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Rateless Coding for MIMO Fading Channels:
Performance Limits and Code Construction
Yijia (Richard) Fan, Lifeng Lai, Elza Erkip, and H. Vincent Poor

Abstract—In this letter the performance limits and design
principles of rateless codes over fading channels are studied.
The diversity-multiplexing tradeoff (DMT) is used to analyze
the system performance for all possible transmission rates. It
is revealed from the analysis that the design of such rateless
codes follows the design principle of approximately universal
codes for multiple-input multiple-output (MIMO) channels. It is
also shown that for a single-input single-output (SISO) channel,
simple permutation codes of unit length for parallel channels can
be transformed directly into rateless codes that achieve the DMT
performance limit of the channel.

Index Terms—MIMO, block fading channels, rateless codes.

I. INTRODUCTION

RATELESS codes present a class of codes that can be
truncated to a finite number of lengths, each of which

has a certain likelihood of being decoded to recover the
entire message. Compared with conventional coding schemes
having a single rate 𝑅, such codes can achieve multiple rate
levels (𝑅,𝑅𝐿/(𝐿− 1), 𝑅𝐿/(𝐿− 2), . . . , 𝐿𝑅), where 𝐿 is the
number of blocks over which the rateless codeword is sent.
The actual rate achieved depends on the channel conditions. A
rateless code is said to be perfect if each part of its codeword
is capacity achieving. Compared with conventional codes,
rateless codes offer a potentially higher rate. Several results
have been obtained on the design of perfect rateless codes over
erasure channels and additive white Gaussian noise (AWGN)
channels (see [6] and the references therein).

Unlike in the fixed channel scenario, non-zero error proba-
bility always exists in fading channels, when the instantaneous
channel state information (CSI) is not available at the trans-
mitter and a codeword spans only one or a small number of
fading blocks. In this scenario, it is well known that there is
a fundamental tradeoff between the information rate and error
probability over fading channels, which can be characterized
as the diversity-multiplexing tradeoff (DMT) [1].

Definition 1 (DMT): Consider a multiple-input multiple-
output (MIMO) system and a family of codes 𝐶𝜂 operating at
average SNR 𝜂 per receive antenna and having rates 𝑅. The
multiplexing gain and diversity order are defined respectively
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as

𝑟
Δ
= lim

𝜂→∞
𝑅

log2 𝜂
and 𝑑

Δ
= − lim

𝜂→∞
log2 𝑃𝑒 (𝑅)

log2 𝜂
, (1)

where 𝑃𝑒 (𝑅) is the average error probability at the transmis-
sion rate 𝑅.

In this letter, we analyze the DMT performance of rateless
codes. The results show that, compared with conventional
coding schemes having multiplexing gain 𝑟, rateless codes
having multiple multiplexing gains (𝑟, 𝑟𝐿/(𝐿 − 1), 𝑟𝐿/(𝐿 −
2), . . . , 𝐿𝑟) offer an effective multiplexing gain 𝑟𝑒 = 𝐿𝑟, for
the same diversity gain level, when 𝑟 is small. As 𝑟 increases,
the performance of rateless codes degrades and ultimately
becomes the same as that of a conventional scheme. Also
while increasing 𝐿 lifts the overall system DMT curve, it
does not necessarily improve the system multiplexing gain
for every fixed value of 𝑟. It is then revealed that the design
of such rateless codes follows the principle of codes that
are approximately universal [3] over fading channels. Thus
approximately universal space time codes for MIMO channels
can be directly transformed into rateless codes that achieve the
optimal DMT of the channel. It is also shown that for a single-
input single-output (SISO) channel, the simple unit length
permutation codes for parallel channels [3] can be transformed
directly into rateless codes of length 𝐿 to achieve the DMT
performance limit of the channel.

The performance of rateless coding over fading channels has
also been considered in [4] and [5], in which the throughput
and error probability are discussed. However, the tradeoff
between these two was not analyzed explicitly. For example,
the results in [4] show that increasing the value of 𝐿 will
decrease the system error probability in certain scenarios and
is therefore desirable. In this letter we show that while this
discovery is true, the system throughput, i.e., the multiplexing
gain, might decrease when 𝐿 becomes larger for every fixed
value of 𝑟. Overall, our results reveal that the optimal design
of rateless codes requires the consideration of both 𝑟 and 𝐿.

Rateless coding may be considered a type of Hybrid-
Automatic Repeat reQuest (ARQ) scheme [2]. The DMT for
ARQ has been derived in [2]. However, it will be shown in
the paper that this DMT curve represents the performance of
rateless codes only when 𝑟 < min(𝑀,𝑁)/𝐿 in which 𝑀
and 𝑁 are the number of transmit and receive antennas. The
complete DMT curve for rateless coding, including those parts
for higher values of 𝑟, has never been revealed before, and
will be given in this paper. In addition to this, the results
in this letter also offer a relationship between the design
parameters (i.e., 𝑟 and 𝐿) and the effective multiplexing gain
𝑟 of the system, thus providing further insights into system
design and operational meaning compared to conventional
coding schemes. Furthermore, we construct new rateless codes
specifically for fading channels.
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The rest of this paper is organized as follows. The system
model is described in Section II. In Section III, the DMT
performance of rateless codes is studied. In Section IV, design
of specific rateless codes over fading channels is discussed.
Finally, concluding remarks are given in Section V.

II. SYSTEM MODEL

We consider a frequency-flat fading channel with 𝑀 trans-
mit antennas and 𝑁 receive antennas. We assume that the
transmitter does not know the instantaneous CSI on its cor-
responding forward channel, while CSI is available at the
receiver. Each message is encoded into a codeword of 𝐿
blocks. Each block takes 𝑇 channel uses. We assume that
the channel remains static for the entire codeword length (i.e.,
up to 𝐿 blocks)1. The system input-output relationship can be
expressed as

Y =

√
𝑃

𝑀
HX+N (2)

where X ∈ ℂ
𝑀×𝑇𝐿 is the input signal matrix; H ∈ ℂ

𝑁×𝑀 is
the channel transfer matrix whose elements are independent
and identically distributed (i.i.d.) complex Gaussian random
variables with zero means and unit variances; N ∈ ℂ𝑁×𝑇𝐿 is
a noise matrix with i.i.d. zero mean and unit variance complex
Gaussian elements; and Y ∈ ℂ𝑁×𝑇𝐿 is the output signal
matrix. 𝑃 is the total transmit power, which also corresponds
to the average SNR 𝜂 (per receive antenna) at the receiver.

The input signal matrix X can be written as

X =
[
X1 ⋅ ⋅ ⋅ X𝐿

]
(3)

where X𝑙 ∈ ℂ𝑀×𝑇 is the codeword matrix being sent during
the 𝑙th block, and its corresponding receiver noise matrix is
denoted by N𝑙 ∈ ℂ

𝑁×𝑇 . We impose a power constraint on
each X𝑙 so that2

𝐸

[
1

𝑇
∥X𝑙∥2𝐹

]
⩽ 𝑀, (4)

for 𝑙 = 1, ..., 𝐿.

A. Conventional Schemes

Assume that the transmitter sends the codeword at a rate 𝑅
bits per channel use. 𝐿 messages, each of which is of size 𝑅𝑇 ,
are encoded into codewords X𝑙 (𝑙 = 1, . . . , 𝐿) and transmitted
in 𝑇 channel uses. An alternative method is to encode a
message of size 𝑅𝐿𝑇 into X. Both encoding methods will
offer the same performance provided that 𝑇 is sufficiently
large.

B. Rateless Coding

When rateless coding is applied, we wish to decode a
message of size 𝑅𝐿𝑇 with the codeword structure as shown
in (3). During the transmission, the receiver measures the total
mutual information 𝐼 between the transmitter and the receiver
and compares it with 𝑅𝐿𝑇 after it receives each codeword

1Note, however, that the analysis in this paper can be extended straightfor-
wardly to a faster fading scenario in which the channel varies from block to
block during each codeword transmission.

2Note that this is a stricter constraint than letting 𝐸
[

1
𝑇𝐿

∥X∥2𝐹
]
⩽ 𝑀 ,

which offers at least the same performance.

block X𝑙. Note that because of fading 𝐼 is in fact a random
variable at each decoding block. If 𝐼 < 𝑅𝐿𝑇 after the 𝑙th
block, the receiver remains silent and waits for the next block.
If 𝐼 ≥ 𝑅𝐿𝑇 after the 𝑙th block, it decodes the received
codeword

[
X1 ⋅ ⋅ ⋅ X𝑙

]
and sends one bit of positive

feedback to the transmitter3. Upon receiving the feedback,
the transmitter stops transmitting the remaining part of the
current codeword and starts transmitting the next message
immediately.

Unlike conventional schemes, this process will bring mul-
tiple rate levels (𝑅,𝑅𝐿/(𝐿− 1), 𝑅𝐿/(𝐿− 2), . . . , 𝐿𝑅). For
example, if 𝐼 ≥ 𝑅𝐿𝑇 after the first block is received (i.e.,
𝑙 = 1) , the receiver will be able to decode the entire message
and the rate becomes 𝐿𝑅. Similar observations can be made
for 𝑙 = 2, . . . , 𝐿. Therefore, compared with conventional
schemes, the corresponding transmission rate achieved by
using rateless codes is always equal or higher. Specifically,
we define the multiplexing gains for the rate levels to be
(𝑟, 𝑟𝐿/(𝐿 − 1), 𝑟𝐿/(𝐿− 2), . . . , 𝐿𝑟) where

𝑟
Δ
= lim

𝜂→∞
𝑅

log2 𝜂
.

Later we will show through the DMT analysis that rateless
coding can retain the same diversity gain as conventional
schemes, but with a much higher multiplexing gain especially
when the corresponding 𝑟 is small.

III. PERFORMANCE ANALYSIS

Denote by 𝜀𝑙 the decoding error when decoding is per-
formed at the end of the 𝑙th block (0 ≤ 𝑙 ≤ 𝐿) and by
Pr (𝜀𝑙, 𝑙) the joint probability that decoding is performed at
the end of 𝑙th block and a decoding error occurs. The overall
error probability can be expressed as

𝑃𝑒 =

𝐿∑
𝑙=1

Pr (𝜀𝑙, 𝑙).

Define 𝑝 (𝑙) (0 ≤ 𝑙 ≤ 𝐿) to be the probability with which
𝐼 < 𝑅𝐿𝑇 after the 𝑙th block, and note that 𝑝 (0) = 1. We
define rate �̄� (in bits per channel use) as the long term average
transmission rate for each message, i.e., the expected value of
realized rate for each transmitted rateless codeword. Following
the steps in Section II.B in [2], �̄� is given by

�̄� =
𝑅𝐿

𝐿−1∑
𝑙=0

𝑝 (𝑙)

. (5)

Note that this �̄� describes the average rate with which the
message is removed from the transmitter; i.e., it quantifies
how quickly the message is decoded at the receiver. We define
the effective multiplexing gain of the system as

𝑟𝑒 = lim
𝜂→+∞

�̄�

log2 𝜂
.

Define 𝑓 (𝑘) to be the piecewise linear function connect-
ing the points (𝑘, (𝑀 − 𝑘) (𝑁 − 𝑘)) for integral 𝑘 =
0, ...,min(𝑀,𝑁). Recall that a conventional scheme operating

3Note that the feedback is sent to the transmitter even when the codeword is
decoded in error, though the probability of this event can be made arbitrarily
small.
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Fig. 1. The DMTs for conventional schemes and rateless coding for 0 ≤
𝑟 ≤ 1. 𝑀 = 𝑁 = 2, 𝐿 = 2.

at multiplexing gain 𝑟 (0 ≤ 𝑟 ≤ min(𝑀,𝑁)) would have
the diversity gain 𝑓 (𝑟). The following theorem gives the
performance of rateless coding for 0 ≤ 𝑟 < +∞.

Theorem 1: For rateless codes having multiple multiplexing
gain levels (𝑟, 𝑟𝐿/(𝐿 − 1), 𝑟𝐿/(𝐿 − 2), . . . , 𝐿𝑟), and for
sufficiently large 𝑇 , the corresponding DMT can be expressed
as (𝑟𝑒, 𝑑) where

𝑟𝑒 = 𝑟 ⋅ 𝐿
𝑙

and 𝑑 = 𝑓

(
𝑙𝑟𝑒
𝐿

)

for
𝑙 − 1

𝐿
min (𝑀,𝑁) ⩽ 𝑟 <

𝑙

𝐿
min (𝑀,𝑁)

and 𝑙 = 1, 2, ..., 𝐿. Finally, 𝑑 = 0 for 𝑟 ≥ min(𝑀,𝑁).
Proof: See Appendix A.

Note that for rateless coding to achieve the performance
in Theorem 1, we do not necessarily require 𝑇 → ∞. As
long as 𝑇 is large enough such that the error probability
Pr (𝜀𝑙, 𝑙)

.
⩽ 𝜂𝑓(𝑟) for each 𝑙, the DMT in Theorem 1 can be

achieved. For example, it will be shown later that for SISO
channels, 𝑇 = 1 is sufficient to achieve the optimal DMT in
Theorem 1.

Comparing rateless coding with conventional schemes, it
can be shown that for 0 ≤ 𝑟 < min(𝑀,𝑁)/𝐿, 𝑟𝑒 = 𝐿𝑟 for
𝑑 = 𝑓 (𝑟). In this scenario rateless coding can improve the
multiplexing gain up to 𝐿 times that of conventional schemes,
given the same diversity gain. Fig. 1 gives an example when
𝑀 = 𝑁 = 2 and 𝐿 = 2, and 0 ≤ 𝑟 ≤ 1. The operating
point A on the curve for a conventional scheme for 0 ≤ 𝑟 ≤ 1
corresponds to point B on the curve for rateless coding.

An important observation from Theorem 1 is that the
system DMT will not be improved after 𝑟 (almost) reaches
min(𝑀,𝑁)/𝐿. This is mainly due to the fact that the first
block can no longer support the message size when the
message rate reaches min(𝑀,𝑁)/𝐿. Thus the system multi-
plexing gain decreases for the same diversity gain, and finally
offers the same DMT as conventional schemes when the first
𝐿− 1 blocks all fail to decode the message. Fig. 2 shows an
example when 𝑀 = 𝑁 = 3 and 𝐿 = 4. This observation
also implies that for any fixed value of 𝑟, simply increasing
the value of 𝐿 does not necessarily improve the system DMT.
Although the optimal system DMT (for small values of 𝑟)
will increase when 𝐿 is larger, the multiplexing gain might
decrease for certain larger values of 𝑟. A convenient choice
for 𝐿 would be in the range 𝐿 < min(𝑀,𝑁)/𝑟. However,
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Fig. 2. The DMTs for different schemes for 0 ≤ 𝑟 ≤ 3. 𝑀 = 𝑁 = 3,
𝐿 = 4.

note that the maximal multiplexing gain min(𝑀,𝑁) can be
achieved only with zero diversity gain, and this happens when
𝑟 = min(𝑀,𝑁) regardless of the value of 𝐿.

IV. DESIGN OF RATELESS CODES

Note that codewords X𝑙 (1 ≤ 𝑙 ≤ 𝐿) in (3) are transmitted
through different channels that are orthogonal in time. This is
analogous to transmitting X𝑙 through different channels that
are parallel in space. In the (space) parallel channel model,
elements in {X𝑙} can be jointly (simultaneously) decoded.
However, for the channel model considered in this paper,
which we now call the rateless channel, the decoding process
needs to follow a certain direction in time, i.e., we start
decoding from X1, then [X1 X2] if X1 is not decoded,
etc. This comparison implies that while good parallel channel
codes can be used as the basis for rateless coding, they might
need modifications in order to offer good performance over
the rateless channel.

Specifically, for the rateless channel expressed in the form
of (2), we consider the corresponding parallel MIMO channel,
in which each sub-channel is a MIMO channel, having the
following input-output relationship:

Y =

√
𝑃

𝑀

⎛
⎜⎝

H 0
. . .

0 H

⎞
⎟⎠

⎛
⎜⎜⎝

X1

...

X𝐿

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

N1

...

N𝐿

⎞
⎟⎟⎠ (6)

where H, X𝑙 and N𝑙 are the same as in (2). It is easy to
see that the DMT for this system is 𝑑 = 𝑓

(
𝑟
𝐿

)
for 0 ≤ 𝑟 ≤

𝐿min(𝑀,𝑁). Assuming a code that achieves this DMT, when
we implement its transformation

[
X1 ⋅ ⋅ ⋅ X𝐿

]
into the

rateless channel having multiple rates (𝑟, 2𝑟, . . . , 𝐿𝑟), it is not
difficult to show that

Pr (𝜀𝐿, 𝐿)
.
⩽ 𝜂−𝑓(𝑟). (7)

In order to make the overall 𝑃𝑒

.
⩽ 𝜂−𝑓(𝑟), we need to ensure

that Pr (𝜀𝑙, 𝑙)
.
⩽ 𝜂−𝑓(𝑟) for 1 ≤ 𝑙 ≤ 𝐿 − 1. However, those

conditions are not essential in order to achieve the optimal
DMT for the parallel channel shown in (6), which requires
only the condition (7). Thus stricter code design criteria are
required for the rateless channel. One example of such a
criterion is the approximately universal criterion [3].

Codes being approximately universal for any channel en-
sures that the highest error probability when decoding any
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subset of {X𝑙} in the set of all non-outage events decays
exponentially in SNR (i.e., in the form of 𝑒−𝜂𝛿

for some
𝛿 > 0) under any fading distribution, and thus can be ignored
compared with the outage probability under the same fading
distribution when the SNR goes to infinity. It has been shown
that being approximately universal is sufficient for a scheme or
code to achieve the DMT of the channel [3]. Now, we consider
the following MIMO channel with 𝐿𝑀 transmit antennas and
𝐿𝑁 receive antennas:

𝒴 =

√
𝑃

𝑀
ℋ𝒳 +𝒩 (8)

where 𝒳 =
[
X𝑇

1 ⋅ ⋅ ⋅ X𝑇
𝐿

]𝑇
, 𝒩 =[

N𝑇
1 ⋅ ⋅ ⋅ N𝑇

𝐿

]𝑇
and ℋ is the 𝐿𝑁×𝐿𝑀 channel matrix

in which each element follows an arbitrary distribution.
We have the following result regarding the construction of
rateless codes.

Theorem 2: Suppose a code 𝒳 =
[
X𝑇

1 ⋅ ⋅ ⋅ X𝑇
𝐿

]𝑇
is

approximately universal for the channel with 𝐿𝑀 transmit
antennas and 𝐿𝑁 receive antennas shown in (8). Then, its
transformation 𝒳 =

[
X1 ⋅ ⋅ ⋅ X𝐿

]
, when applied to the

rateless channel with 𝑀 transmit antennas and 𝑁 receive
antennas shown in (2) aiming at multiple multiplexing gains
(𝑟, 𝑟𝐿/(𝐿 − 1), . . . , 𝐿𝑟), can achieve the DMT given in
Theorem 1.

Proof: See Appendix B.
Because of Theorem 2, existing approximately universal space
time codes (see Section VII.A of [3] for an overview) can be
applied directly to rateless channels. Examples of such codes
include cyclic division algebra codes [9] with block lengths
𝑇 = 𝑀𝐿.

A. Simple codes for SISO channel

The decoding algorithms for universal codes for MIMO
channels are usually very complex. So are the decoding algo-
rithms for the corresponding rateless codes. In the following,
we propose a family of codes for SISO channels that have
a particularly simple coding algorithm. They are transformed
from permutation codes designed for parallel channels [3].

Permutation codes are a class of codes generated from
quadrature amplitude modulation (QAM) constellations. In the
encoding process, a message is mapped into different QAM
constellation points across all subchannels. The constellation
points over one subchannel is a permutation of the points in
the constellation over any other subchannel. The permutation
is optimized such that the minimal codeword difference is
large enough to satisfy the approximate universality criterion.
Explicit permutation codes can be constructed using univer-
sally decodable matrices. We refer the readers to [3] and
the references therein for details. It has been shown that
permutation codes are approximately universal for parallel
channels and have a particularly simple structure. For example,
the codewords are of unit length.

Assume the transmission rates over a rateless channel are
(𝑅,𝑅𝐿/(𝐿 − 1), . . . , 𝐿𝑅) bits per channel use. To imple-
ment permutation codes, we choose a codebook of size 2𝐿𝑅

(messages) for the parallel channel in (6). Each message is
mapped into a code

[
X𝑇

1 ⋅ ⋅ ⋅ X𝑇
𝐿

]𝑇
, in which each X𝑙

is drawn from a 2𝐿𝑅-point QAM constellation. The message
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Fig. 3. The error probability performance over a SISO channel for (a) the
conventional scheme, in which each message is mapped into a 16-QAM point,
and (b) a rateless permutation code generated from 16-QAM constellations
with 𝐿 = 2.

can be fully recovered as long as any subset of {X𝑙} can be
correctly decoded. Now, we transform this code into the form[
X1 ⋅ ⋅ ⋅ X𝐿

]
for the rateless channel. Since Pr (𝜀𝑙, 𝑙)

decays exponentially in SNR due to the approximate univer-
sality of such codes, the overall error probability is always
dominated by the decoding error probability upon receiving
all X𝑙, when the SNR tends to infinity. We summarize the
above observations as the following corollary.

Corollary 1: Rateless codes that are transformed from per-
mutation codes for parallel channels can offer exactly the
same performance as that shown in Theorem 1 over the SISO
rateless channel.

Proof: The proof is a direct extension of the proof of
Theorem 2 and is omitted.
Fig. 3 shows the error probability performance over a SISO
channel for (a) a conventional scheme, in which each message
is mapped into a 16-QAM point (4 bits per channel use),
and (b) rateless permutation code generated from 16-QAM
constellations with 𝐿 = 2. The SNR range (40-50dB) approx-
imately corresponds to a multiplexing gain range of 0.8-1.
Clearly the rateless coding offers a higher diversity gain than
the conventional scheme, while they have (nearly) the same
rate at high SNR 4.

V. CONCLUSIONS

The performance limits of rateless codes have been studied
for MIMO fading channels in terms of the DMT. The analysis
shows that design principles for rateless codes can follow those
of the approximately universal codes for MIMO channels.
Simple rateless codes that are DMT optimal for a SISO
channel have also been constructed.

APPENDIX

A. Proof of Theorem 1

Define 𝑟𝐿 = 𝐿𝑟. Following the steps in [1], it is easy to
show that 𝑝 (𝑙)

.
= 𝜂−𝑓( 𝑟𝐿

𝑙 ) for 𝑙 ∕= 0. We write the error

4Note that the diversity gain for a multiplexing gain in the error probablity
curve cannot be exactly matched to that in the DMT curve due to the finite
SNR values[10].
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probability as

𝑃𝑒 =

𝐿−1∑
𝑙=1

(1− 𝑝 (𝑙)) Pr (𝜀𝑙) + Pr (𝜀𝐿, 𝐿) . (9)

In (9), Pr (𝜀𝑙) is the error probability when 𝑙𝐼𝑏 ≥ 𝐿𝑇𝑅, where
𝐼𝑏 is the mutual information of the channel in each block.
Using Fano’s inequality we can obtain the error probability
lower bound [1]:

𝑃𝑒 ≥ Pr (𝜀𝐿, 𝐿)
.
⩾ 𝜂−𝑓( 𝑟𝐿

𝐿 ).

Since 𝑟𝑒 ≤ 𝑟𝐿, we have 𝜂−𝑓( 𝑟𝐿
𝐿 ) ≥ 𝜂−𝑓( 𝑟𝑒

𝐿 ), and thus the
desired performance upper bound is obtained.

Now we prove the achievability part. Consider Pr (𝜀𝑙).
Following the same argument as in the proof of Theorem
10.1.1 in [8], we obtain

Pr (𝜀𝑙) ⩽ 3𝜖 (10)

for sufficiently large 𝑇 . Note that a very similar argument has
been made in Lemma 1 in [7], although it is claimed there that
both 𝑇 and 𝐿 are required to be sufficiently large in order to
satisfy (10). Now (9) can be further rewritten as

𝑃𝑒 ⩽ 3(𝐿− 1)𝜖+ 𝜂−𝑓( 𝑟𝐿
𝐿 ) + (1− 𝑝 (𝐿)) Pr (𝜀𝐿)

.
= 𝜂−𝑓( 𝑟𝐿

𝐿 ). (11)

Note that
�̄�

.
=

𝐿𝑅

1 +
𝐿−1∑
𝑖=1

𝜂−𝑓( 𝑟𝐿
𝑙 )

.
= 𝐿𝑅

for 0 ≤ 𝑟𝐿 < min(𝑀,𝑁). Thus 𝑟𝑒 = 𝑟𝐿 and diversity gain
𝑓
(
𝑟𝑒
𝐿

)
is achievable in the range 0 ≤ 𝑟𝑒 < min(𝑀,𝑁). Note

that 𝑟𝐿 = 𝐿𝑟, and thus we have 𝑑 = 𝑓 (𝑟) for

𝑟𝑒 = 𝑟𝐿, 0 ≤ 𝑟 <
min(𝑀,𝑁)

𝐿
.

So far we have considered only the scenario in which 𝑟 <
min(𝑀,𝑁)

𝐿 . Now we consider what happens if we increase the
value of 𝑟 to min(𝑀,𝑁)

𝐿 and beyond. In this scenario, 𝑓
(
𝑟𝐿
1

)
=

0, and thus �̄�
.
= 𝐿𝑅

2 . The message rate 𝑟𝑒 is decreased to 𝑟𝐿/2
due to the fact that after the first block the receiver has no
chance of decoding the message correctly and it always needs
the second block. However, the system error probability 𝑃𝑒 is
not changed. Therefore the message rate becomes

𝑟𝑒 = 𝑟 ⋅ 𝐿
2
,
min(𝑀,𝑁)

𝐿
≤ 𝑟 <

2min(𝑀,𝑁)

𝐿
, (12)

and the system DMT becomes

𝑑 = 𝑓

(
2𝑟𝑒
𝐿

)
,
min(𝑀,𝑁)

2
≤ 𝑟𝑒 < min(𝑀,𝑁). (13)

Similarly, when 𝑟𝑒 reaches min(𝑀,𝑁) again, i.e., 𝑟 reaches
2min(𝑀,𝑁)

𝐿 , 𝑓
(
𝑟𝐿
2

)
= 𝑓

(
2𝑟𝑒
2

)
= 0. Thus �̄�

.
= 𝐿𝑅

3 and

𝑟𝑒 = 𝑟 ⋅ 𝐿
3
,
2min(𝑀,𝑁)

𝐿
≤ 𝑟 <

3min(𝑀,𝑁)

𝐿
; (14)

the system DMT becomes

𝑑 = 𝑓

(
3𝑟𝑒
𝐿

)
,
2min(𝑀,𝑁)

3
≤ 𝑟𝑒 < min(𝑀,𝑁). (15)

Continuing the above until �̄�
.
= 𝑅, we obtain the desired

result and the proof is complete.

B. Proof of Theorem 2

Codes being approximately universal means that such codes
can achieve the optimal DMT of the channel for any distribu-
tion of ℋ. This includes the scenario in which

ℋ =

⎛
⎜⎝

H1 0
. . .

0 H𝐿

⎞
⎟⎠ (16)

where each channel matrix in {H𝑙} (1 ≤ 𝑙 ≤ 𝐿) follows an
arbitrary distribution. Assume that the system in (6) transmits
at a rate 𝐿𝑅 = 𝑟𝐿 log2 𝜂. The probability of any decoding
error can be upper bounded by [1]

𝑃 ⩽ 𝑃𝑂 + 𝑃𝑒∣𝑂𝑐

where 𝑃𝑂 is the outage probability and 𝑃𝑒∣𝑂𝑐 is the average
error probability given that the channel is not in outage.
Approximate universality means that for such codes 𝑃𝑒∣𝑂𝑐 =

𝑒−𝜂𝛿

under any fading distribution. For the system in (16),
these include the fading distributions in which H1 = ⋅ ⋅ ⋅ = H𝑙

follow the same distribution as the H in (2) and H𝑙+1 =
⋅ ⋅ ⋅ = H𝐿 ≡ 0 for all 1 ≤ 𝑙 ≤ 𝐿 − 1. When such codes
are transformed into the rateless channels shown in (2), it is
a simple matter to show that Pr (𝜀𝑙) = 𝑃𝑒∣𝑂𝑐 = 𝑒−𝜂𝛿

for
any 1 ≤ 𝑙 ≤ 𝐿, where Pr (𝜀𝑙) is given in (9). Thus the system
error probability for the rateless channel in (2) is always upper
bounded by

𝑃𝑒 ⩽ 𝐿𝑒−𝜂𝛿

+ 𝜂−𝑓( 𝑟𝐿
𝐿 ) .

= 𝜂−𝑓( 𝑟𝐿
𝐿 ).

The rest of the proof follows that of Theorem 1 and is omitted.
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