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Abstract—This paper considers the problem of how to quickly
and accurately determine the availability of each spectrum band
for a multi-band primary system using one or few sensors.
Such problem is referred to as spectrum scanning. Two cases
of practical interest are studied: 1) a single sensor case in which
only one spectrum band is observed at one time; and 2) a multiple
sensor case in which multiple spectrum bands are observed simul-
taneously. For each case, scenarios with and without a scanning
delay constraint are investigated. Using mathematical tools from
optimal stopping theory, optimal spectrum scanning algorithms
are developed to minimize a cost function that strikes a desirable
trade-off between detection performance and sensing delay. In the
non delay-constrained case, it is shown that the optimal scanning
algorithm is a concatenated sequential probability ratio test
(C-SPRT). In the delay-constrained case, the optimal scanning
algorithm has a high implementation complexity and truncation
algorithms are developed as alternative low complexity options.
Numerical examples are provided to illustrate the effectiveness
of the proposed algorithms.

Index Terms—Cognitive radio, spectrum sensing, optimal stop-
ping, Multiband, sequential analysis.

I. INTRODUCTION

SPectrum sensing is widely regarded as a key technology
to enable dynamic spectrum access for cognitive radio

(CR) systems [1]–[17]. Roughly speaking, spectrum sensing
can be classified into two categories: single-band sensing and
multi-band sensing. As far as spectrum sensing is concerned,
the major difference between single-band sensing and multi-
band sensing is that in a multi-band system, sensing needs
to be performed over spectrum bands that support different
primary user activities1. Most early work on spectrum sensing
has been primarily focused on sensing a single spectrum
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1In this paper, we treat each single band as an entity in the sense that a

single band no matter whether it is a single-carrier or multi-carrier single
band only has two possible states: unoccupied or occupied.

band, including single-carrier single band [1]–[4] and multi-
carrier single band [7] (e.g., single band orthogonal frequency
division multiplexing (OFDM)). Recently, multi-band (multi-
channel)2 spectrum sensing has gained considerable research
attention [18], [19]. More specifically, in [20] and [21],
multiple narrow-band sensors (detectors), each for a spectrum
band, are used to simultaneously observe multiple spectrum
bands. Multi-band joint energy detection [20] and sequential
detection [21] were developed to maximize overall throughput
performance. When the number of candidate bands is large,
these spectrum sensing schemes require a large number of
sensors and joint simultaneous operation of these sensors and
thus are of prohibitively large implementation complexity. In
[22] and [23], a detector based on a wide-band receiver is used
to collect signal samples from all multiple candidate bands.
Sequential probability ratio tests (SPRT) and fixed sample size
(FSS) sensing algorithms are developed to minimize multi-
band sensing delay. However, a wide-band detector typically
requires a high speed analog-to-digital converter (ADC) and
extra signal processing elements, thus incurring additional
cost/complexity.

In this paper, we consider the problem of how to determine
the availability of each spectrum band in a multi-band primary
system with small delay and small error probabilities using a
single or few sensors. With one or a small number of sensors,
secondary users (SUs) are able to observe one band or a
small subset of candidate bands at a time. Two scenarios of
practical interests are investigated. In the first scenario, there
is a strict delay constraint on the spectrum scanning. That is,
the spectrum scanning needs to be complete within a certain
time period. In the second scenario, there is no strict time
constraint for the scanning. That is, the spectrum scanning
continues until the completion of the entire detection process.
In both scenarios, our goal is to design spectrum scanning
schemes that minimize a cost function that strikes a balance
between error probabilities and detection delay.

We first consider a single sensor case, in which only
one spectrum band is observed at a time. To minimize the
scanning cost, the detector needs to design 1) selection rules
that decide which band to collect signal samples at each
time; 2) termination rules that decide when to terminate
the entire scanning process; and 3) terminal decision rules
that decide the availability of each band after the scanning
process is complete. We first show that the problem at hand
can be converted into a Markovian optimal stopping time
problem [25]. Using mathematical tools from the optimal
stopping theory, we derive the optimal algorithms for both

2In this paper, we use multi-band and multi-channel interchangeably.
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scenarios with and without a delay constraint. We show that in
the scenario without a delay constraint, the optimal scanning
algorithm is a concatenated sequential probability ratio test
(C-SPRT). More specifically, we perform a SPRT test for the
first band. Once the SPRT test is complete for this band, we
switch to another band and carry out another SPRT on the
newly switched band. The scanning process completes once
all the bands have been detected by using SPRT. Hence, the
scanning algorithm can be efficiently implemented. On the
other hand, the implementation of the optimal algorithm for
the scenario with a strict delay constraint requires large look
up tables and frequent updating of posterior probabilities, thus
incurring a prohibitively high computational complexity. To
reduce the complexity for the delay-constrained scenario, we
also propose several truncated C-SPRT algorithms that have
very low implementation complexity yet are asymptotically
optimal.

We next generalize the study to the multiple sensor case,
in which multiple spectrum bands can be simultaneously
observed. The detector again needs to design band selection
rules (in this case, select a subset of bands), termination rules
and terminal decision rules to minimize the cost function.
The problem can also be converted into a Markovian optimal
stopping time problem, and optimal rules can be derived using
the tools from the optimal stopping theory. To reduce the
complexity, we also design several low complexity algorithms.
Extensive numerical results are presented to show the effec-
tiveness of the proposed algorithms.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and problem formulation.
In Section III, optimal single observation scanning algorithms
are developed for both delay-constrained and non delay-
constrained scenarios. Several low complexity truncated C-
SPRT schemes are also developed to reduce the implementa-
tion complexity for the delay-constrained scenario. Section IV
extends the study to the multiple simultaneous observations
case. In Section V, we provide extensive numerical results to
illustrate the effectiveness of the proposed algorithms. Finally,
in Section VI, we present several concluding remarks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In the system considered, SU can make simultaneous ob-
servations on a subset of M spectrum bands from the set
K, which consists of all K candidate spectrum bands. Let
Y

(k)
j denote the signal sample received by SU, at time j from

band k. If there is no primary transmission over band k at
time j, then the received signal sample Y (k)

j can be written

as Y (k)
j = W

(k)
j , in which W

(k)
j is the background noise,

whereas, if there is a primary transmission over band k at
time j, then Y

(k)
j can be written as Y (k)

j = X
(k)
j + W

(k)
j ,

in which X(k)
j is the primary signal sample. Mathematically,

the detection of the primary signals at the kth band can be
formulated as a binary hypothesis testing problem as follows:

H
(k)
0 : Y

(k)
j =W

(k)
j , j = 1, 2, · · · ,

H
(k)
1 : Y

(k)
j = X

(k)
j +W

(k)
j , j = 1, 2, · · · (1)

where H(k)
0 refers to the hypothesis that channel k is free and

H
(k)
1 refers to the hypothesis that channel k is occupied. We

use q(k)0 (·) to denote the density function of the signal received
at the kth band when there is only noise, and use q(k)1 (·) to
denote the density function of the signal received at the kth

band when there is primary signal. The algorithms developed
in this paper work for any form of density functions q(k)0 (·)
and q(k)1 (·). Furthermore, for generality, we allow the density
functions to be different for different k.

Let π(k)
0 denote the a priori probability that band k is

occupied by the primary user (PU). Generally speaking, the
values of π(k)

0 can be different for different bands. We further
assume that the status (occupied/unoccupied) of each band is
independent of the status of other bands and the channel status
remains unchanged during the scanning process. Our goal is
to design an algorithm to decide the presence/absence of PU
on each band in a way that minimizes an appropriate measure,
which takes into account detection error probabilities and the
sampling cost. We consider a sequential testing setup in which
SU needs to detect the status of all K candidate spectrum
bands. At each time j, SU tunes to a subset of bands M from
the set K to make an observation, the set M has a size of M
that represents the number of simultaneous observations. After
taking one observation each from these M bands, the detector
needs to decide whether to terminate the scanning or to con-
tinue. Let τ denote the termination rule that SU uses to decide
whether or not to terminate the scanning. If SU terminates the
scanning at time j, then it determines the occupancy of all
bands using a terminal decision rule δj = (δ

(1)
j , · · · , δ(K)

j ),

in which δ
(k)
j takes values in {0, 1} with 0 indicating that

band k is free and 1 indicating that band k is occupied. Let
δ = {δj , j = 1, 2, · · · } denote the sequence of decision rules
used at SU. If SU chooses to continue scanning, then it uses
the band selection function φj to select M bands from the
set K and makes another observation from the selected band.
We use φ = {φj , j = 1, 2, . . . , } to denote the sequence of
band selection functions. At the end of the scanning process,
there are two types of error probabilities for band k. The first
one is the false-alarm probability P (k)

FA that is the probability
of declaring hypothesis H(k)

1 is true while hypothesis H(k)
0 is

true and the second one is the misdetection probability P (k)
MD

that is the probability of declaring hypothesis H(k)
0 to be true

while hypothesis H(k)
1 is true.

Intuitively speaking, the lower P (k)
FA is, the higher number

of spectrum bands are successfully identified as free and hence
more secondary transmission opportunities can be exploited.
Whereas the lower P (k)

MD is, the lower the probability that
SU interferes with primary transmissions. If there is no noise
uncertainty [31], [32], both types of error probabilities can be
made arbitrarily small by letting the number of samples go to
infinity3. However, this will incur significant delay to reach
a decision. Therefore, an appropriate cost function needs to
strike a desirable tradeoff between the decision delay and the
detection error probabilities. In this paper, we aim to determine
the termination rule τ , the terminal decision rules δ and the

3In this paper, we do not consider noise uncertainty effects on the detection
performance [31], [32]. The noise uncertainty effects in a multichannel setup
will be investigated in our future work.



CAROMI et al.: FAST MULTIBAND SPECTRUM SCANNING FOR COGNITIVE RADIO SYSTEMS 65

band selection rules φ that minimize the cost

inf
τ,δ,φ

[
cE{τ} +

K∑
k=1

(
c
(k)
0 (1 − π

(k)
0 )P

(k)
FA + c

(k)
1 π

(k)
0 P

(k)
MD

) ]
,

(2)
where E is expectation under the probability measure qπ =

[q(1), q(2), . . . , q(K)] with q(k) := (1 − π
(k)
0 )q

(k)
0 + π

(k)
0 q

(k)
1 .

The parameter c denotes the cost of unit delay, and hence
the term cE{τ} in the cost function represents the average
cost of scanning delay. Similarly, c(k)0 denotes the cost of a
false alarm event happening over band k, and c

(k)
1 denotes

the cost of a misdetection event happening over band k. For
generality, we allow c

(k)
0 and c(k)1 to be different for different

bands. Clearly, the term (1−π
(k)
0 )c

(k)
0 P

(k)
FA+π

(k)
0 c

(k)
1 P

(k)
MD is

the average cost of detection errors over band k. Hence, the
cost function specified in (2) takes into consideration detection
error probabilities and sampling cost, which are two key
parameters closely related to the throughput of SU systems.

We note that other than the Bayesian formulation adopted
in (2), one could also use a variational formulation to strike
a balance between the error probabilities, namely P

(k)
FA and

P
(k)
MD and the average delay E{τ}. More specifically, in

the variational formulation, one aims to solve the following
optimization problem:

inf
τ,δ,φ

E{τ}, (3)

s.t. P
(k)
FA ≤ P̄

(k)
FA, P

(k)
MD ≤ P̄

(k)
MD, for k = 1, · · · ,K.

That is, we want to minimize the average delay under the
constraint that the error probabilities are less than target false
alarm and misdetection probabilities P̄ (k)

FA and P̄ (k)
MD . However,

following the same line of argument in Section 4.3 of [24],
one can obtain the solution to (3) once the solution of the
Bayesian formulation is found. Hence, in this paper, we focus
on the Bayesian formulation (2).

Two different scenarios will be considered. In the first
scenario, SU needs to stop the scanning by time T . That is, the
stopping time τ is restricted to a finite interval [0, T ], called the
delay-constrained scenario. This models the situation in which
there is a strict delay constraint. In the second scenario, there is
no delay constraint on the scanning time, called the non delay-
constrained scenario. Relying on results from optimal stopping
theory, we obtain optimal solutions for both scenarios. For
convenience, a list of the mathematical symbols used is shown
in Table I.

III. THE SINGLE OBSERVATION CASE

In this section, we develop scanning algorithms that solve
(2) for both delay-constrained and non delay-constrained sce-
narios when M = 1, i.e., the single observation case. Hence,
at time j, the detector will use the band selection rule φj
to select which band to perform sensing. The results for this
special case provide insights for the solution of the general
case.

Let π(k)
j denote the posterior probability that band k is

occupied after collecting observations up to time j. We define
πj := (π

(1)
j , · · · , π(K)

j ). If φj = k, then SU selects band
k to sense at time j. Via Bayesian rule, we can update the

TABLE I
LIST OF SYMBOLS

k kth band.
K Number of bands in the mutliband setup.

Y
(k)
j Received signal sample of band k at time j.

W
(k)
j Additive noise.

H
(k)
0 Hypothesis test that band k is free.

H
(k)
1 Hypothesis test that band k is occupied.

q
(k)
0 (.) Noise only density function at band k.

q
(k)
1 (.) Primary signal and noise density function at band k.

π
(k)
0 Priori probability that band k is occupied.

K Set of bands K = {1, . . . ,K}
M Set of simultaneous observation bands.
M Number of simultaneous observations.
τ Termination rule.

δ
(k)
j Terminal decision rule.
φj Band selection rule.

P
(k)
FA False alarm probability of band k.

P
(k)
MD Misdetection probability of band k.
c Cost of unit delay.

c
(k)
0 Cost of false alarm error of band k.

c
(k)
1 Cost of misdetection error of band k.

P̄
(k)
FA Target false alarm probability of band k.

P̄
(k)
MD Target misdetection probability of band k.
T Total delay time.

π
(k)
j Posterior probability that band k is occupied.

Fj Set of observation till time j.
J̃j,T (Fj) Minimal expected cost-to-go function at time j.

A
(k)
j,T Expected value of the cost-to-go function.

τopt Optimal termination rule.
U (k) Upper bound of posterior probability in SPRT.
L(k) Lower bound of posterior probability in SPRT.

ψ
(k)
τ Stopping rule of the sequential test

B
(k)
U Upper bound of the likelihood ratio.

B
(k)
L Lower bound of the likelihood ratio.

[σ(k)]2 White Gaussian noise variance.
P (k) Power of the signal.
SNR(k) Signal to noise ratio.
E(τ) The overall average sample number (ASN) of SPRT.
FSS Total fixed sample size of energy detector.
Q−1 Inverse of the Q function.
Δ(k) Saved time of uniformly added truncation at band k.

posterior probability of band k being occupied after collecting
an observation Y (k)

j using the following equation

π
(k)
j =

π
(k)
j−1q

(k)
1 (Y

(k)
j )

π
(k)
j−1q

(k)
1 (Y

(k)
j ) + (1 − π

(k)
j−1)q

(k)
0 (Y

(k)
j )

, (4)

where the sequence π(k)
j is evaluated recursively as in [25]. For

band k that is not selected at time j, the posterior probability
π
(k)
j is not updated, i.e., π(k)

j = π
(k)
j−1.

At this point, it is not clear whether or not πj is a sufficient
statistic for the optimization problem (2). If πj is a sufficient
statistic, then at time j, we can make our termination rule τ ,
terminal decision rule δ and band selection rule φ solely based
on πj . This will greatly simplify our problem. We will show
below that πj is indeed a sufficient statistic for the problem
under study.

We first study the optimal terminal decision rule δ. Follow-
ing a standard argument in [26], it is easy to show that for
any given termination rule τ and band selection rules φ, the
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following simple terminal decision rule is optimal:

δ(k)τ =

{
1, if c

(k)
1 π

(k)
τ ≥ c

(k)
0 (1− π

(k)
τ ),

0, if c
(k)
1 π

(k)
τ < c

(k)
0 (1− π

(k)
τ ),

(5)

for any k ∈ {1, . . . ,K}. The interpretation of this decision
rule is clear. More specifically, c(k)1 π

(k)
τ is the average cost of

making a misdetection error. That is, we declare band k to
be free while band k is busy. Similarly c(k)0 (1 − π

(k)
τ ) is the

average cost of making a false alarm error, that is we declare
band k to be busy while band k is free. Thus, we declare
that band k is occupied if the cost of a misdetection event
is larger than that of a false alarm event, and vice visa. This
result suggests that the terminal decisions can be made only
based on πj . With these terminal decision rules, the objective
function in (2) is then converted into

inf
τ,φ

E

[
cτ +

K∑
k=1

min
{
c
(k)
0 (1− π(k)

τ ), c
(k)
1 π(k)

τ

}]
. (6)

We will use results from optimal stopping theory [25] to solve
this problem.

A. The Delay-Constrained Scenario

We first consider the scenario in which we have strict delay
constraint T , i.e., we need to finish the scanning by time T .
At each time instant j, SU needs to decide whether or not
to terminate the scanning based on the observations that have
been collected so far. Let Fj denote the set of observations till
time j, and let J̃j,T (Fj) denote the minimal expected cost-to-
go function at time j. This is the minimal value of the expected
additional cost that will incur by any strategy between time j
and T . Note that J̃j,T (Fj) is a function of Fj , j and T . At
this stage, it is not clear what the optimal strategy between
time j and T is, and it is also not clear what the form of the
function J̃j,T (Fj) is. In the following, we will obtain the form
of this function recursively using dynamic programming, and
then obtain the optimal solution based on this function.

At first, it is clear that J̃T,T =
K∑

k=1

min{c(k)0 (1 −
π
(k)
T ), c

(k)
1 π

(k)
T }, since we have to stop at time T . Given

J̃j+1,T (Fj+1), we have the following equation

J̃j,T (Fj) = min

{ K∑
k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}
,

c+ inf
φj

E

{
J̃j+1,T (Fj+1)|Fj , φj)

}}
. (7)

In this equation, the term
K∑

k=1

min
{
c
(k)
0 (1 − π

(k)
j ), c

(k)
1 π

(k)
j

}
is the additional cost that will incur if SU decides to stop
scanning at time j. The term c+inf

φj

E

{
J̃j+1,T (Fj+1)|Fj , φj

}
is the minimal expected additional cost that will incur
if SU does not stop at time j. Note that the term
E

{
J̃j+1,T (Fj+1)|Fj , φj

}
depends on Fj , the observation up

to time j and φj , the band selection rule. Hence, J̃j,T (Fj)
also depends on the entire observation up to time j, namely
Fj . The following lemma shows that one can greatly simplify
the form of these functions.

Lemma 1: For each j, the minimal expected cost-to-go
function J̃j,T (Fj) can be written as a function of πj , say
Jj,T (πj) and the optimal band selection function φj depends
only on πj .

Proof: We will prove the lemma by induction. Clearly,

J̃T,T (FT ) =

K∑
k=1

min
{
c
(k)
0 (1− π

(k)
T ), c

(k)
1 π

(k)
T

}
(8)

is a function of πT only. Let JT,T (πT ) denote this function.
Suppose that J̃j+1,T (Fj+1) depends on πj+1 only. Let us

use Jj+1,T (πj+1) to denote it. We now show that J̃j,T (Fj)
depends on πj only. First, we have (9), since φj admits only
K possible values, the term c+ inf

φj

E {Jj+1,T (πj+1)|Fj , φj}
can be written as c+min

φj

E {Jj+1,T (πj+1)|Fj , φj}. If φj =

k, then we have (10), since if we select band k, only the

J̃j,T (Fj) = min

{
K∑

k=1

min
{
c
(k)
0 (1 − π

(k)
j ), c

(k)
1 π

(k)
j

}
, c+ inf

φj

E

{
J̃j+1,T (Fj+1)|Fj , φj

}}

= min

{
K∑

k=1

min
{
c
(k)
0 (1 − π

(k)
j ), c

(k)
1 π

(k)
j

}
, c+ inf

φj

E {Jj+1,T (πj+1)|Fj , φj}
}
. (9)

E
{
Jj+1,T (πj+1)|Fj , φj = k

}
=

∫
Jj+1,T

(
π
(1)
j , · · · , π

(k)
j q

(k)
1 (y

(k)
j+1)

π
(k)
j q

(k)
1 (y

(k)
j+1) + (1− π

(k)
j )q

(k)
0 (y

(k)
j+1)

, · · · , π(k)
j

)
[
π
(k)
j q

(k)
1 (y

(k)
j+1) + (1− π

(k)
j )q

(k)
0 (y

(k)
j+1)

]
dy

(k)
j+1 := A

(k)
j,T (πj), (10)

J̃j,T (Fj) = min

{
K∑

k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}
, c+ inf

φj

E

{
J̃T
j+1(Fj+1)|Fj , φj

}}

= min

{
K∑

k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}
, c+min

k

{
A

(k)
j,T (πj)

}}
, (11)



CAROMI et al.: FAST MULTIBAND SPECTRUM SCANNING FOR COGNITIVE RADIO SYSTEMS 67

posterior probability of band k will be updated. Clearly, this
is a function of πj , and we will use A(k)

j,T (πj) to denote this
function. As a result, we have (11), which is a function of πj

only, and we will use Jj,T (πj) to denote this function.
Now, the optimal band selection function is given by

φj = argmin
{
A

(k)
j,T (πj)

}
, (12)

which depends on πj .
From this result, we know that πj is a sufficient statistic

for this problem. Without loss of optimality, we can make our
decisions solely based on πj . Furthermore, since φj depends
on πj only, we have that {πj : j = 0, 1, · · · } forms a Markov
process.

Regarding the functions Jj,T (πj) and A
(k)
j,T (πj), we have

the following result. Let 0 denote a vector whose entries are
all zeros and 1 denote a vector whose entries are all ones.

Lemma 2: The functions Jj,T (πj) and A(k)
j,T (πj) are non-

negative concave functions of πj . And Jj,T (0) = Jj,T (1) =

A
(k)
j,T (0) = A

(k)
j,T (1) = 0.

Proof: The fact Jj,T (0) = Jj,T (1) = A
(k)
j,T (0) =

A
(k)
j,T (1) = 0 can be shown by using a simple inductive

argument.
The concavity of these functions can be shown in the same

manner as [30].
These supporting lemmas show that the finite-horizon ver-

sion of the optimization problem (6) can be converted to
a Markov optimal stopping time problem [25]. Using the
results from optimal stopping theory, we know that the optimal
termination rule τ has the following form

τopt = inf

{
j :

K∑
k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}

= c+min
k

{
A

(k)
j,T (πj)

}}
. (13)

That is, the optimal time to terminate the scanning is the time
when the cost that will incur if SU decides to stop scanning,
is equal to the minimal expected cost that will incur if SU
does not stop.

In summary, the optimal scanning algorithm with a deadline
T is described as follows:

1) Initialization: Given the maximum sensing time T , den-
sity functions q(k)0 and q(k)1 , the cost of errors c(k)0 and
c
(k)
1 , we use (8), (10) and (11) to recursively compute

the functions Jj,T (π) and A(k)
j,T (π).

2) After collecting a sample, we use (4) to update the pos-
terior probability that a selected band is being occupied.

3) Use (12) to select which band to sense if we decide to
continuing sensing.

4) Use (13) to decide whether we should terminate scan-
ning or not. If we decide to continue scanning, go back
to 2). If we decide to terminate scanning, then we use
decision rule (5) to decide the availability of each band.

Remark 1: In the delay-constrained scenario, the optimal
algorithm involves recursive computation of Jj,T (π) and
A

(k)
j,T (π), and frequent updating of the posterior probability

π
(k)
j . These steps incur high computational complexity and

thus are the major hurdles in the implementation. We will
develop several low-complexity algorithms in Section III-C
based on insights gained from the non delay-constrained
scenario discussed in Section III-B.

B. The Non Delay-Constrained Scenario

In this section, we consider the non delay-constrained
scenario. We can obtain the optimal solution for this problem
via two approaches. The first one is to let the delay constraint
T defined in Section III-A go to ∞. For each T , we obtain the
optimal solution as outlined in Section III-A. As T increases,
the solution will converge to the optimal solution for the case
with no deadline constraint. The convergence is guaranteed
by Theorem 3.7 of [25]. This approach will be explained in
detail in Section IV-B.

Another approach is to exploit the decoupled structure of
the optimization problem (6). In the following, we will adopt
this approach. For any stopping time τ , let τ (k) be the amount
of time we spend on detecting band k. We can express (6) as

cE

{
K∑

k=1

τ (k)
}
+

K∑
k=1

min
{
c
(k)
0 (1 − π

(k)
τ ), c

(k)
1 π

(k)
τ

}

=
K∑

k=1

{
cE{τ (k)}+min

{
c
(k)
0 (1− π

(k)
τ ), c

(k)
1 π

(k)
τ

}}
.

As a result, the quantity to be minimized is related to only
the total amount of detection time. Particularly, the quantity is
irrespective of sensing ordering φ (band selection rules). Once
E{τ (k)} + min

{
c
(k)
0 (1− π

(k)
τ ), c

(k)
1 π

(k)
τ

}
is minimized for

each band, the summation is also minimized. One key obser-
vation is that these K optimization problems are independent
of each other. We can minimize each term independently.
Note that this is not the case for the scenario considered in
Section III-A. In Section III-A, we need to stop before time

T and hence we have an additional constraint
K∑

k=1

τ (k) ≤ T ,

which couples these K optimization problems.
For each k, the solution that minimizes E{τ (k)} +

min
{
c
(k)
0 (1− π

(k)
τ ), c

(k)
1 π

(k)
τ

}
is the well-known SPRT al-

gorithm [25]. More specifically, for any c, c(k)0 , c(k)1 , q(k)0 and
q
(k)
1 , the solution is parameterized by two parameters U (k)

and L(k). The stopping rule of the sequential test at the kth
band is

ψ(k)
τ =

{
0, if L(k) < π

(k)
j < U (k),

1, otherwise,
(14)

and the terminal decision rule in (5) becomes

δ(k)τ =

{
1, if π

(k)
j ≥ U (k),

0, if π
(k)
j ≤ L(k).

(15)

The stopping rule in (14) requires the sequential test to
continue if the posterior probability lies within the bound-
aries U (k) and L(k), and to stop sensing otherwise. Once
the sequential test is stopped, a decision should be made
based on the terminal decision rule of (15). That is, claiming
hypothesis H(k)

0 if π(k)
j ≤ L(k) or claiming hypothesis H(k)

1

if π(k)
j ≥ U (k). In the original Wald’s SPRT [28], there is no

upper limit on the number of observations required to reach a
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decision. This may lead to an increase in number of samples
in case of ambiguous observations. However, this problem
will be treated in Section III-C by truncation as we propose
different truncation schemes as an alternative to the optimal
multiband delay-constrained scenario.

The optimization problem does not depend on φ and no
delay constraint is imposed on the scanning process. Hence,
with no loss of optimality, we can start scanning from band
1, once we finish scanning band 1, we switch to band 2. The
entire scanning process is terminated, once we finish scanning
band K . In summary, we have the following solution.

1) Initialization: Given density functions q(k)0 and q(k)1 , and
the costs of errors c(k)0 and c

(k)
1 , compute parameters

L(k) and U (k).
2) Starting from band 1, after taking each sample from

band k, use (4) to update the posterior probability. If
π(k) ∈ (L(k), U (k)), stay on band k to collect more
samples. If πk ≥ U (k), claim that band k is busy, and
switch to band k+1 to sense. If π(k) ≤ L(k), claim that
band k is free, and switch to band k + 1 to sense.

3) The scanning is finished, once we finish scanning band
K .

Remark 2: It is clear that the optimal algorithm is a con-
catenation of SPRTs (C-SPRT), which is much simpler as
compared with the solution for the delay-constrained scenario.

This algorithm can be further simplified for specific density
functions. For example, assuming Gaussian random vari-
ables, we have q0(Y

(k)
j ) = 1/π[σ(k)]2 exp(−|Y (k)

j |2/[σ(k)]2)

and q1(Y
(k)
j ) = 1/π(P (k) + [σ(k)]2) exp(−|Y (k)

j |2/(P (k) +

[σ(k)]2)). Here, [σ(k)]2 is the variance of the Gaussian noise
over band k and P (k) is the power of the signal over band k.
Let S(k) denote the set of time slots in which we select band
k to sense up to time j. Using Bayes’ rule and the fact that
the observations are assumed to be independent and identically
distributed (i.i.d.) [26], the posterior probability can be written
as

π
(k)
j =

π
(k)
0

∏
i∈S(k)

q
(k)
1 (Y

(k)
i )

π
(k)
0

∏
i∈S(k)

q
(k)
1 (Y

(k)
i ) + (1− π

(k)
0 )

∏
i∈S(k)

q
(k)
0 (Y

(k)
i )

,

hence π(k)
j > U (k) and π(k)

j < L(k) imply that

∏
i∈S(k)

q
(k)
1 (Y

(k)
i )

∏
i∈S(k)

q
(k)
0 (Y

(k)
i )

>
U (k)(1 − π

(k)
0 )

π
(k)
0 (1− U (k))

:= B
(k)
U , and

∏
i∈S(k)

q
(k)
1 (Y

(k)
i )

∏
i∈S(k)

q
(k)
0 (Y

(k)
i )

<
L(k)(1− π

(k)
0 )

π
(k)
0 (1− L(k))

:= B
(k)
L , (16)

respectively. Let SNR(k) = P (k)/[σ(k)]2 denote the signal-
to-noise ratio (SNR) at band k. Since Q0 ∼ CN (0, [σ(k)]2)
and Q1 ∼ CN (0, P (k) + [σ(k)]2), these two equations can be

further simplified as

∑
i∈S(k)

[Y
(k)
i ]2 > d(k)

(
|S(k)| log

(
1 + SNR(k)

)
+ logB

(k)
U

)
,

(17)∑
i∈S(k)

[Y
(k)
i ]2 < d(k)

(
|S(k)| log

(
1 + SNR(k)

)
+ logB

(k)
L

)
,

(18)

in which d(k) = [σ(k)]2(SNR(k) + 1)/SNR(k) and |S(k)| is
the size of the set S(k).

In general, it is difficult to obtain a closed form expressions
for the boundary values B(k)

U and B(k)
L [28]. Since the optimal

solution is the concatenated SPRT, we can use the approxi-
mation techniques for the SPRT to simplify the computation
of B(k)

L and B(k)
U . In practice, we will first specify the target

error probabilities. That is, P̄ (k)
FA and P̄

(k)
MD are given. Then,

using Wald’s approximation [25], [28], we have

B
(k)
U = (1− P̄

(k)
MD)/P̄

(k)
FA, B

(k)
L = P̄

(k)
MD/(1− P̄

(k)
FA). (19)

The actual false-alarm and misdetection probabilities of SPRT
using upper- and lower-bounds in (19) are upper-bounded by
the target P̄ (k)

FA and P̄ (k)
MD , respectively, and more importantly

the actual error probabilities become quite close to the target
counterparts when P̄

(k)
FA and P̄

(k)
MD are small. In SPRT, the

number of observations required to reach a decision is a ran-
dom number. The average (expected) sample number (ASN)
is thus considered as a useful benchmark for SPRT.

We next evaluate ASN of C-SPRT. Let us first consider
the kth band. Let τ (k)l be the sample number required to
reach a decision for the kth band under Hl for l = 0, 1.
Let us define Z

(k)
i := log

[
q
(k)
1 (Y

(k)
i )/q

(k)
0 (Y

(k)
i )

]
and

r(k) = 1/(SNR(k) + 1). We can readily compute Z
(k)
i =

log r(k)+ |Y (k)
i |2/d(k). By some straightforward computation,

we have μ
(k)
0 := E[Z

(k)
i |H0] = log r(k) + 1 − r(k) and

μ
(k)
1 := E[Z

(k)
i |H1] = log r(k)+[r(k)]−1−1. Following from

[25], we have E
[
τ
(k)
l |Hl

]
≈

1

μ
(k)
l

B
(k)
L [exp(tlB

(k)
U )− 1] +B

(k)
U [1− exp(tlB

(k)
L )]

exp(tlB
(k)
U )− exp(tlB

(k)
L )

,

where l = 0, 1 and tl is a nonzero constant satisfying
E[exp(tlZ

(k)
i )|Hl] = 1. It can be readily determined that t0

is equal to 1 while t1 is equal to −1. Clearly, the overall ASN
can be expressed as

E(τ) =
K∑

k=1

E
[
τ
(k)
l |H0

]
(1−π(k)

0 )+E
[
τ
(k)
l |H1

]
π
(k)
0 . (20)

To compare ASN of C-SPRT with the fixed sample size (FSS)
of the energy detector, we compute the minimum FSS required
to achieve target P̄ (k)

FA and P̄
(k)
MD in the multiband setup for

the same density functions above. The test statistic in this case
is the energy of the received signal compared to a threshold
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[27]. By simple manipulations, FSS can be expressed as

FSS =

K∑
k=1

(
1

SNR(k)

[
Q−1(P̄

(k)
FA)

− (SNR(k) + 1)Q−1(1 − P̄
(k)
MD)

])2

. (21)

In summary, we have the following simplified scanning
scheme:

1) Given target error probabilities P̄
(k)
MD and P̄

(k)
FA, we

use (19) to compute B(k)
L and B(k)

U .
2) After taking a sample Y (k)

i from band k, we use (17)
and (18) to decide whether we should skip to the next
band or not. If (17) is satisfied, claim that band k is busy
and skip to the next band. If (18) is satisfied, then we
declare that band k is free and skip to the next band.
If neither of these two is satisfied, stay on band k to
observe more samples.

C. Truncated C-SPRT Schemes

As mentioned above, the complexity of the optimal solution
for the delay-constrained scenario is very high. Inspired by
the solution for the scenario with no delay constraint, we
propose several truncated C-SPRT that can be used for the
delay-constrained scenario. In the truncated C-SPRT, SPRT
will be run on each band. However, a deadline will be
imposed on each band. If SPRT does not finish before the
deadline is reached, then it will be forced to finish, and
a decision will be made using the information gathered at
that time. In the following, we consider several truncation
methods, namely uniform truncation, tail truncation, uniformly
added truncation, and sequentially added truncation. All these
truncated algorithms are asymptotically optimal as the delay
constraint is relaxed. In these truncation schemes, we adopt a
simple and natural scanning order (from channel 1 to channel
K), which is not necessarily optimal. One can find the optimal
scanning order following the steps in [29]. However, the
complexity of the algorithm for finding the optimal scanning
order is very high. Since our goal is to find a low-complexity
but asymptotically optimal schemes, we opt to use this natural
scanning order.

1) Uniform Truncation: In the uniform truncation, we need
to finish detecting each band within a period of time T/K as
illustrated in Fig. 1. That is, the maximal detection time is
equal for all bands. In particular, the saved time for detecting
a band will not be reallocated for detecting other bands. As can
be seen from the above description, the advantage of uniform
truncation is that no random decision will take place in the
detection process, but the disadvantage of the method is that
it does not utilize the saved time from the bands that can be
quickly detected.

2) Tail Truncation: In the tail truncation, we need to finish
the detection process within a period of time T . It implies that
detection time is distributed unevenly among K bands. To be
specific, the maximum detection time for the kth band is T −∑k−1

l=1 τ
(l) as shown in Fig. 2. Intuitively, if T is sufficiently

large, then C-SPRT with tail truncation will be able to scan all
the bands, thus being able to achieve a probability similar to

...

1

2

3

K

τ (1)

τ (2)

τ (K)

T/K

T/K

τ (3) (T/K)

T/K

Fig. 1. An illustration of C-SPRT with the uniform truncation.

...

1

2

3

K

τ (1)

τ (2)

τ (3)

τ (K)

T

T − τ (1)

T − τ (1) − τ (2)

T −∑K−1
1 τ (k)

Fig. 2. An illustration of C-SPRT with the tail truncation.

one achieved by the non-truncated C-SPRT. If T is quite small,
then it is highly likely that C-SPRT with tail truncation will
not have time to finish detecting all K bands. In such a case,
we assume that a random decision (like tossing a coin) will
be made for undetected bands, thus incurring high detection
errors. This is the major disadvantage of C-SPRT with tail
truncation.

3) Uniformly Added Truncation: To overcome potential
drawbacks of the uniform truncation and the tail truncation,
we next present the uniformly added truncation. As shown in
Fig. 3, we initially set the maximal detection time to be T .
During the detection process, we will use the detection time
saved in any detection stage to extend the maximal detection
time for a later detection stage in a uniform manner. That
is, the saved detection time will be added to the maximum
detection time of the undetected bands equally. The max-
imum detection time for the kth band is T/K + Δ(k−1),
where Δ(k) can be recursively computed as Δ(0) = 0 and

Δ(k) = Δ(k−1) +
⌈
T/K+Δ(k−1)−τ (k)

K−k

⌉+
, where �x	+ denotes

max{0, x}. As an example, if K = 16, T = 1600 and
τ (1) = 10, then after detecting the first band, we save 90
sample periods and will use it to equally extend the maximum
detection time for the rest 15 bands. Thus, the maximum
detection time for the rest bands now is 106 sample periods.
By doing so, uniformly added truncation can guarantee that
no random detection will take place and the detector can fully
utilize available detection time.

4) Sequentially Added Truncation: In the uniformly added
truncation, the saved detection time will be added to the
maximum detection time of the undetected bands in a uniform
manner. Apparently, when T is small, it may lead to too
much truncation in an early detection stage. To amend this
deficiency, we next propose an alternative truncation method,
called the sequentially added truncation. The method is the
same as the uniformly add truncation except that the saved
time on detecting the current band will be used to extend only
the maximum detection time of the next band. The maximum
detection time of the kth band can be written as T/K+δ(k−1),
where δ(0) = 0 and δ(k) = δ(k−1) + �T/K − τ (k)	+.
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..

.

1

2

3

K

τ (1)

τ (2)

τ (K)

T/K

T/K +Δ(1)

T/K +Δ(3)

T/K +Δ(K−1)

Fig. 3. An illustration of C-SPRT with the uniformly added truncation.

IV. THE MULTIPLE SIMULTANEOUS OBSERVATION CASE

In this section, we consider the case in which the sensor can
take observations from more than one band at a time. Similar
to Section III, we consider both delay-constrained and non
delay-constrained scenarios. We discuss the two simultaneous
observation case (i.e., M = 2) in detail. The case with more
than two simultaneous observations is similar.

Again, we use π(k)
j to denote the posterior probability that

band k is occupied after collecting observations up to time
j. We define πj := (π

(1)
j , · · · , π(K)

j ). If φj = (k1, k2), that
is SU selects bands k1 and k2 to sense at time j, then via
Bayes’ rule, we can update the posterior probability of bands
k1 and k2 being occupied after collecting observations Y (k1)

j

and Y (k2)
j using the following equations

π
(k1)
j =

π
(k1)
j−1 q

(k1)
1 (Y

(k1)
j )

π
(k1)
j−1 q

(k1)
1 (Y

(k1)
j ) + (1− π

(k1)
j−1 )q

(k1)
0 (Y

(k1)
j )

,

π
(k2)
j =

π
(k2)
j−1 q

(k2)
1 (Y

(k2)
j )

π
(k2)
j−1 q

(k2)
1 (Y

(k2)
j ) + (1− π

(k2)
j−1 )q

(k2)
0 (Y

(k2)
j )

.

For band k that is not selected at time j, the posterior
probability π(k)

j is not updated, i.e., π(k)
j = π

(k)
j−1.

We first study the optimal terminal decision rules δ. Similar
to Section III, it is easy to show that the following simple
terminal decision rule is optimal:

δ(k)τ =

{
1, if c

(k)
1 π

(k)
τ ≥ c

(k)
0 (1− π

(k)
τ ),

0, if c
(k)
1 π

(k)
τ < c

(k)
0 (1− π

(k)
τ ),

(22)

for any k ∈ {1, . . . ,K}. This result suggests that the terminal
decisions can be made only based on πj . With these terminal
decision rules, the objective function in (2) under two simul-
taneous observations is again converted into

inf
τ,φ

E

[
cτ +

K∑
k=1

min
{
c
(k)
0 (1− π(k)

τ ), c
(k)
1 π(k)

τ

}]
. (23)

A. The Delay-Constrained Scenario

At each time instant j, SU needs to decide whether to ter-
minate scanning based on the observations that have been col-
lected so far. Similar to Section III, we use J̃j,T (Fj) to denote
the minimal expected cost-to-go function at time j. At first, it

is clear that J̃T,T =
K∑

k=1

min
{
c
(k)
0 (1− π

(k)
T ), c

(k)
1 π

(k)
T

}
, since

we have to stop at time T . Given J̃j+1,T (Fj+1), we have (24)

and the meaning of each term is the same as that of the single-
observation case.

J̃j,T (Fj) = min

{ K∑
k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}
,

c+ inf
φj

E

{
J̃j+1,T (Fj+1)|Fj , φj)

}}
. (24)

Similar to Section III, we have the following lemma that
simplifies the forms of the cost-to-go functions.

Lemma 3: For each j, the minimal expected cost-to-go
function J̃j,T (Fj) can be written as a function of πj , say
Jj,T (πj) and the optimal band selection function φj depends
only on πj .

Proof: We will prove the lemma by induction. Clearly,

J̃T,T (FT ) =
K∑

k=1

min
{
c
(k)
0 (1− π

(k)
T ), c

(k)
1 π

(k)
T

}
is a func-

tion of πT only. Let JT,T (πT ) denote this function. Sup-
pose that J̃j+1,T (Fj+1) depends on πj+1 only. Let us use
Jj+1,T (πj+1) to denote it. We now show that J̃j,T (Fj)
depends on πj only.

First, we have (25), since φj admits only
(
K
2

)
= K(K−1)

2
possible values, the term c + inf

φj

E {Jj+1,T (πj+1)|Fj , φj}
can be written as c+min

φj

E {Jj+1,T (πj+1)|Fj , φj}. If φj =

(k1, k2), then we have (26), since if we select bands k1
and k2, only the posterior probability of bands k1 and k2
will be updated. Clearly, this is a function of πj and is
denoted by A

(k1,k2)
j,T (πj). Then, we have (27) which is a

function of πj only, and we will use Jj,T (πj) to denote this
function. Now, the optimal band selection function is given
by φj = argmin

{
A

(k1,k2)
j,T (πj)

}
, which depends on πj .

From this result, we know that πj is a sufficient statistic
for this problem. Without loss of optimality, we can make our
decisions solely based on πj . Furthermore, since φj depends
on πj only, we have that {πj : j = 0, 1, · · · } forms a Markov
process. Regarding the functions Jj,T (πj) and A

(k1,k2)
j,T (πj)

we have the following result similar to Lemma 2.
Lemma 4: The functions Jj,T (πj) and A

(k1,k2)
j,T (πj) are

non-negative concave functions of πj . And Jj,T (0) =

Jj,T (1) = A
(k1,k2)
j,T (0) = A

(k1,k2)
j,T (1) = 0.

Proof: The proof is similar to that for Lemma 2, and thus
is omitted.

These supporting lemmas show that the finite-horizon ver-
sion of the optimization problem (23) can be converted to
a Markov optimal stopping time problem [25]. Using the
results from optimal stopping theory, we know that the optimal
stopping time τ has the following form

τopt = inf

{
j :

K∑
k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}

= c+ min
k1,k2

{
A

(k1,k2)
j,T (πj)

}}
. (28)

That is, the optimal stopping time is the time when the cost
that will incur if SU decides to stop scanning, is equal to the
minimal expected cost that will incur if SU does not stop.
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B. The Non Delay-Constrained Scenario

We next consider the non delay-constrained scenario. We
can obtain the optimal solution by driving the constraint T in
Section IV-A go to infinity as detailed in the following.

First, we have Jj,T+1(π) ≤ Jj,T (π), since the set of
allowed stopping time is enlarged if we allow the delay-
constraint T to increase. Furthermore, we have 0 ≤ Jj,T ≤ 1
for any j and T , and hence the following limit is well-
defined: lim

T→∞
Jj,T (π) = inf

T>j
Jj,T (π) = Jj,∞(π). Also,

we have Jj,∞(π) = Jj+1,∞(π), due to the i.i.d. nature of
the observations. We will use J(π) to denote this common
function. It is easy to check that J(π) is a concave function
in π. Furthermore, it can be shown that J(π) is unique.
By the dominated convergence theorem, the limit in (29)

is well defined. Hence, J(π) = min
{ K∑

k=1

min
{
c
(k)
0 (1 −

π(k)), c
(k)
1 π(k)

}
, c + min

k1,k2

{
A(k1,k2)(π)

}}
. As a result, the

optimal stopping rule is found in (30) and the band selection
rule is φj = argmin

{
A(k1,k2)(πj)

}
, which depends only on

πj .

τopt = min{j :
K∑

k=1

min
{
c
(k)
0 (1− π

(k)
j ), c

(k)
1 π

(k)
j

}

= c+ min
k1,k2

{
A(k1,k2)(πj)

}
}. (30)

We next discuss the structure of the optimal solution and
present a simple heuristic scheme. For any stopping time τ ,
let τ (k) be the amount of time we spend on detecting band
k. It is easy to see that in the optimal solution, we have τ =∑K

k=1 τ
(k)/2, since we will always make observations from

two bands at any time before we terminate the test. Hence, in
the optimal test, when the test is terminated, there exists a set

J̃j,T (Fj) = min

{
K∑

k=1

min
{
c
(k)
0 (1 − π

(k)
j ), c

(k)
1 π

(k)
j

}
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K1 ⊂ K such that
∑
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Using this observation, we can rewrite (23) as
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The constraint in (31) makes the problem challenging. The
approach to obtain the optimal solution mentioned above (i.e.,
by letting T → ∞) has a high computational complexity. In
the following, we propose a heuristic scheme. The basic idea
of the heuristic scheme is to drop the constraint in (31). This
allows us to decouple the optimization problem, and enables
us to derive a simple scheme that has a similar flavor as that
of the single observation case discussed in Section III. More
specifically, if we ignore the constraint in (31), then we have
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As a result, the quantity to be minimized is only related to
the total amount of detection time. Particularly, the quantity is
irrespective of sensing ordering φ (band selection rules). Once
c/2E{τ (k)}+min
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c
(k)
0 (1− π

(k)
τ ), c

(k)
1 π

(k)
τ

}
is minimized for

each k, the summation is also minimized. Again, now these K
optimization problems are independent of each other. Similar
to Section III-B, we can minimize each term independently
and obtain a heuristic solution in which SPRT is run on each
band.

C. Multiple Simultaneous Observation Truncated C-SPRT
Schemes

The same truncated C-SPRT schemes discussed in Sec-
tion III-C could be used for the multiple observations case
to reduce the complexity for the delay-constrained scenario.
The uniform and tail truncation schemes are very similar to
those of the single observation case. The available time T is
equally divided between all bands in the uniform truncation
scheme, while the total scanning time should not exceed
the available time T for the tail truncation scheme. In the
uniformly added truncation, the saved detection time from
each sensor will be added uniformly to the maximum detection
time of the undetected bands. Finally, for the sequentially
added truncation scheme, the saved time from each sensor
during the detection process will be added to the next available
band to scan.

V. NUMERICAL EXAMPLES

In this section, we provide several numerical examples
to illustrate the effectiveness of the algorithms developed in
this paper. In all the examples, we assume that π(k)

0 for
k = 1, . . . ,K is equal to 1/2 unless indicated otherwise and
the results are obtained by using Monte-Carlo simulations.

TABLE II
DETECTION PERFORMANCE OF C-SPRT FOR K = 4, 16, 64

SNR (dB) 0 −5 −10
PFA (K = 4, Monte Carlo) 0.005 0.04 0.09
PFA (K = 16, Monte Carlo) 0.005 0.04 0.09
PFA (K = 64, Monte Carlo) 0.005 0.04 0.09
PMD (K = 4, Monte Carlo) 0.008 0.05 0.1
PMD (K = 16, Monte Carlo) 0.008 0.05 0.1
PMD (K = 64, Monte Carlo) 0.008 0.05 0.1

ASN (K = 4, Monte Carlo) 85 305 1615
ASN (K = 16, Monte Carlo) 342 1222 6468
ASN (K = 64, Monte Carlo) 1368 4888 25875

ASN (K = 4, Numerical) 76 281 1548
ASN (K = 16, Numerical) 304 1126 6194
ASN (K = 64, Numerical) 1216 4502 24775

ASN (K = 16, PFA = PMD = 0.1) 161 844 6468
FSS (K = 16, PFA = PMD = 0.1) 240 1424 11600

ASN (K = 16, PFA = PMD = 0.01) 342 1990 16138
FSS (K = 16, PFA = PMD = 0.01) 784 4656 38192

Furthermore, we assume that both noise and signal are com-
plex Gaussian.

Test Example 1: Table II compares C-SPRT in terms of
false-alarm and misdetection probabilities and ASN for differ-
ent SNR for K = 4, 16, 64 for the single observation case. In
this table, we use PFA and PMD to denote average false-alarm
and misdetection probabilities. That is, PFA =

∑K
k=1 P

(k)
FA/K

and PMD =
∑K

k=1 P
(k)
MD/K . As can be observed from the

table, ASN increases linearly as K increases. ASN obtained by
Monte-Carlo simulation is quite close to one obtained by using
an approximation in (20). Table II also compares C-SPRT and
energy detection in terms of the number of samples required
to achieve the same false-alarm and misdetection probabilities.
As can be seen from the table, C-SPRT requires much less
ASN than energy detection in the cases of (PFA, PMD) =
(0.1, 0.1) and (PFA, PMD) = (0.01, 0.01). Furthermore, it
can be observed from the table that as compared to energy
detection, the lower the target error probabilities are, the higher
ASN savings can be achieved for C-SPRT.

Test Example 2: In this example, we compare four trunca-
tion methods in terms of the false-alarm probability, the mis-
detection probability for different cases of SNR, the number of
bands and truncation time for the single observation case. The
results of the error probabilities for three different parameter
configuration cases are shown in Table III. Fig. 4 shows ASN
versus SNR for the first case. Comparing the results of PFA

and PMD in this case (i.e., K = 16, T = 3560) and ASN in
Fig. 4 yields to a conclusion that when the delay constraint is
strict, all truncations suffers from large detection errors when
SNR is small while the non truncated C-SPRT suffers from
large ASN to scan all the available bands when SNR is small.
The tail truncation approach suffers a large number of random
decision errors and requires the largest ASN among these
truncation methods to achieve similar detection performance.

The overall performance shows that among the four trunca-
tion methods, the sequentially added truncation method yields
the most desirable tradeoff between the detection performance
and the detection delay. This is because the sequentially added
truncation method avoids random detection and fully utilizes
available detection time. In the second case, both the number
of bands, K , and the allowed time, T , are increased by a
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Fig. 4. ASN versus SNR of the truncation C-SPRT with K = 16 , T =
3560.
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Fig. 5. ASN versus SNR for multiple simultaneous observations without
a delay constraint.

TABLE III
DETECTION PERFORMANCE OF C-SPRT FOR DIFFERENT VALUES OF SNR

SNR=−15 dB SNR=−10 dB SNR=−5 dB

Methods PFA PMD PFA PMD PFA PMD

Case 1:
K = 16,
T = 3560

No Truncation 0.1014 0.1051 0.0917 0.0933 0.0773 0.0875

Uniform Truncation 0.4052 0.4262 0.2357 0.2528 0.0793 0.0913

Uniformly Added Truncation 0.4032 0.4147 0.2145 0.2341 0.0791 0.0922

Tail Truncation 0.4720 0.4670 0.2767 0.2747 0.0799 0.0933

Sequentially Added Truncation 0.3958 0.4183 0.2139 0.2239 0.0730 0.0951

Case 2:
K = 64,
T = 14240

No Truncation 0.0960 0.0983 0.0902 0.0973 0.0747 0.0933

Uniform Truncation 0.3986 0.4181 0.2339 0.2446 0.0745 0.0959

Uniformly Added Truncation 0.3988 0.4168 0.2201 0.2292 0.0773 0.0919

Tail Truncation 0.4693 0.4765 0.2750 0.2797 0.07916 0.0921

Sequentially Added Truncation 0.3969 0.4159 0.2184 0.2278 0.0768 0.0936

Case 3:
K = 64,
T = 113920

No Truncation 0.0962 0.0982 0.0910 0.0972 0.0751 0.0929

Uniform Truncation 0.2534 0.2624 0.0957 0.0997 0.0780 0.0961

Uniformly Added Truncation 0.2460 0.2535 0.0925 0.0973 0.0737 0.0931

Tail Truncation 0.3027 0.2991 0.0916 0.0980 0.0762 0.0922

Sequentially Added Truncation 0.2427 0.2454 0.0923 0.0945 0.0739 0.0913

factor of 4. From Table III, it is clear that the performance
is very similar to the first case. The results in the third case
show that the average number of errors decreases considerably
when the allowable delay T increases while K is fixed. The
truncated schemes perform similarly to non-truncated C-SPRT
when SNR increases.

Test Example 3: In this example, we illustrate the effect of
multiple simultaneous observations in the non delay-constraint
case. Fig. 5 shows ASN versus SNR of one band observation,
two-band observations and four-band observations at one time.
ASN decreases to about the half of the case of two-band
observations at one time compared to one band observation
and about 1/4 for the case of four-band observations at one
time.

Test Example 4: In this example, we show the effect of
multiple simultaneous observations in the delay-constrained
scenario. The truncation schemes are applied to the four
simultaneous observations case. The results of the error prob-
abilities are shown in Table IV. Fig. 6 shows ASN vs SNR
for the four simultaneous observations case with K = 16
and T = 3560. The overall performance of the multiple
observation truncation schemes shows that the sequentially
added truncation and the uniformly added truncation methods
have similar performance. A comparison between Fig. 6 and
Fig. 4 of single observation sense shows that the critical
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Fig. 6. ASN versus SNR for 4-simultaneous observations case with K = 16,
T = 3560.

SNR under which the truncation schemes have similar ASN
performance as that of the non truncation scheme is shifted
by about 3 dB in the four simultaneous observation. Table V
compares the error probability performance for various values
of M with the same delay constraint. It is clear that by
increasing the number of simultaneous observations, one can
reduce the error probabilities in scanning with the same delay
constraint.
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TABLE IV
DETECTION PERFORMANCE OF THE 4-SIMULTANEOUS OBSERVATIONS C-SPRT

SNR=−15 dB SNR=−10 dB SNR=−5 dB

Methods PFA PMD PFA PMD PFA PMD

Case1:
K = 16,
T = 3560

No Truncation 0.0921 0.0995 0.0908 0.0957 0.0750 0.0897

Uniform Truncation 0.3131 0.3241 0.1170 0.1169 0.0762 0.0938

Uniformly Added Truncation 0.3129 0.3247 0.1020 0.1054 0.0794 0.0958

Tail Truncation 0.3875 0.3900 0.0943 0.0939 0.0777 0.0953

Sequentially Added Truncation 0.3106 0.3248 0.0983 0.1039 0.0733 0.0920

Case2:
K = 64,
T = 14240

No Truncation 0.0958 0.1001 0.0896 0.0983 0.0758 0.0936

Uniform Truncation 0.3157 0.3290 0.1100 0.1176 0.0765 0.0914

Uniformly Added Truncation 0.3134 0.3243 0.0946 0.1033 0.0774 0.0954

Tail Truncation 0.3996 0.3973 0.0904 0.0995 0.0754 0.0922

Sequentially Added Truncation 0.3197 0.3233 0.0926 0.0996 0.0756 0.0942

Case3:
K = 64,
T = 113920

No Truncation 0.0942 0.0985 0.0891 0.0981 0.0773 0.0956

Uniform Truncation 0.1196 0.1234 0.0924 0.0961 0.0775 0.0952

Uniformly Added Truncation 0.1022 0.1056 0.0929 0.0994 0.0766 0.0921

Tail Truncation 0.0989 0.1006 0.0917 0.0972 0.0758 0.0923

Sequentially Added Truncation 0.0998 0.1021 0.0906 0.0982 0.0772 0.0955

TABLE V
DETECTION PERFORMANCE OF THE SINGLE AND MULTIPLE SIMULTANEOUS OBSERVATIONS C-SPRT, SNR = −10 dB

1 band sense 2 bands sense 4 bands sense
Methods PFA PMD PFA PMD PFA PMD

Case1:
K = 16,
T = 3560

No Truncation 0.0917 0.0933 0.0865 0.1003 0.0908 0.0957

Uniform Truncation 0.2357 0.2528 0.1613 0.1678 0.1170 0.1169

Uniformly Added Truncation 0.2145 0.2341 0.1367 0.1432 0.1020 0.1054

Tail Truncation 0.2767 0.2747 0.0992 0.1154 0.0943 0.0939

Sequentially Added Truncation 0.2139 0.2239 0.1279 0.1312 0.0983 0.1039

Case2:
K = 64,
T = 14240

No Truncation 0.0902 0.0973 0.0906 0.0985 0.0896 0.0983

Uniform Truncation 0.2339 0.2446 0.1594 0.1688 0.1100 0.1176

Uniformly Added Truncation 0.2201 0.2292 0.1307 0.1364 0.0946 0.1033

Tail Truncation 0.2750 0.2797 0.0953 0.0987 0.0904 0.0995

Sequentially Added Truncation 0.2184 0.2278 0.1064 0.1122 0.0926 0.0996

Case3:
K = 64,
T = 28480

No Truncation 0.0904 0.0969 0.0906 0.0984 0.0901 0.0934

Uniform Truncation 0.1605 0.1679 0.1072 0.1167 0.0931 0.0992

Uniformly Added Truncation 0.1311 0.1386 0.0967 0.1052 0.0925 0.0983

Tail Truncation 0.0942 0.1005 0.0914 0.0988 0.0903 0.0998

Sequentially Added Truncation 0.1009 0.1097 0.0924 0.0987 0.0908 0.0990

Case4:
K = 64,
T = 113920

No Truncation 0.0910 0.0972 0.0898 0.0959 0.0891 0.0981

Uniform Truncation 0.0957 0.0997 0.0927 0.0992 0.0924 0.0961

Uniformly Added Truncation 0.0925 0.0973 0.0925 0.0991 0.0929 0.0994

Tail Truncation 0.0916 0.0980 0.0914 0.0955 0.0917 0.0972

Sequentially Added Truncation 0.0923 0.0945 0.0930 0.0957 0.0906 0.0982

VI. CONCLUDING REMARK

In this paper, we have investigated fast spectrum scanning
algorithms for multiband CR systems using one or few narrow-
band detectors. Particularly, we have considered the single and
multiple simultaneous observation case. For each case, both
delay-constrained and non delay-constrained scenarios have
been studied. Using tools from optimal stopping theory, we
have developed optimal scanning algorithms that minimize
cost functions that take both detection error probabilities and
detection delay into consideration. For the single observation
case, the optimal algorithm for the delay-constrained scenario
requires large look-up tables and frequently updating of pos-
terior probabilities, thus having a prohibitive computational
complexity. In the non delay-constrained scenario with a single
observation, the optimal algorithm has been shown to be
C-SPRT, which can be implemented in a relatively simple

manner. We have shown that the truncated SPRT can be used
as a practical alternative for the finite-horizon case. Several
truncation methods have been proposed and investigated. The
results have also been extended to the multiple simultaneous
observations case. Extensive numerical examples have been
provided to show the effectiveness of the proposed algorithms.
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