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Distributed Cognitive Radio Network
Management via Algorithms in Probabilistic

Graphical Models
Yingbin Liang, Lifeng Lai, and John Halloran

Abstract—In this paper, cognitive radio wireless networks are
investigated, in which a number of primary users (PUs) transmit
in orthogonal frequency bands, and a number of secondary
users (SUs) monitor the transmission status of the PUs and
search for transmission opportunities in these frequency bands
by collaborative detection. A network management problem is
formulated to find the configuration of SUs (assignment of SUs)
to detect PUs so that the best overall network performance is
achieved. Two performance metrics are considered, both of which
characterize the probability of errors for detecting transmission
status of all PUs. For both metrics, a graphical representation of
the problem is provided, which facilitates to connect the problems
under study to the sum-product inference problem studied in
probabilistic graphical models. Based on the elimination algo-
rithm that solves the sum-product problem, a message passing
algorithm is proposed to solve the problem under study in a
computationally efficient manner and in a distributed fashion.
The complexity of the algorithm is shown to be significantly
lower than that of the exhaustive search approach. Moreover, a
clique-tree algorithm is applied to efficiently compute the impacts
of each SU’s choice on the overall system performance. Finally,
simulation results are provided to demonstrate the considerable
performance enhancement achieved by implementing an optimal
assignment of SUs.

Index Terms—Cognitive radio, collaborative detection, dis-
tributed algorithm, message passing algorithm, probabilistic
graphical model.

I. INTRODUCTION

THE COGNITIVE radio technology has recently received
considerable attention due to its ability to substantially

improve the spectral efficiency of wireless communication
systems [2], [3]. The basic idea is to allow unlicensed users,
referred to as secondary users (SUs), to reuse the spectrum
when licensed users, referred to as primary users (PUs), are
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not using it. The ability to efficiently and reliably detect
the presence of PUs’ transmission is one of the fundamental
building blocks of the cognitive radio technology [4]. The idea
of collaborative detection was proposed and studied recently
in, e.g., [5]–[16] and in [17] for a review, which suggests that
multiple SUs can collaborate by combining their observations
to enhance the detection reliability. Previous work on this topic
mainly focuses on design of collaborative detection schemes
for a single primary user. In this paper, we study collaborative
detection from a network perspective. In particular, we study
a network management problem in cognitive radio networks,
which addresses the best assignment of SUs for detecting
transmission status of multiple PUs so that the overall network
performance is optimized.

The cognitive radio network that we consider consists of
multiple PUs, each transmitting at a different frequency band
(that may include a set of subbands). Each PU has a certain
detection range around it such that the SUs within this range
may reliably detect whether this PU is transmitting or not.
There are also multiple SUs in the network, and each SU
may fall into the detection ranges of multiple PUs. Due
to constraints on the hardware design and implementation
complexity, each SU is assumed to tune only to one PU’s
frequency band at a time for detection. This is also due to the
fact that one PU’s frequency band in general contains multiple
subbands, and SUs need to scan over these subbands. Hence,
the SUs that fall into the detection ranges of multiple PUs
need to select one PU for detection. SUs that select the same
PU can collaborate to improve the detection performance.

Two types of detection errors are of practical significance.
The first type of error occurs when the PU is in transmis-
sion but the SUs wrongly determine that the PU is not in
transmission. In this case, the subsequent transmissions of the
SUs will cause interference to the PU. The probability of this
type of error is referred to as the probability of interference,
and it must be guaranteed to be sufficiently small for each
PU as requested by interweave cognitive radio networks. The
second type of error occurs when the PU is not in transmission
but the SUs determine that the PU is in transmission. As a
result, the transmission opportunity is wasted. The probability
of this type of error is referred to as the probability of missed
opportunity. To utilize the spectrum in an efficient manner, the
system design needs to minimize the probability of missed
opportunity subject to the constraint that the probability of
interference is less than a given threshold.
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In this paper, we consider two overall system performance
metrics (objective functions): the sum of the probabilities of
missed opportunities over all PUs and the maximum among
the probabilities of missed opportunities over all PUs. It is
clear that the probability of missed opportunity for each PU
depends on which SUs are collaboratively detecting this PU,
and how well these SUs receive signals from the PU if the
PU transmits. Hence, the assignment of SUs to these PUs
leads to tradeoffs among the individual probabilities of missed
opportunity of PUs. The assignment of SUs that minimizes
the sum of all individual probabilities (the first performance
matric), which we refer as the min-sum problem in the sequel,
thus achieves the best tradeoff among these probabilities and
yields the best exploitation of PUs’ white space (transmission
opportunity) from the overall system point of view. On the
other hand, the assignment that minimizes the maximum
among the probabilities of all PUs, which we refer as the
min-max problem, guarantees that SUs equally exploit the
transmission opportunities arising in different parts of the
network.
Although the search for the best assignment can be carried

out at a centralized controller, such an approach is not desir-
able in practice, since it is in general too costly to centralize
the network information for the controller to perform the
search for the optimal assignment, in particular for large and
dynamic networks. The network information needed for the
centralized search includes the number of PUs and SUs in the
network, the location of each node, the transmission power of
each PU etc. Furthermore, many networks do not even have a
central controller. In this paper, we are interested in designing
distributed algorithms that allow the SUs to find the optimal
assignment using only their local information. As will be clear
in the sequel, the only information required for each SU in
our algorithm is the information of its neighbors. In this way,
the minimization can be efficiently performed in a distributed
manner at each SU locally.
We obtain our solution by first identifying a close link

between the problem under consideration and the sum-product
inference problem studied in the context of probabilistic
graphical models (see, e.g., [18], [19]). We show that the
assignment problems (both the min-sum and min-max prob-
lems) possess the same algebraic structure of commutative
semiring as the sum-product problem. Based on the celebrating
elimination algorithm [18], [19] derived for solving the sum-
product problem, we propose a message passing algorithm,
which efficiently solves our problem in a distributed fashion
that does not need centralized global information of the
network. By analyzing the complexity of the algorithm, and
comparing it with that of the exhaustive search approach that
does not exploit the problem structure, we show that the
proposed algorithms significantly reduce the computational
complexity. We also provide graphical representations of our
problems and interpretations of our solutions.
We finally study the problem of computation of beliefs,

which captures the impact of the choice (assignment) of each
SU on the overall system objective functions for both the min-
sum and min-max problems. Such a problem can be solved
efficiently by a message passing algorithm originally designed
for the sum-product problem in probabilistic graphical models

for tree graphs. However, our problem in general is not
represented by tree graphs. In this case, we apply a more
general clique-tree (junction-tree) algorithm [18], [19] that is
applicable for general graphs. We first propose a distributed
scheme to construct a clique tree based on the graphical
representation of our problem, and then apply the clique-
tree algorithm that runs a message passing algorithm over the
clique tree.
We note that the network spectrum management problem

for cognitive radio networks has attracted considerable atten-
tion and has been addressed from a number of perspectives
recently. For example, an auction based spectrum management
scheme is proposed in [20] for cognitive radio networks. A
spectrum management scheme that exploits spectrum usage
patterns to improve the overall spectrum efficiency is proposed
in [21]. The reader can refer to [22] for an overview of recent
progress in this area. Compared with the existing work, our
paper develops an approach based on probabilistic graphical
models to improve the spectrum efficiency via optimizing
the assignment of secondary users for collaborative sensing.
This perspective incorporates the physical layer design of
collaborative sensing into the network management issue and
demonstrates that network management based on physical
layer design improves the spectrum efficiency substantially.
The rest of the paper is organized as follows. In Section II,

we describe the network model and performance metrics. In
Section III, we present our solution to the min-sum and min-
max problems. In Section IV, we study the complexity of the
proposed algorithms. In Section V, we study the problem of
computation of beliefs by applying the clique-tree algorithm.
In Section VI, we present simulation results to illustrate the
proposed algorithms. Finally, in Section VII, we provide a few
concluding remarks.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Model

We consider a cognitive radio network with K PUs commu-
nicating over K orthogonal frequency bands (each frequency
band may contain a number of subbands). There are also J
SUs in the network, which are collaboratively monitoring the
transmission status of the K PUs. We index the PUs and SUs
by PU 1, . . . , PU K , and SU 1, . . . , SU J , respectively. Fig. 1
illustrates an example network with four PUs (indicated by
circles) and nine SUs (indicated by squares).
An SU, say SU j, may choose to monitor a PU, say PU k,

if SU j is within the detection range of PU k, i.e., djk < Dk,
in which djk denotes the distance from SU j to PU k, and Dk

denotes the detection range of PU k. However, as mentioned
above, one SU can choose only one PU for detection at a time
although it may be in the detection ranges of multiple PUs.
For each SU, say SU j, we use sj to denote the index of the
PU that this SU chooses to detect.
For each PU, say PU k, we use Dk to denote the set that

includes all indices of SUs that are in the detection range of
PU k and hence may possibly choose PU k for detection, that
is

Dk = {j ∈ {1, . . . , J} : djk ≤ Dk}. (1)
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Fig. 1. An example cognitive network

The actual set of SUs that choose to detect PU k is a subset
of Dk.
We adopt the detection model used in [13]. We assume that

each SU uses an energy detector to detect whether a PU is
in transmission or not. Suppose that SU j chooses to detect
PU k. We assume that signal power of PU k is at the same
level as thermal noise power at the energy detector of SU
j if SU j is at the distance ηk away from PU k. Hence, in
general ηk > Dk, i.e., SUs within the detection range of PU k
receives stronger signal power from PU k than thermal noise
power. As in [13], we also assume that thermal noise at the
energy detector is approximately Gaussian distributed in the
unit of dB. We further normalize the mean of noise power to
be 0dB. Hence if PU k is not in transmission, the output Yjk

at the energy detector of SU j contains noise only, and hence
Yjk ∼ N (0, σ2), where σ2 is the variance of the noise power.
On the other hand, if PU k is in transmission, the output at
the energy detector is dominated by the signal power of PU k
which is much stronger than the noise power if SU j is in the
detection range. Hence, Yjk ∼ N (μjk, σ2), where the mean
μjk is the received signal power minus the mean of noise
power (that is at the same level as signal power at SU j if SU
j is at the distance ηk away from PU k) due to normalization,
and is given by

μjk = −10b log
djk

ηk
, (2)

where b is the path loss exponent. We note that in general,
the variances under the two conditions (PU’s transmission
is on or off) may be different. We here assume the same
variance for simplicity. The algorithms presented in this paper
are applicable for more general signal and detection models.
As mentioned above, SUs that choose to detect the same

PU can pool their observations together to make a decision
regarding to the transmission status of the PU. For simplicity,
we assume that the SUs share their output signals with neigh-
boring nodes. However, our algorithms are also applicable to
more general scenarios, in which SUs share quantized outputs
or local hard decisions with their neighboring nodes to reduce
the communication cost.
We use Y k to denote the vector with elements Yjk being

the observations of SU j that has sj = k, i.e., SU j chooses

to detect PU k. We also let μ
k

= E[Y k], which includes μjk

as elements. Hence, the set of SUs that choose to detect PU
k are collaborating with each other to distinguish between the
following two hypotheses:

Hk
0 : Y k ∼ N (0, σ2I),

Hk
1 : Y k ∼ N (μ

k
, σ2I), (3)

in which I is the identity matrix.
It is clear that the decision rule can be characterized by a

threshold θk, and is given by [23]

if μT
k
Y k > θk, determines Hk

1 ,

if μT
k
Y k ≤ θk, determines Hk

0 , (4)

where μT
k
denotes the transpose of the vector μ

k
. We note that

although Y k contains only Yjk with sj = k, it is a function
of all sj ∈ Dk, because all these sj may affect how Y k is
comprised of.
We use PI,k to denote the probability of interference to

PU k, i.e., PI,k = Pr(Hk
0 |Hk

1). In this case, PU k is in
transmission but the SUs wrongly determine that the PU is
not in transmission. Hence, the subsequent transmissions of
the SUs will cause interference to the PU. We also use PMO,k

to denote the probability of missed opportunity to use PU k’s
frequency band, i.e., PMO,k = Pr(Hk

1 |Hk
0). In this case, PU

k is not in transmission but the SUs determine that PU k is in
transmission. Hence, the transmission opportunity in PU k’s
frequency band is wasted.
We require that the probability of interference to each PU

must be less than a given value γ, i.e.,

PI,k ≤ γ, for k = 1, . . . , K.

It is easy to see that for each PU k, PMO,k is minimized
when PI,k = γ. Hence the detection threshold θk should be
set such that PI,k = γ. We first derive

PI,k = 1 − Pr(μT
k
Y k > θk|Hk

1) = 1 − Q

⎛
⎝θk − μT

k
μ

k

σ
√

μT
k
μ

k

⎞
⎠ ,

(5)

in which Q(x) = 1√
2π

∫ ∞
x exp(−u2/2)du.

Letting PI,k = γ, we obtain

θk = σ
√

μT
k
μ

k
Q−1(1 − γ) + μT

k
μ

k
. (6)

We hence obtain

PMO,k = Pr(μT
k
Y k > θk|Hk

0) = Q

⎛
⎝ θk

σ
√

μT
k
μ

k

⎞
⎠ (7)

= Q

⎛
⎝σ

√
μT

k
μ

k
Q−1(1 − γ) + μT

k
μ

k

σ
√

μT
k
μ

k

⎞
⎠ . (8)

Since μ
k
can be viewed as a function of {sj , j ∈ Dk}, we

can express the above PMO,k as PMO,k(sj , j ∈ Dk).
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B. Objective Functions

In this paper, we study system design under two overall
system objective functions. The first one is to minimize the
sum of the probabilities of missed opportunity over all possible
assignments of SUs, i.e., our goal is to solve the following
optimization problem

min
{s1,...,sJ}

K∑
k=1

PMO,k(sj , j ∈ Dk) (9)

where PMO,k(sj , j ∈ Dk) is given in (8).
It is clear that the above optimization problem is in the form

of min-sum. The solution to this problem may result in the case
that some PUs have small probabilities of missed opportunity
and some have large probabilities of missed opportunity.
However, in many cases, we may need to guarantee the
probability of missed opportunity to be small for all PUs so
that the transmission opportunities over the entire network
can be equally exploited. In these scenarios, it is desirable
to consider the objective function of the maximum among
probabilities of missed opportunity of K PUs, and minimize
this function over all possible assignments of SUs. To be
specific, the problem is in the form of min-max and is given
by

min
{s1,...,sJ}

max
1≤k≤K

PMO,k(sj , j ∈ Dk) (10)

where PMO,k(sj , j ∈ Dk) is given in (8).
In the following sections, we will study the min-sum

problem in more detail. Once the min-sum problem is solved,
the min-max problem can be solved in a similar manner.

C. Graphical Representation of the Problem

In this section, we provide a graphical representation of the
problems given in (9) and (10). This representation will facili-
tate the application of the elimination algorithm in Section III
and the clique-tree algorithm in Section V, and the analysis
of complexity of the algorithms in Section IV.
We can represent the problems given in (9) and (10) by an

undirected graph G(V , E), where V is the set that includes all
SUs as nodes, and E is the set that includes all edges in the
graph G, as detailed in the sequel. The graph is induced by
the set of functions PMO,k(sj , j ∈ Dk) for k = 1, . . . , K in
that the nodes of the graph represent all variables involved in
these functions, and there is an edge between two nodes if their
corresponding variables appear in one common PMO,k(sj , j ∈
Dk) for some k. In this case, the corresponding SUs are in PU
k’s detection range. For example, if we consider the network
given in Fig. 1, it is clear from the figure that SUs 1, 2, 5 are in
the detection range of PU 1, and hence there are edges between
any two of them. The graphical representation of the network
in Fig. 1 is given in Fig. 2. It is clear that each function
PMO,k(si, i ∈ Dk) corresponds to one clique (a subgraph
with one edge between every pair of nodes). We further note
that in general the graph contains circles and is not a tree
graph.
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Fig. 2. Graphical representation of the example cognitive network in Fig. 1

III. DISTRIBUTED MESSAGE PASSING ALGORITHM

In this section, we present efficient distributed algorithms
for the SU assignment problems (9) and (10). We first provide
the solution for the min-sum problem in detail and then
describe how to solve the min-max problem using the results
obtained in the min-sum problem.

A. The Min-Sum Problem

To solve the minimization problem in (9), we first note
that this problem is not decomposable if the corresponding
graph is connected, which is mostly encountered in practice.
Hence, independently optimizing each PMO,k functions or a
subset of these functions is not possible, because in general
these functions are interconnected by common variables. In
this case, one possible approach is to compute the objective
function for all possible assignments of SUs, i.e., all possible
configurations of the values of (s1, . . . , sJ ), and then find the
minimal value for the objective function and the corresponding
assignment of SUs. Such an approach has several drawbacks.
First, the network information, i.e., all information needed to
compute PMO,k for k = 1, . . . , K , needs to be collected at
one center to perform the minimization. This causes a lot of
network traffic, in particular, for large networks. Furthermore,
wireless transmission of such information may not be reliable.
Second, such an approach is not computationally efficient,
because the complexity of computing the objective function
for all possible configurations is large, which will be clear in
Section IV. Thus, an efficient distributed algorithm is needed.
In order to reduce the complexity and design distributed

algorithms, we exploit the structure of the objective function
given in (9). It is clear that each PMO,k is a function of
only those si ∈ Dk, i.e., the assignments of local SUs, and
such a property is reflected in sparsity of graph structure.
Furthermore, the min-sum pair possesses the same algebraic
structure (i.e., a commutative semiring) as the sum-product
problem in the inference problem (see, e.g., [18], [19]). Thus,
the elimination algorithm that solves the sum-product problem
can be applied to design a message passing algorithm to solve
our min-sum problem. The idea of the algorithm is as follows.
The commutative semiring structure allows us to rewrite the
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objective function in (9) as

min
{s1,...,sJ}

K∑
k=1

PMO,k (11)

= min
{s2,...,sJ}

⎧⎨
⎩

∑
k:1/∈Dk

PMO,k + min
s1

∑
k:1∈Dk

PMO,k

⎫⎬
⎭ .

From this equation, we can first compute the minimiza-
tion over s1 (and hence eliminate s1) by picking the best
configuration for SU 1 for all other configurations of the
sjs that are involved in mins1

∑
k:1∈Dk

PMO,k . In this way,
minimization is performed for configurations of variables only
when necessary. This quantity is passed as a message from
SU 1 to the next node, and the same procedure is followed
to minimize over other variables one by one. A more detailed
description of the elimination algorithm for solving the sum-
product problem can be found in [18, Chapter 9].
In the following, we propose a distributed message passing

algorithm adapted from the elimination algorithm for solving
the sum-product problem. The algorithm contains two phases:
in-phase and out-phase processes. The in-phase process per-
forms minimization over all variables by passing messages
from one SU to another. Each message is a data structure
created by minimizing over the corresponding SU assignment
variable si. However, none of the intermediate SU except
the last node (i.e., the root) can figure out its own best
assignment, because such an assignment may still depend on
the assignments of remaining SUs. Only the last SU at the
end of the in-phase process can determine its best assignment
and the corresponding optimal objective function. The out-
phase process finds the optimal assignments for all SUs. It
starts from the root, and messages are transmitted from one
SU to another in an inverse ordering with respect to the in-
phase process. Each message contains the optimal assignments
of the SUs that have already been obtained in the out-phase
process. The process ends at the SU that starts the in-phase
process. We describe the algorithm more formally as follows.

A distributed message passing algorithm

1. In-Phase (optimizing the objective function)
• One SU, say SU 1, generates a function list consisting
of PMO,k with 1 ∈ Dk, and minimizes the sum of the
functions in the function list over s1 for all configurations
of values of other variables involved in these functions,
i.e., all variables that connects to SU 1 in graphical
representation.

• SU 1 records the minimized objective function (as a
function of other variables that connects to SU 1) as a
new function QMO,1 and the corresponding optimizing
s1.

• SU 1 informs all its neighboring nodes that it has fin-
ished the process, and has all neighboring nodes connect
to each other. SU 1 then passes the new function QMO,1

to one of its neighbor.
• The chosen SU adds QMO,1 to its function list, removes
PMO,k containing variables of previous nodes from its
function list, and then repeats the above steps.

• The in-phase process ends when a chosen SU, say SU
i, removes all PMO,k from its function list, and receives
a function with only one variable (i.e., its own si). This
SU is the last node, and the minimal value of the received
function is hence the optimal objective function.

2. Out-Phase (finding the optimal assignment)
• The last node SU i informs the node who previously
passed a function to it in the in-phase process about its
minimizing s∗i . Then this node is able to obtain its own
minimizing s∗j based on its record in the in-phase process.
• Repeat the above step until the first node SU 1 is
reached. Now every node knows its optimizing assign-
ment s∗j .

Although networks in general may have loops, the above
algorithm yields the exact global optimal solution. In the
end, each SU knows only its own and its neighbors’ optimal
assignment.
Theorem 1: The above message passing algorithm yields

the global optimal objective function and the corresponding
optimal SU assignment within a finite number of steps (more
specifically, the twice of the number of SUs in the network).

Proof: At each step of the proposed message passing
algorithm, minimization over a variable is performed exactly
over the sum of all PMO,k functions that involve this variable,
which can be seen from (11). Hence, no approximation is
made. This is similar to the elimination algorithm for the sum-
product problem [18].
We note that this algorithm is distributed in that the

minimization is performed locally and the message passing
ordering is chosen locally as well. This is different from the
regular elimination algorithm for the sum-product algorithm
that initially specifies an elimination ordering and constructs
an active list based on the global information of the network.
To carry out our algorithm, each SU needs to know only the
information about its neighbors and does not need to know
the global network information.
We also note that exchanging of local information in the

algorithm between SUs can be implemented via a common
control channel (CCC), which is predefined for all SUs to
exchange system control information in dynamic spectrum
access. The reader can refer to [24]–[26] for detailed infor-
mation.

B. Graphical Interpretation of the Algorithm

The in-phase process of the proposed algorithm can be
viewed as an elimination algorithm, i.e., an SU is eliminated as
the message is passed from this SU to the next node. In terms
of graphical representation, the initial elimination step involves
the cliques in the graph, which include the first eliminating
node. During the elimination of each node, a new function that
includes the variables corresponding to the neighbors of the
eliminating node as its arguments is created. Correspondingly,
edges are added to all pairs of neighbors of the eliminating
node, and a new clique is thus formed. Such a process (as
implemented in the third step in the in-phase process of the
algorithm) is called triangulation (see [18]), and it guarantees
the following property.
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Lemma 1: For any connected graph, the in-phase process
of the given message passing algorithm ends when all nodes
are visited.

Proof: The above lemma follows because the trian-
gulation process keeps the network to be connected after
elimination of each node, and hence there is always a node to
be eliminated before the last node is reached.

C. The Min-Max Problem

To solve the min-max problem, we again exploit the struc-
ture of the objective function (10). Similar to the min-sum
problem, we observe that the min-max problem also possesses
the same structure as that of the min-sum problem. Hence,
the distributed message passing algorithm proposed in Section
III-A can be applied to solve the min-max problem with
the operation “max” replacing the operation “sum” in the
algorithm.
Remark 1: Although the min-max and min-sum problems

can be solved using the algorithms similar to each other, the
optimal assignments of SUs for the two problems are different
and have different implications. The assignment of the SUs in
the min-max problem needs to balance the probabilities of
missed opportunity over all PUs, and hence treats all PUs in
a fair manner, whereas the min-sum problem focuses on only
the sum of probabilities, and may not treat all individual PUs
equally.

IV. COMPLEXITY

In this section, we compare the complexity of the proposed
algorithms with that of the exhaustive search approach. The
complexity of the algorithm proposed in Section III-A for the
min-sum problem includes the computation of the functions
PMO,k for 1 ≤ k ≤ K and the minimization carried out
at each SU. In the following theorem, we characterize the
complexity of both types of computation.
Theorem 2: For a given message passing ordering, the

number of computations (including addition, multiplication,
and comparison) of the message passing algorithm imple-
mented for the min-sum problem is given by O(K|D|2|D|) +
O((K + J)vB). Here |D| = max1≤k≤K |Dk|, v denotes the
largest number of values that si can take over 1 ≤ i ≤ J , and
B denotes the largest number of variables involved in either
PMO,k for 1 ≤ k ≤ K or QMO,j for 1 ≤ j ≤ J . If the
structure of the objective function is not exploited (i.e., using
the exhaustive search), the total number of computations is
given by O(2|D|vJ ) + O((K + 1)vJ).

Proof: We first consider the computation of the function
values of PMO,k for k = 1, . . . , K . Each PMO,k is computed
once for each configuration of values of variables. For each
configuration, only sj with j = k contributes to the computa-
tion dimension, and hence the maximum dimension is at most
|Dk|. The total number of addition and multiplication involved
is at most 2|Dk|. There are 2|Dk| configurations. Hence the
total number of computations for K functions PMO,k is less
than O(2K|Dk|2|Dk|).
For a given message passing ordering, QMO,j is the new

function yielded by minimizing the sum of all PMO,k that
involve sj over sj . Hence, entries of QMO,j is less than vB .

Each of the functions PMO,k and QMO,j is added once for
each entry of QMO,j . Hence the total number of additions is
less than (K + J)vB . For each QMO,j , the number of com-
parisons is less than vB , i.e., v times for each configuration
of other variables.
If the structure of the objective function is not exploited,

the computation of K functions PMO,k is O(2|D|vJ ), and
the computation of minimization is O((K + 1)vJ).
Remark 2: The definitions of |D| and B imply that |D| ≤

B. Hence, the complexity of the optimization dominates that
of the computation of the objective functions. These two
are comparable only for certain specific graphs, in which a
message passing ordering does not introduce new edges in
the triangulation process discussed in Section III-B.
Remark 3: For many networks, B is much smaller than J .

Hence, the complexity of the message passing algorithm is
substantially lower than that of the exhaustive search that does
not exploit the structure of the objective function.
Remark 4: The complexity of the algorithm to solve the

min-max problem is the same as the complexity of the
algorithm that solves the min-sum problem, except that the
counts for addition becomes the counts for comparison.
We further note that the complexity of the algorithm de-

pends on the size of the functions that each message passing
step involves, which depends on the in-phase message passing
ordering. However, finding the best message passing ordering
that achieves the lowest complexity is NP-hard [18]. Several
approaches have been proposed to construct orderings that
perform well in reducing complexity [18]. In particular, it has
been shown in [18, Section 9.4] that for chordal graphs (i.e.,
graphs with every minimal loop having length three), theMax-
Cardinality algorithm can be used to yield the best message
passing ordering, which does not result in new edges during
the process. Here, we provide a decentralized implementation
of the Max-Cardinality algorithm.

A decentralized Max-Cardinality algorithm

• One SU, say SU 1, creates a table by recording its neighbors
and, for each neighbor, records one as the marking value.
Chooses any of its neighbors, and passes the table to this
node.
• Being chosen as the next node, say SU i, creates a deleting
list and adds SU 1 to this list, updates the table by adding its
own neighbors, and records one as marking values for new
nodes and adds one to the marking values for existing nodes.
SU i chooses the node in the table with the largest marking
value as next node.
• If the chosen node is SU i’s neighbor, SU i passes the table
and the deleting list to this node. If the chosen node is not
SU i’s neighbor, SU i passes the table and the deleting list
to its previous node. Continue this process until the chosen
node is found.
• The chosen node does the same step as SU i.
• A node identifies itself as the last node if it has only itself
in the table and all its neighboring nodes in the deleting list.
This node reverses the deleting list and declares the reversed
deleting list as the message passing ordering.
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We also note that the above algorithm is guaranteed to
terminate with all nodes being deleted for connected graphs.

V. COMPUTATION OF BELIEFS

From the message passing algorithm given in Section III-A,
it is clear that the last node (say, SU i) in the in-phase
process computes the overall system performance (optimized
over other SUs’ assignment already) as a function of si, i.e., a
function fi(si), chooses the value of si that minimizes fi(si),
and obtains the optimal overall system performance. The
function fi(si) is usually referred to as the belief (marginal
distribution) in inference problems [18]. In the scenario con-
sidered in this paper, it characterizes the impact of choice
(assignment) of SU i on the overall system performance. In
general, the information of beliefs is important for all SUs
in the system. For instance, given flexibility, some SU may
have a preferred PU to detect, and can choose this PU if
this choice does not dramatically sacrifice the overall system
performance. If more than one SUs wish to deviate from their
optimal choices, a game-theoretic framework can be adapted
to study the interactions between the SUs. In this section, we
study how to efficiently obtain the information of beliefs for
all SUs in the network.
One possible approach is to implement the in-phase process

of the message passing algorithm proposed in Section III-A
for each SU with this SU being the last node. The total
number of messages computed during this process for a tree
graph is the number of SUs multiplied by the number of
edges in the graph. Such an approach is not computationally
efficient, because same messages are computed multiple times
for different SUs. Furthermore, it is not easy to determine
the message passing ordering such that the algorithm ends
at a specific node via a decentralized algorithm. For graphs
that are trees, an efficient belief propagation algorithm [18,
Chapter 10] used for inference problems can be implemented
to collect the exact belief information for each SU. The key
idea is to exploit the fact that the message passed from one
node to another in order to compute the belief for node A
does not change when computing the belief for another node
B as long as the message is passed along the same direction as
the previous one. Therefore, to obtain the belief for all nodes
in the system, messages need to be passed along each edge
only twice (one for each direction). Hence, the total number
of messages computed is only twice of the total number of
edges. Thus, such an algorithm is considerably more efficient
than the approach suggested above.
The above algorithm is exact for tree graphs, but not for

graphs with circles. Since the graph in our problems has
circles in general, a more general clique-tree algorithm [18]
needs to be applied. In the clique-tree algorithm, a clique-
tree is first constructed based on the original graph, and then
messages are passed between cliques. The clique tree satisfies
the following properties: (1) family preserving, i.e., each factor
(PMO,k) must have all argument variables in one of the
cliques; (2) running intersection property, i.e., if a variable
X is in two cliques, it must be in all cliques that connects
these two cliques. In general, clique trees can be constructed
by the elimination algorithm. Details can be found in [18,
Chapter 10]. Fig. 3 depicts a clique tree constructed for the

521 ,, SSS 5431 ,,, SSSS

764 ,, SSS

7543 ,,, SSSS 9875 ,,, SSSS

Fig. 3. A clique tree of the example cognitive network in Fig. 1

example cognitive network in Fig. 1, which satisfies the family
preserving and running intersection properties.
Based on the clique tree constructed, the clique-tree al-

gorithm specifies the messages passed between the cliques
(nodes) in order to compute the beliefs for all cliques and
furthermore for each variable (each SU) in the cliques. In
the following, we describe an implementation of the clique-
tree algorithm to obtain beliefs for the SUs in the cognitive
radio network based on the min-sum objective function. This
algorithm can be modified for the min-max objective function
with “sum” being replaced by “max”.

A clique-tree algorithm to compute beliefs for the min-sum
problem

1. Forming a clique tree using the message passing algorithm
given in Section III-A:

• One SU, say SU 1, forms the first clique C1 that includes
all its neighboring nodes. Claims a set I1 = {k : 1 ∈ Dk},
i.e., the indices of PMO,k with s1 as one of its arguments.
Defines the initial potential function

Ψ1 =
∑
k∈I1

PMO,k.

In the original graph (not the clique tree), connects all
pairs of its neighboring nodes. Eliminates SU 1. SU 1
picks the next node. Informs the next node I1.
• Suppose the first i−1 steps eliminate nodes 1, . . . , i−1.
• Suppose SU i−1 picks SU i. SU i forms a clique Ci in
clique tree that includes all its neighboring nodes in the
original graph. Claims a set Ii = {k /∈ ∪i−1

a=1Ia : i ∈ Dk}.
Defines

Ψi =
∑
k∈Ii

PMO,k.

In the original graph, connects all pairs of its neighboring
nodes. Eliminates SU i. SU i picks the next node. Informs
the next node ∪i

a=1Ia.
• Repeat the above step until the last node is reached.

2. Asynchronous clique tree algorithm
• Initiate the algorithm at any clique, then each clique
transmits a message to its neighbor after it has received
messages from all other neighbors.
• The message δi→j from the clique Ci to Cj is given by

δi→j = min
xCi−Ci∩Cj

⎡
⎣Ψi +

∑
j′ �=j:j′∈Ni

δj′→i

⎤
⎦

where Ni includes the indices of the neighboring cliques
of Ci.

3. Computation of beliefs
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• At each node, say SU i, its belief function is computed
by

fi(si) = min
xCi−{i}

⎡
⎣Ψi +

∑
j′∈Ni

δj′→i

⎤
⎦

Remark 5: Once an SU makes its choice based on its belief
fi(si), this node takes the clique to which it belongs as the
root and passes out its choice to the leaves so that all nodes
can figure out their assignments of PUs in order to minimize
the objective function given the root node has taken the current
choice.
We note that part 1 of the above algorithm is a distributed

implementation of the clique tree construction algorithm. In
our implementation, the message passing algorithm involved
and the information transmitted do not depend on the global
system information. We also note that such an implementation
constructs only a specific type of trees, which is the line graph.
In general, with centralized information, the trees constructed
may have multiple branches, Fig. 3 being one example.

VI. NUMERICAL RESULTS

In this section, we implement algorithms proposed in this
paper for some example cognitive radio networks and illustrate
our results with numerical simulations.
The first scenario we consider is shown in Fig. 4 (a).

Two PUs (PUs 1 and 2) are located 1950 meters away from
each other, each with detection radius 1000 meters. Hence,
the two PUs’ detection ranges overlap with each other. We
also assume that there are 9 SUs uniformly distributed in
this overlapping area. SU 10, however, is located only in the
detection range of PU 1. The channel model parameters are
chosen as η1 = η2 = 1150 meters and b = 3. The probability
of interference is required to be less than γ = 0.0005. From
Fig. 4 (b), it is clear that as the distance of SU 10 to PU 1
decreases (i.e., as SU 10 moves toward PU 1), the number
of SUs assigned to PU 2 increases. This is because SU
10 monitors PU 1 better as it moves closer to PU 1, and
hence more SUs switch to detect PU 2 to minimize the total
probability of the missed opportunity. Fig. 4 (c) plots how
the total and individual probabilities of missed opportunities
change with the location of SU 10. As SU 10 moves closer to
PU 1, the probability of missed opportunity for PU 1 decreases
in general. It can be also seen that a jump occurs whenever
an SU switches to detect PU 2, which causes the probability
of missed opportunity for PU 1 to increase. The probability
of missed opportunity for PU 2 decreases as SU 10 moves
toward PU 1, and a decreasing jump occurs whenever an
SU switches to detect PU 2. The total probability of missed
opportunity decreases as SU 10 moves toward PU 1, because
SU 10 serves PU 1 better and hence helps improve the overall
system performance.
For scenario 1 also shown in Fig. 5 (a), we further consider

the min-max problem. In Fig. 5 (b), it can be seen that as
the distance of SU 10 to PU 1 decreases (i.e., if we view
the plot from the right to the left), a larger number of SUs
switch to serve PU 2 similar to how they behave for the min-
sum problem. However, each SU switches at a larger distance

PU 1 PU 29 SUsSU 10

(a): Network configuration
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Fig. 4. Scenario 1 with two PUs and ten SUs for the min-sum problem

(the dash line) for the min-max problem than that (the solid
line) for the min-sum problem. This is to prevent the gap
between PMO,1 and PMO,2 (as shown in Fig. 5 (c)) from
further increasing. This demonstrates that the solution to the
min-max problem tends to balance PMO,1 and PMO,2 for the
two PUs.

Scenario 2 we consider is a lattice network with a number
of square cells (see Fig. 6 (a) and Fig. 7 (a)). There is one PU
located at the center of each square cell with the side-length
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Fig. 5. Scenario 1 with two PUs and ten SUs for the min-max problem

being 1200 meters. Each PU has a detection radius of 1000
meters. The SUs are randomly located around the vertices of
the cells. Hence, all SUs located around the vertices of a cell
are in the detection range of the PU in this cell. The channel
model parameters are chosen to be ηk = 1200 meters for all
k and b = 3. The probability of interference is required to be
less than γ = 0.0005. For the lattice network, we consider the
min-sum problem. Fig. 6 (a) shows a lattice network with four
cells and four PUs in the center of the cells. Fig. 6 (b) plots the
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(b): Comparison of sum PMO for three SU assignments

Fig. 6. Scenario 2 with four PUs

sum of probabilities of missed opportunity for three different
SU assignment schemes, namely, 1) the optimal assignment
obtained using the message passing algorithm developed in
this paper, 2) the closest selection scheme in which each
SU chooses the closest PU to detect, and 3) the random
selection scheme in which each SU randomly chooses one PU
to detect. It is clear from the figure that the optimal assignment
scheme has a much smaller sum of probabilities of missed
opportunity than that of the other two assignment schemes,
and hence exploits the spectrum considerably more efficiently.
It can also been seen that the sum of the probabilities of
the other two assignment schemes are close to each other,
with the closest selection scheme having a slightly better
performance. The advantage of the optimal assignment scheme
is also demonstrated in Fig. 7 (b) for the network with nine
cells (shown in Fig. 7 (a)). From this figure, we can also see
that the advantage of the closest selection scheme over the
random selection scheme appears more clearly as the network
size becomes larger.

For lattice networks, we also compare the program running
time of the message passing algorithm with that of the
exhaustive search. For the lattice network with 9 PUs and
16 SUs, the message passing algorithm takes 0.2496s, which
is ten times faster than the exhaustive approach that takes
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Fig. 7. Scenario 2 with nine PUs

3.1356s. Our simulation also demonstrates that the advantage
of the message passing algorithm is more significant as the
network size becomes large.

VII. CONCLUSIONS

We have formulated and studied a network management
problem, i.e., the assignment of SUs to PUs for collaborative
detection that results in the best exploitation of available
spectrum in cognitive radio networks. We have proposed a
distributed message passing algorithm to derive the optimal
configuration of SUs by exploiting the connection between
the problem under study and the inference problem studied via
probabilistic graphical models. We have shown that the com-
plexity of the algorithm is significantly smaller than that of the
exhaustive search approach. We have also applied the clique-
tree algorithm to efficiently compute the beliefs (impacts of
each SU’s choice of PU on the overall system performance)
for all SUs. Our simulation results have demonstrated the
substantial gains obtained by optimizing over the assignments
of SUs for cognitive radio networks.
We note that many other important issues can be addressed

by applying the algorithms proposed in this paper. For ex-
ample, the mobility of SUs may be incorporated. The case
when multiple PUs simultaneously use the same frequency

band by applying schemes such as CDMA or FDMA is also
interesting. In this case, the solutions to the detection problem
and the user assignment problem may depend on the specific
schemes that the PUs are using.
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