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Abstract—This paper studies the frequency/time selective
K -user Gaussian interference channel with secrecy constraints.
Two distinct models, namely the interference channel with con-
fidential messages and the interference channel with an external
eavesdropper, are analyzed. The Kkey difference between the
two models is the lack of channel state information (CSI) of
the external eavesdropper. Using interference alignment along
with secrecy precoding, it is shown that each user can achieve
non-zero secure degrees of freedom (DoF) for both cases. More
precisely, the proposed coding scheme achieves ;};’_é secure DoF
with probability one per user in the confidential messages model.
For the external eavesdropper scenario, on the other hand, it is
shown that each user can achieve 572 secure DoF in the ergodic
setting. Remarkably, these results establish the positive impact of
interference on the secrecy capacity region of wireless networks.

Index Terms—Information theoretic security, interference align-
ment, interference channel, secure degrees of freedom.

1. INTRODUCTION

HE wiretap channel was introduced by Wyner [1], in
T which the eavesdropper is assumed to have access to a
degraded version of the intended receiver’s signal. This pio-
neering work was later generalized to cover the non-degraded
scenario [2] and the Gaussian channel [3]. However, these
results show that the secrecy capacity saturates in the high
signal-to-noise ratio (SNR) regime, implying a vanishing value
for the secure degrees of freedom.
Recently, there has been a growing interest in the analysis
and design of secure wireless communication networks based
on information-theoretic principles. For example, the secrecy
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capacity of relay networks was studied in [4], [5], while the fun-
damental limits of the wiretap channel with feedback were an-
alyzed in [6]. The multiple access and broadcast channels with
secrecy constraints were investigated in [7]-[9], the role of mul-
tiple antennas in enhancing the secrecy capacity was established
in [10], [11], and the positive impact of fading on secrecy ca-
pacity was revealed in [12], [13].

In this paper, the frequency/time selective K -user Gaussian
interference channel with secrecy constraints is considered.
Without the secrecy constraints, it has been recently shown
that 1/2 degrees of freedom (DoF) per orthogonal dimension is
achievable for each source-destination pair in this network [14].
The achievability of this result was based on the interference
alignment technique [14], [15], by which the interfering signals
are aligned to occupy a subspace orthogonal to the one spanned
by the intended signal at each receiver. However, the impact
of secrecy constraints on the degrees of freedom in this model
has not been fully characterized. In fact, to the best of our
knowledge, the only relevant prior works are the study of the
two-user discrete memoryless interference channel with confi-
dential messages [16]-[18] and the interference channel with
an external eavesdropper [19], [20]. The frequency-selective
interference channel adopted in this paper is fundamentally
different from these memoryless models.

We consider two distinct network models, namely: 1) the in-
terference channel with confidential messages; and 2) the inter-
ference channel with an external eavesdropper, each having K
source-destination pairs. In the first scenario, one needs to en-
sure the confidentiality of each message from all non-intended
receivers in the network. Since all users are assumed to be-
long to the same network, one can assume the availability of
channel state information (CSI) while designing the secrecy
coding scheme. (Note also that each receiver has the incentive
to report its true CSI to the transmitters, as each receiver needs
to decode its own message. If a receiver does not report its CSI
faithfully, its rate will be reduced due to the interference. The
analysis of such misbehaving users is out of the scope of this
paper.) To secure such a network, we employ an interference
alignment scheme along with secrecy precoding at each trans-
mitter. Intuitively, the interference alignment scheme has two
effects on each receiver ¢: 1) it aligns the signals from trans-
mitters k£ # ¢ to a low-dimensional subspace; and 2) it assigns
the signal from transmitter ¢ to the orthogonal subspace. Hence,
while the signal from its own transmitter is received cleanly, the
signals from other transmitters are superimposed on each other.
Our secrecy precoding scheme takes advantage of this phenom-
enon to ensure that the resulting multiple access channel from
K — 1 interfering users does not reveal any useful information
about each nonintended message. For K = 3 users, we show
thatn = % secure degrees of freedom per orthogonal dimension
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Fig. 1. K -user interference channel with confidential messages.

are achievable for each user using this scheme. We then gener-
alize our results to the K-user Gaussian interference channel
and show that each user can achieve n = 537 secure degrees
of freedom, for any K > 3. In the second scenario, we study
the external eavesdropper model where the fundamental chal-
lenge is the lack of eavesdropper CSI at the transmitters. Despite
this fact, it is shown that n = % secure degrees of freedom
per user are achievable in the ergodic setting. This result pro-
vides further evidence of the diminishing gain resulting from
knowing the instantaneous CSI of the eavesdropper a priori. In-
terestingly, by comparing our results with those obtained for the
point-to-point case [12], [13], one can see the positive impact of
interference on the secrecy capacity region of the wireless net-
work. The underlying idea is that the coordination between sev-
eral source-destination pairs makes it possible to hide the secret
messages in the background interference.

The remainder of this paper is organized as follows. In
Section II, the system model and notation are introduced.
Section III is devoted to the interference channel with confi-
dential messages. The analysis for the external eavesdropper
scenario is detailed in Section IV. Finally, we offer some
concluding remarks in Section V. The lemmas are relegated to
the Appendix to enhance the flow of the paper.

II. SYSTEM MODEL

In this paper, we use the following notation. Matrices are rep-
resented by bold-faced uppercase letters (X) and vectors are
denoted as bold-faced uppercase letters with bars or tildes (for
example, X and X). We define K £ {1,..., K}; and denote
Xs 2 {Xp|keStandWs 2 {Wy, |k € S}forS C K. K—i
denotes the set K after removing the element 7. A zero-mean
circularly symmetric complex Gaussian random variable with
variance o2 is denoted by CN(0, 0?). A realization of a random
variable W is denoted by a corresponding lower case letter w.

We focus on the following K-user system models in this

paper.

A. Confidential Messages Scenario

The confidential messages scenario is illustrated in Fig. 1
by a frequency-selective wireless network comprising F' fre-
quency bands and K transmitter-receiver pairs, where the 2th
receiver output at time ¢ € {1,...,n} and frequency slot f €
{1,..., F} is given by

K
Yi(f,t) =D han(NXk(fit) + Zi(f,1)- ()
k=1

Y, W
Decoder 1
" Asa
VSCK-1
- L]
L)
] [ ]
Yy R
Decoder K
— Asx

VSCK-K

Here, Xy (f,t) is the transmitted symbol of user k£ and
Zi(f,t) ~ CN(0,1) is the additive white Gaussian noise at
receiver ¢ in frequency band f at time ¢. We assume that the
channel coefficients are independently and randomly generated
according to a continuous distribution and are fixed during the
communication period. (Note that the continuous distribution
assumption on the channel coefficients guarantees the existence
of the interference alignment matrix [14].) We assume that the
channel coefficients are known at every node in the network.

Using the extended channel notation in [14], the ith received
vector during time slot ¢ can be written as

K
Yi(t) = > HiXi(t) + Zi(t). ©)
k=1

Here, H;;, is the F' x F' diagonal matrix of channel co-
efficients from transmitter k to receiver, whereas Y;(t) =
[}Q(l_,t),...,K(F,t)]T, Xi(t) = [Xe(1,t),..., Xp(F, )T,
and Z;(t) = [Z;(1,1), ..., Z;(F,t)]* are F x 1 column vectors.
We assume that each source k € K has a message W}, which
must be secured from the remaining K — 1 receivers (our
definition of security will be given shortly). We assume that
transmitters have the same average long-term power constraint.
Therefore, our (n, F, My, ..., My) secret codebook has the
following components:
1) The secret message set Wy, = {1,..., M }.
2) Encoding functions fy(-) which map the secret mes-
sages to the transmitted symbols, i.e., fr : wip —

each codeword is designed according to the transmitter’s
average long-term power constraint p, i.e.,

F n
LYY IR <o

f=1t=1

3) Decoding functions ¢(-) at receivers &k € K which
map the received symbols to estimates of the messages:
(z)k(Yk) = Wk, where Yk = {Yk(l), e ,Yk(n)}

The reliability of the transmission of user k is measured by

the probability of error

1

Ps,k:

Pr{¢r(Yy) # wg | (wi,...,wk) is sent}
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Fig. 2. K -user interference channel with an external eavesdropper.

whereas the secrecy level is measured by the normalized equiv-
ocation defined as follows [1], [3]: For receiver ¢, the equivoca-
tion for each subset of messages Ws, S C K — 4, is

2 HWs|Yi)

A .
ST H(Ws)

(3)
Note that this is a multiuser extension of the equivocation con-
sidered in [1] and [3].

We say that the rate-equivocation tuple (Ri,...,Rg,d)
is achievable for the Gaussian interference channel with con-
fidential messages, if, for any given ¢ > 0, there exists an
(n,F, My, ..., M) secret codebook satisfying

1

— log, My, = Ry,

nF 082 Mk k
maX{Pe,l, PN 7PE,K} S €,

and

Vk e K,

As;i>d—e¢, VieK, VSCK—i.

Note that, with this formulation, a symmetric security guar-
antee is satisfied for the network users. We also say that 7 is
an achievable symmetric degrees of freedom if the rate-equivo-
cation tuple (Ry = R, ..., Rx = R,d = 1) is achievable and

’

n = lim .
p—oo log(p)

B. External Eavesdropper Scenario

The external eavesdropper scenario assumes the existence
of an external eavesdropper who observes the signals of the
K sources (see Fig. 2). We consider an ergodic setting where
the channel gains are fixed during a block of 7; symbol times
and then randomly change to another value for the next block.
Hence, transmission time of n time slots is divided into B fading
blocks with n = n;B. We use the extended channel notation,
and denote the received signals at receiver 7 € {1,..., K, e}
during the fading block b and the time instant j as

K
Yi(j+ (b= 1m) => Hx(h)Xe(j + (b— D)
k=1
+Zi(j+ (b -1n1) @

where b € {1,...,B} and j € {1,...,n1}. Here, H; 1 (b)
is the F' x F' diagonal matrix of channel coefficients between
transmitter k£ and receiver ¢ during fading block b, and X (5 +

(b — 1)ny) is the transmitted vector of user k at the jth symbol
of the bth fading block. We further define H £ {H, ;(b) :
i,k € K,be{l,...,B}}and H, 2 {H, (b)) : k € K,b €
{1,...,B}}. We assume that H is known at all the nodes in
the network, whereas H, is known only at the eavesdropper,
i.e., only knowledge of the statistics of the eavesdropper CSI
is available to the network users. The channel coefficients are
ii.d. samples of a zero-mean unit variance complex Gaussian
distribution.

The codebooks are designed such that their components
remain as before with the exception that each transmitter must
now secure its own message from the external eavesdropper
only. Accordingly, we modify the secrecy requirement by
considering the normalized equivocation seen by the eaves-
dropper. We denote the observation at the eavesdropper as
Y. = {Y.(1),...,Y.(n)}, in which Y,(¢) is defined sim-
ilarly as Y;(t) for t = 1,...,n. Therefore, the normalized

equivocation for a subset of messages S C K is given by
A H(WS | Ye? H7 Hﬂ)

Bs H(Ws)

(&)

We say that the rate-equivocation tuple (Ry,..., Rk, d) is
achievable for the Gaussian interference channel with an ex-
ternal eavesdropper, if, for any given ¢ > 0, there exists an

(n, F, My, ..., Mk) secret codebook such that

1
— 10g2 My =Ry, VkeK,
nF

max{P.1,...,P.x} <e

and

Ag>d—e¢, VSCK.

It then follows that the symmetric degrees of freedom with
perfect secrecy is defined along the same lines as for the con-
fidential messages scenario presented in the beginning of this
section.

III. K -USER GAUSSIAN INTERFERENCE CHANNEL WITH
CONFIDENTIAL MESSAGES

To illustrate the main idea, we start with the intuitive argu-
ment for the three-user Gaussian interference channel. Here, the
signalling scheme will be designed for an odd-valued number of
frequency slots represented by F' = 2m + 1 for some m € N.
(This is the (2 + 1) symbol extension of the three-user channel
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considered in [14].) The transmitted signals are constructed in
the form X, (£) = VX (t), where X, (#) represents the vector
of my, streams transmitted from user k (see Fig. 3), and the ma-
trices V. represent the interference alignment precoding as de-
scribed in [14]. According to the interference alignment prin-
ciple [14], the beamforming matrices V, are constructed to sat-
isfy the following two properties:
1) The nonintended signals seen by each receiver are aligned
within some low-dimensional subspace. More precisely,
the column space of the matrices Hi,kvk fork e K —1
lie in a subspace of dimension F' — m; at receiver .
2) The intended streams span the orthogonal subspace, i.e.,
the columns of Hiyivi are independent and are orthogonal
to the columns of Hiykvk for each user k € K — 1.

Note that, to achieve these desired properties, each trans-
mitter utilizes the CSI of the users in the network. This way, the
F-dimensional received signal space at each receiver is used to
create m; interference-free dimensions, spanned by the desired
streams. Now, let us consider Receiver 1 as the eavesdropper for
the messages of User 2 and User 3. This particular eavesdropper
now sees m streams of User 2, X2(t), and m streams of User
3, 5(3 (t), mixed together in a multiple access channel, in which
the receiver has only m dimensions. This key observation al-
lows for the secrecy precoding X(t) and X3(t) to completely
secure m /2 streams in each transmitted vector. It is easy to see
that a similar argument follows for securing each vector against
a second potential eavesdropper. In the limit of a large values
of F' = 2m + 1, the m /2 secure streams results in 1/4 secure
DoF. This intuitive discussion is formalized for the general case
of a K -user Gaussian interference channel as follows.

Theorem 1: For the K-user Gaussian interference channel
with confidential messages, n = ;;{_22 secure degrees of
freedom per frequency-time slot per user are almost surely

achievable.

Proof: We will show that almost all codebooks in an appro-
priately constructed ensemble satisfy the achievability condi-
tions for symmetric secure DoF of n = ;};7_22 with a probability
that approaches 1 for all channel coefficients, as 1, m, p — oco.

For a given m € N, the number of streams at users are set as
my = (m+ D)™ and my = m™ forall k # 1, where M =
(K —1)(K —2) — 1. Here, the total number of frequency slots
is given by F' = (m 4+ 1)™ + m™ . We now generate, for each

F x
user k, 2""* (F7 (R+ED) codewords of length nmy, each with

entries that are independent and identically distributed (i.i.d.)
according to CN(0, £—=). We choose ¢y, to satisfy the power
'tT(VAVI{{)

F

constraint for each user: ¢, = . These codewords are
then randomly partitioned into M, = 277+ message bins,
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each consisting of M¢ = 2"FRi codewords. Hence, an entry
of the kth user codebook will be represented by Xk(wk, wy)
where the bin index wy, € W; is the secret message and the
index wi € {1,...,M}} is the randomization message. It is
easy to see that the secure transmission rate per orthogonal time
and frequency slot is equal to Ry.

To send a message wy, the kth transmitter inspects bin wy, €
W, and randomly selects a codeword from this bin according
to uniform distribution. The codeword index within the bin is
denoted by wj. It thus obtains X, (wk, wy) of length nmy,. We
further partition the elements of this vector as X, (wy, wi) =
[Xk(1),...,Xx(n)], where each element is an my, x 1 vector.
Then, for each symbol time ¢ € {1,...,n}, each transmitter
performs the mapping from the streams X, (t) to channel inputs
X, (t) by X, (t) = VX (t), where the precoding matrices V
are constructed according to the interference alignment scheme
[14].

We choose the secrecy and randomization rates as follows:

1 L
R = 7 min{I(X;;Y,)}
1 . _
T K-DF max{/(Xyx-i;Y:)}, and
1 1 -~
a? = = i —I(X 'Y7‘ Xi— —3 .
Ei Fielc%lgnlC—i{|8| (X Vi Xx-s )} ©

Note that, we omit conditioning on the channel coefficients, as
they are fixed and known at each user, in the above mutual in-
formation expressions.

The above rates are inside the decodability region for each
user, i.e., Ry + Ry < %I(Xk; Y), for all k& € K, implying
that each user can reliably decode its own streams as n —
oo. This argument is similar to that used to prove the stan-
dard channel coding theorem, see, e.g., [21, Theorem 8.7.1].
Hence, using the union bound argument, we can show that for a
given e there exists a value ng(€) such that, for any n > ng(e),
max{P. 1,...,P. ik} < eholds for almost all codebooks in the
ensemble. Our second step is to show that As ; can be made ar-
bitrarily close to 1 for any : € K and S C K — ¢ for almost all
codebooks in the ensemble. Towards this end, it is sufficient to
focus on the equivocation at an arbitrary receiver ¢ € K. Fur-
thermore, it is sufficient to establish perfect secrecy for the full
message set, i.e., the set of all nonintended messages at receiver
1 denoted by Wi._;, as Lemma 4, given in the Appendix, shows
that perfect secrecy of the full message set implies secrecy for
all subsets. Denoting the observation of the eavesdropper as Y,
we write

H(Wk—-i|Y;)
= HWk_;,Y;) — H(Y))
=H (Wi—i, WE_,, Y;)
— H (Wi_; |Wi—i, Y;) — H(Y;)
=H(Wi_i) + H (WE_; | Wr—;)
+H (Y |Wic_i, WE_)
- H (WiE_; |Wi—i, i) — H(Y;)
=HWi_i)+H(Wg_;) =T (Wi, Wi_i5 X))
— H(WE_; |Wi_i, Y)) (7
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where the last equality follows from the fact that H(W¢_, |
Wi_;) = H(WgE_,) as the randomization (i.e., codeword) in-
dices are independent of the message (i.e., bin) indices. We now
bound each term of (7). First, we have

Xi—i(n); Y;)
®)

1 (W}Cfi; Wléfz’ Yz) S I(X}C,Z(l)7 ceey

due to the Markov chain relationship

,X;c_,;(n)} — Y1
©)

Wi Wi} = (K1), ..

Due to the fact that

I(Xg—i(1),..., Xx—i(n);Y;) < max I(Xg—i;Y;)
p(Xk—i)
we obtain
I (Wi—i, We_i3Y3) <n max I(Xx—i;Y).  (10)
p(Xx—4)
Second, we have
H(We ) =log [ [[Mi ) =nF Y Ri. (D

ki kEK—i

To upper bound the last term, we use the following argument.
Assume that wy_; € Wyc_; is transmitted. Given these bin in-
dices, the remaining randomness in W _, at the eavesdropper
can be resolved for almost all codebooks as the above choice
of Ry satisfies the multiple access channel achievability con-
ditions 3, .5 B < L1(Xs; Y | Xgos—i), VS C K —
[21, Ch. 14]. This argument follows due to the binning code-
book construction, see, e.g., [1]. Then, by Fano’s inequality,
we have H(Wé—z | WIC—i = w;c_i,Yi) S né(n,w;c_i),
where 6(n, wx_;) — 0 as n — oo. Then, by defining §(n) =

max  6(n,wi—;), we have
wr —i €WK _i

H (Wi_; | Wi-i,Y:)
= Z H(WE_i | Wi—i = we—i, Y3)
wic—i €Wk i

X p(WICfi = w}sz'> < TL(S(?’L) (12)

where §(n) — 0asn — oo. By substituting (10), (11), and (12)
in (7) and dividing both sides by H(Wj_;), we obtain

Ag-ii > 146 (13)
where & is given by
8(n)+ max I(Xx—;Y:)—F > Rf
5o P(Xic—i) keK—i
FY R ’
keK —i
§(n)+ max I(Xx_i;Y;) -«

_ p(Xic—i) (14)

B
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where

a=(K—-1) min
ieK,5CK—i

{|;| (XSaY |XK S— )}
and
f= (K - 1min{/(Xy;Yy)} — max{l(Xje—i; Yi)}.

Note that, we have used the rate assignment given by (6) and
the fact that H(Wi_;) = nF ), cx-_; R to obtain the above
expression.

We already observed as n — oo that §(n) — 0 for almost all
codebooks in the ensemble. The orthogonality of the intended
message and interference at each respective receiver along with
the full rank property of the gain matrices (see Lemma 5) im-
plies the following:

max I(Xyx_;;Y;)

lim 2Xx=9) — F—m;, Yiek, (15)
p—oo log(p)
and :
I1(X YL X —S—i
fim s YilXhosm) _ (16)

p—00

log(p)

where, depending on the interfering signal dimension of re-
ceiveri, 7 = mM orr = (m + 1)

i X Y5) _ m;, ¥ieK, (17)
p—oo  log(p)
and }
I(Xg—i; Y; )
L:F—mi, Vi € K. (18)
p—oo  log(p)

Using the observations (15), (16), (17), and (18) in (14) we
see that

19)

for almost all codebooks in the ensemble. Hence, for any given
€ > 0, we can make Ax_; ; > 1 — ¢ in the limit of large n, m,

and p. Finally, due to (6), (17) and (18), we obtain

n= lim lim
m—00 p— 00 log p)

o

(K — 1ym™ — (m
mese (K = D)(m + (m
K -2

TOK —2 (20)

= lim

which proves our result. [ |

IV. K-USER GAUSSIAN INTERFERENCE CHANNEL WITH AN
EXTERNAL EAVESDROPPER

First, we note that, our previous results extend naturally when
the eavesdropper CSl is available a priori at the different trans-
mitters and receivers. Intuitively, one can imagine the existence
of a virtual transmitter associated with the external eavesdropper
transforming our K -user network into a (K + 1)-user network.
This way, one can achieve a secure DoF of n = % =
K L per frequency-time slot for each user using the scheme
presented in the previous section. For example, for a two-user
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network with an external eavesdropper, it is possible to achieve

% secure DoFs if the eavesdropper CSI is available at the trans-

mitters. More formally, we have the following result.

Corollary 2: For the K -user Gaussian interference channel
with an external eavesdropper, = % secure degrees of
freedom per frequency-time slot per user are almost surely
achievable when the eavesdropper CSI is available.

More interestingly, it is still possible to achieve positive se-
cure DoF per user in the absence of the eavesdropper CSI by
exploiting the ergodicity of the channel. In the ergodic model,
the channel gains are assumed to be fixed during a block of n;
symbols and then randomly change to another value in the next
block for a total of B blocks, where n; — oo and B — oc.

Again, for illustration purposes, we consider the situation in
which K = 3. Here, the users of the network have 321’} total
DoF while the multiple access channel seen by the eavesdropper
can have only one DoF from its observations. Hence, via an
appropriate choice of secrecy codebooks, the ZnTT additional
DoF can be evenly distributed among the network users on the
average, allowing for a % secure DoF per user without any re-
quirement on the eavesdropper CSI. In the general case, we have
the following result.

Theorem 3: For the K-user Gaussian interference channel
with an external eavesdropper, 11 = % — % secure degrees of
freedom per frequency-time slot per user are achievable in the
ergodic setting in the absence of the eavesdropper CSI.

Proof: Let F = (m + 1) + m™ for some m € N and
M = (K —-1)(K —2) —1. Weset m; = (m + 1)™ and
my = mM for k # 1. We generate all the permutations of
length K and denote this set by IT, where |IT| = K'!. Then, for
each fading block b € {1,..., B}, we randomly pick, according
to uniform distribution, a permutation 7, from II. In order to
ensure statistical symmetry, the interference alignment matrices
in each fading block will be obtained according to a different
user ordering induced by m;,. More specifically, let k(b) = (k)

and HEE’Z) Kb) = H; ;.(b). Using the newly ordered channel

matrices Hi(b% k(b the interference alignment matrix for user
k(b), i.e., Vi(s), is generated.

For each secrecy codebook in the ensemble, we generate
27 F(Ri+RY) sequences of length ny 3y, 1y each with en-
tries are chosen i.i.d. ~ CA/(0, £=<) for some € > 0 and a value
of c that satisfies the long term average power constraint. The
existence of € and c¢ follows from the argument of Theorem 1.
We independently assign each codeword to one of M, = 2"F Fx
bins, each having M = 2"FRi codewords. For a given wy,
transmitter & chooses the codeword X, (wg, w}) in the bin wy,
where the randomization index wj is chosen independently
according to the uniform distribution. This codeword is then
divided into B blocks, each with a length of n1my, ;) symbols.
Each block is then arranged in the following mypy X n1
matrix [X;(1 4 (b — D)ny), ..., Xg(n1 + (b — 1)ny)], where
Xk(j + (b —1)n1) is an myp) X 1 vectorand 1 < j < ny. At
time slot t = j + (b — 1)nq, the kth transmitter maps Xy, (t) to
X(t) using Xy (t) = Vk(b)f(k(t). Note that, the expectations
in the sequel will be taken with respect to the two distributions:
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a) the random distribution of the channel matrices, and b) the
uniform distribution for the underlying permutation operators
that are used in different fading blocks. This allows us to
average out the fluctuations of the eavesdropper CSIL.

Our first key observation is that the equivalent channel ma-
trices H; j,(b) V() connecting X (¢) and Y;(t) are identically
distributed for all ¢,k € K and b € {1,..., B}. This property
will allow us to drop the subscript i and write E[I(X;;Y; |
H)|] = E[I(X;Y | H)], forall i € K. To satisfy the achiev-
ability conditions and the secrecy requirements of the network,
we choose Ry and Ry as follows:

1

R = ——
T KF

<K[E[I(5(;Y | H)|
— max E[I(Xx; Y. | H7He)]> , 21

p(Xx)
and

1 ~ _

R = —E[I(Xx;Y. | H H,
b= ElI(X Y. | HH)]

where the maximization in the first equation is among all pos-
sible input distributions. With this choice of rates, we have the
following:

1 ~
R+ Rj = ZE[I(X;Y | H)

1 L
- E[[(Xc: Y. |H, H,
KF [[(Xx:; Y. |H,H,)

1 ~ _
+ ﬁE[I(XICaYe | H,HE)]
< FEU(XY | H)

where the inequality is due to the maximization among all
possible input distributions in the second term of the equation.
Hence, we have Ry, + Rf < LE[I(X;Y |H)], from which we
conclude that each user in the interference network can decode
its own secrecy and randomization indices as n; — oo and
as B — oo using almost all codebooks in the ensemble. This
argument is the fading version of the channel coding theorem.
The next step is to study the equivocation at the eavesdropper,
ie.,

1
—H(Wx | Y.,H,H,)
n

1

= _(H(WK7Y67 H7 He) - H(YevHvHe))
n

1
—(H (W, W, Y., H H,)
n

- H(WI% | WK7Y67H7HB) - H(Y67H7He))
1
= (H(Wk) + H (Wi | W)
+ H(Y.,H H, | Wi, Wg)
- H(WIJC: | WK7Y€7H7H8) - H(Y57H7He))
1
= E (H(WK) +H (Wlé) - I(WK7WI€;Y87H7H6)
- H(Wg| Wk, Y.,H H,)) (22)
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where the last equality follows from the fact that H(W¢ |
Wi) = H(WZ) as the codeword indices are independent of
the bin indices. Here

K K
H(WE) = log <H M,f) => nFRj
k=1 k=1

= nE[I(Xx; Y. | H,H.)| (23)
and
gE;%IUWk7W%{Y&ILIL)
< lim %I(X;C(l),...,X,C(n);Ye,H,HE)
- nan;O% (PR (). K (n) HHL)
HI(Xic (1), Xic(n); Y. | HHL))
=t I(Xe(D), . Kc(n): Yo | HHL)
= [E[I(X,C;Ye | H,H.,)], (24)

where the first inequality is due to the Markov chain relationship

{Wie, Wt = {Xk(1), ..., Xx(n)} = {Ye, H H. }
and the last one is due to ergodicity. For the last term of (22), we
observe that, once the bin indices are given, the channel seen by
the eavesdropper reduces to a multiple access fading channel for
the randomization messages due to the binning code construc-
tion. For this fading MAC, each user is able to set its random-
ization message rate as a fraction, %, of the total DoF seen by
the eavesdropper as chosen in (21), and assure the decodability
of the randomization messages at the eavesdropper given the
secrecy message indices. (The technical details are reported in
Lemma 6, Lemma 7, and Lemma 8 in the Appendix.) Due to
this fact, by Fano’s inequality, we have

HWg | Wk, Y., H H,)

=0
nlB

lim
ny,B—oo

for almost all codebooks in the ensemble. Therefore, by dividing
both sides of (22) by 1 H(W(), we can ensure

A = H(WK |Ye7H7He)
o H(Wy)

>1—¢ 25)

for any ¢ > 0 as n1, B — oo, which is sufficient for our pur-
poses (please refer to Lemma 4 in the Appendix). Finally, from
(21), we have

E[[(X;Y |H)] 1o K-l
log(p) _<K TR 2)’

lim

p—00

and hence
Ry, 1 1 K-1
Ilm ——=— | K| = _— - F
o250 log(p) KF( (K”” K "”) )

(K- 2)mM
= —%F (26)
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implying that n) = mTM — % DoF is achievable for each user

for any m. Consequently, we conclude thatlim,, oo = 3 —
symmetric DoF is achievable with perfect secrecy in the ergodic

setting. [ ]

It is important to observe that the achievability of a posi-
tive DoF for the no eavesdropper CSI scenario hinges largely
on the ergodicity assumption, whereas our results hold almost
surely for all channel realizations when the eavesdropper CSI
is assumed to be available. This is the price entailed by the
lack of eavesdropper CSI. Finally, the positive impact of in-
terference on the secrecy capacity region is best illustrated by
comparing our results to the point-to-point scenario. In [13], a
point-to-point channel with an external eavesdropper was shown
to have zero DoF. On the other hand, our results show that as
more source-destination pairs are added to the network, each
pair is able to achieve nonzero DoF for K > 2. This seemingly
surprising result is due to the interference alignment technique
which not only allows for a clean separation between the in-
tended message and interference at each receiver, but also packs
the interfering signals into a low dimensionality subspace, and
hence, impairs the ability of each eavesdropper to distinguish
any of the secure messages efficiently.

V. CONCLUSION

In this paper, we have considered the K -user Gaussian inter-
ference channel with secrecy constraints. Two scenarios have
been analyzed, namely the confidential messages scenario and
the case in which an external eavesdropper, with unknown CSI,
is present in the network. By using an interference alignment
scheme along with secrecy precoding at each transmitter, we
have shown that each user in the network can achieve a nonzero
secure degrees of freedom. The most interesting aspect of our
results is, perhaps, the discovery of the role of interference in
increasing the secrecy capacity of multiuser wireless networks.

APPENDIX

This Appendix contains the lemmas used in the sequel.

Lemma 4: Consider receiver ¢ € K. For a given € > 0 and
d € [0,1], 3e*(i,€,d) > O such that, if Ax_; ; > 1 —€*(i,¢,d)
then As; > d—¢, VS C K —4.

Proof: For a given i € K, ¢ > 0, and level of secrecy
) . HOW
d €[0,1],lete*(i,¢e,d) = Sléllgl_i(l +e— d)% LetY;
denote the received observation of the eavesdropper and assume
Ak_;; > 1 —€*(i,€,d). Then, for any S C K — 4, we have
H(W]C,i | Yz) = H(WS | Yz) + H(chfi | W37Yi) and

Wic—i) — € (i, €, d) H(Wi—i)
(Ws) + H(chfi | Ws)

— (14 e—d)HWs), (27)
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where the first inequality follows from the assumption of
Ak—;; > 1 — €*(i,¢,d) and the second inequality follows
from the choice of ¢*(i, ¢, d) above. Continuing from above

Ag, = HWs | Y:)

i=——————>>(d—¢
’ H(WS) — ( )
H(W;C_i | Ws) — H(W]C_q', | Ws,Y,;)
+ >(d—¢) (28
as conditioning does not increase entropy. ]

We remark that a similar observation is used in [7]. The above
proof is more complete than the argument given in [7].

Lemma 5: Due to the interference alignment precoding, the
effective channel gain matrix between transmitter k and the re-
ceiver, i.e., HLkvk, has rank my, with probability one. As the
dimension of Hiykvk is F' x my,, these matrices have full rank
with probability one.

Proof: First, due to the construction given in [14], we have
rank(Hk7ka) = my. Second, we observe that the design of
interference alignment vectors ensures the linear independence
of the columns. (If they had linearly dependent columns, then
H;, « V. would not have my, linearly independent columns, con-
trary to the construction of the interference alignment matrices.)
It follows that rank(Hi,k\_/k) < min{my, F'} = my, fori # k.
We only need to show that the matrix H;, Vi has my, linearly
independent columns. Considering any 7 # k, representing
diagonal elements of H; . as {h; (1), h; 1(2),..., ki x(F)}
and denoting the rows of the interference alignment ma-
rix by vy, ie, Vi = [vI;vl . vET, we have
Ht’kvk = [th(l)vf; hi7k(2)vg; Lo ht’k(F)Vg]T At
this point, as the channel gains are chosen according to a
continuous distribution, it follows that each h;x(f) is non-zero
with probability one for f € {1,2,...,F}. Hence, these
row operations will not change the rank of a matrix, i.e.,

rank(H; »Vi) = rank(Vy) = my. Therefore, the gain
matrices seen by the receivers have full rank with probability
one. |

Lemma 6: For any M, £ C K satisfying M NL =10

IXm; Y. |HH,) < I(Xp; Y. | Xe, HHL).

Proof: We have

I(XM;Ye | HvHs) = H(XM | HvHe)
— H(Xm | Y., H H,)
<HXpy | Xg,HH,)
_H<XM |Y67XL~,H7H8)

=I(Xa;Ye | Xp, HOHL)  (29)

where the inequality is due to the fact that conditioning does
not increase entropy, and the last equality follows by H (X |
X, HH,) = HX, | H H,)as MNL = ) and messages
of the users are independent. [ |
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Lemma 7:
1 ~ _
@E[I(st;Ye | H7He>]
1 - -
< E[E[‘“XS;Ye | XS”7H7H8>]
Proof:

Let S = {s1,...,ss} denote a set of size |S| = S, and
denote 8¢ = {s541,...,8K} of size |[S¢| = K — S. Then, we
have

1 ~ _
|SC||E[I<XS”§Y6 | H7H8>]
1 N _
= o (EU(X.o i Yo [HH)]
+|E[I<XSS+2;Y6 | XSS+17H7H€)] +o
+[E[I<XSK7Y8 | XSS+17' s 7XSK—17H7 He)])
1 - .
< E[[(Xs,;Ye | Xse,H, H,
< (EU(X.;: Y. | X HUHL)]

HE[I(X,,; Yo | Xse HUH) + -
+|E[I(X51;YE | X$‘7H7He)])
1 - -
- — (k6 = $)E[I(Xsy5 Y. | Xse, HHL)))

= % (SElI(Xs,: Yo | Xse, HHL)))

1 .

=3 ([E[I(XSI;YE | X5, H, H,)]
—HE[I(XSz;Ye | X5’7H7H8)] + e
FE[[(X,.; Y. | XSC,H,HR)]>

Xse,H, H,)|

IN
|
—~
m
~
A

=
=
o

|
+|E[I(X52;Y€ | X567X517H7 HB)] +oee

(30)

where we repeatedly use Lemma 6 for inequalities and use
the fact that E[I(X;; Y. | X, H,H.)] = E[I(X;;Y. |
X, H,H,)| for any k # i and for any £ C K — {k,i}. We
note that the last property stated above is due to the symmetry
between network users provided by the random choice of user
ordering at each fading block. |

Lemma 8: Each user can set the randomization rates to be
%th of the total DoF per orthogonal time-frequency slot seen
by the eavesdropper, i.e., with a rate choice of

RE ! E[I(Xx: Y. | H,H,)]

F SRR (31)

each randomization message (codeword index), given the
secrecy message (bin index) of each user, is decodable at the
eavesdropper.
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Proof:
Let S C K. From Lemma 7, we have

1 L
WE[I(XSC;Ye | H,H,)]
1 - -
S EE[I(XS7YE | X.Sv7H7He)].

We continue as shown

1 ~ _
|Sc| IE[I(XSE;YQ | H: He)]
1

< E[E[I(XS;YE | Xs-,H,H,)]
= |S|E[[(Xs; Y. | H,H,)]
< (K - |S)E[[(Xs; Y. | Xs-, H,H,)]

S ~ _
= %E[I(XSC;YS | H,H.,)]
K-S
< -
- K
S ~ _
= |I(—|[E[I(X;<;Ye | H,H,)]
< E[I(X«Ser | X$C7H7Hs)]7

E[[(Xs; Y. | Xs-, H,H,)]

from which we readily conclude that the rate assignment given
by Rf = 2-E[I(Xk; Y. | H,H,)] satisfies

> i -

keS

K
ﬁE[I(XK7Y6 | H/HS)]

1 L=
< FE[I(Xs;Ye | Xs-,H,H,)],VS C K,

and hence randomization messages are decodable at the eaves-
dropper with this rate assignment. ]
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