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Abstract—This paper considers the design of efficient strategies that allow cognitive users to choose frequency bands to sense and

access among multiple bands with unknown parameters. First, the scenario in which a single cognitive user wishes to opportunistically

exploit the availability of frequency bands is considered. By adopting tools from the classical bandit problem, optimal as well as low

complexity asymptotically optimal solutions are developed. Next, the multiple cognitive user scenario is considered. The situation in

which the availability probability of each channel is known is first considered. An optimal symmetric strategy that maximizes the total

throughput of the cognitive users is developed. To avoid the possible selfish behavior of the cognitive users, a game-theoretic model is

then developed. The performance of both models is characterized analytically. Then, the situation in which the availability probability of

each channel is unknown a priori is considered. Low-complexity medium access protocols, which strike an optimal balance between

exploration and exploitation in such competitive environments, are developed. The operating points of these low-complexity protocols

are shown to converge to those of the scenario in which the availability probabilities are known. Finally, numerical results are provided

to illustrate the impact of sensing errors and other practical considerations.

Index Terms—Bandit problem, cognitive radio, exploration, exploitation, medium access.
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1 INTRODUCTION

RECENTLY, the opportunistic spectrum access problem has
been the focus of significant research activity [1], [2],

[3], [4]. The underlying idea is to allow unlicensed users
(i.e., cognitive users) to access the spectrum available when
the licensed users (i.e., primary users) are not active. The
presence of high-priority primary users and the require-
ment that the cognitive users should not interfere with them
define a new medium access paradigm which we refer to as
cognitive medium access. The overarching goal of our work is
to design efficient and low complexity cognitive medium
access protocols.

The spectral opportunities available to the cognitive
users are expected to be time-varying on different time-
scales. For example, on a small scale, multimedia data
traffic of the primary users will tend to be bursty [5]. On a
large scale, one would expect the activities of each user to
vary throughout the day. Therefore, to avoid interfering
with the primary network, the cognitive users must first
probe to determine whether there are primary activities in
each channel before transmission. Under the assumption

that each cognitive user cannot access all of the available
channels simultaneously, the main task of the medium
access protocol is to distributively choose which channels
each cognitive user should attempt to use in different
time slots, in order to fully (or maximally) utilize the
spectral opportunities. This decision process can be en-
hanced by taking into account any available statistical
information about the primary traffic. For example, with a
single cognitive user capable of accessing (sensing) only one
channel at a time, the problem becomes trivial if the
availability probability of each channel is known a priori. In
this case, the optimal rule is for the cognitive user to access
the channel with the highest probability of being free in all
time slots. However, such time-varying traffic information
is typically not available to the cognitive users a priori. The
need to learn this information online creates a fundamental
trade-off between exploitation and exploration. Exploitation
refers to the short-term gain resulting from accessing the
channel with the estimated highest probability of being free
(based on the results of previous sensing decisions) whereas
exploration is the process by which the cognitive user learns
the statistical behavior of the primary traffic (by choosing
possibly different channels to probe across time slots). In
the presence of multiple cognitive users, the medium access
algorithm must also account for the competition between
different users over the same channel.

In this paper, we take a first step toward developing a
framework for the design and analysis of cognitive medium
access protocols in uncertain environments. As argued in the
sequel, our approach allows for the construction of
strategies that strike an optimal balance among exploration,
exploitation, and competition under certain modeling
assumptions. The key observation motivating our approach
is the equivalence between our problem and the classical
multiarmed bandit problem in the single-user case (see [6]
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and references therein). This equivalence allows for build-
ing a solid foundation for cognitive medium access using
tools from reinforcement machine learning [7]. The connec-
tion between cognitive medium access and the multiarmed
bandit problem has been independently observed in [8].
That work, however, is limited to special cases of the
general approach presented here. In particular, in [8], the
channels are assumed to be independent and the goal is to
maximize the discounted sum of throughput. Related work
also appears in [9] and [10], in which the availability of each
channel is assumed to follow a Markov chain, whose
transition matrix is known to the cognitive user. The only
uncertainty faced by the cognitive user in that work is the
particular realization of the channel, while in our work, the
cognitive users also need to learn the statistics of the
channel in real time. We will briefly discuss the Markovian
model with unknown transition matrix in Section 5.

Our main contributions can be summarized as follows:

1. In a first scenario, we assume the existence of a
single cognitive user capable of accessing only a
single channel at any given time. In this setting, we
derive an optimal sensing rule that maximizes the
expected throughput obtained by the cognitive user.
Compared with a genie-aided scheme, in which the
cognitive user knows the primary network traffic
information a priori, there is a throughput loss
suffered by any medium access strategy. We obtain a
lower bound on this loss and further construct a
linear complexity single-index protocol that achieves
this lower bound asymptotically (when the primary
traffic behavior changes very slowly).

2. In a second scenario, we extend our work to the case
in which the cognitive user is capable of accessing
more than one channel simultaneously. The optimal
solution as well as a low-complexity order-optimal
solution are derived.

3. In a third scenario, we design distributed sensing
rules by which the cognitive users take the competi-
tion from other cognitive users into consideration
when making sensing decisions. We first character-
ize the optimal distributed sensing rule for the case
in which the primary network statistics are available
to the cognitive users. Under this idealistic assump-
tion, we show that the throughput loss of the
proposed distributed sensing rule, compared with
a throughput-optimal centralized scheme, goes to
zero exponentially as the number of cognitive users
increases. To prevent any possible misbehavior by
the cognitive users, we further design a game
theoretically fair sensing rule, whose loss compared
with the throughput-optimal centralized rule also
goes to zero exponentially. Building on these results,
we then devise distributed sensing rules that do not
require prior knowledge about the traffic and
converge to the optimal distributed rule and game
theoretically fair rule, respectively.

4. Finally, the scenario with multiple cognitive users
each having the ability to access more than one
channel is considered. The optimal solution and low-
complexity algorithms are developed.

The rest of the paper is organized as follows: Our network
model is detailed in Section 2. Section 3 analyzes the
scenario with a single cognitive user capable of sensing one
channel or multiple channels at a time. The extension to the
multiuser case is developed in Section 4. Section 5 discusses
some practical issues and presents numerical results that
support our theoretical claims. Finally, Section 6 sum-
marizes our conclusions.

2 NETWORK MODEL

Throughout this paper, uppercase letters (e.g., X) denote
random variables, lowercase letters (e.g., x) denote realiza-
tions of the corresponding random variables, and calli-
graphic letters (e.g, X ) denote finite alphabet sets over
which corresponding variables range. Also, uppercase
boldface letters (e.g., X) denote random vectors and
lowercase boldface letters (e.g., x) denote realizations of
the corresponding random vectors.

Fig. 1 shows the channel model of interest. We consider a
primary network consisting of N channels, N ¼ f1; . . . ; Ng,
each with bandwidth B.1 The users in the primary network
are operated in a synchronous time-slotted fashion. We use
i to refer to the channel index, j to refer to the time slot
index, and k to refer to the index of the cognitive users. We
assume that at each time slot, channel i is free with
probability �i. Let ZiðjÞ be a random variable that equals 1 if
channel i is free (i.e., available) at time slot j and equals 0
otherwise. Hence, given �i, ZiðjÞ is a Bernoulli random
variable with probability density function (pdf)

h�iðziðjÞÞ ¼ �i�ðziðjÞ � 1Þ þ ð1� �iÞ�ðziðjÞÞ;

where �ð�Þ is the delta function. Furthermore, for a given
�� ¼ ð�1; . . . ; �NÞ, ZiðjÞ are independent for each i and j. That
is, for a given ��, whether a channel is free or not is
independent between the time slots. The generalization to
the Markovian model for multiple cognitive user case is
briefly discussed in Section 5. We consider a block varying
model in which the value of �� is fixed for a block of T time
slots and randomly changes at the beginning of the next
block according to some joint pdf fð��Þ.

In our model, the cognitive users attempt to exploit the
availability of free channels in the primary network by
sensing the activity at the beginning of each time slot. Our
work seeks to characterize efficient strategies for choosing
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1. The case for different bandwidths Bi can be converted to an equivalent
problem in which channel i is free with probability �i;eq ¼ �iBi=Bmax, and
each channel has a bandwidth Bmax. Here, Bmax ¼ maxi2NBi.

Fig. 1. Channel model.



which channels to sense (access). The challenge here stems
from the fact that the cognitive users are assumed to be
unaware of �� a priori. We consider two cases in which the
cognitive user either has or does not have prior information
about the pdf of ��, i.e., fð��Þ.

To further illustrate the point, let us consider a first
scenario in which a single cognitive user is capable of
sensing only one channel at a time. At time slot j, the
cognitive user selects one channel SðjÞ 2 N to access. If the
sensing result shows that channel SðjÞ is free, i.e.,
ZSðjÞðjÞ ¼ 1, the cognitive user can send B bits over this
channel; otherwise, the cognitive user will wait until the
next time slot and pick a possibly different channel to
access.2 The outcome of the sensing algorithm is first
assumed to be error-free. The effects of sensing errors are
briefly discussed in Section 5. Therefore, the total number of
bits that the cognitive user is able to send over one block (of
T time slots) is

W ¼
XT
j¼1

BZSðjÞðjÞ: ð1Þ

It is now clear that W is a random variable that depends
on the traffic in the primary network and, more im-
portantly for us, on the medium access protocols employed
by the cognitive user. Therefore, the overarching goal of
Section 3.1 is to construct low-complexity medium access
protocols that maximize

IEfWg ¼ IE
XT
j¼1

BZSðjÞðjÞ
( )

: ð2Þ

Intuitively, the cognitive user would like to select that
channel with the highest probability of being free in order
to obtain more transmission opportunities. If �� is known
then this problem is trivial: the cognitive user should choose
the channel i� ¼ arg maxi2N �i to sense. The uncertainty in ��
imposes a fundamental trade-off between exploration, in
order to learn ��, and exploitation, by accessing the channel
with the highest estimated availability probability based on
currently available information.

Similarly, for scenarios in which the cognitive user can
access more than one channel at a time or there are multiple
cognitive users, our goal is to design strategies that
maximize the throughput of the cognitive users, as detailed
in the following sections.

3 SINGLE-USER ANALYSIS

3.1 Single Channel

We start by developing the optimal solution to the single
user-single channel scenario under the idealized assump-
tion that fð��Þ is known a priori by the cognitive user. As
argued below, the optimal medium access algorithm suffers
from prohibitive computational complexity that grows
exponentially with the block length T . This motivates the
design of low-complexity asymptotically optimal ap-
proaches that are considered next. Interestingly, the
proposed low-complexity technique does not require prior
knowledge about fð��Þ.

3.1.1 Bayesian Approach

Our single user-single channel cognitive medium access
problem belongs to the class of bandit problems. In this
setting, the decision maker must sequentially choose one
process to observe from N � 2 stochastic processes. These
processes usually have parameters that are unknown to the
decision maker, and associated with each observation is a
utility function. The objective of the decision maker is to
maximize the sum or discounted sum of the utilities via a
strategy that specifies which process to observe for every
possible history of selections and observations. The follow-
ing classical example illustrates the challenge facing our
decision maker: A gambler enters a casino having N slot
machines, the ith of which has winning probability �i; i 2 N .
The gambler does not know the values of the �is and must
sequentially choose machines to play. The goal is to
maximize the overall gain for a total of T plays. In this
example, the stochastic processes are the outcomes of the slot
machines, the utility function is the reward that the gambler
gains each time, and the gambling strategy specifies which
machine to play based on each possible past information
pattern. A comprehensive treatment covering different
variants of bandit problems can be found in [6].

We are now ready to rigorously formulate our problem.
The cognitive user employs a medium access strategy �,
which will select channel SðjÞ 2 N to sense at time slot j for
any possible causal information pattern obtained through
the previous j� 1 observations:

�ðjÞ ¼ fsð1Þ; zsð1Þð1Þ; . . . ; sðj� 1Þ; zsðj�1Þðj� 1Þg; j � 2;

i.e., sðjÞ ¼ �ðf;�ðjÞÞ. Notice that zsðjÞðjÞ is the sensing
outcome of the jth time slot, in which sðjÞ is the channel
being accessed. If j ¼ 1, there is no accumulated informa-
tion, thus �ð1Þ ¼ � and sð1Þ ¼ �ðfÞ. � could be stochastic,
i.e., for certain �ðjÞ, the cognitive user may randomly
choose channel i from a set A � N with probability pi, such
that

P
i2A pi ¼ 1. The utility that a cognitive user obtains by

making decision SðjÞ at time slot j is the number of bits it
can transmit at time slot j, which is BZSðjÞðjÞ. We denote the
expected value of the payoff obtained by a cognitive user
using strategy � as

W� ¼ IEf

XT
j¼1

BZSðjÞðjÞ
( )

: ð3Þ

We denote V �ðf; T Þ ¼ sup� W�, which is the largest
throughput that the cognitive user could obtain when the
spectral opportunities are governed by fð��Þ and the exact
value of each realization of �� is not known by the user.

Each medium access decision made by the cognitive
user has two effects. The first one is the short-term gain,
i.e., an immediate transmission opportunity if the chosen
channel is found to be free. The second one is the long-term
gain, i.e., the updated statistical information about ��. This
information will help the cognitive user in making better
decisions in the future stages. There is an interesting trade-
off between the short and long-term gains. If we only want
to maximize the short-term gain, we can choose the
channel with the highest availability probability to sense,
based on the current information. This myopic strategy
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2. The case in which the cognitive user can sense another channel
immediately is considered in [11] and [12].



maximally exploits the existing information. On the other
hand, by choosing other channels to sense, we gain
valuable statistical information about �� which can effec-
tively guide future decisions. This process is typically
referred to as exploration.

More specifically, let fjð��Þ be the updated pdf of �� after
making j� 1 observations. We begin with f1ð��Þ ¼ fð��Þ.
After observing zsðjÞðjÞ, we update the pdf using the
following Bayesian formula:

1. If zsðjÞðjÞ ¼ 1,

fjþ1ð��Þ ¼
�sðjÞf

jð��ÞR
�sðjÞfjð��Þd��

: ð4Þ

2. If zsðjÞðjÞ ¼ 0,

fjþ1ð��Þ ¼
ð1� �sðjÞÞfjð��ÞR
ð1� �sðjÞÞfjð��Þd��

: ð5Þ

Now, [6, Lemma 2.3.1] proves that every bandit problem
with finite horizon has an optimal solution. Applying this
result to our setup, we obtain the following:

Lemma 1. For any prior pdf f , there exists an optimal strategy
�� to the channel selection problem (3), and V �ðf; T Þ is
achievable. Moreover, V � satisfies the following condition:

V �ðf; T Þ ¼ max
sð1Þ2N

IEffBZsð1Þ þ V �ðfZsð1Þ ; T � 1Þg; ð6Þ

where fZsð1Þ is the conditional pdf updated using (4) and (5) as
if the cognitive user chooses sð1Þ and observes Zsð1Þ. Also,
V �ðfZsð1Þ ; T � 1Þ is the value of a bandit problem with prior
information fZsð1Þ and T � 1 sequential observations.

In principle, Lemma 1 provides the solution to problem
(3). Effectively, it decouples the calculation at each stage,
and hence, allows the use of dynamic programming to solve
the problem. The idea is to solve the channel selection
problem with a smaller dimension first and then use
backward induction to obtain the optimal solution for a
problem with a larger dimension. Starting with T ¼ 1, the
second term inside the expectation in (6) is 0, since
T � 1 ¼ 0. Hence, the optimal solution is to choose
channel i having the largest value of IEffBZig, which can
be calculated as

IEffBZig ¼ B
Z
�ifð��Þd��

and V �ðf; 1Þ ¼ maxi2N IEffBZig. One can now proceed to
solve the case with T ¼ 2 and so on.

3.1.2 Nonparametric Asymptotic Analysis and

Asymptotically Optimal Strategies

The optimal solution developed in Section 3.1.1 suffers from
prohibitive computational complexity. In particular, the
dimensionality of our search dimension grows exponen-
tially with the block length T . Moreover, one can envision
many practical scenarios in which it would be difficult for
the cognitive user to obtain the prior information fð��Þ. This
motivates our pursuit of low-complexity nonparametric

protocols. Toward this end, we study in the following
asymptotic performance of several low-complexity ap-
proaches. In particular, we analyze nonparametric schemes
that do not explicitly use fð��Þ, and thus the rule �
considered in this section depends only on �ðjÞ explicitly.

For a certain strategy �, the expected number of bits the
cognitive user is able to transmit through a block with
certain parameters �� is

IE
XT
j¼1

BZSðjÞðjÞ
( )

¼
XT
j¼1

B
XN
i¼1

�iPr �ð�ðjÞÞ ¼ if g: ð7Þ

Recall that �ð�ðjÞÞ ¼ i means that, following strategy �, the
cognitive user should choose channel i at time slot j, based
on the available information �ðjÞ. Here, Prf�ð�ðjÞÞ ¼ ig is
the probability that the cognitive user will choose channel i
at time slot j, following the strategy �.

Compared with the ideal case where the exact value of ��
is known, in which the optimal strategy for the cognitive
user is to always choose the channel with the largest
availability probability, the loss entailed by � is given by

Lð��; �Þ ¼
XT
j¼1

B�i� �
XT
j¼1

B
XN
i¼1

�iPr �ð�ðjÞÞ ¼ if g; ð8Þ

where �i� ¼ maxf�1; . . . ; �Ng. We say that a strategy � is
consistent if, for any �� 2 ½0; 1�N , there exists � < 1 such that
Lð��; �Þ scales as3 OðT�Þ. For example, consider a loyal
scheme in which the cognitive user selects channel i at the
beginning of a block and sticks to it. If �i is the largest one
among ��, Lð��; �Þ ¼ 0. On the other hand, if �i is not the
largest one, Lð��; �Þ � OðT Þ. Hence, this loyal scheme is not
consistent. The following lemma characterizes the funda-
mental limits of any consistent scheme.

Lemma 2. For any �� and any consistent strategy �, we have

lim inf
T!1

Lð��; �Þ
lnT

� B
X

i2Nnfi�g

�i� � �i
Dð�ik��i Þ

; ð9Þ

where Dð�ik�lÞ is the Kullback-Leibler divergence between two
Bernoulli random variables with parameters �i and �l:

Dð�ik�lÞ ¼ �i ln �i=�lð Þ þ ð1� �iÞ ln ð1� �iÞ=ð1� �lÞð Þ:

Proof. This follows as an application of a theorem proved in
[13]; see Appendix A for details. tu

Lemma 2 shows that the loss of any consistent strategy
scales at least as !ðlnT Þ. An intuitive explanation of this loss
is that we need to spend at least OðlnT Þ time slots on
sampling each of the channels with smaller �i, in order to
get a reasonably accurate estimate of ��, and hence, use it to
determine the channel having the largest �i to sense. We say
that a strategy � is order optimal if Lð��; �Þ � OðlnT Þ.

Now, the first question that arises is whether there
exist order-optimal strategies. As shown later in this
section, we can design suboptimal strategies that have loss
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3. In this paper, we use Knuth’s asymptotic notations: 1) g1ðNÞ ¼
oðg2ðNÞÞ means 8c > 0;9N0; 8N > N0; g1ðNÞ < cg2ðNÞ, 2) g1ðNÞ ¼ !ðg2ðNÞÞ
means 8c > 0; 9N0;8N > N0; g2ðNÞ < cg1ðNÞ, and 3) g1ðnÞ ¼ Oðg2ðNÞÞ
means 9c2 � c1 > 0; N0, 8N > N0; c1g2ðNÞ 	 g1ðNÞ 	 c2g2ðNÞ.



of order OðlnT Þ. Thus, the answer to this question is
affirmative. Before proceeding to the proposed low-
complexity order-optimal strategy, we first analyze the
loss order of some heuristic strategies that may appear
appealing in certain applications.

The first simple rule is the random strategy �r where, at
each time slot, the cognitive user randomly chooses a
channel from the available N channels. The fraction of time
slots the cognitive user spends on each channel is therefore
1=N , leading to the loss

Lð��; �rÞ ¼ BT
XN
i¼1

ð�i� � �iÞ=N � OðT Þ:

The second protocol of interest is the myopic rule �g in
which the cognitive user keeps updating fjð��Þ, and chooses
the channel with the largest value of �̂i ¼

R
�if

jð��Þd�� at each
stage. Since there are no convergence guarantees for the
myopic rule, that is �̂�may never converge to �� due to the lack
of sufficiently many samples for each channel [14], the loss
of this myopic strategy is OðT Þ.

The third protocol we consider is staying with the winner
and switching from the loser rule �SW where the cognitive
user randomly chooses a channel in the first time slot. In
the succeeding time slots 1) if the accessed channel is
found to be free, it will choose the same channel to sense;
2) otherwise, it will choose one of the remaining channels
based on a certain switching rule.

Lemma 3. Regardless of the switching rule, Lð��; �SW Þ � OðT Þ.
Proof. Please refer to Appendix B. tu

There are several strategies that have loss of order
OðlnT Þ. We adopt the following linear complexity strategy
which was proposed and analyzed in [15].

Rule 1 (Order-optimal single-index strategy). The cognitive

user maintains two vectors X and Y, where Xi records the

number of time slots for which the cognitive user has sensed

channel i to be free, and Yi records the number of time slots for

which the cognitive user has chosen channel i to sense. The

strategy works as follows:

1. Initialization: at the beginning of each block, sense each
channel once.

2. After the initialization period, the cognitive user
obtains an estimate �̂� at the beginning of time slot j,
given by �̂iðjÞ ¼ XiðjÞ=YiðjÞ, and assigns an index

�iðjÞ ¼ �̂iðjÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YiðjÞ

p
to the ith channel. The cognitive user chooses the

channel with the largest value of �iðjÞ to sense at time

slot j. After each sensing, the cognitive user updates X

and Y.

The intuition behind this strategy is that as long as Yi
grows as fast as OðlnT Þ, �i converges to the true value of �i
in probability, and the cognitive user will choose the
channel with the largest �i eventually. The loss of OðlnT Þ
comes from the time spent in sampling the inferior channels
in order to learn the value of ��. This price, however, is
inevitable as established in the lower bound of Lemma 2.

Finally, we observe that the difference between the

myopic rule and the order-optimal single-index rule is the

additional term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YiðjÞ

p
added to the current estimate

�̂i. Roughly speaking, this additional term guarantees

enough sampling time for each channel, since if we sample

channel i too sparsely, YiðjÞ will be small, which will

increase the probability that �i is the largest index. When

YiðjÞ scales as lnT , �̂i will be the dominant term in the index

�i, and hence the channel with the largest �i will be chosen

more frequently.

3.2 Multichannel Cognitive Users

In certain scenarios, cognitive users may be able to sense
more than one channel simultaneously. We assume the
presence of a single cognitive user capable of sensing, and
subsequently utilizing,M 	 N channels simultaneously. Let
MðjÞ be the set of channels the cognitive user selects to sense
at time slot j, where jMðjÞj ¼M. The average number of bits
that the cognitive user is able to send over a block is therefore

IEfWg ¼ IE
XT
j¼1

X
SðjÞ2MðjÞ

BZSðjÞðjÞ

8<
:

9=
;: ð10Þ

At the beginning of time slot j, the cognitive user can
update the pdf fjð��Þ similarly to (4) and (5). Similarly to
Lemma 1, the optimal solution can be characterized by the
following optimality condition:

V �ðf; T Þ ¼ max
Mð1Þ�N ;jMð1Þj¼M

IEf

( X
sð1Þ2Mð1Þ

BZsð1Þ

þ V �
�
ffZsð1Þ:sð1Þ2Mð1Þg; T � 1

�)
:

ð11Þ

Here, ffZsð1Þ:sð1Þ2Mð1Þg is the updated pdf after observing the
sensing output of the channels sð1Þ 2 Mð1Þ. We can then
follow the same procedure described for the single-channel
sensing scenario to obtain the optimal strategy �� according
to (11). In the following, however, we focus on low-complex-
ity nonparametric strategies that are asymptotically optimal.

If �� is known, the cognitive user will choose the
M channels with the largest �’s to sense. Without loss of
generality, we assume �1 � �2 � � � � � �N . Hence, for any
strategy �, the loss is

Lð��; �Þ ¼
XT
j¼1

XM
i¼1

B�i �
XT
j¼1

B
XN
i¼1

�iP i 2MðjÞf g: ð12Þ

We have the following order-optimal simple single-index
strategy.

Rule 2. The cognitive user maintains two vectors X and Y,
where Xi is the number of time slots in which the cognitive
user has sensed channel i to be free, and Yi is the number of
time slots in which the cognitive user has chosen channel i to
sense. The strategy works as follows:

1. Initialization: at the beginning of each block, each
channel is sensed once. This initialization stage takes
dN=Me time slots, in which dxe denotes the least
integer that is no less than x.
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2. After the initialization period, the cognitive user
obtains an estimate �̂� at the beginning of time slot j
given by �̂iðjÞ ¼ XiðjÞ=YiðjÞ, and assigns an index

�iðjÞ ¼ �̂iðjÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YiðjÞ

p

to the ith channel. The cognitive user orders these

�iðjÞs and selects the M channels with the largest

�iðjÞs to sense. After each sensing, the cognitive user

updates X and Y.

Lemma 4. Rule 2 is asymptotically optimal and Lð��;�Þ �
OðlnT Þ.

Proof. Please refer to Appendix C. tu

In the proof presented in Appendix C, the performance

bound is derived for general T . Hence, compared with the

situation in which �� is known, the performance loss of the

order-optimal rules is bounded by c1 lnT þ c2 for certain

constants c1 and c2. Thus, the scheme is not only

asymptotically optimal, but also has a performance guar-

antee for finite value of T .

4 MULTIUSER ANALYSIS

In this section, we assume the presence of a set K ¼
f1; . . . ; Kg of cognitive users and consider the distributed

medium access decision processes of the multiple users

with no prior coordination. The presence of multiple

cognitive users adds an element of competition to the

problem. In order for a cognitive user to make use of a

channel now, it must be free of the primary traffic and

traffic from the other competing cognitive users.

4.1 Single Channel

We start with a simpler situation in which each cognitive

user can sense one channel at a time. We denote by KiðjÞ �
K the random set of users who choose to sense channel i at

time slot j. We assume that the users follow a generalized

version of the Carrier Sense Multiple Access/Collision

Avoidance (CSMA/CA) protocol to access the channel after

sensing the main channel to be free, i.e., if channel i is free,

each user k in the set KiðjÞ will generate a random number

tkðjÞ according to a certain probability density function g,

and wait the time specified by the generated random

number. At the end of the waiting period, user k senses the

channel again, and if it is found to be free, the packet from

user k will be transmitted. The probability that user k in the

set KiðjÞ gains access to the channel is the same as the

probability that tkðjÞ is the smallest random number

generated by the users in the set KiðjÞ. Thus, the

throughput4 user k achieves in a block is

Wk ¼
XT
j¼1

BZSkðjÞðjÞI k ¼ arg min
q2KSkðjÞðjÞ

tqðjÞ
( )

: ð13Þ

Therefore, user k should devise a sensing rule �k that
maximizes

IE Wkf g ¼ IE
XT
j¼1

BZSkðjÞðjÞI k ¼ arg min
q2KSkðjÞðjÞ

tqðjÞ
( )( )

:

Clearly, with multiple cognitive users, it is not optimal
anymore for all the users to always choose the channel with
the largest �i to sense. In particular, if all the users choose
the channel with the largest �i, the probability that a given
user gains control of the channel decreases, while potential
opportunities in the other channels in the primary network
are wasted.

4.1.1 Known �� Case

To enable a succinct presentation, we first consider the case
in which the values of �� are known to all the cognitive users.
The users distributively choose channels to sense and
compete for access if the channels are free.

Without loss of generality, we consider a mixed strategy
where user k will choose channel i with probability pk;i.
Furthermore, we let pk ¼ ½pk;1; . . . ; pk;N � and consider the
symmetric solution in which p ¼ p1 ¼ � � � ¼ pK . The sym-
metry assumption implies that all the users in the network
distributively follow the same rule to access the spectral
opportunities present in the primary network, in order to
maximize the same average throughput that each user can
obtain. The following result derives the optimal solution in
this situation.

Lemma 5. For a cognitive network with K > 1 cognitive users
and N channels with probabilities �� of being free, the optimal
p� is given by

p�i ¼
1� ��

K�i

� �1=ðK�1Þ
� �þ

; for �i > 0;

0; for �i ¼ 0;

8<
: ð14Þ

where �� is a constant such that
PN

i¼1 p
�
i ¼ 1. Here,

fxgþ ¼ maxf0; xg.
Proof. Please refer to Appendix D. tu

Note that, if K ¼ 1, then p�i� ¼ 1 satisfies the Karush-
Kuhn-Tucker (KKT) conditions for optimality [16]. Here,
i� ¼ arg maxi2N �i, p

�
l ¼ 0, and l 2 Nnfi�g.

So, the total throughput of the K cognitive users is

KW ¼ BKT
XN
i¼1

�i
K

	
1�

�
1� p�i

�K


¼ BT
XN
i¼1

�i
	

1�
�
1� p�i

�K

:

ð15Þ

On the other hand, the average total spectral opportunity in
the primary network is BT

PN
i¼1 �i. This upper bound can

be achieved by a centralized channel allocation strategy
when K > N (simply by assigning one cognitive user to
each channel). Therefore, the loss of the distributed protocol
as compared with the centralized scheduling is

L ¼ BT
XN
i¼1

�i
�
1� p�i

�K
: ð16Þ
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There is an intuitive explanation of this loss. If there is a

spectral opportunity in channel i but there are no users

choosing channel i to sense, a loss occurs. The probability

that there is no user choosing channel i to sense is

ð1� p�i Þ
K , and hence the probability of loss occurring at

channel i is �ið1� p�i Þ
K . To obtain further insights into the

performance of the cognitive network, we study the

following special cases:

 N � 1; K ¼ 1. As stated above, p�i� ¼ 1, and p�l ¼ 0;

l 2 Nnfi�g. Hence, the user should choose the channel with

the largest availability probability to sense, and

L ¼ BT
X

i2Nnfi�g
�i:


 N ¼ 2; K ¼ 2. Substituting N ¼ 2 and K ¼ 2 into (14),

we obtain

p�1 ¼ �1=ð�1 þ �2Þ and p�2 ¼ �2=ð�1 þ �2Þ: ð17Þ

Furthermore,

W ¼ BT�1

2
1� �2

2

ð�1 þ �2Þ2

" #

þBT�2

2
1� �2

1

ð�1 þ �2Þ2

" #
; and

L ¼ BT�1�2

2ð�1 þ �2Þ
:

ð18Þ


 N is fixed, and K !1. We have the following

asymptotic characterization:

Lemma 6. Let 2 	 Q 	 N be the number of channels for which

�i > 0. We have p�i ! 1=Q, and L! 0 exponentially as K

increases, i.e., L � Oðe�c1KÞ, where c1 ¼ ln Q
Q�1 .

Proof. Please refer to Appendix E. tu

From this lemma, we can see that if the number of

cognitive users is large, the optimal strategy is independent

of the exact value of ��. The reason for the exponential

decrease in the loss is that, as the number of cognitive users

increases, the probability that there is no user sensing any

particular channel decreases exponentially. If Q ¼ 1, then

there is no loss of performance, since all the users will always

sense the channel with nonzero availability probability.
The optimality of the distributed protocol proposed

above hinges on the assumption that all the users will

follow the symmetric rule. However, it is straightforward to

see that if a single cognitive user deviates from the rule

specified in Lemma 5, it will be able to transmit more bits. If

this selfish perspective propagates through the network, it

may lead to a significant reduction in the overall through-

put. This observation motivates our next step in which the

channel selection problem is modeled as a noncooperative

game, where the cognitive users are the players, the �ks are

the strategies, and the average throughput of each user is

the payoff. The following result derives a sufficient

condition for the Nash equilibrium in the asymptotic

scenario K !1.

Lemma 7. ð�1; . . . ;�KÞ is a Nash equilibrium if K is sufficiently

large and, at each time slot, there are �iK users sensing

channel i, where �i satisfies

�i ¼ �i
�XN

i¼1

�i: ð19Þ

At this equilibrium, each user has probability
PN

i¼1 �i=K of

transmitting at each time slot.

Proof. We prove this result by backward induction. At the

last time slot T , if the �is satisfy (19), the probability of

user k gaining a channel is

pk ¼ �i=ð�iKÞ ¼
XN
i¼1

�i=K: ð20Þ

Now, if user k deviates from this strategy, and chooses
channel i0, the number of users sensing channel i0 is
�i0K þ 1, and the probability of user k gaining the
channel is

p0k ¼ �i0 =ð�i0K þ 1Þ < �i0 =ð�i0KÞ ¼ pk: ð21Þ

Hence, the strategy that has �iK users sensing channel i

at time slot T is a Nash equilibrium. Now, we know the

optimal strategy for the last time slot, so we can ignore

this time slot. Then time slot T � 1 becomes the last

slot, in which this strategy is optimal. Similarly, we

show by induction that this strategy is optimal for all

other time slots. tu
We note that in the lemma we implicitly assume that �iK

is an integer. In practice, this is not always true. However, if

K is large, then rounding �iK to the nearest integer will

have minimal effect. The Nash equilibrium is also optimal

from a system perspective, in the sense that this strategy

maximizes the entire throughput of the network by fully

utilizing the available spectral opportunities when K is

large (i.e., on the average, each user will be able to transmit

ðBT
P
�iÞ=K bits per block, and the total throughput of the

network is BT
P
�i).

With this equilibrium result, the cognitive users can use

the following stochastic sensing strategy to approximately

work on the equilibrium point for a large but finite K. Let

skðjÞ be the channel chosen by user k at time slot j. At each

time slot, each user independently selects channel i with

probability �i ¼ �i=
P

i2N �i, i.e., PrfskðjÞ ¼ ig ¼ �i. Then, at

each time slot, the number of users sensing channel i will bePK
k¼1 IfskðjÞ ¼ ig, where the IfskðjÞ ¼ igs are independent

and identically distributed (i.i.d) Bernoulli random vari-

ables. Hence, the total number of users sensing channel i is

a binomial random variable, and the fraction of users

sensing channel i converges to �i in probability as K

increases, i.e.,

� 0 ¼
XK
k¼1

IfskðjÞ ¼ ig
 !�

K ! �i ð22Þ

in probability. Hence, as K increases, the operating point

will converge to the Nash equilibrium in probability.
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For any K, the probability that there is no user choosing

channel i to sense is ð1� �iÞK . Hence, the performance loss

compared with the centralized scheme is

L ¼ BT
X

�ið1� �iÞK ¼ BT
XN
i¼1

�i

PN
l¼1 �l � �iPN

l¼1 �l

 !K

: ð23Þ

It is easy to check that

lim
K!1

L

exp�c2K
¼ BT�l� ; ð24Þ

where �l� ¼ minf�i : �i > 0g, and

c2 ¼ ln

P
�iPN

l¼1 �l � �l�
:

It is now clear that the loss of the game-theoretic scheme
goes to zero exponentially, though the decay rate is smaller
than that of the scheme specified in Lemma 5. On the other
hand, compared with the scheme in Lemma 5, the game-
theoretic scheme has the advantage that the individual
cognitive users do not need to know the total number of
cognitive users K in the network and, more importantly,
they have no incentive to deviate unilaterally.

4.1.2 Unknown �� Case

If �� is unknown, the cognitive users need to estimate �� (in
addition to resolving their competition). Combining the
results from Sections 3.1.2 and 4.1.1, we design the following
low-complexity strategy which is asymptotically optimal.

Rule 3.

1. Initialization: Each user k maintains the following two
vectors: Xk, which records the number of time slots in
which user k has sensed each channel to be free; and
Yk, which records the number of time slots in which
user k has sensed each channel. At the beginning of
each block, user k senses each channel once and
transmits through this channel if the channel is free
and it wins the competition. Also, set Xk;i ¼ 1,
regardless of the sensing result of this stage.

2. At the beginning of time slot j, user k estimates �̂i as

�̂iðjÞ ¼ Xk;iðjÞ=Yk;iðjÞ;

and chooses each channel i 2 N with probability

�̂iðjÞ
�XN

i¼1

�̂iðjÞ: ð25Þ

After each sensing, Xk and Yk are updated.

Lemma 8. If K is large, the scheme in Rule 3 converges to the
Nash equilibrium specified in Lemma 7 in probability, as T
increases.

Proof. Please refer to Appendix F. tu

The intuition behind this scheme is that, each user will
sample each channel at least OðT Þ times, and hence as T
increases, the estimate �̂� converges to �� in probability,
implying that the unknown �� case will eventually reduce to

the case in which �� is known to all the users. Hence, if K is
sufficiently large, the operating point converges to the Nash

equilibrium in probability.
If one can assume that the users will follow the

prespecified rule, then we can design the following strategy
that converges to the optimal operating point in probability

for any K, as T increases.

Rule 4.

1. Initialization: Same as Rule 3.
2. At the beginning of time slot j 	 lnT , user k estimates

�̂i as

�̂iðjÞ ¼ Xk;iðjÞ=Yk;iðjÞ;

and chooses each channel i 2 N with probability

�̂iðjÞ=
PN

i¼1 �̂iðjÞ. For j � lnT , the ith channel is

sensed with probability

p̂�i ¼
	

1� ð��=�̂iÞ1=ðK�1Þ
þ: ð26Þ

After each sensing, Xk and Yk are updated.

Lemma 9. The proposed scheme converges in probability to the

optimal operating point specified in Lemma 5, as T increases.

Proof. Following the same steps as in the proof of Lemma 8,

one can show that �̂� converges to �� in probability as T
increases. Hence the operating point specified by (26)

converges in probability to the optimal point specified in

Lemma 5 as T increases. tu

4.2 Multiple Channels

Now, consider the scenario in which each cognitive user is
able to sense and utilize M channels simultaneously. Let

MkðjÞ be the set of channels cognitive user k selects to sense

at time slot j, where jMkðjÞj ¼M. As in Section 4.1, we
denote by KiðjÞ � K the random set of users who choose to

sense channel i at time slot j. The users follow the same

protocol described in Section 4.1 to access channel i, after
sensing channel i to be free of primary users’ traffic.

FromN channels, we haveL ¼ N
M

� �
different subsets, each

containing M channels. We arbitrarily label these subsets

from 1 to L, and let Al be the lth subset. Let pk;l be the
probability that user k chooses the set Al to sense.

Furthermore, we let pk ¼ ½pk;1; . . . ; pk;L�. For simplicity, we
consider only symmetric solutions here, and thus we assume

p ¼ p1 ¼ � � � ¼ pK . With p, the probability that channel iwill

be selected by any user at each time slot is
P

l:i2Al pl.
First, consider the situation in which �� is known.

Following the same argument as that of Section 4.1, the

transmission opportunities per time slot not utilized is

y ¼ B
XN
i¼1

�i 1�
X
l:i2Al

pl

 !K

: ð27Þ

Hence, we can obtain the optimal value of p by solving

the following optimization problem:
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min y ¼ B
XN
i¼1

�i 1�
X
l:i2Al

pl

 !K

ð28Þ

s:t:
XL
l¼1

pl ¼ 1 and p � 0: ð29Þ

The KKT conditions for optimality are

p� � 0;
XL
l¼1

p�l ¼ 1;

p�l �� �
XN
i¼1

�i 1�
X
l:i2Al

p�l

 !K�1
0
@

1
A ¼ 0; and

�� �
XN
i¼1

�i 1�
X
l:i2Al

p�l

 !K�1

;

ð30Þ

where �� is a Lagrange multiplier.
For the scenario in which �� is unknown, we have the

following simple rule that converges to the optimal
operating point as T increases.

Rule 5.

1. Initialization: Same as Rule 3.
2. At the beginning of time slot j 	 lnT , user k estimates

�̂i as

�̂iðjÞ ¼ Xk;iðjÞ=Yk;iðjÞ:

Now, user k first chooses one channel i 2 N with
probability �̂iðjÞ=

PN
i¼1 �̂iðjÞ. Then, user k chooses the

remaining M � 1 channels randomly. For j � lnT ,
the lth subset is chosen with probability computed
using (30) with �i being replaced with the estimated
value �̂i. After each sensing, Xk and Yk are updated.

5 FURTHER DISCUSSIONS AND NUMERICAL

RESULTS

5.1 Markovian Model

Certain results presented above can be extended to a more
general Markovian model. As shown in Fig. 2, we assume
that the availability of channel i follows a Markov chain
with parameters �i01 and �i10, in which �i01 denotes the
transition probability of channel i from the “busy” state
(denoted by 0) to the “free” state (denoted by 1) and �i10

denotes the transition probability of channel i from the
“free” state to the “busy” state. We assume that the value of
�i01 and �i10 are unknown a priori to the cognitive users. We

denote ��01 ¼ ½�1
01; . . . ; �K01� and ��10 ¼ ½�1

10; . . . ; �K10�. In the
following, we set

�Mi ¼
�i01

�i01 þ �i10

; ð31Þ

and denote ��M ¼ ½�M1 ; . . . ; �MK �.
If there is only one cognitive user in the network, i.e., the

problem considered in Section 3, the problem under this
Markovian model can be formulated as a restless bandit
problem [17]. It has been shown that the restless bandit
problem is PSPACE-hard [18]. Hence, finding the optimal
solution for K ¼ 1 is a very difficult problem. We note that
some interesting results have been obtained for the case in
which the payoff is the discounted sum of payoffs obtained
at each time slot in [19]. On the other hand, in a network
setting, the number of cognitive users K is usually large,
and so all the results in Section 4 can be extended to the
Markovian model. More specifically, one only needs to
replace �i with �Mi , and all the proofs in Section 4 follow.
Details of the proofs of these results can be found in [20].

5.2 Impact of Finite T

Here, we show some numerical results to consider the
impact of finite T on the low-complexity rules proposed in
the single-user and multiple-user cases. As mentioned in
Section 3.2, the proposed low-complexity scheme is not
only order optimal, but also offers a strict performance
guarantee for any finite T . On the other hand, for the
myopic strategy there is no convergence guarantee, i.e.,
there is a nonzero probability that the myopic strategy will
stay with channels with smaller availability probabilities.
Fig. 3 exhibits such a scenario for the single-user scenario.
In this figure, we show the time average of the throughput
obtained before t by using Rule 1. In generating this
simulation result, we assume that the user can access one
channel per time and that there are N ¼ 10 channels. In the
figure, B is set to be 1. We randomly generate the parameter
��, and keep the value fixed for T slots. In this figure, �� ¼
½0:0211; 0:1461; 0:0981; 0:1780; 0:2539; 0:4742; 0:4480; 0:1691;
0:0431; 0:1206�. Using the same parameters, we run the
simulation 10,000 times. We find that 62 percent of the time,
the myopic strategy will stay with a channel with a smaller
availability probability. Fig. 4 shows the performance of
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Fig. 2. State transition of channel i.

Fig. 3. Comparison of the order-optimal strategy in Rule 1 and the
myopic strategy with finite T .



Rule 3 in the multiple cognitive user case for finite T . In this
simulation, we assume that there are K ¼ 3 users and N ¼
10 channels with randomly generated parameters �� ¼
½0:9000; 0:3000; 0:4894; 0:2193; 0:4840; 0:6711; 0:3685; 0:4065;
0:2390; 0:8689�. From this figure, we can see that the time
average throughput of each user converges to the average
value, and that these throughputs are close to each other for
finite values of T .

5.3 Impact of Sensing Errors

Sensing errors are inevitable in any spectrum sensing
situation. In practice, sensing algorithms have the following
two categories of sensing errors [21]: missed detection and
false alarm. Let 	 be the missed detection probability, which
is the probability that a channel is sensed to be free while it is
actually busy. If a missed detection happens, there will be a
transmission collision. Also let 
 be the false alarm
probability, which is the probability that a channel is sensed
to be busy while it is actually available. Suppose that the true
availability probability of a channel is �i; then the sensing
result ZiðjÞ (recall that ZiðjÞ is the random variable that
equals 1 when channel i is sensed to be free in time slot j, and
equals 0 otherwise) is a Bernoulli random variable with the
parameter ð1� �iÞ	 þ ð1� 
Þ�i. Thus, as long as we sample
each channel with enough number of samples, XiðjÞ=YiðjÞ
converges to ð1� �iÞ	 þ ð1� 
Þ�i. Hence, the computation-
ally simple rules still work with additional modification:

�̂i ¼
XiðjÞ=YiðjÞ � 	

1� 
� 	 : ð32Þ

For any implementation, we can choose 	 according to the
collision probability that the primary user can tolerate. Then,
from the detection algorithms, we know the parameter 
.
Fig. 5 shows the simulation result for Rule 1 for the
parameters 	 ¼ 0:01, 
 ¼ 0:3, and

�� ¼ ½0:0193; 0:2113; 0:0368; 0:4656; 0:2159; 0:2251;

0:1312; 0:2975; 0:1609; 0:4347�:

In this figure, the upper curve shows the results with no
sensing errors, and the lower curve shows the results with
sensing errors generated according to 	 and 
. We can see
that with sensing errors, the performance still converges to
the optimal value corresponding to ð1� �i� Þ	 þ ð1� 
Þ�i� .

5.4 Impact of CSMA/CA Overhead

In a practical system, when CSMA/CA protocol is used to
resolve the contention among users that try to access the
same channel, the procedure in each time slot is described
as follows: If the channel is sensed free, a user randomly
chooses an integer number (called the backoff timer) from
its contention window, denoted by [0, CW] (here CW is
called the contention window size). Then, the user counts
down its backoff timer by one after each small duration
(called a minislot). Once its backoff timer reaches zero, the
user senses the channel again, and transmits in the time slot
if the channel is sensed free. So in each time slot, the user
with the smallest backoff timer will transmit. Two kinds of
overhead exist in this procedure: backoff duration and
possible collision (i.e., when two or more users choose the
same smallest backoff timer).

As shown in Lemma 7, at the Nash equilibrium there are
�iK users sensing channel i. Based on this, we can determine
the optimal contention window size in channel i, which
maximizes the effective throughput in the channel (taking
the two kinds of overhead into consideration). Thus, we can
obtain the ratio of the effective throughput in all channels to
the ideal throughput (i.e., when the backoff duration is zero
and there is no collision), for different total numbers of users
(K). In the calculations, we set N ¼ 10. The availability
probabilities of the 10 channels are randomly chosen within
(0, 1) to be �� ¼ ½0:9501; 0:2311; 0:6068; 0:4860; 0:8913; 0:7621;
0:4565; 0:0185; 0:8214; 0:4447�. Similarly to [22], the slot
duration is 100 ms. The minislot duration is 20 �s, in
accordance with the IEEE 802.11 Standard. It is observed
that, when the total number of users (K) ranges through
from 50, 100, 150, 200, 300, 400, and 500, the ratio of the
effective throughput to the ideal throughput is still high,
taking values of 0.98, 0.97, 0.96, 0.95, 0.93, 0.90, and 0.88,
respectively. Hence, in this range of parameters, the impact
of overhead is not significant.

6 CONCLUSIONS

This work has taken a first step in the design and analysis of
cognitive medium access operating in uncertain environ-
ments, based on the classical bandit problem. In the single-
user scenario, our formulation is inspired by the equivalence
with the multiarmed bandit problem. This equivalence is
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Fig. 4. The performance of each user with finite T in Rule 3.

Fig. 5. Performance comparison of Rule 1 for the cases with sensing
error and without sensing error.



used to highlight the trade-off between exploration and
exploitation in cognitive channel selection. A linear complex-
ity cognitive medium access algorithm, which is asympto-
tically optimal as T !1, has been proposed. The multiuser
setting has also been formulated, as a competitive bandit
problem enabling the design of efficient and game theore-
tically fair medium access protocols. These ideas have also
been extended to the multichannel scenario in which the
cognitive user is capable of sensing and utilizing several
channels simultaneously.

APPENDIX A

PROOF OF LEMMA 2

Proof. The proof is an application of a theorem proved in
[13]. More specifically, for a general bandit problem, let
X be the random payoff obtained by choosing bandit i
(not necessarily Bernoulli), and we let h�iðxÞ be the pdf of
X for a given �i.

Let ��i denote the average payoff of bandit i, i.e.,
��i ¼

R
xh�iðxÞdx, and note that the Kullback-Leibler

divergence between bandits i and l is given by

Dð�ik�lÞ ¼
Z
½lnh�iðxÞ � lnh�lðxÞ�h�iðxÞdx: ð33Þ

Let i� ¼ arg maxi2N�i, i.e., the index of the channel
with the largest average payoff. It has been proved in [13,
Theorem 1] that if

1. 0 < Dð�ik�lÞ <1, for any �i 6¼ �l, and
2. 8
 > 0, and 8��l > ��i , there exists � > 0, so that

we have jDð�ik�lÞ �Dð�ik�
0 Þj < 
 whenever ��i 	

��0 	 ��i þ �,
then for any consistent strategy �, we have

lim inf
T!1

Lð��; �Þ
lnT

�
X

i2Nnfi�g

�i� � �i
Dð�ik��i Þ

: ð34Þ

In our cognitive radio channel selection problem, given
��, X is a random variable with pdf

h�iðxÞ ¼ �i�ðx�BÞ þ ð1� �iÞ�ðxÞ;

hence �i ¼ B�i, and

Dð�ik�lÞ ¼ �i ln �i=�lð Þ þ ð1� �iÞ ln ð1� �iÞ=ð1� �lÞð Þ:

It is straightforward to verify that the technical condi-
tions are satisfied. Thus, on substituting these para-
meters into (34), the proof is complete. tu

APPENDIX B

PROOF OF LEMMA 3

Proof. Let i� ¼ arg maxi2N �i and i�� ¼ arg maxi2Nnfi�g�i; i.e.,
i� is the best channel, and i�� is the second best channel.
To avoid trivial conditions, without loss of generality we
assume that �i� 6¼ �i�� and �i� 6¼ 1. We can upper bound
the performance of the staying with the winner and
switching from the loser rule by assuming that the
cognitive user has the following extra knowledge.

1. In the first time slot, the cognitive user is able to
choose i� correctly.

2. Once i� is sensed to be busy, the cognitive user
somehow knows which channel is the second
best, and switches to i��.

3. Once i�� is sensed to be busy, the cognitive user is
always able to switch back to i�.

We denote this optimistic rule by ��SW . With any realistic
switching rule �SW , we have

Lð��; �SW Þ � Lð��; ��SW Þ:

Now with the optimistic rule ��SW , the system can be
modeled as the following Markov process as shown in
Fig. 6, in which we have two states: 1) sensing channel i�

and 2) sensing channel i��. The transition probability
matrix of this Markov chain is

P ¼ �i� ; 1� �i�
1� �i�� ; �i��

� 

: ð35Þ

The probability Pi�� that the cognitive user will sense
channel i�� can be obtained by solving the following
equation:

Pi�� ¼ ð1� �i� Þð1� Pi�� Þ þ �i��Pi�� ; ð36Þ

from which we obtain

Pi�� ¼
1� �i�

1� �i� þ 1� �i��
: ð37Þ

Hence, in the nontrivial cases, we have

Lð��; ��SW Þ ¼ BPi�� ð�i� � �i�� ÞT; ð38Þ

implying that, for any switching rule, Lð��; �SW Þ�OðT Þ.tu

APPENDIX C

PROOF OF LEMMA 4

Proof. We bound YiðT Þ for i �M þ 1, i.e., the channels that
are not among the channels having the M largest values
of �. Note that YiðT Þ is the total number of time slots in
which the cognitive user has sensed channel i in a block
with T time slots. We have

YiðT Þ ¼ 1þ
XT

j¼dN=Meþ1

I i 2 MðjÞf g

	 mþ
XT

j¼dN=Meþm
Ifi 2 MðjÞ

���YiðjÞ � mg;
for any m � 1, where Ifxjyg is the conditional indicator
function, which equals 1 if, conditioning on y, x is
satisfied, and otherwise equals 0. Since YiðjÞ � m, it
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Fig. 6. A Markov process representation of the optimistic strategy ��SW .



follows that i 2 MðjÞ only if �iðjÞ is among the M

largest indices. Hence, a necessary condition for i 2
MðjÞ is �iðjÞ � minf�lðjÞ : 1 	 l 	Mg. Otherwise, if

�iðjÞ < minf�lðjÞ : 1 	 l 	Mg, then the indices of these

M channels are already larger than that of channel i,

and channel i will not be selected. Thus,

Ifi 2 MðjÞjYiðjÞ � mg
	 If�iðjÞ � minf�lðjÞ : 1 	 l 	MgjYiðjÞ � mg

	
XM
l¼1

If�iðjÞ � �lðjÞjYiðjÞ � mg:
ð39Þ

Hence,

YiðT Þ 	 mþ
XT

j¼dN=Meþm

XM
l¼1

If�iðjÞ � �lðjÞjYiðjÞ � mg

	
XM
l¼1

mþ
XT

j¼dN=Meþm
If�iðjÞ � �lðjÞjYiðjÞ � mg

8<
:

9=
;:

In order for �iðjÞ � �lðjÞ, one of the following three
conditions must be satisfied:

�lðjÞ 	 �l; �iðjÞ � �i þ 2

ffiffiffiffiffiffiffiffiffiffi
2 ln j

YiðjÞ

s
; or �l 	 �i þ 2

ffiffiffiffiffiffiffiffiffiffi
2 ln j

YiðjÞ

s
:

One can easily check that, if none of these three
conditions is satisfied, we will have �iðjÞ < �lðjÞ. In the
following, we bound the probability of each event.

Prf�lðjÞ 	 �ljYiðjÞ � mg
¼ Pr

	
�̂l þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p
	 �ljYiðjÞ � m



	 Pr

	
j�̂l � �lj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p
jYiðjÞ � m



¼
Xj
q¼1

PrfYlðjÞ ¼ qjYiðjÞ � mg

Pr j�̂l � �lj �
ffiffiffiffiffiffiffiffiffiffi
2 ln j

YlðjÞ

s ����� YiðjÞ � m;YlðjÞ ¼ q
( )

	
Xj
q¼1

Pr
	
j�̂l � �lj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YlðjÞ ¼ q

	 2j exp�4 ln j ¼ 2j�3;

ð40Þ

where (40) follows from the following Chernoff-Hoeffd-

ing bound, which says that for n i.i.d Bernoulli random

variables Xj; j ¼ 1; . . . ; n with mean ��, we have

Pr

P
Xj

n
� ��

����
���� � 


� �
	 2 exp�2n
2 ; for all 
 > 0: ð41Þ

To see this, we note that in our case, XlðjÞ is the sum of
YlðjÞ i.i.d Bernoulli random variables with parameter �l.
On setting

n ¼ YlðjÞ; and 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p
;

and also using the fact that

�̂l ¼
X

ZlðjÞ=YlðjÞ;

we have (40).

Similarly, we have

Pr
	

�iðjÞ � �i þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ � m

¼ Pr

	
�̂i � �i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ � m

¼
Xj
q¼m

PrfYiðjÞ ¼ qjYiðjÞ � mg

Pr
	
�̂i � �i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ � m;YiðjÞ ¼ q

	
Xj
q¼1

Pr
	
�̂i � �i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ ¼ q

	 2j exp�4 ln j ¼ 2j�3:

ð42Þ

At the same time, if we set m ¼ d 8 lnT
ð�i��M Þ2

e, then, for any

1 	 l 	M, if YiðjÞ � m, we have

�i þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p
	 �i þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=m

p
	 �i þ ð�M � �iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln j= lnT

p
< �M 	 �l:

ð43Þ

Hence, with this m,

Pr
	
�l 	 �i þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ � m
 ¼ 0;

for each 1 	 l 	M.
Thus,

Prf�iðjÞ � �lðjÞjYiðjÞ � mg
	 Prf�lðjÞ 	 �ljYiðjÞ � mg
þ Pr

	
�iðjÞ � �i þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ � m

þ Pr

	
�l 	 �i þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln j=YlðjÞ

p ��YiðjÞ � m

	 4j�3:

ð44Þ

Moreover,

IEfYiðT Þg

	 IE

(XM
l¼1

(
mþ

XT
j¼dN=Meþm

If�iðjÞ � �lðjÞjYiðjÞ � mg
))

¼
XM
l¼1

(
8 lnT

ð�i � �MÞ2

& ’
þ

XT
j¼dN=Meþm

IE I �iðjÞ � �lðjÞ
����YiðjÞ � 8 lnT

ð�i � �MÞ2

& ’( )( ))

	M 8 lnT

ð�i � �MÞ2

& ’
þ

XT
j¼dN=Meþm

4j�3

8<
:

9=
;

� OðlnT Þ;
ð45Þ

since

XT
j¼dN=Meþm

4j�3 	
X1
j¼1

4j�3; ð46Þ

and
P1

j¼1 j
�3 exists.

Hence from (45), we have that, for any channel that is
not among the best M channels, the average number of
time slots for which this channel is selected is bounded
by OðlnT Þ. Thus, the loss is of order OðlnT Þ.
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On the other hand, it has been proved in [23] that for
any consistent strategy,

lim inf
T!1

Lð��; �Þ
lnT

� c3; ð47Þ

with some constant c3. This completes the proof. tu

APPENDIX D

PROOF OF LEMMA 5

Proof. With a strategy p, the probability that user k chooses
channel i and, at the same time, there are l other users
choosing channel i to sense is

pi
K � 1

l

� �
plið1� piÞ

K�1�l: ð48Þ

Under this scenario, the average number of bits
transmitted in one slot of each user is B�i=ðlþ 1Þ. Hence,
the average throughput Wk of user k is

Wk ¼ T
XN
i¼1

B�i
lþ 1

XK�1

l¼0

pi
K � 1

l

� �
plið1� piÞ

K�1�l: ð49Þ

Based on our symmetry assumption, we drop the
subscript k and write the average throughput of each
user as W , leading to

W ¼ BT
XN
i¼1

pi�i
XK�1

l¼0

K � 1

l

� �
plið1� piÞ

K�1�l

lþ 1

¼ BT
XN
i¼1

pi�i
XK�1

l¼0

ðK � 1Þ!
l!ðK � 1� lÞ!

plið1� piÞ
K�1�l

lþ 1

¼ BT
XN
i¼1

�i
K

XK�1

l¼0

K

lþ 1

� �
plþ1
i ð1� piÞ

K�1�l

¼ BT
XN
i¼1

�i
K

XK
l
0 ¼0

K

l0

� �
pl
0

i ð1� piÞ
K�l0 � ð1� piÞK

( )

¼ BT
XN
i¼1

�i
K

	
1� ð1� piÞK



:

ð50Þ

Now, we should solve the following optimization
problem:

max W ¼ BT
XN
i¼1

�i
K

	
1� ð1� piÞK



;

s:t:
XN
i¼1

pi ¼ 1; and p � 0:

ð51Þ

This optimization problem is equivalent to the following:

min y ¼
XN
i¼1

�ið1� piÞK;

s:t:
XN
i¼1

pi ¼ 1; and p � 0:

ð52Þ

Since the mixed partials of y are all zero, and since

@2y

@2pi
¼ �iKðK � 1Þð1� piÞK�2 � 0;

for 0 	 pi 	 1, y is a convex function of p in the region of
interest, i.e., p 2 ½0; 1�N . Also, the constraints are the
intersection of a convex set and a linear constraint.
Therefore, our problem reduces to a convex optimization
problem whose KKT conditions for optimality are

p� � 0;XN
i¼1

p�i ¼ 1;

p�i ð�� �K�ið1� p�i Þ
K�1Þ ¼ 0; and

�� � K�ið1� p�i Þ
K�1;

ð53Þ

where �� is a Lagrange multiplier.
It is easy to check that, if K > 1, then

p�i ¼
1� ��

K�i

� �1=ðK�1Þ
� �þ

; for �i > 0;

0; for �i ¼ 0;

8<
: ð54Þ

satisfies the KKT conditions, in which �� is the constant
that satisfies

P
p�i ¼ 1. tu

APPENDIX E

PROOF OF LEMMA 6

Proof. Without loss of generality, we assume that �i 6¼ 0, for

1 	 i 	 Q. At the moment, we assume that (we will show
that this is true, if K is large enough) if �i 6¼ 0, then

p�i ¼ 1� ��

K�i

� �1=ðK�1Þ
( )þ

¼ 1� ��

K�i

� �1=ðK�1Þ
: ð55Þ

Together with
PN

i¼1 p
�
i ¼

PQ
i¼1 p

�
i ¼ 1, we have

ð��Þ1=ðK�1Þ ¼ K
1=ðK�1ÞðQ� 1ÞPQ
i¼1 �

�1=ðK�1Þ
i

ð56Þ

and

p�i ¼ 1� ðQ� 1Þ��1=ðK�1Þ
iPQ

i¼1 �
�1=ðK�1Þ
i

; for 1 	 i 	 Q: ð57Þ

To satisfy the condition p � 0, we need to show

ðQ� 1Þ��1=ðK�1Þ
iPQ

i¼1 �
�1=ðK�1Þ
i

	 1; ð58Þ

for all i with �i > 0.
With i� ¼ arg maxi2N �i and l� ¼ arg min1	l	Q�l, we

have for all i

ðQ� 1Þ��1=ðK�1Þ
iPQ

i¼1 �
�1=ðK�1Þ
i

	 ðQ� 1Þ��1=ðK�1Þ
l�

Q�
�1=ðK�1Þ
i�

: ð59Þ

For any # 	 Q=ðQ� 1Þ, if K is large enough, we have

�i�=�l�ð Þ
1

K�1	 # ð60Þ
since

lim
K!1

�i�=�l�ð Þ1=ðK�1Þ¼ 1:
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Hence, for all 1 	 i 	 Q, we have

ðQ� 1Þ��1=ðK�1Þ
iPQ

i¼1 �
�1=ðK�1Þ
i

	 Q� 1

Q
# 	 1: ð61Þ

Now, straightforward limit calculation shows that
p� ! 1=Q, as K increases, and

lim
K!1

L

exp�c1K
¼ lim

K!1

BT
PQ

i¼1 �ið1� p�i Þ
K

exp�c1K
¼ BT

XQ
i¼1

�i

with c1 ¼ lnQ=ðQ� 1Þ. tu

APPENDIX F

PROOF OF LEMMA 8

Proof. Xk;i is the sum of Yk;i i.i.d Bernoulli random variables
with parameter �i. We use the following form of the
Chernoff bound. Let X be the sum of n independent
Bernoulli random variables with parameter ��, then

PrfX 	 ð1� �Þn��g < expð�n���2=2Þ ð62Þ

for any � < 1.
At time slot j, if we replace X with Xk;iðjÞ, n with

Yk;iðjÞ, �� with �i and let � ¼ 1=2, then we have

PrfXk;iðjÞ 	 �iYk;iðjÞ=2g < expð�Yk;iðjÞ�i=8Þ: ð63Þ
Hence,

PrfXk;iðjÞ=Yk;iðjÞ � �i=2g � 1� expð�Yk;iðjÞ�i=8Þ
� 1� expð��i=8Þ; ð64Þ

since after the initialization period, Yk;iðjÞ � 1.
Note that Yk;iðT Þ is the total number of time slots in

which user k has sensed channel i in each block with T
time slots. We have

IEfYk;iðT Þg ¼ IE
XT
j¼1

IfSkðjÞ ¼ ig
( )

¼
XT
j¼1

IE
Xk;iðjÞ=Yk;iðjÞP
i2N Xk;iðjÞ=Yk;iðjÞ

� �

�
ðaÞXT

j¼1

IE
Xk;iðjÞ=Yk;iðjÞ

N

� �

�
ðbÞXT

j¼1

�ið1� expð��i=8ÞÞ=ð2NÞ

¼ T�ið1� expð��i=8ÞÞ=ð2NÞ ¼ ciT ;

where (a) follows from the fact that Xk;iðjÞ=Yk;iðjÞ 	 1,
and (b) follows from (64).

The probability that Yk;iðT Þ 	 ð1� �ÞIEfYk;iðT Þg can
also be bounded using the Chernoff bound since Yk;iðT Þ
is also the sum of independent Bernoulli random
variables. In particular, we have

PrfYk;iðT Þ 	 ð1� �ÞIEfYk;iðT Þgg 	 exp ��2IEfYk;iðT Þg=2
� �

:

On letting � ¼ 1=2, we have

PrfYk;iðT Þ 	 1=2IEfYk;iðT Þgg 	 exp�ciT=8 : ð65Þ

Using the union bound, and the weak law of large

numbers, Xk;iðjÞ=Yk;iðjÞ converges to �i in probability as

T increases. The scheme becomes the same as the known

�� case, in which we know that the operating point is

approximately at the Nash equilibrium, if K is suffi-

ciently large. tu
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