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Optimal Selection of Channel Sensing Order in
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Abstract—This paper investigates the optimal sensing order
problem in multi-channel cognitive medium access control with
opportunistic transmissions. The scenario in which the availabil-
ity probability of each channel is known is considered first. In
this case, when the potential channels are identical (except for
the availability probabilities) and independent, it is shown that,
although the intuitive sensing order (i.e., descending order of the
channel availability probabilities) is optimal when adaptive mod-
ulation is not used, it does not lead to optimality in general with
adaptive modulation. Thus, a dynamic programming approach to
the search for an optimal sensing order with adaptive modulation
is presented. For some special cases, it is proved that a simple
optimal sensing order does exist. More complex scenarios are
then considered, e.g., in which the availability probability of each
channel is unknown. Optimal strategies are developed to address
the challenges created by this additional uncertainty. Finally, a
scheme is developed to address the issue of sensing errors.

Index Terms—Cognitive radio, medium access control, dy-
namic programming.

I. INTRODUCTION

W IRELESS networks have experienced rapid growth
during the past two decades. This has caused a spec-

trum scarcity problem, since much of the prime wireless
spectrum has been licensed for specific applications. However,
according to recent measurements of wireless spectrum usage,
the licensed spectrum is actually severely under-utilized. Thus,
the idea of dynamically accessing the spectrum has attracted
considerable attention, which allows unlicensed users (referred
to as secondary users) to access the spectrum at a particular
time and location when and where licensed users (referred to
as primary users) are not active. Recently cognitive radio has
demonstrated the potential to enable dynamic spectrum access,
mainly because of its ability to adapt to dynamic spectral
environments [1].

In such systems, in order to avoid interference to the pri-
mary network, it is necessary for secondary users to determine
(usually via spectrum sensing) whether there exist primary
activities in the spectrum before their secondary transmissions.
In this research, we consider the scenario in which a secondary
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user has a number of potential wireless channels, and the
secondary user can sense one channel at a time. Since the
secondary user cannot sense two or more channels simultane-
ously, one task is to determine which channel to observe at a
given time so as to fully utilize the spectral opportunities.
Similar problems of multi-channel medium access control
have attracted considerable recent attention. In [2], an analyt-
ical framework is provided based on the theory of partially
observable Markov decision processes. The availability of
each channel is assumed to follow a Markov chain, whose
transition matrix is known to secondary users. In [3], [4], the
dynamic channel selection problem is formulated as a multi-
armed bandit problem. In [5], [6], an optimal channel probing
and transmission policy is derived, with an assumption that
recall (i.e., using one of the previously sensed channels) and
guess (i.e., using a channel that has not been sensed yet) are
allowed.

In this paper, we investigate the multi-channel cognitive
medium access control problem, in which multiple potential
channels (i.e., frequency bands) are available. Unlike [2]–
[4], we consider a cognitive radio network with opportunistic
transmissions explained as follows. The secondary user will
not only sense a channel to decide whether it is free, but will
also estimate the channel coefficient to decide the transmission
rate. If a channel is sensed to be free, but the channel quality
between the secondary transceiver pair is not satisfactory, the
secondary user may still skip this channel and keep sensing
other channels. The opportunistic transmission creates a new
degree of freedom for the secondary user. The goal of the
secondary user is to find a free and good channel as quickly
as possible. In this case, the channel sensing problem can
be formulated as an optimal stopping rule problem [7] if the
channel sensing order is determined in advance. Our aim is
to find an optimal channel sensing order such that the user
achieves the maximal gain. Single-channel and multi-channel
medium access control with opportunistic transmissions have
been studied in [8] and [9], respectively. The major difference
between [8], [9] and our work is that in [8] and [9], the single
and multiple channels are assumed to be always available, and
hence, different sensing orders do not make any difference
in the achieved gain. In our research, we examine instead
the optimal sensing order problem for the cognitive radio
setup in which the channels are not always available (due to
activities of the primary users) and the channel availability
probabilities are different from one another. We show that
the intuitive and plausible strategy that the secondary user
senses the channels with the larger availability probabilities
first does not generally lead to an optimal solution. We then
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propose a dynamic programming approach to obtain an opti-
mal solution. We also examine several scenarios with certain
structures and find simple optimal rules for these scenarios.
Further, we investigate more complex scenarios (e.g., with
unknown channel availability probabilities), and the scenario
with channel sensing errors as well.

The rest of this paper is organized as follows. The network
model is described in Section II. The optimal sensing order
problem in a generic case is investigated in Section III. Some
special cases with resulting simple sensing orders are studied
in Section IV, while more complex scenarios are discussed
in Section V. The impact of sensing errors is discussed and
addressed in Section VI, followed by concluding remarks and
further discussions in Section VII.

II. NETWORK MODEL

Consider a secondary user and a number, N , of potential
channels having IDs from 1 to N . The secondary user is
operated in a time-slotted fashion, where the length of each
time slot is T . The secondary user also has a sensing order
(s1, s2, ..., sN), which is a permutation of the set {1, 2, ..., N}.
In a given time slot, the secondary user senses the channels
sequentially according to the sensing order, until it stops at
a channel based on a specific criterion (e.g., the channel is
sensed to be free and it has acceptable channel quality), and
transmits its information in that channel during the remainder
of that time slot. It is assumed that accurate channel sensing is
achieved, and there is no sensing error. The impact of channel
sensing errors is to be discussed in Section VI. Fig. 1 shows
the channel sensing and information transmission procedure
at the secondary user in a time slot, where the user stops
at channel sk, and τ denotes the time needed for sensing a
channel and estimating the channel gain, which is assumed to
be the same in all the channels.

In each time slot, channel i (1 ≤ i ≤ N ) is free (i.e., no
primary user activity) with probability θi(∈ (0, 1)), which is
the availability probability of that channel. With little loss of
generality, we assume that no two channels have the same
availability probability. For each channel, the busy/free status
in each slot is assumed to be independent of the status in other
slots, and also to be independent of the status in other channels
as well. We consider fading channels. For each channel, the
signal-to-noise ratio (SNR) is fixed within a time slot, and
changes randomly at the beginning of the next time slot. The
channel SNR γ is assumed to be independent and identically
distributed across time slots and across different channels,
with a common probability density function (pdf) denoted
by hSNR(γ). Opportunistic transmissions are used. If the
secondary user decides to transmit in a free channel i, the
achievable transmission rate is f(SNRi) where SNRi is the
SNR of the secondary user in channel i, and f(·) is a non-
descending function mapping SNR to the transmission rate.
With this model, the channel sensing problem becomes an
optimal stopping problem [7], [9] as described below.

If channel si is sensed busy, then the secondary user
proceeds to sense channel si+1. When channel si is sensed
free, the secondary user will transmit at channel si as long
as the achieved transmission rate at channel si is greater than

S1

S2

Sk

SN

...

...

Channel sensing and estimation

Information transmission

Fig. 1. The channel sensing and information transmission procedure at a
secondary user in a time slot.

the expected rate if the user proceeds to the next channel (i.e.,
channel si+1). Hence, the reward (throughput) at channel si

is given by

ui =

⎧⎪⎪⎨
⎪⎪⎩

cif(SNRsi), if i = N (stop at channel si)
cif(SNRsi), if i �= N and cif(SNRsi) > Ui+1

(stop at channel si)
Ui+1, otherwise (proceed to channel si+1)

(1)
where ci is the effectiveness of transmitting at channel si,
given by ci = 1 − i·τ

T (from Fig. 1), and Ui+1 (i ≤ N − 1)
is the expected reward at channel si+1 if the user proceeds to
that channel, given by

Ui+1 =
{
θsi+1E[ui+1] + (1 − θsi+1)Ui+2, if i < N − 1
θsi+1E[ui+1], if i = N − 1

(2)
where E[·] denotes expectation. The sequence
{U1, U2, ..., UN} can be obtained recursively from UN

to U1 using (1) and (2) [9]. No recall is allowed, i.e., the
secondary user cannot return to transmit at a previously
sensed channel. This requirement is reasonable for the
following reason. In a secondary network, it is possible that a
number of secondary users exist. If a secondary user returns
to access a previously free channel, a collision may happen
since the channel may be accessed by another secondary user
at that time.

The expected reward U1 represents the expected transmis-
sion rate of the secondary user with the N channels, and is
dependent on the sensing order. The goal of this paper is to
find an optimal sensing order and the corresponding stopping
rule.
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III. OPTIMAL SELECTION OF SENSING ORDER

A. Is the Intuitive Sensing Order Optimal?

The goal of channel sensing is to find an acceptable wireless
channel (i.e., a channel that is free and has satisfactory
channel gain) as quickly as possible. In a general stopping
rule problem, it is shown that an optimal sensing order cannot
be determined by a function of the moments of the random
variables to be observed [10]. However, observation overhead
(e.g., the τ in Fig. 1) is not considered in this finding. And
additionally, in the general case discussed, each random vari-
able can have any arbitrary distribution. Thus the preceding
finding may be too “general" for our special case, in which all
the channels (viewed as random variables to be observed) are
statistically identical (except for the availability probabilities)
and independent. For our case, it is not unreasonable to
expect that the user should check the channels according to
descending order of θi, referred to as Intuitive Sensing Order.
In other words, the first moment of the random variables
is used to determine the sensing order. Indeed, the Intuitive
Sensing Order is optimal when adaptive modulation is not
used, as shown in the following lemma. Without adaptive
modulation, we assume that whenever the user transmits, the
rate is a constant R 1.

Lemma 1: If adaptive modulation is not used, the user
should stop at the first free channel, and the Intuitive Sensing
Order is optimal in terms of expected reward U1.

Proof: When adaptive modulation is not used, we have

f(SNRi) ≡ R, ∀i. (3)

At any channel si, if it is sensed to be free, the transmission
rate if the user stops here is ciR > ci+1R ≥ Ui+1, i.e., greater
than the expected transmission rate if the user proceeds to
channel si+1. So from (1), the user should stop at the first
available channel.

We prove the optimality of the Intuitive Sensing Or-
der by contradiction. Suppose an optimal sensing order is
(s1, s2, ..., sN ), and there exists k < N such that θsk

< θsk+1 .
Then from (2), we have

Uk

= θsk
ckR+ (1 − θsk

)
(
θsk+1ck+1R+ (1 − θsk+1)Uk+2

)
= (θsk

ck + θsk+1ck+1)R − θsk
θsk+1ck+1R

+(1 − θsk
)(1 − θsk+1)Uk+2 (4)

where we define UN+1 = 0 (for the case k = N − 1).
We get a new sensing order by switching the order of

channels sk and sk+1, and keeping all the other channels the
same. We have

U new
k = (θsk+1ck + θsk

ck+1)R − θsk
θsk+1ck+1R

+(1 − θsk
)(1 − θsk+1)Uk+2. (5)

1When adaptive modulation is not used, it is possible that a transmission
may fail due to poor channel quality. So it may be desirable to let the user
skip a free channel when the channel gain is below a threshold λ. This case
is actually equivalent to the case in which 1) the availability probability of
channel i ∈ {1, ...,N} is θ′i = θi·Prob{channel gain ≥ λ}, and 2) whenever
the user transmits, the rate is R.

Since ck > ck+1 and θsk
< θsk+1 , it can be easily seen that

Uk < U new
k . Further we have

Uk−1 = θsk−1ck−1R + (1 − θsk−1)Uk

< θsk−1ck−1R + (1 − θsk−1)U
new
k = U new

k−1. (6)

Similarly, we have U1 < U new
1 . This contradicts the assump-

tion that the sensing order (s1, s2, ..., sN ) is optimal.
On the other hand, when adaptive modulation is adopted,

the Intuitive Sensing Order may no longer be optimal. We
demonstrate this by examples as follows.

Let Γ denote the mean channel gain of each channel.
Consider the case of Rayleigh fading, in which the pdf of
the channel gain is

hSNR(γ) =
1
Γ
e−

γ
Γ , γ > 0. (7)

Assume that the transmission rate achievable in channel i
(when channel i is free) is log(1 + SNRi). The secondary
user senses the channels according to the order (s1, s2, ..., sN ).
Then we have

UN = θsN

∫ ∞

0

cN log(1+γ) · 1
Γ
e−

γ
Γ dγ = θsN cNe

1/Γψ

(
1
Γ

)
(8)

where

ψ(x) =
∫ ∞

x

e−t

t
dt. (9)

For 1 ≤ i < N , we have

Ui = θsiE[ui] + (1 − θsi)Ui+1

= θsi

[∫
cilog(1+γ)>Ui+1

cilog(1 + γ) · 1
Γ
e−

γ
Γ dγ

+
∫

cilog(1+γ)≤Ui+1

Ui+1 · 1
Γ
e−

γ
Γ dγ

]
+(1 − θsi)Ui+1

= θsici

∫ ∞

e

Ui+1
ci −1

log(1 + γ) · 1
Γ
e−

γ
Γ dγ

+θsiUi+1

∫ e

Ui+1
ci −1

0

1
Γ
e−

γ
Γ dγ + (1 − θsi)Ui+1

= θsicie
1/Γψ

⎛
⎝e

Ui+1
ci

Γ

⎞
⎠ + Ui+1. (10)

Let the expected reward for a sensing order (s1, s2, ..., sN ) be
denoted by

G(θs1 , θs2 , ..., θsN ) = U1 (11)

where G(x1, x2, ..., xk) means the expected reward for the
case in which i) there are k potential channels with availabil-
ity probabilities x1, x2, ..., and xk, respectively, and ii) the
sensing order is to sense first the channel with availability
probability x1, then the channel with x2, ..., and finally the
channel with xk .

Lemma 2: There exist θ1 and θ2 such that θ1 > θ2, but
G(θ1, θ2) < G(θ2, θ1).

Proof: Let τ/T = 0.01, Γ = 10, θ1 = 0.9, and θ2 = 0.5.
Then G(θ1, θ2) = 1.95 < G(θ2, θ1) = 2.02.

Lemma 2 indicates that the Intuitive Sensing Order is not
optimal in general.
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Lemma 3: There exist θ1, θ2 and θ3 so that G(θ1, θ2) >
G(θ2, θ1) and G(θ2, θ3) > G(θ3, θ2), but G(θ1, θ2, θ3) <
G(θ2, θ1, θ3).

Proof: Let τ/T = 0.01, Γ = 10, θ1 = 0.2, θ2 = 0.6,
and θ3 = 0.9. Then G(θ1, θ2) = 1.3672 > G(θ2, θ1) =
1.3600; G(θ2, θ3) = 2.0741 > G(θ3, θ2) = 2.0060; and
G(θ1, θ2, θ3) = 2.1215 < G(θ2, θ1, θ3) = 2.1257.

Lemma 3 indicates that concatenation of optimal sensing
orders does not lead to an optimal order in general.

B. A Dynamic Programming Solution for Optimal Sensing
Order Search

Since the Intuitive Sensing Order is not optimal in general,
it may seem necessary to use brute force search to find an
optimal order. The computational complexity of brute force
search is O(N · N !) if the complexity in calculating the
expected reward at a specific channel is O(1). In this situation,
a low-complexity method is desired, and this is our target.
Before describing our low-complexity method, we present the
following lemma.

Lemma 4: For a set of N channels with availability prob-
abilities θ1, θ2, ..., and θN , if (s1, s2, ..., sN ) is an optimal
sensing order, then for any k ∈ {1, 2, ..., N}, U (s1,s2,...,sN)

k is
not less than U

(s1,s2,...sk−1,P (sk,...,sN))
k , where P (sk, ..., sN)

denotes any permutation of (sk, ..., sN), and U (x1,x2,...,xN)
k is

given by (2) when the sensing order is (x1, x2, ..., xN ).
Proof: We use proof by contradiction. Suppose there exist

k ∈ {1, 2, ..., N} and P (sk, ..., sN ) such that U (s1,s2,...,sN)
k <

U
(s1,s2,...sk−1,P (sk,...,sN))
k . Then we have (12) on the top of

the next page. Using similar steps, finally we obtain

U
(s1,s2,...,sN)
1 < U

(s1,s2,...,sk−1,P (sk,...,sN))
1 (13)

which contradicts the condition that (s1, s2, ..., sN ) is an
optimal sensing order. This completes the proof.

Based on Lemma 4, we can formulate a dynamic program-
ming solution for the optimal sensing order problem of the
secondary user, as follows.

Stage 1 – Calculate the maximal expected reward2 value
associated with the final channel in the sensing order. In
this stage, a state is represented by the set of sensed chan-
nels (i1, i2, ..., iN−1). So there exist

(
N

N−1

)
states. For state

(i1, i2, ..., iN−1), the maximal reward is

Ω1
max(i1, i2, ..., iN−1)

= θl∈N\{i1,i2,...,iN−1}

∫ ∞

0

cNf(γ)hSNR(γ)dγ (14)

where the superscript ‘1’ means the stage number and N
denotes the set of all N potential channels. Since the com-
putational complexity for the calculation at a channel is O(1),
the computational complexity at this stage is O

((
N

N−1

))
.

Stage k (1 < k ≤ N ) – Calculate the maximal reward value
associated with the kth from the last channel in the sensing
order, based on results in stage k − 1. At this stage, N − k
channels, denoted by (i1, i2, ..., iN−k), have been sensed. Thus
there are

(
N

N−k

)
states. Each state (i1, i2, ..., iN−k) has k pos-

sible transitions to stage k− 1. The lth (1 ≤ l ≤ k) transition

2For presentation simplicity, we omit the qualifier “expected" in the sequel.

2,3,4

1,3,4

1,2,4

1,2,3

3,4

1,4

1,2

1,3

4

2

1

3

2,4

2,3

Stage 1Stage 2Stage 3Stage 4

Fig. 2. The dynamic programming procedure with N = 4.

leads to state (i1, ..., iN−k, jl) at stage k − 1, which means
channel jl ∈ N\{i1, i2, ..., iN−k} is first sensed subsequently.
The reward associated with the lth transition is denoted as
F
(
jl,Ωk−1

max(i1, ..., iN−k, jl)
)

given by

F
(
jl,Ωk−1

max(i1, ..., iN−k, jl)
)

= θjl

[ ∫∞
f−1

(
Ωk−1

max(i1,...,iN−k,jl)
cN−k+1

) cN−k+1f(γ)hSNR(γ)dγ

+ Ωk−1
max(i1, ..., iN−k, jl)

∫ f−1
(

Ωk−1
max(i1,...,iN−k,jl)

cN−k+1

)
0

hSNR(γ)dγ
]

+ (1 − θjl
)Ωk−1

max(i1, ..., iN−k, jl).
(15)

So the maximal reward of state (i1, i2, ..., iN−k) is

Ωk
max(i1, i2, ..., iN−k) = max

1≤l≤k
F
(
jl,Ωk−1

max(i1, ..., iN−k, jl)
)
.

(16)
At each state, it is also recorded which transition leads to
the maximal reward. The computational complexity of each
state is O(k), with O(1) for each transition. So the total

computational complexity at stage k is O
(
k
(

N
N−k

))
.

After the maximal reward value is obtained at stage N (i.e.,
the stage when no channel has been sensed yet), an optimal
sensing order can be traced back according to the recorded
optimal transition at each state.

The computational complexity of the preceding dynamic
programming solution is

O

(
N∑

k=1

k

(
N

N − k

))
= O(N · 2N−1). (17)

Fig. 2 illustrates the dynamic programming procedure for the
case N = 4. Table I shows a comparison of the computational
complexity of brute force search and our dynamic program-
ming solution whenN varies from 2 to 20. We can see that our
solution can significantly lower the computational overhead,
especially when N is large.

C. Numerical Results

For a secondary user with three potential channels, Fig. 3
shows the expected reward U1 with the optimal sensing order
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U
(s1,s2,...,sN )
k−1

= θsk−1

[ ∫ ∞

f−1

⎛
⎝ U

(s1,s2,...,sN )
k

ck−1

⎞
⎠ ck−1f(γ)hSNR(γ)dγ + U

(s1,s2,...,sN )
k

∫ f−1

⎛
⎝ U

(s1,s2,...,sN )
k

ck−1

⎞
⎠

0

hSNR(γ)dγ

]

+(1 − θsk−1)U
(s1,s2,...,sN )
k

= θsk−1

[ ∫ ∞

f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠ ck−1f(γ)hSNR(γ)dγ +

∫ f−1

⎛
⎝ U

(s1,s2,...,sk−1,P (sk,...,sN ))
k

ck−1

⎞
⎠

f−1

⎛
⎝ U

(s1,s2,...,sN )
k

ck−1

⎞
⎠

ck−1f(γ)hSNR(γ)dγ

+U
(s1,s2,...,sN )
k

∫ f−1

⎛
⎝ U

(s1,s2,...,sN )
k

ck−1

⎞
⎠

0

hSNR(γ)dγ

]
+ (1 − θsk−1)U

(s1,s2,...,sN )
k

≤ θsk−1

[ ∫ ∞

f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠ ck−1f(γ)hSNR(γ)dγ + U

(s1,s2,...sk−1,P (sk,...,sN ))

k

∫ f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠

f−1

⎛
⎝ U

(s1,s2,...,sN )
k

ck−1

⎞
⎠

hSNR(γ)dγ + U
(s1,s2,...,sN )
k

∫ f−1

⎛
⎝ U

(s1,s2,...,sN )
k

ck−1

⎞
⎠

0

hSNR(γ)dγ

]
+ (1 − θsk−1)U

(s1,s2,...,sN )
k

≤ θsk−1

[ ∫ ∞

f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠ ck−1f(γ)hSNR(γ)dγ + U

(s1,s2,...,sk−1,P (sk,...,sN ))

k

∫ f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠

0

hSNR(γ)dγ

]
+ (1 − θsk−1)U

(s1,s2,...,sN )
k

< θsk−1

[ ∫ ∞

f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠ ck−1f(γ)hSNR(γ)dγ + U

(s1,s2,...,sk−1,P (sk,...,sN ))

k

∫ f−1

⎛
⎝ U

(s1,s2,...,sk−1,P(sk,...,sN ))
k

ck−1

⎞
⎠

0

hSNR(γ)dγ

]
+ (1 − θsk−1)U

(s1,s2,...,sk−1,P (sk,...,sN ))

k

= U
(s1,s2,...sk−1,P (sk,...,sN ))

k−1 . (12)

TABLE I
THE COMPUTATIONAL COMPLEXITY OF BRUTE FORCE SEARCH AND DYNAMIC PROGRAMMING.

N 2 4 6 8 10 15 20
Brute force search complexity O(·) 4 96 4320 3.2 × 105 3.6 × 107 2.0 × 1013 4.9 × 1019

Dynamic programming complexity O(·) 4 32 192 1024 5120 2.5 × 105 1.0 × 107

when θ1 and θ2 are fixed, while θ3 varies from 0.1 to 0.9.
A Rayleigh fading channel model is used, in which the pdf
of the channel gain is hSNR(γ) = 1

Γe
−γ

Γ , γ > 0. And the
transmission rate achievable in channel i (when channel i is
free) is log(1+SNRi). In Fig. 3, the legend shows the values
of θ1 and θ2. It can be seen that, when θ1 and θ2 are large (e.g.,
0.9 and 0.8, respectively), increasing θ3 does not bring about a
significant increase in U1. This is because when a channel has
a large availability probability, the chance that the secondary
user stops at this channel is also large. So the impact of other
channels is not significant. On the other hand, when θ1 and θ2
are small (e.g., 0.2 and 0.1, respectively), increasing θ3 leads
to a significant change in U1, as shown in Fig. 3.

IV. SIMPLE OPTIMAL SENSING ORDERS IN SPECIAL

CASES

In some special cases, a simple optimal sensing order
exists, with much lower computational complexity (than both
dynamic programming and brute force search), as we show in
this section.

In a real system, it may not be practical to have continuous
variable values for the transmission rate in adaptive modula-
tion (e.g., to achieve log(1 + SNRi) exactly). Thus adaptive
modulation with finite states is more practical. To implement
this, for each channel, M−1 thresholds divide the SNR range
(0,∞) into M regions, with region i corresponding to an
achievable rate Ri (R1 ≥ R2 ≥ ... ≥ RM ). When a channel
is free, the probability of achievable rate Ri is denoted as pi,
which can be obtained from the channel gain distribution. We
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Fig. 3. The expected reward U1 with optimal sensing order when θ3 varies
in a three-potential-channel case.

have
∑M

j=1 pj = 1. Let R =
∑M

j=1 pjRj .
Lemma 5: If θi ≥ cN−1

cN

R2

R
, ∀i, then at each sensed channel

except the last one, the secondary user should stop at the
channel (i.e., transmit its information) only if the channel is
free and the achievable transmission rate in the channel is R1.

Proof: Consider a sensing order (s1, s2, ..., sN ). If chan-
nel sk (1 ≤ k < N ) is sensed free, then the expected reward
if the user proceeds to channel sk+1 is

Uk+1 ≥ θsk+1ck+1R ≥ cN−1

cN

R2

R
· ck+1R

≥ ck
ck+1

R2

R
· ck+1R = ckR2. (18)

On the other hand, if the secondary user proceeds to channel
sk+1, then its transmission effectiveness is not larger than
ck+1, as the transmission effectiveness is ck+1, ck+2, ..., and
cN if the secondary user stops at channel sk+1, sk+2, ..., and
sN , respectively. Since the maximum achievable rate is R1,
we have

Uk+1 ≤ ck+1R1 < ckR1. (19)

From (18) and (19), the expected reward of proceeding to
channel sk+1 is smaller than ckR1 and larger than (or equal
to3) ckR2. Therefore, at channel sk, if the channel is free
and the achievable transmission rate is R1, the secondary user
transmits in channel sk; otherwise (i.e., either channel sk is
busy, or the channel is free but the achievable transmission rate
is among {R2, R3, ..., RM}), the secondary user proceeds to
channel sk+1. This completes the proof.

From Lemma 5, we have the following simple optimal
sensing order case.

Lemma 6: If θi ≥ cN−1
cN

R2

R
, ∀i, then in any optimal sensing

order denoted by (s1, s2, ..., sN ), 1) the first N − 1 channels
should be in descending order of their channel availability
probabilities, i.e., θs1 > θs2 > ... > θsN−1 ; and 2) θsN−1 >
θsN if cN−1p1R1 > cNR, and θsN−1 < θsN if cN−1p1R1 <
cNR.

3The equality happens only when 1) k = N −1, and 2) θsN =
cN−1

cN

R2
R

.

Proof: We first prove claim 1) using proof by contradic-
tion. Suppose there exists k ≤ N − 2, such that θsk

< θsk+1 .
From Lemma 5, the expected reward at channel sk is

Uk = θsk
p1ckR1 + (1 − θsk

p1)Uk+1

= θsk
p1ckR1 + (1 − θsk

p1)

·
(
θsk+1p1ck+1R1 + (1 − θsk+1p1)Uk+2

)
= θsk

p1ckR1 + θsk+1p1ck+1R1 − θsk
θsk+1p

2
1ck+1R1

+(1 − θsk
p1)(1 − θsk+1p1)Uk+2.

If we switch the positions of channels sk and sk+1 in the
sensing order, a new order can be obtained. For the new order
we have

U new
k = θsk+1p1ckR1 + θsk

p1ck+1R1 − θsk
θsk+1p

2
1ck+1R1

+(1 − θsk
p1)(1 − θsk+1p1)Uk+2. (20)

Then we have

U new
k − Uk = (θsk+1 − θsk

)(ck − ck+1)p1R1 > 0. (21)

Using a similar derivation to that used in the proof of Lemma
4, we obtain

U new
1 > U1. (22)

This contradicts the condition that the sensing order
(s1, s2, ..., sN ) is optimal.

Next we prove claim 2). For the optimal sensing order
(s1, s2, ..., sN ), from Lemma 5 we have

UN−1 = θsN−1p1cN−1R1 + (1 − θsN−1p1)UN

= θsN−1p1cN−1R1 + (1 − θsN−1p1)θsNCNR

= θsN−1p1cN−1R1 + θsNCNR− θsN−1θsN p1CNR.

If we switch the positions of channel sN−1 and sN in the
sensing order, we obtain a new sensing order, and we have

U new
N−1 = θsN p1cN−1R1 + θsN−1CNR− θsN−1θsN p1CNR

(23)
and

UN−1 − U new
N−1 = (θsN−1 − θsN )(cN−1p1R1 − CNR). (24)

From Lemma 4, it can be seen that UN−1 ≥ U new
N−1. Thus we

have θsN−1 > θsN if cN−1p1R1 > CNR; and θsN−1 < θsN if
cN−1p1R1 < CNR. If cN−1p1R1 = CNR, the new sensing
order is also optimal.

From Lemma 6, we can have the following observations.
• If θi ≥ cN−1

cN

R2

R
, ∀i, and cN−1p1R1 > cNR, then the

Intuitive Sensing Order is optimal.
• If θi ≥ cN−1

cN

R2

R
, ∀i, and cN−1p1R1 = cNR, then in

the optimal sensing order (s1, s2, ..., sN ), we have θs1 >
θs2 > ... > θsN−1 . To obtain an optimal sensing order,
we need to calculate the expected rewards U1’s in N
possible sensing orders, each with the last channel being
channel 1, 2,..., and N , respectively, and the first N −
1 channels being in descending order of their channel
availability probabilities. The computational complexity
for each sensing order is O(N). So the computational
complexity of the optimal sensing order search is O(N2).

• If θi ≥ cN−1
cN

R2

R
, ∀i, and cN−1p1R1 < cNR, then

in the optimal sensing order (s1, s2, ..., sN ), we have
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θs1 > θs2 > ... > θsN−1 , and channel sN−1 should
be the one with the minimum availability probability.
Accordingly the computational complexity of the optimal
sensing order search is O

(
N(N − 1)

)
.

Lemma 7: If there exists m ∈ {1, 2, ...,M}, such that
Rm+1 ≤ Uk/ck−1 < Rm

4 for ∀k ∈ {2, 3, ..., N} in any
sensing order, then the first N − 1 channels in any optimal
sensing order should be in descending order of their channel
availability probabilities.

Proof: We use proof by contradiction. Consider an opti-
mal sensing order (s1, s2, ..., sN). Suppose there exists k ≤
N − 2, such that θsk

< θsk+1 . Since Rm+1 ≤ Uk+2/ck+1 <
Rm, we have

Uk+1 = θsk+1

m∑
j=1

pjck+1Rj + (1− θsk+1

m∑
j=1

pj)Uk+2. (25)

And further we have

Uk = θsk

m∑
j=1

pjckRj + (1 − θsk

m∑
j=1

pj)Uk+1

= θsk
ck

m∑
j=1

pjRj +
(
1 − θsk

m∑
j=1

pj)
(
θsk+1ck+1

·
m∑

j=1

pjRj +
(
1 − θsk+1

m∑
j=1

pj

)
Uk+2

)

=
(
θsk

ck + θsk+1ck+1

) m∑
j=1

pjRj

−θsk
θsk+1ck+1

m∑
j=1

pj

m∑
j=1

pjRj

+(1 − θsk

m∑
j=1

pj)(1 − θsk+1

m∑
j=1

pj)Uk+2. (26)

Now we switch the positions of channels sk and sk+1 in the
sensing order, and obtain a new sensing order. The expected
reward at the kth sensing of the new order is

U new
k =

(
θsk+1ck + θsk

ck+1

) m∑
j=1

pjRj

−θsk
θsk+1ck+1

m∑
j=1

pj

m∑
j=1

pjRj

+(1 − θsk

m∑
j=1

pj)(1 − θsk+1

m∑
j=1

pj)Uk+2.(27)

And we have

U new
k − Uk = (θsk+1 − θsk

)(ck − ck+1)
m∑

j=1

pjRj > 0. (28)

Using a similar derivation to that used in the proof of Lemma
4, we further have

U new
1 > U1. (29)

This contradicts the condition that the sensing order
(s1, s2, ..., sN) is optimal.

4We set RM+1 to 0.

Directly applying Lemma 7 leads to the following lemma.
Lemma 8: For N potential channels, if R

∑N
i=1 θi ≤ RM ,

then the first N − 1 channels in any optimal sensing order
should be in descending order of their channel availability
probabilities.

Proof: For any sensing order (s1, s2, ..., sN ), we have

UN = θsN cNR

Uk = θsk

∑
1≤j≤M ; ckRj>Uk+1

pjckRj

+
(
1 − θsk

∑
1≤j≤M ; ckRj>Uk+1

pj

)
Uk+1

< θsk

∑
1≤j≤M

pjckRj + Uk+1

= θsk
ckR+ Uk+1, for 1 ≤ k ≤ N − 1.

It can be seen that Uk ≤ ∑N
i=k θsiciR, for ∀k ∈ {1, ..., N},

and further we have

Uk ≤
N∑

i=k

θsiciR < ckR

N∑
i=1

θsi < ck−1R

N∑
i=1

θi ≤ ck−1RM

which leads to Uk/ck−1 < RM , for ∀k ∈ {1, 2, .., N}. Here
we have c0 = 1. From Lemma 7, the first N − 1 channels
in any optimal sensing order should be in descending order
of their channel availability probabilities. This completes the
proof.

Lemma 8 indicates that when the summation of the N
channel availability probabilities is small enough, a simple
optimal sensing order may exist. On the other hand, it is
possible that RM = 0. In this case we have the following
lemma.

Lemma 9: For the case with RM = 0 and RM−1 > 0, if
R
∑N

i=1 θi ≤ RM−1, then the first N − 1 channels in any
optimal sensing order should be in descending order of their
channel availability probabilities.

Proof: Similar to the proof of Lemma 8, we have
Uk/ck−1 < RM−1, for ∀k ∈ {1, 2, .., N}. On the other hand,
Uk/ck−1 ≥ RM = 0. From Lemma 7, the first N−1 channels
in any optimal sensing order should be in descending order of
their channel availability probabilities.

V. MORE COMPLEX SCENARIOS

In the preceding sections, the availability probability of
each channel is fixed, and is known a priori. In addition, the
duration of a time slot is assumed to be sufficient to sense
up to N channels sequentially. In the sequel, more complex
scenarios will be discussed.

A. Non-fixed and Unknown θ

We consider the scenario in which the channel availability
probabilities, θi’s, are not fixed for the long term. Rather
θ = (θ1, · · · , θN) is fixed in a single time slot but randomly
changes at the beginning of the next time slot according
to joint pdf g(θ). At the beginning of each time slot, the
secondary user does not know the exact values of the θi’s.
After each sensing, the cognitive user can obtain posterior pdf
gnew(θ) using Bayes’ formula as detailed in the sequel. The
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secondary user thus has finer information about the value of
θ and can then use this updated information in making future
decisions.

1) Without Adaptive Modulation: We know from Sec-
tion III that, when adaptive modulation is not adopted, we
should sense the channels according to descending order of
the θi’s if these are fixed and known to the secondary user.
Similarly, with unknown θ, one may guess that the secondary
user should sense the channels according to descending order
of θ̄i =

∫
θig(θ)dθ. However, this may not lead to optimal

performance. Generally, the sensing of each channel at each
slot will have two effects: short-term gain and long-term
gain. The short-term gain refers to the opportunity for packet
transmission in the current slot (if the channel is sensed free),
while the long-term gain refers to the ability to update the
state information about the channel (e.g., about g(θ)), which
can benefit later decisions about which channels to sense
in subsequent slots. It is obvious that selecting the largest
θ̄i to sense based on available information maximizes only
the short-term gain. An optimal solution should thus balance
between short-term gain and long term gain. The optimal
balance can be achieved via dynamic programming as follows.
As adaptive modulation is not used, clearly the user should
transmit at the first sensed-free channel, with constant rate R.

Stage 1 – If the user proceeds to sense the final channel
in the sensing order, then a state is represented by the set of
sensed channels (i1, i2, ..., iN−1). So there exist

(
N

N−1

)
states.

Since the user has proceeded to the final channel, this means
that the previous N−1 sensed channels are all busy. Thus the
pdf of θ at state (i1, i2, ..., iN−1) can be updated via Bayes’
formula as follows:

gnew
(i1,i2,...,iN−1)

(θ) =

(
Πj∈{i1,i2,...,iN−1}(1 − θj)

)
g(θ)∫ (

Πj∈{i1,i2,...,iN−1}(1 − θj)
)
g(θ)dθ

.

Thus, the maximal reward at this state is

Ω1
max(i1, i2, ..., iN−1)

= cNR

∫
θj∈N\{i1,i2,...,iN−1}g

new
(i1,i2,...,iN−1)

(θ)dθ. (30)

Stage k (1 < k ≤ N ) – We assume that the first N − k
channels in the sensing order have been sensed to be busy.
A state is then represented by the set of sensed channels
(i1, i2, ..., iN−k), and so there are

(
N

N−k

)
states at this stage.

At state (i1, i2, ..., iN−k), the pdf of θ is updated as

gnew
(i1,...,iN−k)(θ) =

(
Πj∈{i1,i2,...,iN−k}(1 − θj)

)
g(θ)∫ (

Πj∈{i1,i2,...,iN−k}(1 − θj)
)
g(θ)dθ

.

Each state (i1, i2, ..., iN−k) has k possible transitions to
stage k − 1. The lth (1 ≤ l ≤ k) transition leads to
state (i1, ..., iN−k, jl) at stage k − 1, which means channel
jl ∈ N\{i1, i2, ..., iN−k} is first sensed subsequently. So the
maximal reward at state (i1, i2, ..., iN−k) is given by

Ωk
max(i1, ..., iN−k)

= max
1≤l≤k

{
cN−k+1R

∫
θjl
gnew
(i1,...,iN−k)(θ)dθ

+
(

1−
∫
θjl
gnew
(i1,...,iN−k)(θ)dθ

)
·Ωk−1

max(i1, ..., iN−k, jl)

}
.

At each state, we also record which transition leads to the
maximal reward. And after the maximal reward is obtained at
stage N (i.e., the stage at which no channel has been sensed
yet), an optimal sensing order can be traced back according
to the recorded optimal transition at each state.

2) With Adaptive Modulation: When adaptive modulation
is adopted, the user may skip a channel if the channel
is available but of poor quality. A dynamic programming
approach similar to that in Section V-A1 can be used to
find an optimal balance between short-term and long-term
gains, but with higher complexity. In the following, only the
differences between this and the non-adaptive modulation case
are discussed.

Stage 1 – Assume that there is one channel remaining
unsensed. With the same subset of N − 1 sensed channels,
different sensing results of the N − 1 channels will lead
to different updated version of g(θ). Therefore, we have(

N
N−1

)
2N−1 states, where

(
N

N−1

)
is the number of subsets

of the N − 1 sensed channels, and the factor 2N−1 is due to
the fact that each sensed channel may be either free or busy.
A state is denoted by ((i1, zi1), (i2, zi2), ..., (iN−1, ziN−1)),
where i1, i2, ..., iN−1 are the sensed channels, and zil

is the
sensing result (‘1’ for free and ‘0’ for busy) of channel il. The
state has maximal reward

Ω1
max

(
(i1, zi1), ..., (iN−1, ziN−1)

)
=

∫
θm∈N\{i1,...,iN−1}g

new
((i1,zi1),(i2,zi2),...,(iN−1,ziN−1))(θ)dθ

·
∫ ∞

0

cNf(γ)hSNR(γ)dγ (31)

where the updated pdf of θ is

gnew
((i1,zi1),(i2,zi2),...,(iN−1,ziN−1))(θ)

=

(
Πj∈{i1,i2,...,iN−1}ωj

)
g(θ)∫ (

Πj∈{i1,i2,...,iN−1}ωj

)
g(θ)dθ

(32)

with

ωj =
{
θj , if zj = 1
1 − θj , if zj = 0. (33)

Stage k (1 < k ≤ N ) – Assume there are k channels
remaining unsensed, in which case there are

(
N

N−k

)
2N−k pos-

sible states. For state
(
(i1, zi1), (i2, zi2), ..., (iN−k, ziN−k

)
)
, if

channel jl (1 ≤ l ≤ k, jl ∈ N\{i1, ..., iN−k}) is selected
to sense, it leads to state

(
(i1, zi1), ..., (iN−k, ziN−k

), (jl, 1)
)

in stage k − 1 if the channel is sensed free, and to state(
(i1, zi1), ..., (iN−k, ziN−k

), (jl, 0)
)

in stage k − 1 if the
channel is sensed busy. So the maximal reward at state(
(i1, zi1), (i2, zi2), ..., (iN−k, ziN−k

)
)

is given in (34) on the
top of the next page. In (34), the updated pdf of θ is obtained
similarly to (32).

B. Limited Sensing Capacity in Each Time Slot

When the number of potential channels, N , is large, it is
likely that the user cannot sequentially sense all possible N
channels in a time slot, i.e., we will have Nτ > T . Let B
denote the maximum number of channels that can be sensed
sequentially in a time slot, i.e., B = 	T

τ 
 (	·
 denoting the
floor function). Adaptive modulation is adopted.
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Ωk
max

(
(i1, zi1), ..., (iN−k, ziN−k

)
)

= max
1≤l≤k,jl∈N\{i1,...,iN−k}

{∫
θjl
gnew
((i1,zi1),...,(iN−k,ziN−k

))(θ)dθ

·
[∫ ∞

f−1
(Ωk−1

max((i1 ,zi1 ),...,(iN−k,ziN−k
),(jl,1))

cN−k+1

) cN−k+1f(γ)hSNR(γ)dγ

+Ωk−1
max

(
(i1, zi1), ..., (iN−k, ziN−k

), (jl, 1)
) ∫ f−1

(Ωk−1
max((i1 ,zi1 ),...,(iN−k,ziN−k

),(jl,1))

cN−k+1

)
0

hSNR(γ)dγ
]

+
(

1 −
∫
θjl
gnew
((i1,zi1 ),...,(iN−k,ziN−k

))(θ)dθ
)

Ωk−1
max

(
(i1, zi1), ..., (iN−k, ziN−k

), (jl, 0)
)}
. (34)

1) With Fixed and Known θ: When the θi’s are fixed and
known to the secondary user, we have the following lemma.

Lemma 10: Any optimal sensing order is a permutation of
the channels with the B maximal values of θi.

Proof: We use proof by contradiction. Suppose an optimal
sensing set and order is (s1, s2, ..., sB), and there exists a
channel sl (1 ≤ l ≤ B) that is not among the channels with
the B maximal values of θi. Among the channels with the
B maximal values of θi, we select a channel that is not in
(s1, ..., sl−1, sl+1, ..., sB) and denote it by j. Thus θj > θsl

.
It can be easily seen that

U
(s1,...,sl−1,j,sl+1,...,sB)
l > U

(s1,...,sl−1,sl,sl+1,...,sB)
l . (35)

Using a similar method to that in the proof of Lemma 4, we
have

U
(s1,...,sl−1,j,sl+1,...,sB)
1 > U

(s1,...,sl−1,sl,sl+1,...,sB)
1 . (36)

This contradicts the condition that (s1, s2, ..., sB) is an optimal
sensing order.

Based on Lemma 10, the user needs to select only the
channels with the B maximal values of θi, and uses the method
in Sections III-B (for the general case) or IV (for simple cases)
to find an optimal sensing order.

2) With Non-fixed and Unknown θ: When the exact value
of θ is not fixed and unknown a priori, and the user has only
the initial information of g(θ), an optimal sensing order may
not be selected from the channels with the B maximal values
of θ̄i. Instead, a dynamic programming approach similar to
that in Section V-A2 can be used. The difference lies in that:
1) there are B stages, and 2) the number of states in stage
k (1 ≤ k ≤ B) is

(
N

B−k

)
2B−k. The corresponding dynamic

programming procedure is a straightforward modification of
those above, and thus is omitted here.

VI. IMPACT OF CHANNEL SENSING ERRORS AND

SOLUTION

In the preceding sections, we have assumed that there are no
channel sensing errors. However, in a practical cognitive radio
network, channel sensing error is inevitable. In this section,
we investigate the impact of channel sensing errors and further
propose a solution to address this problem. In what follows, it
is assumed that the availability probability of each channel is
fixed, and is known a priori. Adaptive modulation is adopted.

In cognitive radio, the secondary user needs to sense
whether the primary user is present. In this detection problem,
a channel sensing error is represented by either a false alarm
(i.e., the primary users are idle, but the secondary user senses
the channel as busy) or a missed detection (i.e., the primary
users are active, but the secondary user senses the channel as
free). In the former case, the spectrum opportunity is wasted,
while in the latter case, a collision with the primary receivers
may happen. When a secondary user senses a channel, let
pf and pm denote the probability of false alarm and missed
detection, respectively, which are assumed to be known a
priori. For simplicity of exposition, suppose (1, 2, ..., N ) is an
optimal sensing order for the N potential channels. For each
channel i ∈ {1, 2, ..., N}, let θi denote the channel availability
probability, and θ̂i the perceived availability probability of
channel i. Then we have

θ̂i = θi(1 − pf ) + (1 − θi)pm. (37)

So if the secondary user proceeds to channel i, the probability
of stopping at channel i is

θ̂i

∫ ∞

f−1

(
Ûi+1

ci

) hSNR(γ)dγ

where Ûi+1 is the expected reward at channel i+1 if the user
proceeds to that channel, and can be obtained recursively from
ÛN to Û1 (similar to the method to obtain Ui in Section II).
So for channel i, if there is primary activity in a time slot, the
probability of a collision at primary receivers is

pc,i =

⎛
⎝i−1∏

k=1

(
1 − θ̂k

∫ ∞

f−1

(
Ûk+1

ck

) hSNR(γ)dγ
)⎞⎠

·pm ·
∫ ∞

f−1

(
Ûi+1

ci

) hSNR(γ)dγ. (38)

On the right-hand side of (38), the three factors are the
probability that the secondary user proceeds to channel i,
the probability of missed detection in channel i, and the
probability that the channel gain of the secondary user at
channel i is satisfactory, respectively.

Let p∗ ∈ (0, 1] denote the tolerable probability of collisions
with primary users in each channel. If not all the pc,i values
are bounded by p∗, actions need to be taken. In this research,
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a trusting probability denoted by αi ∈ (0, 1] is introduced for
channel i. If the physical layer at the secondary user indicates
a busy channel after sensing, the result is trusted, while if a
free channel is indicated, the result is trusted with probability
αi. So we have

θ̂i = αi

(
θi(1 − pf ) + (1 − θi)pm

)
, (39)

and

pc,i =

⎛
⎝i−1∏

k=1

(
1 − θ̂k

∫ ∞

f−1

(
Ûk+1

ck

) hSNR(γ)dγ
)⎞⎠ · pm

·αi ·
∫ ∞

f−1

(
Ûi+1

ci

) hSNR(γ)dγ. (40)

Accordingly, we propose the following procedure to bound
the probability of collisions with primary receivers in each
channel.

• Step 1: Set αi = 1, ∀i ∈ {1, ..., N};
• Step 2: Determine θ̂i and Ûi, ∀i, and calculate pc,i, ∀i;
• Step 3: Find the channel with the maximal value of pc,i,

and denote this channel index as i′;
• Step 4: If pc,i′ ≤ p∗, terminate; otherwise, proceed to

Step 5;
• Step 5: Define a scale ρ = p∗(1−δ)

pc,i′
(in which δ � 1 is

a very small positive value), scale αi′ by a factor ρ (i.e.,
ραi′ → αi′ ), and proceed to Step 2.

It can be seen that the termination condition of the preceding
procedure is pc,i ≤ p∗, ∀i.

Lemma 11: The preceding procedure terminates in a finite
number of updates. Here an update refers to scaling of an αi

once.
Proof: If pm ≤ p∗, from (40) it can be seen that pc,i ≤

p∗, ∀i. No update is needed. So in the following we consider
only the case with pm > p∗.

In Step 5, before αi′ is scaled by ρ, we have pc,i′ > p∗. So

ρ =
p∗(1 − δ)
pc,i′

< 1 − δ. (41)

For any channel j ∈ {1, ..., N}, if it has experienced a number,
lj , of updates, its trusting probability will be αj < 1·(1 − δ)lj .
So we have

pc,j =

⎛
⎝j−1∏

k=1

(
1 − θ̂k

∫ ∞

f−1

(
Ûk+1

ck

) hSNR(γ)dγ
)⎞⎠ · pm

·αj ·
∫ ∞

f−1

(
Ûj+1

cj

) hSNR(γ)dγ

≤ pm · αj

< pm · (1 − δ)lj . (42)

It can be seen that, if lj ≥ ⌈
log p∗−log pm

log (1−δ)

⌉
(·� denoting the

ceiling function), we have

pc,j < pm · (1 − δ)lj ≤ pm · (1 − δ)
⌈

log p∗−log pm
log (1−δ)

⌉
≤ pm · (1 − δ)

log p∗−log pm
log (1−δ) = p∗.

As aforementioned, when pc,j < p∗, αj will not be scaled
further. So it can be concluded that for each channel, its

trusting probability will be scaled for at most
⌈

log p∗−log pm

log (1−δ)

⌉
times. And for the N channels, the number of updates will be
bounded by N

⌈
log p∗−log pm

log (1−δ)

⌉
. This completes the proof.

A similar solution can be derived if the channels do not
have the same tolerable collision probability with the primary
receivers, e.g., p∗i for channel i. The difference lies in that: i)
in Step 3, the channel with the maximal pc,i/p

∗
i is selected;

ii) in Step 4, the termination condition is pc,i′/p
∗
i′ ≤ 1; and

iii) in Step 5, ρ = p∗
i′ (1−δ)

pc,i′
.

VII. CONCLUSIONS AND FURTHER DISCUSSIONS

For cognitive radio networks with multiple potential chan-
nels and opportunistic transmissions, we have shown that the
Intuitive Sensing Order may not be optimal when adaptive
modulation is used. We have also provided dynamic pro-
gramming solutions for determining optimal sensing orders. In
several special cases, we have also devised simple and optimal
sensing orders. The optimal sensing policies described in this
paper will provide useful insights into the design of multi-
channel medium access control protocols in cognitive radio
networks.

In this research, we have assumed the busy/free status
of each channel is independent from one slot to another.
So the derived optimal sensing order can be used in each
slot. On the other hand, when the channel busy/free status
among different time slots is correlated (e.g., follows an on-
off Markov model as in [2]), the sensing of each channel
at each slot will have both short-term gain (i.e., immediate
transmission opportunity) and long term gain (exploration
of channel statistics, which benefits sensing of subsequent
channels). So an optimal solution should strike a balance
between them. Therefore, the channel sensing order may be
different from one time slot to another. Generally a dynamic
programming approach can be used to find optimal sensing
orders in a fixed number of slots, which maximizes the total
throughput in these slots. As the computational complexity
is high, an interesting future research topic is to find sub-
optimal solutions with lower computational complexity and
comparable performance.

When there are multiple secondary users, it may not be
optimal that all the secondary users use the same sensing order.
For example, assume adaptive modulation is not used. When
all the secondary users use the same sensing order, they will
all select the first free channel in the order. Even if a good
contention resolution is in place, only one channel will be
used at any slot. In this case, a game theoretic approach might
be helpful to find effective strategies of sensing orders at the
secondary users.
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