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Privacy–Security Trade-Offs in Biometric Security
Systems—Part I: Single Use Case

Lifeng Lai, Member, IEEE, Siu-Wai Ho, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—This is the first part of a two-part paper on the infor-
mation theoretic study of biometric security systems. In this paper,
the design of single-use biometric security systems is analyzed from
an information theoretic perspective. A fundamental trade-off be-
tween privacy, measured by the normalized equivocation rate of
the biometric measurements, and security, measured by the rate of
the key generated from the biometric measurements, is identified.
The privacy–security region, which characterizes the above-noted
trade-off, is derived for this case. The scenario in which an attacker
of the system has side information is then considered. Inner and
outer bounds on the privacy–security region are derived in this
case. Finally, biometric security systems with perfect privacy are
studied, which is shown to be possible if and only if common ran-
domness can be generated from two biometric measurements.

Index Terms—Biometric, information theoretic security, perfect
privacy, privacy–security trade-off, side information.

I. INTRODUCTION

B IOMETRIC security systems have widespread applica-
tions. One typical example is a biometric authentication

system, in which users’ identities are verified by their biometric
characteristics. Biometric characteristics are unique and do not
change dramatically over time. The employment of biometric
systems relieves the burden of selecting, memorizing, and pro-
tecting passwords.

There are usually two stages in a biometric authentication
system: an enrollment stage and a release stage. In the enroll-
ment stage, biometric characteristics, such as fingerprints, are
sampled. The biometric measurements themselves or a trans-
formation of the biometric measurements are stored in the data-
base. In the release stage, the biometric characteristics are sam-
pled again. The newly sampled biometric measurements are
then used for authentication. Due to measurement noise or other
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factors such as aging or injury, two measurements of the same
biometric characteristics will not produce the same result. An-
other issue in a biometric system is privacy. Biometric charac-
teristics are stored in a certain form in the database, which leads
to potential privacy leakage. For example, it has been shown that
it is possible to recover fingerprints from minutiae points stored
in the database [3]. Unlike passwords, biometric characteristics
cannot be changed. Hence, if the database is compromised, ir-
reversible identity theft is possible.

In recent years, there has been increasing research interest
in addressing these issues. A number of interesting approaches
have been proposed. For example, a secure sketch approach was
studied in [4]–[6]. In the secure sketch approach, one stores a
hash of the biometric information along with certain helper data
that assists the recovery of biometric information from noisy ob-
servations during the release stage. Using results from error con-
trol coding, [7]–[9] developed practical coding schemes for the
secure sketch approach. The security weaknesses of the secure
sketch approach were studied in [10]. The cancelable biometric
scheme was proposed in [11], in which an irreversible trans-
formation of the biometric measurements is stored in the data-
base [12]. Furthermore, the fuzzy vault scheme, in which keys
are extracted from the biometric information and then used to
encrypt secret information in the database, has been studied in
[13]–[17]. The information theoretic analysis of these schemes
can be found in [18]–[21]. The use of a cryptographic approach
to protect the biometric template is studied in [22]. Develop-
ments in this area are summarized in [23] and [24]. Based on
an information theoretic perspective, the basic idea of these ap-
proaches is to generate a secret key and helper data during an ini-
tial enrollment stage. A hash of the key is stored in the database
for authentication purposes. The helper data is stored in the data-
base. In the release stage, by combining the noisy measurements
with the helper data, one can recover the key which is passed
through the hash function and compared with the value stored
in the database. The helper data can be viewed as the syndrome
of an error correcting code, and the effects of noise can be mit-
igated by such error correction. The existing approaches focus
on maximizing the rate of the key that can be recovered suc-
cessfully from the noisy measurements. This approach is mo-
tivated by the fact that in an authentication system, the ability
of an attacker to guess a correct value of the key and illegally
gain access to the system is related to the rate of the key. From
an information theoretic perspective, these existing approaches
can be modelled as a problem of generating a secret key from
common randomness [25]–[27], and hence the largest rate of
the key can be characterized [20].1 On the other hand, although

1In the general case in which the attacker also has access to correlated obser-
vations, the largest key rate has not been fully characterized.
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the biometric measurements are not stored in the database in
plain form, the helper data still contains information about the
biometric measurements. It has been shown that in the existing
approaches, the mutual information between the biometric mea-
surements and the data stored in the database is
[7], where is the length of the biometric measurement,
and are the biometric measurements taken during enrollment
and release stages, respectively, and denotes conditional
entropy.

While the existing approaches maximize the key rate, they do
not address the privacy issue adequately. In practice, the protec-
tion of the biometric measurements themselves is at least as im-
portant as maximizing the key rate. To increase the difficulty of
the attacker to gain access to the system illegally, we would like
to make the key rate as large as possible. On the other hand, to
preserve the privacy, we need to ensure that information leakage
about the biometric measurements themselves is as small as pos-
sible. One question naturally arises: can we maximize the se-
curity level while simultaneously minimizing the information
leakage? This is the focus of this paper.

To illustrate the idea, consider the following match-on-card
application. During the enrolment stage, a user’s biometric char-
acteristics are measured to generate a template. Suppose a bio-
metric cryptosystem is used to protect the template [24]. Then
helper data is stored on a card and a key is generated. During
the authentication process, the user’s biometric characteristics
are measured again to generate a key with the assistance of the
helper data. The authentication result relies on whether the same
key can be generated. One of the security threats in this system
is that the user’s card can be dropped or stolen by adversaries.
If this happens, the privacy of the user’s biometric characteris-
tics and the security of the key will be in danger. Therefore, it
is important to investigate the effects of stolen helper data.

In this paper, by establishing an information theoretic foun-
dation for single use biometric security systems,2 we study the
fundamental trade-off among security (the rate of the generated
key), privacy (conditional entropy of the biometric measure-
ments given the helper data), and key protection (conditional
entropy of the key given the helper data) in any biometric se-
curity system. We note that whether or not it is preferable to
generate secret keys from biometric measurements is subject to
debate in the security community. Our work does not address
this issue. Instead, we focus on characterizing the fundamental
limits of biometric systems if such a practice is adopted. In order
to increase the security level in an authentication system (e.g., a
smaller false acceptance rate), a key with a larger rate is always
preferred. As we will see, this will inevitably sacrifice the pri-
vacy or key protection in a system. More specifically, we first
rigorously formulate different trade-offs in biometric security
systems. We then identify and characterize these fundamental
trade-offs for two different scenarios. In this paper, we assume
that the attacker can access the database that contains the helper
data but is not able to modify the entries. The scenario in which
the attacker can modify the entries in the database is an inter-
esting topic for future study.

In the first scenario, the trade-off between privacy and
security is studied under the requirement that the helper data

2The scenario in which the biometric information is used in several locations
is discussed in the second part of this two-part paper [28].

has arbitrarily small correlation with the key, i.e., perfect key
protection. We consider both key-binding and key-generating
biometric cryptosystems [24], which are also know as random-
ized and nonrandomized systems, respectively. In each system,
we characterize the security–privacy trade-off. Furthermore, we
propose schemes that fully achieve any particular point on the
trade-off curve. We show that the performance of the existing
approach is one particular point on the derived trade-off curve.
We further show that the randomized and nonrandomized
systems are equivalent in terms of privacy–security trade-off.
After that, we study a generalized situation in which an attacker
has side information about the biometric measurements. Both
randomized and nonrandomized systems are considered. Inner
and outer bounds on the privacy–security region are derived
for these situations. These bounds are shown to match under
certain conditions of interest.

In the second scenario, we study the ultimate goal that the
helper data has an arbitrarily small correlation with the bio-
metric characteristics, i.e., perfect privacy. We show this pos-
sibility when the key protection is not perfect and common ran-
domness is shared between the biometric characteristics ob-
tained during the enrollment and release stages. The trade-off
between security and key protection is studied for both random-
ized and nonrandomized systems.

A line of related work is the key generation problem with rate
constraint considered in [29]. Our work, on the other hand, can
be viewed as a key generation problem with privacy constraints.
It will become clear in the sequel that in the scenario considered
in Section III-A, the key generation problem with privacy con-
straints can be converted to a key generation problem with rate
constraints. And hence in this scenario, we can borrow results
from [29] to obtain the optimal privacy–security trade-off. On
the other hand, for other scenarios considered in the paper, the
constraint on the privacy leakage is different from and is more
involved than the rate constraint. We note that the privacy con-
straint adopted here is motivated by applications in biometric
security systems, which have widespread applications. We also
note that the scenario considered in Section III, which we pre-
sented in [1], also appeared independently and concurrently in
[30] and [31] in a slightly different form. Compared with the
work in [30] and [31], we also consider the scenario in which
the attacker has side-information and the scenario with perfect
privacy. On the other hand, [31] also considers several scenarios
that are not considered in the current work. This paper focuses
only on deriving theoretical bounds. These fundamental bounds
illuminate the feasible system requirements. Also, they provide
insights that are useful for the design of practical schemes.

The rest of the paper is organized as follows. In Section II, we
introduce our system model and notation. Section III is devoted
to the perfect key protection scenario. The situation in which
the attack has side information is analyzed in Section IV. Next,
we discuss the perfect privacy scenario in Section V. Finally, in
Section VI, we offer some concluding remarks.

II. MODEL

We denote the biometric measurements taken during the
enrollment stage by and the biometric measurements taken
during the release stage by . Here, we assume that and

are sequences with length taking values from -fold
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Fig. 1. Two different approaches for generating the key in biometric authenti-
cation systems: (a) nonrandomized approach; (b) randomized approach.

product sets and , respectively. Specific models for
the distribution of biometric measurements can be found, for
example, in [7], [8], and [32]. Further assumptions on statistical
properties of and will be given in Sections III and V as
needed.

During the enrollment stage both a key , ranging over ,
and helper data , ranging over , are generated. In order to
avoid technical difficulties that arise when the alphabets grow
too fast [33], we assume without loss of practical interest that

(1)

and

(2)

The key is used for authentication. The helper data is stored
in the database to assist the recovery of the key from the noisy
measurements during the release stage. Regarding the gen-
eration of key , we consider two types of systems that are
widely used, namely nonrandomized systems [4], [5], [7] and
randomized systems [14], [34]. In nonrandomized systems, as
shown in Fig. 1(a), both and are generated from by
functions and , respectively, so that and

. In randomized systems, the key , which is in-
dependent of and in this case, is randomly generated
during the enrollment stage. Then is generated from the ran-
domly chosen key and the biometric measurements by a
function so that . The randomized system
is illustrated in Fig. 1(b). The randomized system and nonran-
domized system are equivalent to key-binding and key-gener-
ating biometric cryptosystems, respectively [24].

During the release stage, by providing the noisy measure-
ment and data stored in the database , we generate an es-
timate of the key. Let be the recovery function, and thus

. In order to allow access for legitimate users,
we require an arbitrarily small error probability during the key
recovery stage.

The following two performance metrics are important. The
first one is the rate of the key generated, i.e., . We use
the term “secrecy” to denote this quantity. As mentioned in the
introduction, we would like to make this quantity large, since it
is related to the difficulty of the attacker gaining access to the
system. The second quantity of interest is the normalized equiv-
ocation level . We use the term “privacy” to
denote this term, and would like to make this term large.

A. Perfect Key Protection Systems

Although real biometric data do not obey independent and
identically distributed (i.i.d.) or even ergodic statistics, bio-
metric data can be transformed into binary vectors that are
approximately i.i.d. Bernoulli (1/2) using various algorithms,
e.g., the one in [32]. In this scenario, we further assume
and are generated according to a joint distribution (the case

of sources with memory is studied in the perfect privacy system
considered in Section V)

(3)

We first consider perfect key protection systems, in which
we require that does not contain any information about the
generated key. More specifically we require that for any ,

for sufficiently large . As mentioned before,
the difficulty of an attacker illegally accessing the system is
related to the rate of the generated key, and hence we measure
the security level of the system by . The privacy of
the biometric measurements is defined as the normalized equiv-
ocation rate . The larger this quantity, the
greater the degree of privacy of the biometric measurements.
Suppose this quantity can be made arbitrarily close to 1. Since

is generated from a stationary and memoryless source,
is equivalent to

[35, Th. 4]. In this case, the adversary will suffer the maximum
average symbol error probability and maximum block error
probability even though the adversary knows and has the
best decoding function [35, Th. 3].

Definition 1 (Perfect Key Protection System): In a perfect key
protection biometric authentication system, a privacy–security
pair is said to be achievable if, for each , there
exist an integer , coding functions, namely and in non-
randomized systems (i.e., ) and
in randomized systems (i.e., ), and a decoding
function, namely (i.e., ), satisfying the fol-
lowing conditions:

(4)

(5)

(6)

and

(7)

Another situation of interest is that in which, besides the data
stored in the database, an attacker of the system has side-in-

formation about the biometric characteristics. This models the
situation in which the attacker obtains side-information from
other sources, such as biometric characteristics stored in other
databases or biometric characteristics from the relatives of the
user. We denote the side observation at the attacker by ,
ranging in the set , and assume that it is correlated with

. Following the definition in (3), we assume

(8)

Since the attacker knows both and , the privacy level
is now measured as , and the generated
key is required to be independent of and .

Definition 2 (Side-Information at Attacker): In a biometric
system with side-information available to the attacker,
a privacy–security pair is said to be achievable
if, for each , there exist an integer , coding func-
tions, namely and in nonrandomized systems (i.e.,

) and in randomized systems
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(i.e., ), and a decoding function, namely
(i.e., ), satisfying conditions (4)–(7) and

(9)

and

(10)

B. Perfect Privacy System

In a perfect privacy system, we require that the data stored
in the database does not leak any information about biometric
measurements; that is, for each , we require
for sufficiently large . At the same time, we generalize the
requirement on the generated key, that is to allow to
range from 0 to . Of course, the smaller the
better. We measure the performance of a perfect privacy system
by 1) the rate of the generated key , and 2) the nor-
malized equivocation of the generated key . If

, we have .
Here, we drop the i.i.d. assumption made in (3). In other

words, we assume and are two correlated random pro-
cesses that are generated from sources with memory. This as-
sumption is justified by the fact that the real biometric data tend
not to be i.i.d. or ergodic [32]. Indeed, the intrinsic memory in

will be seen as a critical resource which makes a perfect
privacy system possible.

Definition 3 (Perfect Privacy System): In a perfect privacy
biometric security system, a rate-equivocation pair is
achievable if, for each , there exist an integer , coding
functions, namely and in nonrandomized systems (i.e.,

) and in randomized systems
(i.e., ), and a decoding function, namely
(i.e., ), satisfying the following conditions:

(11)

(12)

(13)

and

(14)

III. PERFECT KEY PROTECTION CASE

In this section, we study perfect key protection systems, in
which data stored in the database contains limited information
about the generated key. Our goal is to characterize the rela-
tionship between the key size and information leakage about the
biometric measurements.

A. Nonrandomized System

As discussed in Section II, in a nonrandomized system, both
the key and data are generated from the biometric mea-
surements . Some existing schemes, for example, the secure
sketch approach of [4] and [5] and the coding approach in [7],
belong to this category.

This scenario can be converted to the problem of key
generation with rate constraints considered in [29]. More
specifically, the following problem is considered3 in [29].

3More general models are considered in [29]. Here, we cite only the model
that is directly related to the problem under consideration.

Two terminals, a source and a destination, possess corre-
lated observations and , respectively. These ob-
servations are generated according to a joint distribution

. The source is allowed
to send a message to the destination with a rate con-
straint over a noiseless public channel.
After the transmission, the source generates a key ,
and the destination also generates a key . The
requirements are for an arbitrarily small ,
and . These requirements mean that the keys
generated at the source and the destination are the same with
high probability, and the message transmitted over the
public channel does not leak too much information about the
generated keys. A number is called achievable, if there exist a
function and random variables and satisfying the above
mentioned conditions and . Reference
[29] has provided the following characterization of a set of
achievable key rates as a function of the rate constraint .

Theorem 1 ([29]): Within rate constraint , a rate is
achievable if it satisfies the following condition:

s.t.

for some auxiliary random variables such that sat-
isfies the Markov chain relationship .

Proof: Please refer to [29] for details of the proof.
One can now establish the connection between our

scenario and the problem considered in [29] by set-
ting and converting the privacy constraint
(5) to an equivalent rate constraint. From (5), we have

. Since in
the nonrandomized scenario, is a function of , we have

. Without loss
of generality, we can require to be uniformly distributed,
and hence we further have .
As a result, a constraint is equivalent to a
rate constraint. Thus, using Theorem 1, we have the following
result.

Definition 4: is the set of the privacy–security pairs
satisfying the following conditions:

(15)

and

(16)

for some auxiliary random variable such that sat-
isfies the Markov chain condition .

Proposition 1: Any privacy–security pair is achiev-
able by a nonrandomized approach if and only if .

Remark 1: To maximize the rate of the key, we should set
. The rate of the key is then . Correspondingly,

the privacy level is . This recovers the ex-
isting results of [18], [19], and [20].

Remark 2: In order to achieve both perfect privacy and per-
fect key protection, the auxiliary random variable in (15)
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should be chosen such that . The maximal
rate achievable is then

s.t. and (17)

B. Randomized Approach

In randomized systems, during the enrollment stage, users
have the freedom to choose the values of the keys but they are
not required to remember them. For example, the fuzzy vault
scheme studied in [14] and [34] belongs to this category. Here,
the key can be viewed as a source of additional randomness.
The theorem below characterizes the performance of the ran-
domized approach. The basic idea of the achievablity scheme is
as follows. We first use the scheme in the nonrandomized ap-
proach to generate a key , choosing from a set with size

. Then for a uniformly generated key from a set , we
store in the database, along with other information re-
quired to be stored in the nonrandomized approach. Here de-
notes mod- addition. If we set will be ap-
proximately uniformly (these terms will be made rigorous in the
proof) distributed over , and is independent of other random
variables of interest. Hence, this additional information stored
in the database will not provide any information about the gen-
erated key and biometric measurements. In the release stage, we
first obtain an estimate of using the same scheme as that of
the nonrandomized approach. We then recover via .
Since with high probability, is equal to with high
probability. We show in the converse that the performance of
the above mentioned scheme is optimal.

Let denote the set of the privacy–security pairs
that are achievable by a randomized approach. We then have the
following result.

Theorem 2: .
Proof: Here we show that for any auxiliary random vari-

able with , and any , the pair
with

and

(18)

is achievable. That is, any pair in the region is achievable.
The proof of the converse is presented in Appendix A.

For a given joint distribution
, we use the following scheme.

1) Code construction. Fix , , and . Ran-
domly select sequences from ,
and divide them into bins so that each
bin contains typical sequences. Following the no-
tation in [36], denotes the set of strongly typical -se-
quences. We use to denote the bin index, and to denote the
index of the sequence within each bin. Denote the set of these

sequences by . From the construction above, we can see

that each sequence is uniquely identified by two in-
dices .

2) Enrollment stage. For each , we associate a se-
quence with it by the following procedure. First, we
find a list of sequences in that are jointly typical with .
If there are more than one sequence in the list, we set to be
the one with the smallest index (we first compare the bin indices
and if there is a tie, we then compare the index within the bin).
If no such sequence exists, we set to be the sequence with
index . Using this procedure, we associate every

with a sequence . Now, we randomly gen-
erate a key from the set
with a uniform distribution. We then store the bin index
and in the database, in which denotes the index
of in bin . Here denotes mod- addition.
Hence, in this particular scheme . Also, we
have

(19)

3) Release stage. With the noisy measurement , and the
data stored in the database , we obtain an estimate

of using the following procedure. We first look for a list
of sequences in bin that are jointly typical with . Then, we
obtain an estimate of as follows: 1) if there is only one
sequence in the list, we set equal to this sequence; 2) if there
are more than one sequence in the list, we randomly choose one
sequence from the list and set equal to this sequence; and
3) if the list is empty, we set to be the first sequence in bin
. Hence, for each , we have one associated with it.

We then set .
4) Error probability analysis follows from standard tech-

niques [37], and is omitted for this and other theorems in the
paper for the sake of compactness.

5) Rate analysis. Since in our scheme, is generated from
with a uniform distribution, the rate

of the key is

(20)

6) Security analysis. For any with and
, we have

in which is a function of , and approaches zero as decreases.
Thus,

(21)

We also have

(22)

since the value of ranges from to .
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From the fact that ,
we have

(23)

in which we have used (21) and (22).
Thus we have

(24)

where we have used (23) and the fact that the value of
ranges from to .

7) Privacy analysis.
We can write

(25)

Here (a) is due to the fact that there is a one-to-one correspon-
dence between and , and ,
since in our scheme is a function of ; (b) is due to the
fact that

, due to (23) and
the fact that , which can be easily
shown; (c) is due to the fact that is a function of ; (d) is
due to the fact that

, since in our scheme is a function of ,
and the fact that

; and (e) is due to the fact that
takes at most different values in our codebook.

On defining ,
from (19) (key size requirement), (20) (rate requirement), (24)

(security requirement), and (25) (privacy requirement), we have
that any pair with

and

(26)

is achieved by the presented scheme. The proof of the achiev-
ability part is thus complete.

Remark 3: Since , we see that randomization does
not increase the region. But one advantage of this randomized
approach is that the system is revocable, meaning that different
keys can be generated using the same scheme.

IV. SIDE-INFORMATION AT THE ATTACKER

In this section, we consider a situation in which, besides the
data stored in the database, the attacker has side-information
about the biometric characteristics. This models the situation in
which the attacker obtains side-information from other sources,
such as biometric characteristics stored in other databases or
biometric characteristics from relatives of the user.

A. Nonrandomized Approach

We first consider the nonrandomized approach, in which both
and are functions of the biometric measurements , i.e.,

and .
We begin with a scheme that provides an inner bound on the

set of all achievable privacy–security pairs. The basic idea is
based on that of Proposition 1. We first generate a compressed
version of , and then perform source coding with side
information ( as the source sequence at the source coding en-
coder, and as the side information present at the decoder).
That is we divide s into bins, and store the bin index in the
database. In Proposition 1, we set the key value as the index of

in each bin. Now since the attacker has additional informa-
tion, the key rate should be reduced accordingly in order to guar-
antee that the attacker does not obtain any information about the
generated key. We fulfill this goal by further partitioning each
bin into subsets. We set the key value as the subset index. Using
ideas from the analysis of the wiretap channel [38], it can be
shown that there exists a partition such that even with the side
information at the attacker and bin index, the attacker will not
be able to infer too much information about the generated key
(in this case, the key is the subset index). We then characterize
the privacy leakage of this scheme. With the bin index and noisy
information , we can recover , and then recover the key
by looking at the subset index of the recovered sequence .
Using information inequalities, we also provide an upper bound
on the performance achievable by any scheme.

Theorem 3: Let be the set of satisfying the
following conditions:
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and

(27)

and be the set of satisfying the following
conditions:

and

(28)

in which and are auxiliary random variables such that
satisfies the following Markov chain condition

.
Any pair in is achievable, while any pair outside of

is not achievable.
Proof: Here we show that for any auxiliary random vari-

ables and with , and any ,
any pair satisfying

(29)

is achievable. That is, any pair in the region is achievable.
The proof the converse is presented in Appendix B.

Fix a joint distribution
, and

use the following scheme.
1) Code construction. We fix , , , , and to be positive

real numbers. Randomly select a set of typical
sequences with size . We arbitrarily
order the sequences in , and give an index, ranging from

to , to each sequence. We also denote the se-
quence with index 1 by . For each , randomly se-
lect a set of sequences with size

. For each set , we divide
these sequences into bins so that
each bin contains typical sequences. We fur-
ther divide each bin into subsets
so that each subset contains typical sequences.
We use as the bin index, as the index of the subset within
each bin, and as the index of the sequence within each subset.
Then each sequence can be uniquely identified by three in-
dices and .

2) Enrollment stage. For each , we associate a
sequence with it using the following procedure. First, we find
a sequence such that is jointly typical. If
there is more than one sequence, we select to be the one
with the smallest index. If no such sequence exists, we choose

. After finding , we make a list of such that
is jointly typical. If the list has more than one sequence,

we select the one with the smallest index and associate it with
(we first compare ; if there is a tie, then we compare ;

if there is still a tie, then we compare ). If the list is empty,

we set as the sequence with index
in , and associate it with . After this procedure, each

has a associated with it. We set the key value to be
the subset index in which the sequence falls. Hence, in this
scheme , and thus

(30)

We store and the bin index in the database. Therefore, in
this particular scheme .

3) Release stage. With the noisy measurement , and the
data stored in the database , we obtain an estimate of
using the following procedure. We first make a list of sequences
in bin of that are jointly typical with . Then, we
obtain an estimate of as follows: 1) if there is only one
sequence in the list, we set equal to this sequence; 2) if there
are more than one sequence in the list, we randomly choose one
sequence from the list and set equal to this sequence; and
3) if the list is empty, we set to be the first sequence in bin
of . Hence, for each , we have a associated
with it. We then obtain an estimate of the key , by setting it as
the subset index of in the bin of .

4) Rate analysis. For any that is not the first sequence in
, we have

(31)

in which is a function of , and goes to zero as decreases.
Hence, there exists a , which is again a function of

and goes to zero as decreases, such that

(32)

On the other hand, , since the
codebook contains only different s. Similarly,
we have , and

. Thus, we have

(33)

in which is due to the fact that there is a one-to-one
correspondence between and . From
(33), it follows that the rate of the key is larger than

for a suitable parameter .



LAI et al.: PRIVACY–SECURITY TRADE-OFFS IN BIOMETRIC SECURITY SYSTEMS—PART I 129

6) Security analysis. In the following, we bound .
First, we have

(34)

Here (a) is due to the fact that and are functions of , and
(b) is due to the following facts: 1)

, which was shown in (32); 2) ,
which will be shown in Lemma 1 of Appendix C; 3)

; 4) with goes
to 0 as increases, which will be shown in the Lemma 2 of
Appendix C; and 5) which can
be shown similarly as in Lemma 3 of Appendix C. In (c), we
define .

Thus

in which (a) follows from (34) and the fact that the value of
ranges from to .

7) Privacy analysis
We have

(35)

Here, (a) is due to 1) the inequality
and (34) and 2) the fact that is a function of

in our scheme; (b) is due to the fact that
where is a function of ; (c) is due to Lemma 3 of
Appendix C; and (d) is due to the Markov chain relationship

.
On defining , from (30) (key size re-

quirement), (33) (rate requirement), (34) (security requirement),
and (35) (privacy requirement), we have that any pair
satisfying

(36)

is achieved by the presented scheme. The proof of the achiev-
ability part is thus complete.

Remark 4: In general, these two bounds do not match. If the
attacker does not have side information, that is , then
the lower bound does match the upper-bound. Furthermore, the
result recovers that of Theorem 1, since, if , the lower
bound becomes

(37)

and

(38)

and the upper bound becomes

(39)

and

(40)

Since , we have , in
which the equality can be achieved by setting to be a con-
stant. Thus, choosing as a constant maximizes both and

simultaneously in both the lower and upper-bounds. Fur-
thermore, when we choose to be a constant, these two bounds
match.

B. Randomized Approach

As in Section III-B, during the enrollment stage, the key is
randomly generated and is independent of . The helper data

is a function of and ; that is .
An achievable region is described by the following scheme.

The basic idea is to first generate a key , choosing from a set
with size , using the scheme in the proof of Theorem 3.

Then for a uniformly generated key from a set , we store
in the database, along with other information required
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to be stored in Theorem 3. Here denotes mod- addition.
If we set , will be approximately uniformly
(these terms will be made rigorous in the proof) distributed over

, and is independent of other random variables of interest.
Hence, this additional information stored in the database will not
provide any information about the generated key and biometric
measurements. In the release stage, we first obtain an estimate

of using the same scheme as that of Theorem 3. We then
recover via . Since with high probability,
is equal to with high probability. Using information theoretic
inequalities, we also provide an upper-bound on the achievable
privacy–security pairs.

Theorem 4: Let be the set of pairs satisfying
the following conditions:

and

(41)

and let be the set of pair satisfying the fol-
lowing conditions:

and

(42)

in which and are auxiliary random variables such that
satisfies the following Markov chain condition

.
Then any pair in is achievable, while any pair outside

of is not achievable.
Proof: Here we show that for any auxiliary random vari-

able and with , and any ,
any pair satisfying

(43)

is achievable. That is, any pair in the region is achievable.
The proof of the converse is presented in Appendix D.

Fix a joint distribution
, and

use the following scheme.
1) Code Construction: Fix , , , , and to be positive

real numbers. Randomly select a set of typical se-
quences with size . We arbitrarily
order the sequences in , and give an index ranging from

to to each sequence. We also denote the se-
quence with index 1 by . For each , randomly se-
lect a set of sequences with size

. For each set we divide
the sequences into bins so that
each bin contains typical sequences. We fur-
ther divide each bin into subsets
so that each subset contains typical sequences.
We use as the bin index, as the index of the subset within

each bin, and as the index of the sequence within each subset.
Then each sequence can be uniquely identified by three in-
dices and .

2) Enrollment Stage: For each , we associate a
sequence with it using the following procedure. First, we find a
sequence such that is jointly typical. If there
is more than one sequence, we select to be the one with the
smallest index. If no such sequence exists, we choose . After
finding , we find a list of such that is
jointly typical. If the list has more than one sequence, we select
the one with the smallest index and associate it with (we first
compare ; if there is a tie, then we compare ; if there is still a
tie, then we compare ). If the list is empty, we set as the se-
quence with index in , and asso-
ciate it with . After this procedure, each has a as-
sociated with it. We now randomly generate a key from the set

with a uniform
distribution. We store , the bin index and in the
database. Here denotes mod-
addition. Hence, in this particular scenario

.
3) Release Stage: With the noisy measurement , and the

data stored in the database , we obtain an estimate
of using the following procedure. We first look for a list of

sequences in bin of that are jointly typical with .
Then, we obtain an estimate of as follows: 1) if there is
only one sequence in the list, we set equal to this sequence;
2) if there is more than one sequence in the list, we randomly
choose one sequence from the list and set equal to this se-
quence; and 3) if the list is empty, we set to be the first se-
quence in bin of . Hence, for each , we have
one associated with it. We then obtain an estimate of the key

, namely , in which is the subset index of
in the bin of .

The error probability, rate, security, and privacy analysis
follow similarly to those in the proof of Theorem 3, and we omit
the analysis of these quantities for the sake of compactness.

V. PERFECT PRIVACY FOR BIOMETRIC MEASUREMENTS

In this section, we consider the perfect privacy case, in which
we require that the mutual information between the data stored
in the database and biometric measurements be arbitrarily small.
This models the situation in which privacy is of primary con-
cern. In the following, we show a close relationship between
perfect privacy and common random processes. In this section,
the results apply to finite . Also, we assume is generated
from a source with memory since real biometric data are not
well modeled as having i.i.d. statistics [32]. Therefore, the fol-
lowing definition is different from and more general than the
common randomness for discrete memoryless stationary infor-
mation sources as shown in [29], [36, p. 402], and [39].

Definition 5: For two random processes and , there
exists a common random process between them with entropy
rate not less than if for each , there exist and functions

of and of such that

(44)

and

(45)
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This definition says that if and have a common
random process with entropy rate , then one can generate two
random variables: solely based on and
solely based on , with the property that each of these two
random variables has entropy and is equal to the other one
with high probability. Now, the common random process and
the perfect privacy case are connected in the following theorem.

Theorem 5: A privacy-rate pair is achievable with
perfect privacy if, and only if, there exists a common random
process between and with entropy rate not less than

.
Proof: A proof of the necessity of common randomness

for perfect privacy is given in Appendix E. Here, we prove the
sufficiency. For any , there exist and
such that (44) and (45) are satisfied. Let
so that . If , let ,

, , and , where is randomly
generated such that

and is independent of and . In this case,
. If , then let

. In this case, let be independent of
and and randomly generated such that

and

Here, is independent of . Let and
. Then and

(46)

In both cases, it is obvious that and
. Since is arbitrary, the

privacy-rate pair is achievable.
Together with Theorem 5, we have shown that a privacy-rate

pair is achievable if and only if there exists a common
random process between and with entropy rate not less
than .

Now consider nonrandomized systems, in which
since is a function of . Thus in this

case, implies that . Since
is arbitrary, . Hence in nonrandomized systems,
perfect privacy means perfect key protection. By letting

, , and be a constant, we can
prove that privacy-rate pairs for all are achievable
by a nonrandomized system if there exists a common random
process between and with entropy rate not less than

. Thus the achievable privacy-rate region of nonrandomized
systems is a proper subset of that for randomized systems. In
other words, the randomized approach provides the flexibility
to determine a system that has perfect privacy but not perfect
secrecy.

Our results reveal that the possibility of building a biometric
security system with perfect privacy depends on whether
common information between two biometric measurements

can be generated. The common randomness for discrete mem-
oryless stationary information sources has been studied in [29],
[36, p. 402], and [39]. When satisfies (3), the common
randomness is 0 if is indecomposable [36, p. 403]. This
result has been extended to nonstationary independent sources
[40]. Indeed, the results may be extendable to stationary er-
godic sources according to the proofs in [39]. Therefore, if
the biometric measurements are converted to i.i.d. or ergodic
sequences, it is unlikely that one can build a system with per-
fect privacy. Fortunately, real biometric measurements do not
follow i.i.d. or ergodic statistics [32]. Developing techniques
for generating common randomness from two biometric mea-
surements is thus of interest in the development of biometric
security systems allowing perfect privacy.

VI. CONCLUSION

The design of single-use biometric security systems has been
studied under a privacy–security trade-off framework. Two
different scenarios, in which the attacker either has side-infor-
mation about the biometric measurements or not, have been
considered. In the scenario for which the attacker does not
have side-information, we have considered two cases of perfect
key protection and perfect privacy. In both cases, the complete
privacy–security region has been identified. More specifically,
an upper-bound on the privacy–security pair achievable by
any scheme has been derived. Moreover, a scheme has been
proposed to achieve this upper bound. For the scenario in which
the attacker has side-information about the biometric measure-
ments, inner and outer bounds on the privacy–security region
have been derived. We have also shown the close relationship
between perfect privacy and common randomness between
two biometric measurements. The possibility of building a bio-
metric security system with perfect privacy relies on whether
common randomness can be generated from two biometric
measurements.

The extension of these ideas to the design of biometric secu-
rity systems in which biometric information is used in several
locations is discussed in the second part of this two-part paper
[28]. Several other interesting questions arise from our work as
well. For example, designing practical codes that achieve the
derived theoretical bounds is a natural next step. Moreover, de-
riving tighter bounds for the side-information case and the char-
acterization of the performance for finite block lengths are of in-
terest. In addition, the study of more advanced attacker models
in which the attacker can modify the entries in the database is
important.

APPENDIX A
PROOF OF THEOREM 2

We now show the converse result that is exactly the
privacy–security region. To do so, we let be a pri-
vacy–security pair achieved by using encoding functions

and decoding function . Then and
. In the following, we will show that there

exists a random variable with , such that

(47)
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and

(48)

in which approaches 0 as increases. That is .
First, from the conditions , (1), and

Fano’s inequality, we know that there exists a sequence of
that approaches 0 as increases, such that

(49)

Now, we bound the privacy leakage as follows:

(50)

Now

(51)

due to the requirement that .
Thus, subtracting (51) from (50), we have

(52)
We also have

which is due to the fact that .
To show this Markov chain relationship, we first note that

, from which we have
, because

. Now, we have ,
which leads to .

We continue as follows:

(53)

Hence

(54)

Here, in (a), we have used (53), and in (b), we have set
.

Moreover, we have

(55)

in which (a) is due to (49).
Now, by introducing a random variable uniformly dis-

tributed over the set , and setting ,
, , and , we get the desired result by

following the standard single-letter characterization technique.

APPENDIX B
PROOF OF THEOREM 3

Here we show that is an upper-bound on the pri-
vacy–security pair achieved by any scheme. To do this, we
let be a privacy–security pair achieved by using
encoding functions and and decoding function . That
is , , and . In
the following, we will show that there exist random variables

and with , such that

and

(56)

in which approaches 0 as increases. That is
.
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Similarly to (49), we have

(57)

We proceed as follows:

(58)

in which we have defined

(59)

Here (a) follows from (57) and the requirement that
, and (b) can be obtained by using [41,

Lemma 7].
In the following, we bound

because is a function of .
We continue as follows:

(60)

in which (a) is due to the fact that is a function of , and
(b) is due to the Markov chain relationship

(61)

To show this, we have that , which
leads to , since is a function
of .

Now,

(62)

in which we have used [41, Lemma 7].
We continue as follows:

(63)
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in which (a) is due to the Markov chain relationship
, which can be shown similarly to (61),

and (b) is due to the fact that

which is due to the Markov chain relationship
. Combining (60) with (63), we have

(64)

Here and are defined in (59) and (a) is due to the Markov
chain condition .

Now, by introducing a random variable uniformly dis-
tributed over the set , and setting ,

, , , and , we get the
desired result by following the standard single-letter character-
ization technique.

APPENDIX C
LEMMAS FOR THE PROOF OF THEOREM 3

In this section, we state and prove several lemmas used in
Appendix B (the proof of Theorem 3).

Lemma 1: For the coding scheme in Theorem 3, we can write
, where as increases.

Proof: With knowledge of and , the attacker can obtain
an estimate of by looking for a sequence in the subset

, bin of that is jointly typical with . Based on
an error probability analysis similar to that given in the proof

of Theorem 1, one can show that the probability that
goes to zero as increases. Thus, using Fano’s inequality,

we have for a suitable choice of ,
which approaches 0 as increases.

Lemma 2: For the coding scheme in Theorem 3, we have

in which goes to zero as increases.
Proof: For each , we define as follows:

(65)

in which is an arbitrary sequence in .
We have

(66)

From the Markov lemma [37], are jointly typical
with high probability. Hence with high probability,
and thus we have

for a suitable choice of that approaches 0 as increases, due
to Fano’s inequality [37].

At the same time, for any , we have

for a suitable choice of that approaches 0 as increases [36].
Hence

(67)

On defining , which approaches zero as increases,
the claim is proved.

Lemma 3: For any , there exists a sufficiently large
such that

.
Proof: Consider



LAI et al.: PRIVACY–SECURITY TRADE-OFFS IN BIOMETRIC SECURITY SYSTEMS—PART I 135

(68)

Here for each (a) is true for sufficiently large [37].

APPENDIX D
PROOF OF THEOREM 4

Here we show that is an upper-bound on the pri-
vacy–security pair achieved by any scheme. To do this, we let

be a privacy–security pair achieved by using encoding
functions and , and decoding function . That is

, , , and
. In the following, we will show that there exist

random variables and with ,
such that

(69)

in which approaches zero as increases. That is
.

Again, similar to (49), we have .
We first bound the privacy leakage, as follows:

since is a function of . We continue:

In the derivation above, (a) is due to the Markov chain relation-
ship , which can be easily
shown.

At the same time, we have

in which we define

(70)

Here (a) follows from Fano’s inequality and the requirement that
, and (b) can be obtained by using [41, Lemma

7].
Now, by introducing a random variable uniformly dis-

tributed over the set , and setting ,
, , , and , we get the

desired result by following the standard single-letter character-
ization technique.

APPENDIX E
PROOF OF NECESSITY IN THEOREM 5

Consider a coding scheme which achieves the
pair so that (11)–(14) are satisfied. For simplicity, we
assume for all . We will show that a common
random process exists between and with entropy rate

. We show this by explicitly constructing the functions
and from the coding scheme .

Note that the joint distribution of , , and is given by

Let

(71)
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and

Then

(72)

where the last inequality follows from (14).
Let be an auxiliary random variable that has the same distri-

bution as but is independent of all the above named variables.
Let . Then

and

Therefore,

(73)

(74)

(75)

where (74) follows from Pinsker’s inequality [37] and (75) fol-
lows from (12). Hence,

(76)

(77)

(78)

where (77) follows from (75) and [42, Theorem 7]. Therefore,

(79)

where

and the last inequality follows from (72) and Fano’s inequality
[37]. For any , let

(80)

and

Now we consider a pair of random variables
. Note that

(81)

(82)

where (81) follows from the fact that , and (82) follows
from (79).

Since and , we have
. Together with Pinsker’s inequality, we have
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(83)

From (71), we can see that

(84)

Therefore, . Together with the re-
quirement that , we get

(85)

Together with (83), we have

(86)

The proof can be completed if we can find a lower bound on
. Note that

After rearranging the terms, we obtain

(87)

Together with (86), we have

(88)

Finally, for any , we take

Due to (1) and (2), there exists a sufficiently small such that

(89)

even though and may be increasing as decreasing. At
the same time, as .

Finally, let and
. Then

(90)

(91)

where (90) follows from (82), and (91) follows from (11)
and (13). At the same time, the relationship

follows from
(88) and (89).

Thus, we have successfully constructed and
, and hence there is a common random process between

and with entropy rate .
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