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Abstract—The problem of sequentially finding an independent
and identically distributed sequence that is drawn from a proba-
bility distribution � by searching over multiple sequences, some
of which are drawn from � and the others of which are drawn
from a different distribution �, is considered. In the problem
considered, the number of sequences with distribution � is as-
sumed to be a random variable whose value is unknown. Within a
Bayesian formulation, a sequential decision rule is derived that op-
timizes a trade-off between the probability of false alarm and the
number of samples needed for the decision. In the case in which
one can observe one sequence at a time, it is shown that the cumu-
lative sum (CUSUM) test, which is well-known to be optimal for a
non-Bayesian statistical change-point detection formulation, is op-
timal for the problem under study. Specifically, the CUSUM test
is run on the first sequence. If a reset event occurs in the CUSUM
test, then the sequence under examination is abandoned and the
rule switches to the next sequence. If the CUSUM test stops, then
the rule declares that the sequence under examination when the
test stops is generated by �. The result is derived by assuming
that there are infinitely many sequences so that a sequence that
has been examined once is not retested. If there are finitely many
sequences, the result is also valid under a memorylessness condi-
tion. Expressions for the performance of the optimal sequential de-
cision rule are also developed. The general case in which multiple
sequences can be examined simultaneously is considered. The op-
timal solution for this general scenario is derived.

Index Terms—Bayesian, CUSUM, optimal stopping, quickest
search, sequential analysis.

I. INTRODUCTION

I N THE classical sequential testing problem, one sequen-
tially observes an independent and identically distributed

(i.i.d.) sequence generated by one of two distributions or
, and wishes to test hypothesis that the sequence is gen-

erated by against hypothesis that the sequence is gener-
ated by [2]. The goal is to find a decision rule that uses a
minimal number of samples, on average, while satisfying cer-
tain error probability constraints, or that optimizes some other
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trade-off between error probabilities and the average number of
samples. Under this model, the sequential probability ratio test
(SPRT) is well-known to be optimal [3]. This basic setting was
extended to the situation in which there are three or more hy-
potheses in [4] and [5]. Motivated by sensor network applica-
tions, decentralized sequential hypothesis testing, in which each
of a set of sensors receives a sequence of samples sequentially,
has also been considered [6]–[12]. In this paper, we consider an-
other generalization of the sequential testing problem: sequen-
tial search over multiple sequences. In particular, we consider

sequences, each of which is generated by either or .
For different value of , whether the sequence is generated
by or is independent of all other sequences. Here, we as-
sume that for the sequence, hypothesis occurs with prior
probability and with prior probability . As a result,
the number of sequences that are generated from is a random
variable, whose value can be any number between 0 and and
is unknown a priori.

Assuming that one can observe only one sequence at a time,1

our goal is to find one sequence that is generated by in a way
that minimizes an appropriate measure of error probability and
sampling cost. This model is motivated by many applications.
For example, in the detection of chemical or biological attacks
using a large sensor network with a mobile data collector, the
mobile data collector needs to locate the point of attack quickly
after knowing that an attack has occurred. Due to the limited
transmission range of each wireless sensor, the collector can
observe the signal from a only limited set of sensors at each
time. In this case, we can model the distribution of the obser-
vations from the sensor affected by the attack as , and the
distribution of the observations from the sensors unaffected by
the attack as . Hence, finding a sequence generated by
quickly means finding the point of attack quickly. This formu-
lation is a suitable model for searching for an affected sensor
with minimal delay. As another example, in cognitive radio sys-
tems [13], wireless communication devices need to find unoccu-
pied frequency bands before transmitting information. Hence, a
wireless device should listen to each possible frequency band
to determine whether it is free or not. In this scenario, the ob-
servations from one frequency band is a sequence of received
signal samples, corresponds to the distribution of the re-
ceived signal when there are other transmissions in the band, and

corresponds to the distribution of the received signal when
the frequency band is free. The task of finding a free frequency
channel clearly can be modeled as that of finding a sequence
generated by . It is of interest to do so with minimal delay,
in order to make optimal use of spectral resources. However,
the device can typically examine only one band at a time due to

1The extension to the case in which one can observe multiple sequences si-
multaneously is considered in Section VI.
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hardware limitations. Thus, this problem fits the above model
very well. Another example is quality monitoring in a factory
with multiple manufacturing machines. The task of finding a
malfunctioning machine sequentially can be formulated as a
sequential testing in multiple sequences problem. Finally, the
problem of sequentially searching multiple databases for a cer-
tain type of data can also be modeled by the above framework.

The problem considered in this paper belongs to the class
of sequential decision problems [14]–[19]. In particular, the
problem considered here is related to a class of scanning prob-
lems considered in [20]–[24]. In the scanning problem, there
are channels. The observations of channel are drawn from
either distribution or . Furthermore, it is assumed [20],
[24] that one and only one of these channels is generated from

. The goal of the scanning problem is to find the channel
generated by with the minimal average delay subject to a
constraint that the error probability is below a threshold. Under
this model, the optimal solution is obtained for the Brownian
motion case in [20] and [24]. In addition to the Brownian
motion case, [24] also considered the general discrete time i.i.d.
case. The main differences between our model and the above
mentioned work on the scanning problem are: 1) in the scenario
considered here, the number of channels that are generated
from is a random variable, which can take any value from
0 to , and we do not know this value a priori; 2) our optimal
solution is obtained for general distributions in discrete time,
as will be clear in the sequel; and 3) in the work of [20] and
[24], a finite number of sequences are considered, and switch
back is allowed. Our model assumes that is infinite. This
assumption allows us to derive an optimal solution with a
particularly simple form. It also serves as a good approximation
for applications in which there are large numbers of sensors
or channels. A problem with a similar flavor has also been
considered in [25]–[27], which assumes that the samples in
each sequence are generated from an on-off process and the
goal is to quickly detect a sequence that makes a transition.
Compared with these works, there is no transition within each
sequence in our model, since we assume that samples from the
same sequence are i.i.d. Under this model, our work establishes
the optimality of the CUSUM for the infinite horizon case
and also provides optimal solutions for the finite horizon case,
which models the situation in which there is a strict deadline.
We also provide performance analysis, which is critical for
providing guidelines for determining the parameters involved
in the algorithm. In addition, we obtain the solution for the
more general case in which one can observe more than one
channel simultaneously. Furthermore, our solution is based
on the framework of optimal stopping theory, while [26] and
[27] rely on the partially observable Markov decision process
(POMDP) framework.

In this paper, we show that the solution to the quickest search
problem is the cumulative sum (CUSUM) test, which was
initially developed for the statistical change-point detection
problem in [28]. In particular, we run the CUSUM test on the
first sequence. If a reset event occurs in the CUSUM test, we
abandon the sequence under examination and switch to the next
sequence. If the CUSUM test stops, we claim that the sequence
under examination is generated by . It is well-known that

the CUSUM test is optimal [29] for the non-Bayesian quickest
detection problem formulated in [30]. It is interesting to see the
optimality of the CUSUM test for this different problem.

We show the optimality of the CUSUM test in two steps. We
first solve the optimization problem (1) for bounded stopping
times in Section III. Using insights from Section III, we then
solve the general problem in Section IV. The performance of the
optimal solution is analyzed in Section V. The generalization
to the scenario in which one can observe multiple sequences
simultaneously is considered in Section VI. Finally, we provide
some concluding remarks in Section VIII.

II. MODEL

We consider sequences ,
where for each , are i.i.d. observations
taking values in a set endowed with a -field of events,
that obey one of the two hypotheses

where and are two distinct, but equivalent, distributions
on . We use and to denote densities of and ,
respectively, with respect to some common dominating mea-
sure. The sequences for different values of are independent.
Moreover, whether the sequence is gen-
erated by or is independent of all other sequences. Here,
we assume that for each , hypothesis occurs with prior prob-
ability and with prior probability . We use to
denote the probability measure defined as above. In addition,
we will also use the probability measures and such that,
under , all the observations are i.i.d. with marginal distribu-
tion , for . Furthermore, we will also use the prob-
ability measure . As a result, the
number of sequences that are generated from is a random
variable, whose value can be any number between 0 and and
is unknown a priori.

At each time, we select a sequence, say sequence , and make
an observation from this sequence. After making each observa-
tion, we can take one of the following three actions: 1) stop sam-
pling and claim that the sequence we are currently observing
is generated by ; 2) continue to the next observation from
the same sequence to gather more evidence about its statistical
behavior; or 3) abandon the sequence that we are currently ob-
serving and switch to another sequence. Hence if a sequence is
abandoned, we will not come back and test it again. Without loss
of generality, we start taking samples from the first sequence,
and switch to the second sequence if we decide to abandon the
first sequence. Similarly, we will switch to the sequence
if we decide to abandon the sequence. To ensure that there is
always a sequence to switch to, we consider the case .
When is finite, our model is also applicable to the scenario in
which when we switch back to a sequence that has been exam-
ined previously, it is treated as a new sequence with no memory
of the observations that have been taken before. This assumption
is valid for the case in which the controller has limited memory.



LAI et al.: QUICKEST SEARCH OVER MULTIPLE SEQUENCES 5377

We use to denote the index of the sequence that we are
observing at time . Hence, we observe
sequentially. The observations generate the filtration

with

We use to denote the -measurable switching function at
time . Here, if we decide to abandon sequence

and switch to the next sequence, that is, . On
the other hand if we decide to continue observing
sequence , that is, . Let denote the set of all
stopping times with respect to the filtration . Note that the se-
quence , and hence the filtration , depends
on the sequence of switching functions. A stopping
time will decide when we should stop sampling and de-
clare that the sequence we are currently observing is generated
by . More specifically, if , we should stop sampling at
time , and declare that sequence is generated by . There
are two performance indices: 1) the error probability that se-
quence is generated by , that is, , where

is the true hypothesis satisfied by sequence ; and 2) the av-
erage number of samples we take to make a decision, that is,

.
Our goal is to determine the stopping time and the switching

rules to solve the following optimization
problem:

(1)

Here is a constant that represents the cost of taking one
sample. We assume , as the case is trivial:
we simply do not take any observations and choose a sequence
at random as being generated by .

We note that other than the Bayesian formulation adopted in
(1), one could also use a variational formulation to strike a bal-
ance between the error probability and the av-
erage delay . More specifically, in the variational formula-
tion, one aims to solve the following optimization problem:

(2)

That is, we want to minimize the average delay under the con-
straint that the error probability is less than a preset threshold

. However, following the same line of argument in [31, Sec.
4.3], one can obtain the solution to (2) once the solution of the
Bayesian formulation is found. More specifically, for each ,
there exists a constant such that the solution to (1) with
this constant is the solution to (2).

Another problem formulation in sequential testing is a non-
Bayesian formalism in which one does not assume the prior
probability . In the single sequence testing, we assume that
the sequence is fixed to be either or . We need to design
a scheme that works well for all these two scenarios. In the cur-
rent setup, the number of possible scenarios is , which grows

without bound as increases. Hence, developing a meaningful
formulation for the non-Bayesian case is challenging.

III. FINITE-HORIZON OPTIMIZATION

Before we solve the optimization problem (1), we study a fi-
nite-horizon version of it in which the stopping time is re-
stricted to a finite interval ; that is, we must stop by time

. This finite-horizon problem has practical significance when
there is a strict delay deadline.

We use to denote the posterior
probability that sequence is generated by after ob-
serving . From the independence assumptions
mentioned in Section I and the fact that is measurable
for , we have the following recursive formula for

:

...

(3)

in which is the indicator function. Note that is not neces-
sarily a sufficient statistic for this problem, unless the -mea-
surable function depends only on . We will show, however,
that this is indeed the case.

At each time , we need to decide whether to stop sampling
or not based on . The minimal expected cost-to-go at time

, is a function of , which we will denote by
. Obviously, we have

Given , we have the first equation at the bottom of
the next page. The interpretation of each term in the equation is
clear. Specifically, is the cost incurred if we stop sampling
at time , and

is the expected cost that we will incur if we continue sampling,
which is the smaller of two costs: the expected cost that we will
incur if we continue sampling in the same sequence, and the ex-
pected cost that we will incur if we switch to another sequence.

We first have the following lemma that converts this problem
into a Markov optimal stopping problem.

Lemma 1: For each , the function can be written as
a function of only , say , and the optimal switching
rules can be restricted to a class of decision functions that
depend only on .
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Proof: Clearly is a function of only
, and we write it as . For any ,

suppose that is a function of only and we use
to denote this function, then we have the second

equation at the bottom of the page, in which is
the conditional density of if we decide to stay in the same
sequence to make more observations, that is

(4)

Similarly, is the conditional density of if
we decide to switch to another sequence to make observations,
that is,

(5)

The relationship between and is given in (3).
Hence, and depend on only through . In fact,
is independent of . As a result, we can write
as and write as .

Hence, we have

which is a function of , and we will use to denote
this function.

At the same time, we have

which is a constant independent of , and we will use to
denote this constant.

Thus,
is a function of , and we write it as . Continuing this
recursive argument, we know that depends only on
for .

Furthermore, since has only two values, the optimal
switching rule is the following:

if ,
otherwise,

(6)

which depends only on . This means that we should switch
to another sequence, if the expected cost of continuing this se-
quence is larger than the expected cost that will be incurred if we
switch to another sequence, although by doing this we lose all
the evidence we have gathered to this point. Since depends
only on , from (3), we see that forms a
Markov process.

In summary, we have converted the finite-length version of
problem (1) to a Markov optimal stopping problem. For finite

, we have the following recursive cost functions:

(7)

and for ,

(8)

Regarding and , we have the following
result.

Lemma 2: The functions and are nonneg-
ative concave functions of , for . And

.
Proof: The nonnegative property of these functions can

be easily proved by simple inductive arguments. The fact that
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also follows from a simple inductive
argument.

In the following we show the concavity of these two func-
tions. First, we observe that is a concave
function of . Now, assuming is concave in ,
we prove that is concave in . Let and be two
arbitrary points belonging to . Consider

, with , we have

(9)

in which

and where we have used the concavity of in writing the
inequality.

Now, on defining , we have (10) at the
bottom of the page, in which we have used (4) for (a).

At the same time, we have

(11)

Hence, continuing from (9), we have

(12)

which means that is a concave function of . The
concavity of then follows from the fact that the min-
imum of concave functions is also concave.

It is also clear that . Fig. 1 shows an illus-
tration of the relationships of and . With these
supporting lemmas, we have the following solution for the fi-
nite-horizon optimization problem.

Fig. 1. An illustration of � �� �.

Theorem 3: For the finite-horizon version of problem (1), the
optimal stopping time is , in which
is given by the following equation:

And at time , we switch to another sequence if, and only if,
.

IV. INFINITE-HORIZON OPTIMIZATION

Now, we remove the finiteness restriction on the stopping
time by letting . First, we have

(13)

since the set of allowed stopping time is enlarged if we allow
the horizon to increase. Further we have for any

and , and hence the following limit is well-defined:

(14)

Also, we have , due to the i.i.d. nature of
the observations in each sequence. We will use to denote
this common function. It is easy to check that is a concave
function in .

(10)
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Fig. 2. An illustration of ����.

Lemma 4: The function is unique.
Proof: The proof of this result follows the argument used

in [17, Proposition 7.4].

By the dominated convergence theorem, the limit in (15) at
the bottom of the page is well defined, which is a constant in-
dependent of .

Similarly, we have

(16)

From the fact that is concave for each and , it is easy
to check that is concave in .

Hence,

(17)

Fig. 2 illustrates the relationship between and .

Now, we have the following lemma regarding the relationship
between and .

Lemma 5:

if ,
if ,
if .

(18)

Proof: We first show that . From (17), we have

(19)

From (16), we have

(20)

Hence (19) becomes

(21)

As a result, is either 1 or .
We consider these two cases separately.

1) If , then from (20), we have that
.

2) If , then from the facts that ,
, and is a concave function of , we know that

. Substituting this function into (15), we have

(22)

Hence, in this case, we still have
.

(15)
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Fig. 3. An illustration of � ��� and � .

Fig. 4. An illustration of the optimal procedure.

Fig. 3 illustrates the relationship between and .
Since is concave, and ,

we know that there exists a unique such that and
. At the same time, from (15) and (16), we know

that . Hence the unique point, in which and
are equal, is . That is . As a result we know that

when , and when .

Lemma 5 implies that we should switch to another sequence
once is less than the prior probability .

By examining Figs. 2 and 3, and applying [17, Th. 3.7] and
Lemma 5 above, we have the following solution for the infinite-
horizon optimization problem.

Theorem 6: The optimal stopping time for (1) is given by
in which

And at time , we switch to another sequence if, and only if,
.

Fig. 4 illustrates the operation of the optimal test.
Now we briefly review the CUSUM test, which was devel-

oped for the quickest detection problem [17], before discussing
the connection between this test and our algorithm. In the
quickest detection problem, one observes a random sequence

. There is a change point such that,
given , are drawn i.i.d. from distribution ,
and are drawn i.i.d. from distribution . In the
non-Bayesian formulation, the change point is assumed to
be a fixed, nonrandom quantity that can be either or any
value in the positive integers. One aims to detect the occurrence
of this change with minimal delay subject to a certain false
alarm constraint. In a formulation initiated by Lorden [30], the
following optimization problem is considered:

(23)

(24)

in which denotes the smallest -field with respect to which
are measurable, is the set of all stopping times with

respect to the filtration , and denotes expectation
assuming that the change time is .

Let , and
with ; then the CUSUM stopping time is

where is a threshold. That is one
stops whenever the statistic is larger than a given threshold,
and resets the statistic to 0 once it is smaller than 0. It was shown
in [29] that the CUSUM test with chosen to satisfy (24) with
equality is the optimal solution to the problem (24) for all values
of .

It is now easy to see the equivalence between the optimal test
in Theorem 6 and the CUSUM test. More specifically, let

then under the condition that if and
if , the recursive formula in (3) is the equivalent to the
following recursive formula:

(25)
...

In terms of , the optimal solution is to switch to the next
sequence if (this corresponds to a reset event in the
CUSUM test, which is to reset to zero, if ), and to
stop when

Hence the test in Theorem 6 is equivalent to a CUSUM test with
parameter , in which we switch to
another sequence if a reset event occurs in the CUSUM test,
and we stop and claim that the sequence under examination is
generated by when the CUSUM test stops.

V. PERFORMANCE ANALYSIS

From Section IV, it is clear that the optimal solution can be
parameterized by one threshold , whose value depends on the
cost per sample . In this section, we analyze the average delay

and the error probability in terms of
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. The analysis will provide further insight into the structure
of the optimal solution and give guidance on how to set the pa-
rameter. Since the optimal test is the same as the CUSUM test,
we can use techniques similar to those used in the performance
analysis of the CUSUM test (see [32] and [33] and references
therein) with proper modifications to take the Bayesian frame-
work into consideration.

It is clear that arises from a renewal process [34], with
renewals occurring whenever is reset to (this occurs when

exits from the lower end of ), and with a termination
when exits from upper end of . It follows that we can
write

(26)

where are i.i.d. repetitions (under
) of the random variable

(27)

and where denotes the number of repetitions of that occur
before the posterior probability results in an exit at the upper
boundary. Hence, the analysis of and
can be carried out by analyzing this renewal process under .

We define and to be the events and
, respectively. We also define and .

It is clear that is the probability that we will claim that the
sequence is generated by , when hypothesis is true. Sim-
ilarly, is the probability that we will make a switch while hy-
pothesis is true. We have the following theorem regarding
the performance of the optimal solution of Theorem 6.

Theorem 7: The average number of samples of the optimal
solution for the sequential testing with multiple sequences is
characterized by

(28)

and the error probability is characterized by

(29)

Proof: Let denote the indicator of the event that the
repetition of exits at the upper boundary. Then is a stopping
time with respect to the sequence , , which
is i.i.d. under . From Wald’s identity, we have

(30)

It is easy to see that, under , is a
geometric random variable with

(31)

where . Hence

Substituting this into (30), we have (28).
At the same time, we have

(32)

The analysis of , and in terms of the parameters
follows from the standard SPRT analysis, which can

be found, for example, in [33].

VI. MULTIPLE SIMULTANEOUS OBSERVATIONS

In this section, we consider the general case in which we can
observe multiple sequences simultaneously. Our goal is still to
find one sequence that is generated by . We use to denote
the number of sequences that we can observe at each time. We
will discuss the case in which in detail. (The case in
which is similar.) The development of the optimal solu-
tion follows that of the single sequence case closely.

We use and with to denote the indices of
the two sequences that we are observing at time . Hence, we

observe sequentially. The observa-
tions generate the filtration with

Now, at each time , we
can 1) stop sampling and claim that one of the two sequences
under examination is generated by , or 2) continue to the next
observation from both sequences to gather more evidence about
their statistical behavior, or 3) abandon one or both of the se-
quences under examination and switch to new sequence(s). We
use to denote the -measurable switching function at time
that will decide whether we should abandon sequence . Simi-
larly, we use to denote the -measurable switching function
at time that will decide whether we should abandon sequence

. In the following, we will also use . Again, let
denote the set of all stopping times with respect to the filtra-

tion . A stopping time will decide when we should
stop sampling and declare that one of the two sequences that
we are currently observing is generated by . As before, there
are two performance indices. The first one is the error proba-
bility that the sequence selected is generated by . Obviously,
when we stop at time , we will select the sequence that has a
higher probability of being generated by , and hence the error
probability is . The
second performance metric is the average number of samples
we take to make a decision, that is, .

Our goal is to design the stopping time and the switching
rules to solve the following optimiza-
tion problem:

(33)
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We use and
to denote the respective posterior probability that

sequences and are generated by after observing

. Similarly to (3), we have the fol-
lowing recursive formula for :

(34)

...

As in the single sequence case, we first consider the situation
in which the stopping time is restricted to a finite interval

.
At each time , we need to decide whether to stop sampling

or not based on . The minimal expected cost-to-go at time
, , is a function of , which we will denote by

. Obviously, we have

And given , we have the following equation:

We first have the following lemma that converts the finite-
horizon version of problem (33) into a Markov optimal stopping
problem.

Lemma 8: For each , the function can be written as
a function of only , say , and the optimal switching
rules can be restricted to a class of decision
functions that depend only on .

Proof: Clearly is a func-
tion of only , and we write it as . For
any , suppose that is a function
of only and we write it as . We have

Now, we examine the term

If and
we have

(35)

in which is given in (4), while the relationship among

, and is given in (34). From (4), it is clear
that

is a function of only .
Using the same argument as above, we know

that is a function of

only for other values of and . As a result,

is a function of

only , and we will use to denote it.
Hence, we know that is a function of only , and

the switching function can be limited to func-
tions of . Moreover, forms a Markov
process.

Similarly to Lemma 2, we also have the following result.

Lemma 9: The functions and are nonnega-
tive concave functions of . And .

Proof: This result follows from a similar argument to that
used in the proof of Lemma 2.

Now, we remove the finiteness restriction on the stopping
time by letting . Similarly to the single sequence case,
we know that the following functions are well-defined:

(36)

Also, we have , due to the i.i.d. nature of the
observations in each sequence. We will use to denote this
common function.

Similarly is well defined. More-

over, it is independent of , and we will use to denote
this common function. Hence, we have

From the concavity property, the fact that
, and the fact that , we

have the following solution for problem (33).

Theorem 10: The optimal stopping time for (33) is given by
. And the switching

rule is a function of only .

VII. NUMERICAL RESULTS

Here, we give an example to illustrate the analytical results
of the previous sections. In the example, we assume that under

, the observations are i.i.d. Gaussian random variables with
means 0 and variances . Under , the observations are
i.i.d. Gaussian random variables with means 0 and variances .
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Fig. 5. The cost-to-go function ����.

Fig. 6. The relationship between � ��� and � .

We first present numerical results for the single channel case.
The cost-to-go function is shown in Fig. 5 for the case
of , , and . The cost-to-go
function is computed by recursively using (8). We stop the re-
cursion when the distance between and is
less than . For this scenario, we find that .
Fig. 6 shows the relationship between the cost of continuing on
the same sequence and the cost of switching to another
sequence . It confirms our analysis that we should switch
to another sequence when is less than .

After obtaining , the optimal algorithm is fixed. In Fig. 7,
we show the relationship between the average number of sam-
ples one needs to take before the test stops for various values of
signal-to-noise ratio (SNR). In generating this figure, we set
to be 0.3 and to be 0.01. We note that for different values of
SNR, the value of is different. These results, and the ones in
Figs. 8–12 below, were obtained via simulations.

The function generally follows an expected trend. The higher
the SNR, the easier it is to distinguish between different chan-
nels. Hence fewer steps are required to make a decision. But as it
can be seen from Fig. 7, this is a nonmonotonic function. There
is an intuitive explanation for this. When the SNR is very low,
the information provided by taking more steps does not justify
the cost required to take these steps. So a low SNR creates uncer-

Fig. 7. Average number of steps vs SNR with � � ����.

Fig. 8. Average number of steps vs SNR with � � �����.

Fig. 9. Error probability � �� � � � vs SNR with � � ����.

tainty about the value of further information. Fig. 8 shows the re-
lationship between the decision delay and SNR, with
and all other parameters remain the same as above. From Fig. 8,
one can see that the number of steps is generally larger than the
case with . This is mainly due to the fact that the cost
of taking more samples is smaller here.

The probability of error, , is also an important
statistic. Fig. 9 shows typical values for the case of .
We can compare this curve with that for the same parameters
except with . We show the second function in Fig. 10.

There are a few fundamental differences between Figs. 9 and
10. In Fig. 9, is rapidly decreasing at the be-
ginning and stabilizes at higher SNR values. On the other hand,
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Fig. 10. Error probability � �� � � � vs SNR with � � ���.

Fig. 11. � �� � � � � � ��� vs SNR.

in Fig. 10, is constant for small values of SNR
and then decreases after a threshold value. In the second case,
the cost of taking any samples for small SNR values is so large,
that it does not justify taking any samples at all. In fact the prob-
ability of error is equal to the prior probability that is true
in this range. When SNR increases, there is greater justification
for more samples and hence the probability of error decreases.
In addition, in Fig. 9 the cost of taking samples is smaller. As
a result, the number of samples taken is larger, and hence the
probability of error is smaller than that of the curve shown in
Fig. 10 under the same SNR.

Fig. 11 shows the cost function (1). As expected this is a
monotonically decreasing function of SNR. The higher the SNR
the lower the objective value.

Fig. 12 shows the average number of steps as a function of the
probability of error. This figure was generated for a given SNR
value (4.77 dB) and fixed value of (0.01). As shown in the
graph, the higher the probability of error, the lower the number
of steps taken. The lower the probability of error required the
more the average number of steps taken.

We now present results for the case of two simultaneous ob-
servations. Fig. 13 shows , when , ,
and . In the two simultaneous observations case, the
boundary for stopping is a curve; that is, for any given value of

, there exists a , such that we stop sampling once ex-
ceeds . The same is true, if we reverse the role of and .
In our simulation, we find that if , then .
And, if , then .

Fig. 12. ��� against � �� � � �.

Fig. 13. The two dimensional cost-to-go function ��� � � �.

VIII. CONCLUSION

We have considered the problem of quickest sequential search
over multiple sequences, in which the goal is to find a sequence
drawn from a particular distribution among infinitely many
sequences in such a manner that a properly defined cost is mini-
mized. We have shown that if one can observe only one sequence
at each time, the optimal solution under a Bayesian formula-
tion, which strikes a balance between the cost of sampling and
the false alarm probability, is the CUSUM test. The result is de-
rived by assuming that there are infinitely many sequences and
one will not switch back to a sequence that has been tested pre-
viously. If there are finitely many sequences, the result is also
valid if there is no memory of previously collected samples if
we switch back to a sequence that has been tested before. We
have also investigated the performance of the optimal solution
and found that the performance can be written in terms of the
performance of the classical SPRT. We have also considered the
general case in which one can observe multiple sequences si-
multaneously and have developed an optimal solution for this
general case.

In terms of future work, it is of interest to extend this study to
the corresponding problems in continuous time. In this case, the
case of Brownian observations will be the first problem to con-
sider. It is also of interest to study the nonhomogeneous case in
which the distribution or the prior probability of each sequence
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is different. It is also of practical interest to study the case in
which the number of sequences is finite and one allows memory.
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