which both
the source and receiver transmit information over the channel
to each other in the presence of a wiretapper. Achievable rates
for the two-way Gaussian channel and the two-way binary ad-
ditive channel are derived. It is shown that in this setup, it is
possible to gain a secrecy sum-rate larger than the capacity of
the source–destination channel in the absence of the wiretapper.
Our goal, however, is to understand the role of feedback on en-
hancing security in communication. Hence, in general, the code-

word sent by the source and receiver will depend on what has
been received so far. It turns out that in the modulo-additive
channel, this dependence is not necessary. A simple scheme
achieves the capacity. On the other hand, it is not clear whether
this is true for general channels or not.

Recently, there has been a resurgent interest in studying se-
cure communications from an information-theoretic perspec-
tive under various scenarios. The point-to-point fading eaves-
dropper channel was considered in [14]–[18] under different
assumptions on the delay constraints and the available trans-
mitter channel state information (CSI). In [19]–[22], the in-
formation-theoretic limits of secure communications over mul-
tiple-access channels were explored. The relay channel with
confidential messages, where the relay acts both as a wiretapper
and a helper, was studied in [23], [24]. In [25], the interfer-
ence channel with confidential messages was studied. In [26],
the four-terminal relay–eavesdropper channel was introduced
and analyzed. The wiretap channel with side information was
studied in [27].

The rest of the paper is organized as follows. In Section II,
we introduce the system model of interest and our notation.
Section III describes and analyzes the proposed feedback
scheme that achieves the capacity of the full duplex modulo-ad-
ditive DMC. Taking the binary symmetric channel (BSC) as an
example, we then compare the performance of the proposed
scheme with the public discussion approach. The half-duplex
scenario is studied in Section IV. In Section V, we extend our
results to the modulo- lattice channel. Finally, Section VI
offers some concluding remarks and outlines possible venues
for future research.

II. THE MODULO-ADDITIVE DISCRETE MEMORYLESS

CHANNEL (DMC)

Throughout the sequel, an upper-case letter will denote a
random variable, a lower-case letter will denote a realization
of the random variable, a calligraphic letter will denote a
finite alphabet set, and a boldface letter will denote a vector.
Furthermore, we let .

Without feedback, our modulo-additive discrete memoryless
wiretap channel is described by the following model:

(1)

where is the received symbol at the destination, is the re-
ceived symbol at the wiretapper, is the channel input, and

are the noise samples at the destination and wiretapper, re-
spectively. Here and are allowed to be correlated. Also,
we assume that ranges over a finite set

, and range over a finite set ,
and and range over a finite set .
We denote the alphabet size of the sets , , and by ,

, and respectively. Here “ ” is understood to be modulo
addition with respect to the corresponding alphabet size, i.e.,

and with ad-
dition in the real field.
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Fig. 1. The wiretap channel with noisy feedback. In this figure, “I” represents
Input and “O” represents Output. The relationships among the variables are
given in (2).

In this paper, we focus on the wiretap channel with noisy
feedback.4 More specifically, at time , the destination sends the
causal feedback signal over the same noisy channel used
for feed-forward transmission, i.e., we do not assume the exis-
tence of a separate noiseless feedback channel. The causal feed-
back signal is allowed to depend on time index and the signal
received so far , i.e.,

, where can be any (possibly stochastic) function.
In general, we allow the destination to choose the alphabet of
the feedback signal and the corresponding size . With
this noisy feedback from the destination, the received signals at
the source, wiretapper and destination are

and

(2)

respectively. Here is the received noisy feedback signal at
the source, which ranges over a finite set

; and is the feedback noise, which ranges over the finite
set and may be correlated with and . We denote the
alphabet size of the set by . Again, all “ ” operation
should be understood to be modulo-addition with respect to the
corresponding alphabet size. Fig. 1 shows the model described
above.

Now, the source wishes to send the message ranging over
the set to the destination using an
code consisting of: 1) a sequence of causal stochastic encoders

, at the source that maps the message and the
received noisy feedback signal
to sent at time , i.e.,

(3)

2) a sequence of stochastic feedback encoders ,
at the destination that maps the received signal into with

; and 3) a decoding function at the destina-
tion : . The average error probability of the
code is

was sent (4)

The equivocation rate at the wiretapper is defined as

(5)

We are interested in perfectly secure transmission rates de-
fined as follows.

4In this paper, by noisy feedback, we mean that the source receives a noisy
version of the feedback signal sent by the receiver.

Definition 1: A secrecy rate is said to be achievable over
the wiretap channel with noisy feedback if for any , there
exists a positive number and a sequence of codes such
that for all , we have

(6)

(7)

and

(8)

Definition 2: The secrecy capacity with noisy feedback
is the maximum rate at which messages can be sent to the des-
tination with perfect secrecy; i.e.,

is achievable (9)

Note that in our model, the wiretapper is assumed to have un-
limited computational resources and to know the coding scheme
of the source and the feedback function used by the destina-
tion. This feedback model captures realistic scenarios in which
the terminals exchange information over noisy channels.

III. THE WIRETAP CHANNEL WITH FULL-DUPLEX FEEDBACK

A. Known Results

The secrecy capacity of the wiretap DMC without feed-
back was characterized in [5]. Specializing to our modulo-addi-
tive channel, one obtains

(10)

The wiretap DMC with public discussion was introduced and
analyzed in [6], [7]. More specifically, these papers considered
a more general model in which all the nodes observe correlated
variables,5 and there exists an extra noiseless public channel
with infinite capacity, through which both the source and the
destination can send information. Combining the correlated
variables and the publicly discussed messages, the source and
the destination generate a key about which the wiretap has
only negligible information. Please refer to [7] for rigorous
definitions of these notions. Since the public discussion channel
is noiseless, the wiretapper is assumed to observe a noiseless
version of the information transmitted over it. The following
theorem gives upper and lower bounds on the secret key ca-
pacity of the public discussion paradigm .

Theorem 3 ([6], [7]): The secret key capacity of the public
discussion approach satisfies the following conditions:

Proof: Please refer to [6], [7].

These bounds are known to be tight in the following cases [6],
[7].

5The wiretap channel model is a particular mechanism for the nodes to ob-
serve the correlated variables, and corresponds to the “channel type model”
studied in [7].
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1) , i.e., the main channel and the
source–wiretapper channel are independent; in this case

(11)

2) , i.e., forms a Markov
chain, and hence the source–wiretapper channel is a de-
graded version of the main channel. In this case

(12)

This is also the secrecy capacity of the degraded wiretap
channel without feedback. Hence, public discussion does
not increase the secrecy capacity for the degraded wiretap
channel.

3) , i.e., , so that the main
channel is a degraded version of the wiretap channel. In
this case

(13)

Again, public discussion does not help in this scenario.

B. The Main Result

The following theorem characterizes the secrecy capacity of
the wiretap channel with noisy feedback. Moreover, achiev-
ability is established through a novel encryption scheme that
exploits the modulo-additive structure of the channel and uses
a private key known only to the destination.

Theorem 4: The secrecy capacity of the discrete memoryless
modulo-additive wiretap channel with noisy feedback is

(14)

where is the capacity of the main channel in the absence of
the wiretapper.

Proof:
1. Converse.
The set of achievable secrecy rates with feedback is a subset

of the set of achievable rates of an ordinary (i.e., without security
constraints) DMC with feedback. It is well known that feedback
does not increase the capacity of an ordinary DMC, and hence
is the supremum of the set of the achievable rates of an ordinary
DMC with feedback. Thus, is also an upper bound of the
achievable secrecy rate with feedback.

2. Achievability.
We use the following scheme.
For the feedback part, the destination sets , and at

any time , sets , with probability
. Hence, is uniformly distributed over .

If the source transmits , the wiretapper will receive

(15)

and is uniformly distributed over and is independent
of . Based on the crypto lemma [28], for any given ,

is uniformly distributed over , and hence, is uniformly

distributed over for any transmitted codeword and noise
realization . Moreover, is independent of , and thus

(16)

Hence, we have ; therefore

(17)

and we achieve perfect secrecy.
Thus, by this feedback scheme, for any codebook used by the

source, we achieve perfect secrecy at the receiver. Now in our
scheme, the source ignores the feedback signal from the desti-
nation, and uses a codebook that achieves rate for the main
channel. For decoding, after receiving , the destination sets

, where “ ” is understood to be a component-wise
modulo operation. It is easy to see that . The desti-
nation then claims that was sent if is jointly typical.
For any given , the probability that goes to zero as

increases, provides .
The channel is equivalent to the main channel without
feedback. Hence, as long as , there exists a code with
sufficient code length such that for any .

The following observations are now in order.
1) Our scheme achieves . This implies per-

fect secrecy in the strong sense of Shannon [1] as opposed
to Wyner’s notion of perfect secrecy [2], which has been
pointed out to be insufficient for certain encryption appli-
cations [3].

2) The enabling observation behind our achievability scheme
is that, by judiciously exploiting the modulo-additive struc-
ture of the channel, one can render the channel output at
the wiretapper independent of the codeword transmitted by
the source. Here, the feedback signal serves as a pri-
vate key and the encryption operation is carried out by the
channel. Instead of requiring both the source and destina-
tion to know a common encryption key, we show that only
the destination needs to know the encryption key, hence
eliminating the burden of secret key distribution.

3) Remarkably, the secrecy capacity with noisy feedback is
shown to be larger than the secret key capacity of public
discussion schemes. This point will be further illustrated by
the BSC example discussed next. This presents a marked
departure from the conventional wisdom, inspired by the
data processing inequality, which suggests the superiority
of noiseless feedback. This result is due to the fact that
the noiseless feedback signal is also available to the wire-
tapper, while in the proposed noisy feedback scheme nei-
ther the source nor the wiretapper knows the feedback
signal perfectly. In fact, the source in our scheme ignores
the feedback signal, which is used primarily to confuse the
wiretapper.

4) Our result shows that complicated feedback functions
are not needed to achieve optimal performance in this set-
ting (i.e., a random number generator suffices). Also, the
alphabet size of the feedback signal can be set equal to
the alphabet size of the wiretapper channel, and the coding
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Fig. 2. The binary symmetric wiretap channel.

scheme used by the source is the same as the one used in
the absence of the wiretapper.

C. The Binary Symmetric Channel (BSC) Example

To illustrate the idea of encryption over the channel, we con-
sider in some detail the wiretap BSC shown in Fig. 2, where

, , and . The
secrecy capacity of this channel without feedback is known to
be [6]

with . We differentiate
between the following special cases.

1)
In this case, both the main channel and wiretap channel are
noiseless, hence

Also, we have

since the wiretapper sees exactly the same as what the des-
tination sees. Specializing our scheme to this BSC, at time
, the destination randomly chooses with proba-

bility and sends over the channel. This creates a
virtual BSC at the wiretapper with . On the other
hand, since the destination knows the value of , it can
cancel it by adding to the received signal. This con-
verts the original channel to an equivalent BSC with .
Hence, through our noisy feedback approach, we obtain an
equivalent wiretap BSC with parameters
resulting in

2) , , and are independent.
Since , we have

Also, and are independent, so
. Then from (11), one can easily obtain that [6]

Fig. 3. The binary symmetric wiretap channel with a degraded main channel.

Fig. 4. The binary symmetric wiretap channel with a degraded source–wire-
tapper channel.

Our feedback scheme, on the other hand, achieves

Since , we have with equality
if and only if .

3) and , where
.

The main channel is a degraded version of the source–wire-
tapper channel , as shown in Fig. 3. Hence,
from (13), we have

while
4) , and , where

.
In this case, the source-wiretapper channel is a degraded
version of the main channel as shown in Fig. 4;

, so from (12)

But

with equality if and only if .
5) and are correlated and the channel is not degraded.

In this case

The value of is unknown in this case but can be bounded
by

In summary, the secrecy capacity with noisy feedback is always
larger than or equal to that of the public discussion paradigm
when the underlying wiretap channel is a BSC. More strongly,
the gain offered by the noisy feedback approach, over the public
discussion paradigm, is rather significant in many relevant spe-
cial cases.
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IV. EVEN HALF-DUPLEX FEEDBACK IS SUFFICIENT

It is reasonable to argue against the practicality of the full du-
plex assumption adopted in the previous section. In certain ap-
plications, nodes may not be able to transmit and receive with
the same degrees of freedom. This motivates extending our re-
sults to the half-duplex wiretap channel in which the terminals
can either transmit or receive but never both at the same time.
Under this situation, if the destination wishes to feed back at
time , it loses the opportunity to receive the th symbol trans-
mitted by the source, which effectively results in an erasure
(assuming that the source is unaware of the destination deci-
sion). The proper feedback strategy must, therefore, strike a
balance between confusing the wiretapper and degrading the
source–destination link. In order to simplify the following pre-
sentation, we first focus on the wiretap BSC. The extension to ar-
bitrary modulo-additive channels is briefly outlined afterwards.

In the full-duplex case, the optimal scheme is to let the desti-
nation send , which equals or with equal probabilities of

. But in the half-duplex case, if the destination always keeps
sending, it does not have a chance to receive information from
the source, and hence, the achievable secrecy rate is zero. This
problem, however, can be solved by observing that if ,
the signal the wiretapper receives, i.e.,

is the same as in the case in which the destination does not
transmit. The crucial difference in this case is that the wire-
tapper does not know whether the feedback has taken place or
not, since can be randomly generated at the destination and
thus kept private.

The previous discussion inspires the following feedback
scheme for the half-duplex channel. The destination first fixes
a fraction which is revealed to both the source
and wiretapper. At time , the destination randomly generates

with probability and with probability .
If , the destination sends over the channel, which
causes an erasure at the destination and a potential error at
the wiretapper. On the other hand, when , the desti-
nation does not send a feedback signal and spends the time
on receiving from the channel. The key to this scheme is that
although the source and wiretapper know , neither is aware of
the exact timing of the events . The source ignores the
feedback and keeps sending information. The following result
characterizes the achievable secrecy rate with the proposed
feedback scheme.

Theorem 5: For a BSC with half-duplex nodes and parame-
ters and , the scheme proposed above achieves

(18)

with .
Proof: For the main channel, if the destination spends a

fraction of its time on sending, the equivalent main channel

Fig. 5. The equivalent main channel.

is shown in Fig. 5. In this figure, the output ranges over a fi-
nite-alphabet set , where represents an erasure. The
erasure probability is . In the remaining fraction of the
time, the channel is a BSC with parameter . Hence, the transi-
tion matrix of this equivalent channel is

Meanwhile for the wiretapper, the equivalent channel is still
a BSC, but with an increased error probability

(19)

Thus, the original binary symmetric wiretap channel with
noisy feedback is equivalent to a new wiretap channel

without feedback, and the channel parameters are given
as above.

As shown in [5], for this equivalent wiretap channel the fol-
lowing secrecy rate is achievable for any input distribution :

(20)

Hence, by using the input distribution , one
can see that

(21)

is achievable.

In general, one can obtain the optimal values of and by
setting the partial derivative of , with respect to and to

, and solving the corresponding equations. Unfortunately, ex-
cept for some special cases, we do not have a closed-form so-
lution for these equations at the moment. Interestingly, using
the not necessarily optimal choice of , we obtain

implying that we can achieve a nonzero
secrecy rate as long as irrespective of the wiretapper
channel conditions. Hence, even for half-duplex nodes, noisy
feedback from the destination allows for transmitting informa-
tion securely for almost any wiretap BSC. Finally, we compare
the performance of different schemes in some special cases of
the wiretap BSC.

1) .
As mentioned above, here we have . It is
easy to verify that the optimal choice of and are
and , respectively, and we thus have .
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2) and , where
.

The main channel is a degraded version of the wiretap
channel, so

(22)

But by setting in our half-duplex noisy
feedback scheme, we obtain

The extension to the general discrete modulo-additive
channel is natural. The destination can set , and
generates with a certain distribution . If the randomly
generated , the destination sends a feedback signal,
incurring an erasure to itself. On the other hand, if , it
does not send the feedback signal and spends the time listening
to the source. The achievable performance could be calculated
based on the equivalent channels as done in the BSC. This
scheme guarantees a positive secrecy capacity as seen in the
case where is chosen to be uniformly distributed over

. This is because a uniform distribution over renders the
output at the wiretapper independent from the source input,
i.e., , while the destination can still spend
part of the time listening to the source. Finding the optimal
distribution , however, is tedious.

V. THE MODULO- CHANNEL

In this section, we take a step toward extending our approach
to continuous-valued channels. In particular, we consider the
modulo- channel [29]–[32]. This choice is motivated by two
considerations: 1) this channel still enjoys the modulo struc-
ture which proved instrumental in deriving our results in the
discrete case, and 2) the modulo- channel has been shown to
play an important role in achieving the capacity of the AWGN
channel using lattice coding/decoding techniques [31]. In other
words, an AWGN source–destination channel can be well ap-
proximated by a modulo- channel. In the following, we show
that, similar to the discrete case, noisy feedback can increase the
secrecy capacity of the wiretap modulo- channel to that of the
main channel capacity in the absence of the wiretapper.

Before proceeding further, we need to introduce a few more
definitions. We let denote the set of real numbers. An -di-
mensional lattice is a set of points

(23)

where denotes the lattice generator matrix. A fun-
damental region of is a set such that each
can be written uniquely in the form with ,

, and . There are many different choices
of the fundamental region, each with the same volume, which
will be denoted as . Given a lattice , a fundamental re-
gion of , and a zero-mean white Gaussian noise process with
variance per dimension, the modulo- ( - ) channel is
defined as follows [29].

Definition 6 ([29]): The input of the - channel con-
sists of points ; the output of the - channel is

, where is an -dimensional white
Gaussian noise variable with variance per dimension. Hence,

is the unique element of that is congruent to .

In our wiretap - channel, the output at the wire-
tapper (in the absence of feedback) is also given by

. Here is an -dimensional
white Gaussian noise variable with variance per dimension.
Similar to Section II, we consider noisy feedback, where
the destination sends a feedback signal based on
its received signal, and the received signal at the source is

, where is an -dimen-
sional white Gaussian noise with variance per dimension.
Now, the received signal at the destination and wiretapper are

and ,
respectively.

For example, if , is a lattice in ,
with being one of its fundamental regions.
With this lattice and fundamental region, the output at
the destination is

, where is a
one-dimensional Gaussian random variable with variance .
Here, denotes the largest integer that is smaller than .
One can easily check that . The output at the
wiretapper and source can be written in a similar manner. This

example can be viewed as the continuous counterpart of
the discrete channels considered in Section III.

On setting , and letting be the
probability density function of , one can easily verify that
[29]

(24)
Denote the differential entropy of the noise term by

. Then

(25)

We are now ready to prove the following.

Theorem 7: The secrecy capacity of the - channel
with noisy feedback is

(26)

Proof: The proof follows along the same lines as that of
Theorem 4. For the converse, (26) was shown to be the capacity
of the - channel in the absence of the wiretap in [29],
which naturally serves as an upper bound for the secrecy ca-
pacity, as argued in the proof of Theorem 4.

To achieve this secrecy capacity, the source generates
length- codewords , with the th element being chosen
uniformly from . Hence, each codeword .
Now, at time , the destination generates feedback signals
uniformly over the set , and thus the feedback signal is
uniformly distributed over . Based on the crypto lemma, for
any codeword and any particular noise realization , the
length- random variable received at the wiretapper
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is uniformly distributed over and is independent of .
Hence, we have

(27)

On the other hand, with uniformly distributed over , the
mutual information between and given (the destination
knows ) is

(28)

So, for any , there exists a code with rate
and . This completes the achievablity part.

Our result for the modulo- channel sheds some light on the
more challenging scenario of the wiretap AWGN channel with
feedback. The difference between the two cases results from the
modulo restrictions imposed on the destination and wiretapper
outputs. The first constraint does not entail any loss of generality
due to the optimality of the modulo- approach in the AWGN
setting [31]. Relaxing the second constraint, however, poses a
challenge because it destroys the modulo structure necessary to
hide the information from the wiretapper (i.e., the crypto lemma
needs the group structure). In other words, if the wiretapper is
not limited by the modulo-operation, then it can gain some ad-
ditional information about the source message from its obser-
vations. Therefore, finding the secrecy capacity of the wiretap
AWGN channel with noisy feedback remains elusive. At the
moment, one can compute an achievable rate using a Gaussian
signal as the feedback signal from the receiver [13]. This achiev-
able rate approaches the capacity of the main channel only when
the available power at the receiver is infinite.

VI. CONCLUSION

In this paper, we have obtained the secrecy capacity (or
achievable rate) for several instantiations of the wiretap channel
with noisy feedback. More specifically, with a full-duplex
destination, it has been shown that the secrecy capacity of
modulo-additive channels is equal to the capacity of the
source–destination channel in the absence of the wiretapper.
Furthermore, the secrecy capacity is achieved with a simple
scheme in which the destination randomly chooses its feedback
signal from a certain alphabet set. Interestingly, with a slightly
modified feedback scheme, we are able to achieve a positive
secrecy rate for the half-duplex channel. Overall, our work has
revealed a new encryption paradigm that exploits the structure
of the wiretap channel and uses a private key known only to
the destination. We have shown that this paradigm significantly
outperforms the public discussion approach for sharing private
keys between the source and destination.

Our results motivate several interesting directions for future
research. For example, characterizing the secrecy capacity of
arbitrary DMCs (and the AWGN channel) with feedback re-
mains an open problem. From an algorithmic perspective, it is
also important to understand how to exploit different channel
structures (in addition to the modulo-additive one) for encryp-
tion purposes. Finally, extending our work to multiuser channel
(e.g., the relay–eavesdropper channel [26]) is of definite interest.
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