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Abstract—An authentication counterpart of Wyner’s study of
the wiretap channel is developed in this work. More specifically,
message authentication over noisy channels is studied while imper-
sonation and substitution attacks are investigated for both single-
and multiple-message scenarios. For each scenario, information-
theoretic lower and upper bounds on the opponent’s success, or
cheating, probability are derived. Remarkably, in both scenarios,
the lower and upper bounds are shown to match, and hence, the
fundamental limits on message authentication over noisy channels
are fully characterized. The opponent’s success probability is fur-
ther shown to be smaller than that derived in the classical noiseless
channel model. These results rely on a novel authentication scheme
in which shared key information is used to provide simultaneous
protection against both types of attacks. Finally, message authen-
tication for the case in which the source and receiver possess only
correlated sequences is studied.

Index Terms—Authentication, impersonation attack, noisy
channel, substitution attack, wiretapper.

I. INTRODUCTION

S ECRECY ENCODING, which ensures that a message is
decoded successfully only by its legitimate receiver, and

message authentication, which ensures that an accepted mes-
sage truly comes from its acclaimed transmitter, are among the
fundamental building blocks of secure communication systems.

The fundamental limits on communication secrecy have
been investigated under the two different models shown in
Fig. 1, where a passive opponent tries to overhear the mes-
sage sent by the source to the receiver . The difference
between these two scenarios lies in the channel model. In the
case investigated by Shannon [1], i.e., Fig. 1(a), the channel
is assumed to be noiseless and the source and intended desti-
nation use a common secret key to encrypt and decrypt the
message . Transmission is said to be perfectly secure if the
signal received at the opponent does not reveal any information
about , i.e., , where denotes mutual
information between its two arguments. Shannon proved that
one needs to ensure perfect secrecy, where

denotes the entropy of its argument. Taking channel
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noise into consideration, Wyner developed the wiretap channel
model [2], i.e., Fig. 1(b). In this model, the transmitter exploits
the independence between the two noise processes impairing
the receiver and opponent to secure . More precisely, in
this model, the source and receiver do not share a secret key
a priori and the secrecy capacity is defined to be the largest
transmission rate such that the decoding error at the receiver is
arbitrarily small and the equivocation rate1 at the opponent is
arbitrarily close to the transmission rate. Csiszár and Körner
[3] generalized this model and characterized the capacity of the
discrete memoryless channel (DMC) with security constraints.
The generalization of these results to multiuser channels and
wireless networks has recently emerged as a very active re-
search area (e.g., [4]–[12]).

The model for authentication over noiseless channels, Fig. 2,
was developed by Simmons [13]. In this model, the source
and the receiver share a secret key , which is used to iden-
tify the transmitter. The transmitter and receiver are assumed
to be honest, i.e., they will follow the rules and will not attack
the system by faking messages. When the transmitter intends to
send the message , it transmits over a noise-
less public channel, where is the encoding function. On re-
ceiving , which might be different from due to various
possible active attacks from the opponent , the receiver needs
to decide whether the packet came from the legitimate trans-
mitter or not. If the receiver accepts the packet (i.e., the receiver
believes that the packet is authentic), then it computes an esti-
mate of the source message ; otherwise, it rejects the packet.
In this model, the opponent obtains a perfect copy of . The
following two types of attacks are considered. The first one is
called an impersonation attack, in which the opponent sends

to the destination before the source sends anything. This at-
tack is successful if is accepted by the receiver as authentic,
and the success probability of this attack is denoted as . The
second attack is referred to a substitution attack, in which after
receiving , the opponent modifies it to and sends it to
the destination. The attack is successful if the receiver accepts

and decodes this into another erroneous source message.
The success probability of this attack is denoted as . Obvi-
ously, the opponent will choose the attack that has a higher suc-
cess probability. Hence the success probability of the op-
ponent (i.e., the cheating probability) is .
This model is further extended to the scenario in which neither
the source nor the receiver is honest [14]. To solve possible dis-
putes, an honest arbiter is introduced into this model. Desmedt
et al. [15] further studied the scenario in which the arbiter is also
assumed to be dishonest, and hence, can potentially initiate an
attack.

1Interested readers are referred to [2] for a rigorous definition of the equivo-
cation rate.
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Fig. 1. Two models for secure communications.

Fig. 2. The authentication channel.

Lower bounds on and have been developed in [13]
from first principle and recovered by Maurer [16] from a
hypothesis testing perspective. In particular, it has been shown
that2 and , where
denotes the conditional entropy of given . One can easily
identify a tradeoff between and . To minimize the prob-
ability of a successful impersonation attack, the transmitted
ciphertext must contain a sufficient amount of information
about the secret key in order to convince the receiver that the
transmitted message comes from the legitimate source. That
is should be large, which unfortunately decreases

, since . Hence, the
attacker can take advantage of the leaked information over its
noiseless channel (contained in ) to increase the probability
of a successful substitution attack. In fact, the strategy that
minimizes the lower bound on is to use
half of the key information to protect against the impersonation
attack and the other half of the key information to protect
against the substitution attack, which gives .
These bounds are of a negative nature, since they give only
lower bounds on the cheating probability. The opponent may
be able to achieve much better performance.

Simmons’s model assumes a noiseless channel. However,
since physical transmission systems are noisy, the current
common practice is to use channel coding to convert the noisy
channel into a noiseless one, and then to design an authentica-
tion code on top of channel coding. Liu and Boncelet [18], [19]
also considered the situation in which channel coding is not
perfect, and hence, there are some residual errors induced by
the channel. The main conclusion of these works is that channel
noise is detrimental to authentication, since it will cause the
receiver to reject authentic messages from the transmitter.

In this paper, we take an alternative view of the noisy channel
model and design channel and authentication coding jointly.
This way, we are able to exploit the channel noise to hide the key
information from the opponent. The codebook of our channel

2A slightly better lower bound on the impersonation attack was developed in
[17].

code is designed such that the conditional distribution of the
keys after observing the noisy output at the opponent is very
close to a uniform distribution,3 and hence the opponent is un-
able to use the noisy observations to increase the success prob-
ability of a substitution attack. By using this approach, we de-
rive an upper bound on the cheating probability which is signif-
icantly smaller than the existing lower bounds for the noiseless
channel model. Moreover, this upper bound is shown to coin-
cide with a simple lower bound on the cheating probability. In
particular, we show that , and thus all the key
information can be used to protect against substitution and im-
personation attacks simultaneously. We further consider the au-
thentication of multiple messages using the same key over
the noisy channel. Similar to the single-message case, lower and
upper bounds on the cheating probability are derived and shown
to coincide. Again, all the key information can be used to pro-
tect against all the attacks simultaneously. We then investigate
a scenario in which the source and receiver possess only corre-
lated sequences, instead of sharing a key. In the same spirit as
our earlier results, we show that all of the mutual information
between these two sequences can be used to protect against the
two attacks considered in this work.

The rest of the paper is organized as follows. In Section II, we
introduce our system model and notation. Section III is devoted
to the single message authentication scenario. Next, we analyze
the authentication of multiple message using the same key in
Section IV. Message authentication using correlated sequences
is considered in Section V. Finally, in Section VI, we offer some
concluding remarks.

II. SYSTEM MODEL

Throughout this paper, upper case letters (e.g., ) will de-
note random variables, lower case letters (e.g., ) will denote
realizations of the corresponding random variables, and calli-
graphic letters (e.g., ) will denote finite alphabet sets over
which corresponding variables range. Also, upper case boldface
letters (e.g., ) will denote random vectors whereas lower case
boldface letters (e.g., ) will denote realizations of the corre-
sponding random vectors.

Fig. 3 shows the new model under consideration. It differs
from Simmons’s model only in the channel, which is assumed to
be noisy in our model. More specifically, we consider the DMC
and assume that when the transmitter sends , the opponent re-
ceives with probability

3Rigorous definitions of distance and closeness will be given in the sequel.
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Fig. 3. The authentication channel.

where is the length of the transmitted vector. If the opponent
does not initiate any attack, the legitimate destination will re-
ceive with probability

If the opponent initiates an attack, the value of will de-
pend on the strategy of the opponent. Here and

denote the indicated channel transition probabil-
ities, while , , and range through the finite sets

, , and , respectively. In order to derive more general
bounds, we assume that the channel between the opponent and
receiver is noiseless, and that the opponent can send anything
over this channel. It is worth noting that this assumption does
not incur any loss of generality, and actually gives the opponent
an advantage, since any noisy channel can be simulated with
this noiseless channel by simply randomizing the transmitted
signal.

To identify the transmitter, we assume that the source and
the destination have a common secret key uniformly chosen
from a set having possible values. To transmit the mes-
sage , the source uses a stochastic encoding function to
convert the message and key into a length vector , i.e.,

. Upon receiving , which may come from ei-
ther the source or the opponent, the destination uses a decoding
function to obtain an estimate of the message and key, that is.

. If , the receiver accepts the mes-
sage. Otherwise, the receiver rejects the message. We require
that, if the signal is authentic, the decoding error probability at
the destination must approach zero as the length of the code in-
creases, i.e., for any , there is a positive integer , such
that for all , we have

comes from

There are two components of the error probability : and
, where is the probability of a miss, which is the proba-

bility that the receiver wrongly rejects an authentic message,
and is the probability that the decoder correctly accepts the
signal as being authentic but incorrectly decodes it.

The opponent is assumed to be aware of the system design,
except for the particular realizations and of the key
and message . We consider the two forms of attack described
above. That is, we consider the impersonation attack, in which
the opponent sends a codeword to the receiver before the
transmitter sends anything. Such an attack is successful if is

accepted as authentic by the receiver, and we denote this proba-
bility of success by as noted above. We also consider the sub-
stitution attack, in which the opponent blocks the transmission
of the main channel while receiving . After that, the opponent
modifies the signal and transmits it to the receiver. This attack
is considered to be successful if the modified signal is accepted
as authentic by the receiver and is decoded into that is not
equal to the original message . Again, the success probability
of this attack is denoted by .

III. AUTHENTICATION OF A SINGLE MESSAGE

A. The Wiretap Channel

We begin by reviewing some results related to the wiretap
channel introduced in [2]. The wiretap channel is defined by two
DMCs , where is the input alphabet from the
transmitter, is the output alphabet at the legitimate receiver,
and is the output alphabet at the wiretapper. In the wiretap
channel, the wiretapper is assumed to be passive, and the goal is
to transmit information to the destination while minimizing the
information leakage to the wiretapper. More specifically, to send
a message , the transmitter sends , where
is a stochastic encoder. After receiving , the destination ob-
tains an estimate . The opponent is fully aware of
the system design, and hence, knows the codebook used by the
source. A perfectly secure rate is said to be achievable if
there exist and , such that for each , there is a positive
integer , such that

(1)

and (2)

(3)

The perfect secrecy capacity is defined to be the supremum
of the set of values that satisfy conditions (1)–(3). It is proved
in [3] that the perfect secrecy capacity is given by

where is an auxiliary random variable satisfying the Markov
chain relationship .

The source–wiretapper channel is said to be less noisy than
the main channel if, for all possible that satisfy the above
Markov chain relationship, one has . On the
other hand, if the source–wiretapper channel is not less noisy
than the main channel, there exists a distribution satisfying

such that , and thus the
perfect secrecy capacity is nonzero. One of the main insights
gleaned from the wiretap channel is that perfectly secure com-
munication is possible, without sharing a secret key a priori
between the source and destination, by using a codebook whose
codeword rate is higher than the secret message rate (i.e.,
one message will correspond to several different codewords).
Usually, the codeword rate is set to be the rate that can be
supported by the source–destination channel allowing the legit-
imate receiver to recover the correct codeword while confusing
the opponent with the high codeword rate.
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B. Proposed Authentication Scheme

In authentication applications, when the source is sending
information, the opponent tries to overhear the message and
uses the information gained to initiate a substitution attack.
This eavesdropping stage corresponds to the wiretap channel
model. This observation motivates our approach of using a
wiretap channel code to protect our authentication key. More
specifically, there exists an input distribution such that

, then for a given fixed key size
and arbitrarily small , there exists a positive integer ,
such that

(4)

Also, for a given message size and key size , there
exists a positive integer , such that

(5)

In our transmission scheme, the source first generates4 a
codebook for the wiretap channel with code-
words, whose length satisfies conditions (4), (5), and a low
decoding error probability requirement. The source then parti-
tions the codebook into subsets, associating one subset with
each key. Since the length satisfies (5), there are more than
codewords in each subset. The source then further divides each
subset into bins, each corresponding to a message. There
are multiple codewords in each bin. The codebook used in our
authentication scheme is shown in Fig. 4. In the transmission,
if the intended message is , and the key is , the source then
randomly chooses a codeword from the th bin of the th
subset using a uniform distribution. The source then transmits

over the channel. The opponent receives with probability

The receiver receives . If the opponent does not initiate any
attack, then

On the other hand, if the opponent chooses to attack, the value
of depends on the opponent’s attack strategy.

After receiving , the destination first obtains an estimate
of the transmitted codeword using typical set decoding; that is,
the destination decodes into if are jointly typical. It
then obtains an estimate of the message and an estimate as
the corresponding bin index and subset index, respectively, of .
We denote the decoding process at the destination as

. If , the receiver accepts the message as authentic;
otherwise, it rejects the message.

Note that in the noiseless model, this scheme does not work,
since the opponent can obtain a perfect copy of , and hence can
determine the values of and . Thus, the substitution attack
will be successful. In the noisy channel model, if we design the

4An explicit procedure for generating and partitioning the codebook will be
given in the sequel.

Fig. 4. The codebook used in our authentication scheme. The codebook is di-
vided into ��� subsets, each of which is further partitioned into ��� bins. Each
subset corresponds to a key �. Each bin in each subset corresponds to a message
�.

code properly, the output at the opponent will not provide it with
such information, as shown in the sequel.

First, let us consider the impersonation attack. The optimal
strategy for the opponent is to transmit a codeword from the
subset corresponding to the key that has the largest probability
of being accepted by the receiver, i.e., , which will be trans-
mitted by the opponent, should be chosen from the subset corre-
sponding to such that the following probability is maximized:

where is an indicator function that equals if is
accepted as authentic, and equals in other cases. In our scheme,

if ; otherwise, , and hence

For a substitution attack, the opponent knows , and hence
can choose based on this information. Let be the transfor-
mation employed by the opponent to transform to . Here,

can be any function, either deterministic or stochastic. Also,
denote . Note that is the decoding
function at the destination, and hence and are the decoded
message and key at the destination after the opponent’s attack.
Obviously, for each observation , the opponent should choose

so that

is maximized. Here if and equals
otherwise. Meanwhile, as defined above, if

, and equals otherwise. Hence, the success probability of the
substitution attack is

(6)
To simplify the analysis, we have the following lemma.

Lemma 1: For any substitution attack strategy of the oppo-
nent, we have

(7)

Proof: We can bound as follows:
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(8)

In this expression, inequality follows from the fact that
for any , , and ; inequality comes

from the fact that for any and ; and
inequality comes from the fact that

(9)

since only one term of is , and all the remaining terms
are zero.

This result shows that, after receiving , the success proba-
bility of any substitution attack is upper-bounded by the prob-
ability of the most likely key. With , the opponent gains an
amount of information about the key, and thus can use
this information to choose that maximizes . From (3),
we have that

(10)

The inequality in (10) is not enough to analyze(8) for the
following two reasons. First, though is small, might go to
infinity as grows, and hence the opponent may eventually gain
a sufficient amount of information about the key. This point has
been pointed out in [20]–[22]. The second reason is that there
is a maximization in the summand in (8), which means that we
need to consider the worst case scenario, whereas is
an average quantity. Actually, this fact is exploited in [13] and
[16] to derive lower bounds by replacing this maximization with
an averaging, which readily gives us a lower bound and is more
amenable to analysis.

In Section III-C, we borrow techniques from [22] and [23] to
analyze this term.

C. Bounds

We begin with some definitions. Let be a codebook for the
wiretap channel, and let be the joint distribution on

. We denote by the marginal distribution of when the
input distribution is limited to, and is uniform on, , and by

the conditional distribution of given .
Let be a partition of , and denote this partition

as a mapping, i.e., : . Also denote by the
distribution of when the input distribution is uniform on ,
i.e.,

Define

with

Here is the (i.e., variational) distance between the
two distributions and . When is zero, the oppo-
nent cannot distinguish between the uniform input distributions
on and by observing only the channel output.

Intuitively, if can be made arbitrarily small by appro-
priate choice of and , the receiver gains no information about
the subset from which the transmitted codeword comes,
given the channel output .

Our main result is the following theorem.

Theorem 1: If the secrecy capacity of the wiretap channel is
nonzero, then there exist constants and so that

if is sufficiently large. In particular, if the codeword length
goes to infinity, then , and hence,

.
Proof: (Outline) To obtain a lower bound, we can consider

the situation in which the opponent guesses the value of the key.
If the guess is correct, the opponent can invoke any attack and
the attack will be successful. The probability that the opponent
guesses the value of the key correctly is . This provides
a lower bound.

To prove the upper bound provided in the theorem, we need
to show that the success probability of the opponent’s attack
with any strategy is upper-bounded by the bound provided in
the theorem, if we use the authentication scheme proposed in
the current work. To this end, we divide all possible output se-
quences at the opponent into two subsets: and . If ,

is much larger than . Hence, if the oppo-
nent observes a sequence , the success probability of a
substitution attack will be high. On the other hand, if ,

is close to . Thus, if the opponent ob-
serves a sequence , the opponent does not gain any in-
formation about the key from the output. We show that if the
source uses a code with exponentially small , which has
shown to exist [22], the probability that the opponent will ob-
serve is exponentially small. Thus, almost all the se-
quences have the property that is close to

. Simple calculation then shows that is arbitrarily close
to . For the impersonation attack, the optimal strategy for
the opponent is to chooses a codeword at random, and hence
is .

Please refer to Appendix I for technical details.

Remark 1: Theorem 1 implies that the opponent is reduced to
guessing the key, which essentially means it has been defeated.
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IV. AUTHENTICATION OF MULTIPLE MESSAGES

In this section, we consider the situation in which the same
key is used to authenticate a sequence of messages

, one per time slot. Here is finite. The opponent
will choose a time slot in which to initiate either an imper-
sonation attack or a substitution attack. For an impersonation
attack at slot , the opponent sends a message to the receiver
before the source sends anything. The opponent will choose the
message based on the information it has gained through the last

rounds of transmission. The attack will be successful if
the opponent’s message is accepted as authentic at the receiver.
We denote by the success probability of the impersonation
attack at the th time slot. For a substitution attack at slot ,
the opponent will intercept the source’s th packet, modify it,
and send the modified packet to the receiver. The opponent
can make the modification using the information gathered in
the rounds of transmission that have occurred so far. The
attack will be successful if the modified signal is accepted as
authentic and the message part is decoded into an incorrect
message. We denote by the success probability of the
substitution attack at the th time slot. Obviously, the opponent
will choose the attack that maximizes its cheating probability

.
The authentication of multiple messages with the same

key under the noiseless model has been studied in [16] and
[24]–[26]. In these works, to avoid a replay attack, in which
the opponent simply resends one of the codewords it has
received before, one of the following assumptions is made: 1)
the messages in all blocks are distinct (e.g., [24], [25]) or 2)
the authentication schemes used in all blocks are distinct (e.g.,
[26], [26]). Under the second assumption, a lower bound for

with the noiseless transmission model was derived in [16],
namely

This bound suggests that after several rounds of authentication,
the opponent may be able to obtain almost all the information
about the key, and hence, may be able to choose an attack with a
high success probability. On the other hand, in the following we
show that with a noisy channel model, one can limit the informa-
tion leaked to the opponent, and thus, the success probability of
the opponent will not increase even by observing more packets.
In the current work, we do not need to make either of the two as-
sumptions mentioned above (i.e., all messages can be the same,
as can all the authentication schemes). The channel noise ren-
ders the output at the opponent to be almost independent of the
input, and hence the success probability of the replay attack or
any other attack is bounded, as we argue next.

We use the same scheme as for the single-message case; that
is, the source transmits the message and key using a wiretap
channel code. More specifically, the source uses the same code-
book discussed in Section III, with subsets, each corre-
sponding to a key. Also, each subset contains bins, each
corresponding to a message. In block , if the intended mes-
sage is , the source randomly chooses a codeword from
the th bin in the th subset using a uniform distribution. The

source then transmits over the channel. The opponent re-
ceives with probability

The receiver receives . If the opponent does not initiate any
attack, then

On the other hand, if the opponent chooses to attack, then the
value of depends on the opponent’s attack strategy. At each
time slot, the receiver performs jointly typical set decoding and
obtains an estimate based only on , and then sets and

to be the bin index and subset index associated with . If
is the same as the key that the receiver knows, then the message
is accepted as authentic; otherwise, the message is rejected. As
before, we use as the decoding process at the
receiver.

To initiate an impersonation attack in block , the oppo-
nent can use the information gained through .
Let be the strategy employed by the source that maps

to . We also denote by
the decoded message and key at the

destination after the opponent’s attack. Obviously, for each
, the opponent will adapt a strategy so that

the following probability is maximized:

in which is the indicator function defined in Sec-
tion III. Hence, the success probability of the impersonation
attack after receiving rounds of transmission is

(11)

The inequality follows from the same reasoning as that used to
obtain (9).

The opponent can also choose to invoke a substitution attack
after receiving the th transmission, i.e., it changes the content
of the th package and sends it to the destination. Let be
the strategy employed by the source that maps to .
We also denote by
the decoded message and key at the destination after the oppo-
nent’s attack.

The attack is successful if and . For each
possible observation , the opponent will adopt a
strategy so that the following probability is maximized:

in which and are defined as in Section III.
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Hence, the success probability of the th substitution attack
is

With regard to this quantity, we have the following result.

Lemma 2:

(12)

Proof: The proof follows from the same steps as those used
in the proof of Lemma 1. Thus, we omit it here.

Note that (11) and (12) are valid for any attack strategy of the
opponent, including the replay attack mentioned above. Also
note that (11) and (12) have similar forms. Hence, in the proof
of the following theorem, we derive bounds only for . The
bounds for follow similarly.

Theorem 2: If the secrecy capacity of the wiretap channel is
nonzero, then there exist constants and so that

if is sufficiently large. In particular, if the codeword length
goes to infinity, then .

Proof: (Outline) We first show that the mutual information
between the key and observations at the opponent in the blocks
is exponentially small. Using a result relating divergence and
distance, it is then shown that with a proper definition
is exponentially small. We then follow the same steps as that
in the proof of Theorem 1 to show the bounds. Please refer to
Appendix II for details.

V. AUTHENTICATION WITH CORRELATED SEQUENCES

In some applications, instead of sharing a key , the source
and the receiver may possess correlated, but not identical,
sequences. For example, in biometric authentication systems,
where individuals are verified based on their physiological
characteristics such as fingerprint, iris, signature, etc., two
measurements of a physiological characteristic of the same
person are unlikely to be exactly the same, due to measurement
noise, injuries, etc. But these two sequences will be correlated.

In this section, we assume that the source and receiver possess
length- correlated sequences and , respectively, gener-

ated according to a joint distribution . We as-

sume that the opponent knows the joint distribution .
The marginal distributions of and are denoted as
and , respectively. We will ultimately need to be suffi-
ciently large. In our authentication scheme, when a source sends
a message, it will also send its knowledge of the sequence to

the destination to authenticate the message. More specifically,
the source first does source coding for sequence . That is, the
source gives a unique index for any -strong typical [27] -se-
quence, and gives any other nontypical sequence index . There
are at most typical sequences, each having
probability approximately . Then for any message size

, the source generates a code for the wiretap channel whose
length satisfying the conditions in (4) and (5). As before, the
source divides the code into subset, each corresponding
to one strong typical sequence. Also, the source partition each
subset into bins, each corresponding to a message. To send
message with sequence , the source randomly chooses a
codeword from the th bin in the subset corresponding to

. Upon receiving a signal, the receiver obtains an estimate
of the codeword using a typical set decoder. The receiver then
obtains an estimate of the sequence by choosing it as the
sequence corresponding to the subset index of the . If is
strongly jointly typical with with respect to , the
receiver accepts the message; otherwise, it rejects the message.

The following theorem shows the bounds for the cheating
probability of the opponent in this case.

Theorem 3: Suppose the secrecy capacity of the wiretap
channel is nonzero, and there are length- correlated sequences

and at the source and receiver, respectively. Then, for
any arbitrarily small , there is an , such that

for all when goes to infinity.
Proof: Please refer to Appendix III.

VI. CONCLUSION

In this paper, we have laid the foundation for a theory of
message authentication over noisy channels. Towards this end,
information-theoretic lower and upper bounds on the cheating
probability in the single message authentication scenario have
been derived. Remarkably, these bounds have been shown to
coincide, resulting in a complete characterization of the funda-
mental limits on authentication over noisy channels. We have
also derived the corresponding bounds for the multiple mes-
sage authentication case and have shown that they match. In-
terestingly, our results imply that the key information can be
used to protect against various attacks simultaneously. We have
further shown that, compared with the classical authentication
model in which the channel is assumed to be noiseless, the oppo-
nent’s success probability is largely reduced in both scenarios.
We have also extended our study to the message authentication
scenario in which the source and receiver only possess corre-
lated sequences. We thus have established the utility of channel
noise in message authentication applications.

Exploiting other characteristics of channels, such as multi-
path fading, to facilitate message authentication is an interesting
avenue for further research. Also, developing authentication
techniques for the case in which the source–opponent channel
is less noisy than the main channel remains an open problem.
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APPENDIX A
PROOF OF THEOREM 1

We need the following lemma from [22].

Lemma 3 ([22]): Consider a wiretap channel ,
and choose . Suppose is a type class with
bounded away from , and such that .
Then, there exist a codebook with size ,
drawn from , and equal-size disjoint subsets of
with

such that is the codeword with exponentially small

average probability of error for the main channel . More-
over, the partition function of with

has exponentially small
for the distribution defined on by

Furthermore, is exponentially small.
Proof: Please see [22].

With this lemma, we proceed.
1) Lower bound: The opponent can simply guess the value

of , then randomly choose a codeword from and send the
corresponding codeword to the destination. The probability of
success is . Thus

2) Upper bound: We use the following scheme.
Choose and let be a type of satisfying

. Denote by the set of ’s having
type . Since the source–wiretapper channel is not less noisy
than the main channel, such a exists.

Now choose and such that

and

and then choose . ( also needs to satisfy
other conditions specified later.) Let and ,
be the codebook and corresponding partition satisfying the con-
ditions of Lemma 3. That is, for this and , there is an
such that

(13)

When the key is , the transmitted codeword comes from .
The receiver will accept any signal that can be decoded into a
codeword belonging to the subset corresponding to . It is easy
to see that .

Based on (8), for an impersonation attack, after receiving ,
the optimal strategy for the attacker is to choose a codeword
from , where maximizes .

Let us rewrite as follows:

with

Notice that in our scheme and is the
conditional probability that the key value is after observing .
Hence

On defining

we have

Here is the set of such that the distance between the
conditional distribution and the uniform distribution is
large. Hence, if the opponent observes , it may be able to guess
the value of the key correctly with high probability. But

and thus

For those , we have

Thus, for , we have

(14)

It follows from Lemma 1 that

(15)

Here is due to the fact that and (14),
while is due to (13).
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On setting and , we obtain the desired upper
bound.

By increasing , can be made arbitrarily close to ,
and hence

as .
Using the union bound, the error probability at the receiver

can be bounded as follows:

no attack no attack

no attack

in which the first term corresponds to the miss probability, while
the second term corresponds to decoding error of the message
part. For any message size and key size , as the code-
word length increases, the probability that goes to zero,
as guaranteed by the code construction.

APPENDIX B
PROOF OF THEOREM 2

1) Lower bound: For each attack, the opponent can simply
ignore available information and guess a value of , and send
a codeword corresponding to this key value for which the prob-
ability of success is

Thus

2) Upper bound: As discussed in Section IV, we use the same
scheme as for the single-message case. After the th packet,
the opponent gains an amount of information
about the key . From Lemma 3, we know that ,
where with . We also have that, given ,
the ’s are conditionally independent of each other, and thus

forms a Markov chain. Hence

Thus

(16)

and we therefore have

(17)

Let be the codebook used by the source. Let us further rep-
resent the random partition of by a mapping

: . Denote by the joint
distribution on

where each ranges over , by the marginal
distribution of when the source uses uniform dis-
tribution on , and chooses input codeword uniformly from5

, and by

the conditional distribution of given the output at
the opponent.

Let us denote by the conditional distribution
on when the key is . That is
the distribution of the output at the opponent when the input is
uniformly chosen from , and thus

Now, define

where

From Pinsker’s inequality [28], we have

and hence, using (17), we have

We write as follows:

with

On defining

we have

5Note that in the transmission, we use the same key for each transmission.
Hence, if the key is �, then the transmitted codewords ���� � � � � � ��� � in the �

blocks are uniformly distributed on � � � � � � � .
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It follows that

and thus , with .
For any , we have

Thus, on following the same steps as those of (15), we have

On setting and , we obtain the desired upper
bound. As the length of the code can be sufficiently long,
is arbitrarily close to , hence

as .
Finally, following the same steps as above, we also have

as the codeword length goes to
infinity.

Similar to the single-message authentication part, the error
probability of the message can be bounded as the sum of the
probability of a miss and the probability of error in decoding
the message. These two terms approach zero as the length of
the codeword increases.

APPENDIX C
PROOF OF THEOREM 3

The proof follows closely that of Theorem 1. In the following,
we outline the key steps. For a given , we have the fol-
lowing.

1) Lower bound:
For the impersonation attack, the opponent can randomly

choose one strongly typical sequence , and transmit the
codeword corresponding to the index of this sequence. The
probability that this particular will be strongly jointly
typical with with respect to is larger than [28]

, in which can be made arbitrarily small by
setting and sufficiently large .

2) Upper bound:
The error probability when the signal truly comes from the

source can be bounded as

are not strongly jointly typical

It is well known that, for any , there exists a positive
number such that if , then the probability that
are not strongly jointly typical is less than . The code for the
wiretap channel guarantees that

, if is sufficiently large. Hence, the decoding error at the
destination is arbitrarily small, if and are sufficiently large.

Now for the impersonation attack, the optimal strategy for
the opponent is to send index , such that the probability that

, which is the strongly typical sequence associated with index
, and are strongly jointly typical with respect to

is maximized. Since and are drawn independently, the
success probability of this attack is bounded as [27], [28]

in which is arbitrarily small if and is sufficiently
large.

For the substitution attack, following the same steps as that
of Lemma 1 and using properties of strongly jointly typical se-
quences [27], [28], we have

(18)

Following the same arguments as in Theorem 1, we can show
that there exist constants and a partition of the
output sequences at the opponent such that

and for any , we have

Proceeding from (18), we have

Thus

in which . By properly choosing and ,
can be made to be arbitrarily small. For any and satisfying
conditions specified above, this upper bound is arbitrarily close
to , as goes to infinity.

This completes our proof.
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