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Abstract—In this paper, we propose a sequential spectrum
sensing algorithm for cognitive radio systems, which we term the
sequential shifted chi-square test (SSCT). SSCT has the following
attractive features for practical implementations. First, SSCT
employs a simple test statistic and thus has a low implementation
complexity. Secondly, SSCT is a sequential detection algorithm
and is capable of achieving performance comparable to fixed
sample size detection algorithms such as energy detection but
with much reduced sensing time. Thirdly, SSCT is essentially
a non-coherent detection algorithm in the sense that it does
not require any deterministic knowledge of the primary signals.
Lastly, SSCT is able to strike a desirable trade-off between
sensing performance and sensing time particularly in the signal-
to-noise ratio mismatched case. To evaluate sensing performance,
we derive the exact false-alarm probability for SSCT, and develop
numerical integration algorithms to compute misdetection prob-
ability and the average sample number. We further demonstrate
the performance of SSCT with several numerical examples.

Index Terms—Cognitive radio, energy detection, hypothesis
testing, spectrum sensing, sequential detection.

I. INTRODUCTION

AS a core enabling technology for cognitive radio (CR),
spectrum sensing has received considerable amount of

interest recently (see [1]–[8] and recent survey papers [9], [10]
and references therein). Albeit in essence a conventional signal
detection problem, spectrum sensing needs to meet certain
stringent requirements that stem from special characteristics
of CR systems. First, it is important for the spectrum sensing
algorithms to be robust to signal models as it is often difficult
in practice for secondary users (SUs) to acquire complete or
even partial knowledge about primary signals. Secondly, a
small detection delay is essential for the spectrum sensing even
under a fairly low detection signal-to-noise ratio (SNR) level
with low detection error probabilities. To this end, a number
of spectrum sensing algorithms including energy detection [5],
generalized likelihood ratio test [11], covariance sensing [12],
[13], [14] and feature detection [6] have been proposed and
studied. From a practical point of view, energy detection is
very attractive, primarily because it has a low implementation
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complexity and requires no deterministic knowledge of the
signals of primary users (PUs). However, to achieve a high
sensing accuracy, energy detection entails a large amount of
sensing time especially when the detection SNR is low [15].

To reduce sensing time, several sequential probability ratio
test (SPRT) based sensing algorithms have been proposed
under various CR settings [3], [16], [17]. The main motivation
of using SPRT as a sensing algorithm is that SPRT requires
the shortest average sensing time for any given false-alarm
and misdetection probabilities in the simple hypothesis testing
case [18], [19]. However, the detection delay of SPRT is highly
variable. Although the average detection delay of SPRT is
less than that of the fixed sample size detection algorithm
under the same error probabilities requirements, the detection
delay of SPRT in a particular realization might be significantly
larger than the average value. In CR systems, on the other
hand, the decision must be made within a short period of
sensing time [1]. In other words, sequential sensing algorithms
used in practice are essentially truncated algorithms. There
are two major drawbacks in the existing (truncated) SPRT-
based sensing algorithms [3], [16]. First, the complexity of
SPRT under practical signal models is high. In particular,
the test statistic of SPRT is updated and is compared to
lower- and upper-thresholds after taking each sample. Thus,
the computational complexity of the test statistic determines
the feasibility of SPRT. While in the simple hypothesis testing
case, evaluating the test statistic of SPRT is simple, but it
requires the perfect knowledge of primary signals. However,
acquiring such knowledge in practice is difficult in general.
In the absence of such knowledge, the evaluation of the
test statistics at each time slot involves a significant amount
of computation. Second, the performance of SPRT is fairly
sensitive to the choices of upper- and lower-thresholds. In [18],
Wald proposed an elegant method for selecting upper- and
lower-thresholds for the non-truncated SPRT. Existing SPRT-
based algorithms simply apply the Wald’s method to select
thresholds. Such selection does not work well for truncated
sensing algorithms since it leads to an increase in detection
error probabilities.

The goals of this paper are twofold: 1) to design low
complexity sensing algorithms that have good performance
and are amenable to implementation; and 2) to develop the
corresponding performance evaluation techniques that can
guide the proper choice of design parameters (as opposed
to the existing ad hoc approach). To this end, we develop
a truncated sequential spectrum sensing algorithm, called the
sequential shifted chi-square test (SSCT). SSCT possesses sev-
eral attractive features: 1) similar to energy detection, SSCT
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requires only the knowledge on the noise power and does not
require any deterministic knowledge of primary signals; 2)
compared to fixed-sample-size detection algorithms such as
energy detection, SSCT is capable of achieving a comparable
detection performance with much reduced average sensing
time; 3) in comparison with existing SPRT-based sensing
algorithms [16], SSCT has a much simpler test statistic and
has a lower implementation complexity; and 4) SSCT offers
desirable flexibility to strike a trade-off between detection per-
formance and sensing delay when the operating SNR is higher
than the minimum detection SNR. Furthermore, to evaluate the
detection performance of SSCT and hence guide the proper
choice of parameters, which is typically a challenging task, we
derive the exact false-alarm probability and provide numerical
integration algorithms to compute the misdetection probability
and the average sample number (ASN) in a recursive manner.

Furthermore, we notice that the problem of evaluating the
false-alarm probability of SSCT is similar to the exact oper-
ating characteristic (OC) evaluation problem associated with
truncated sequential life tests (T-SLT) with the exponential
distribution [20], [21]. The latter problem has been solved by
Woodall and Kurkjian [20]. Despite the similarity of these two
problems, the Woodall-Kurkjian approach cannot be directly
applied to evaluate the false-alarm probability of SSCT. In
addition, the Woodall-Kurkjian approach is not applicable
to evaluate ASN of T-SLT involving exponential distribution
[21]. As a byproduct, our approach for evaluating the false-
alarm probability of SSCT can be readily modified to evaluate
ASN for T-SLT in the exponential case.

The remainder of this paper is organized as follows.
Section II presents the problem formulation and provides
necessary preliminaries on the energy detection based and
SPRT-based sensing algorithms. Section III introduces SSCT
and its equivalent test procedure. Section IV deals with the
evaluation of the error probabilities of SSCT. In particular, this
section provides an exact result for the false-alarm probability,
and a numerical integration algorithm to recursively compute
the misdetection probability. Section V presents an evaluation
result on ASN of SSCT, while Section VI provides several
numerical examples. Finally, Section VII concludes the paper.

Notation: Boldface upper and lower case letters are used to
denote matrices and vectors, respectively; Ik denotes a k× k
identity matrix; E[·] denotes the expectation operator. (·)T
denotes the transpose operation; 1k denotes a k × 1 vector
whose entries are all ones; ℵq

p denotes a set of consecutive
integers from p to q, i.e., ℵq

p := {p, . . . , q}, where p is a
non-negative integer and q is a positive integer greater than p
or +∞; (·)c denotes a complement of a set; I{x≥t} denotes
an indicator function defined as I{x≥t} = 1 if x ≥ t and
I{x≥t} = 0 if x < t, where x is a variable and t is a constant.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we start by presenting a statistical for-
mulation of the spectrum sensing problem for a single SU
CR system. We next give a brief overview on two sensing
algorithms that are closely related to SSCT: energy detection
and a SPRT-based sensing algorithm.

A. Problem Formulation

In this paper, we assume that there is a single SU in the
CR system, which is allowed to access the licensed spectrum
of PU in an opportunistic manner. Upon receiving the signal
samples denoted by ri, SU is required to detect whether
there are primary signals or not before using the licensed
spectrum. We use si, i = 1, 2, . . . to denote the primary signal
samples. Such a signal detection problem can be written as the
following classic binary hypothesis testing problem:{

H0 : ri = wi, i = 1, 2, . . . ,

H1 : ri = hsi + wi, i = 1, 2, . . . ,
(1)

where wi denotes additive white Gaussian noise (AWGN)
with zero mean and variance σ2

w/2 per dimension, i.e., wi ∼
CN (0, σ2

w), and h is the channel coefficient between PU and
SU. We further assume that the channel coefficient h is a
constant during the sensing process, and the primary signal
samples si are independent and identically distributed (i.i.d.).

B. Preliminaries

1) Energy Detection: Energy detection is a fixed sample
size sensing algorithm in the sense that the decision is made
after collecting a fixed number of samples, say M . Let r be the
1×M received signal vector defined as r := [r1, r2, . . . , rM ].
In energy detection, we compute the energy of r and compare
it with a predetermined value. Mathematically, the testing pro-
cedure is described as: Accept H1, if T (r) :=

∑M
i=1 |ri|2 ≥

γed; Accept H0, if T (r) < γed, where γed denotes a threshold
for energy detection.

Since wi is a zero mean complex Gaussian random variable
(RV) with variance σ2

w/2 per dimension, 2T (r)/σ2
w is a

central chi-square RV with 2M degrees of freedom under H0,
and is a noncentral chi-square RV with 2M degrees of free-
dom and non-centrality parameter 2|h|2 ∑M

i=1 |si|2/σ2
w under

H1 conditioning on |si|2 , i = 1, . . . ,M . As M increases,
2|h|2 ∑M

i=1 |si|2/σ2
w approaches 2M |h|2σ2

s/σ
2
w, where σ2

s

denotes the average symbol energy. Define SNRm as the
minimum detection SNR, at which the requirements on the
target false-alarm and misdetection probabilities are satisfied.
The minimum detection SNR is a design parameter, which
depends on implementation scenarios but is not directly related
to a particular channel realization. In practice, it is highly
likely that SNRm is different from the exact operating SNR,
which is defined as |h|2σ2

s/σ
2
w. The exact operating SNR

depends on the channel gain h between PU and SU, which
is difficult to acquire in practice. To distinguish these two
different SNRs, we denote by SNRo the exact operating SNR.

It follows directly from the central limit theorem (CLT)
that as M approaches infinity, the distribution of 2T (r)/σ2

w

converges to a normal distribution as follows [2]: 2T (r)/σ2
w ∼

N (2M, 4M) under H0 while 2T (r)/σ2
w ∼ N (

2M(1 +
SNRm), 4M(1 + 2SNRm)

)
under H1. Let ᾱed and β̄ed be the

target false-alarm and misdetection probabilities, respectively.
Generally speaking, the number of required signal samples
M is determined by ᾱed and β̄ed. We use Mmin

ed to denote
the minimum number of sensing samples required to meet the
target ᾱed and β̄ed requirements when the detection SNR is
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Fig. 1. The test region of SSCT.

SNRm. As shown in [1], we have

Mmin
ed =

⌈
SNR−2

m

[
μ− ν · √2SNRm + 1

]2⌉ (2)

where μ := Q−1(ᾱed), ν := Q−1(1 − β̄ed), and �x� denotes
the smallest integer greater than or equal to x, Q(·) denotes
the complementary cumulative distribution function of the
standard normal RV, i.e., Q(x) := (2π)−1/2

∫∞
x e−t2/2dt, and

Q−1(·) denotes its inverse function. It is evident from (2)
that for energy detection, the minimum number of samples is
proportional to SNR−2

m for a sufficiently small SNRm [15].
It is clear from the description above that energy detection

has a simple test statistic and a low implementation complexity
[5]. In addition, known as a form of non-coherent detection,
energy detection requires only the knowledge of noise power
and does not rely on any deterministic knowledge about the
primary signal si. However, one major drawback of the energy
detection is that, at a low SNR, it requires a large amount of
sensing time to achieve low detection error probabilities.

2) A SPRT-Based Sensing Algorithm: In comparison with
a fixed-sample-size detection such as energy detection, SPRT
can achieve the same detection performance with a much
reduced ASN [19]. We next investigate a SPRT based sensing
algorithm that relies on the amplitude squares of the received
signal samples [3], [16].

To simplify the description, we review a case in which the
amplitude squares of primary signals, |si|2, i = 1, 2, . . ., are
perfectly known at SU. In this case, the spectrum sensing
problem formulated in (1) becomes a simple hypothesis testing
problem, which is the original setup considered by Wald [18].
Normalize |ri|2 as vi := 2|ri|2/σ2

w for the convenience of
derivation. Note that under H0, vi is an exponential RV with
rate parameter 1/2, and under H1, vi is a noncentral chi-
square RV (conditional on |si|2) with two degrees of freedom
and non-centrality parameter λi that can be readily obtained
as λi = 2|h|2|si|2/σ2

w. Hence, the probability density function
(PDF) of vi under H0 is

pH0(vi) =
1

2
e−vi/2 (3)

whereas under H1, the PDF of vi (conditional on λi) is

pH1(vi|λi) =
1

2
e−(vi+λi)/2I0(

√
λivi) (4)

where I0(·) is the zeroth-order modified Bessel function of
the first kind. After collecting N samples, we can express the
accumulative log-likelihood ratio as

LN(vN |λN ) = log
pv|H1

(vN |λN )

pv|H0
(vN )

=

N∑
i=1

zi

= −
N∑
i=1

λi/2 +

N∑
i=1

log I0(
√
λivi) (5)

where vN := (v1, v2, . . . , vN ), zi :=
log

(
pH1(vi|λi)/pH0(vi)

)
, and λN := (λ1, λ2, . . . , λN ).

The test procedure is given as follows: Accept H1, if
LN (vN |λN ) ≥ bL; Accept H0, if LN(vN |λN ) ≤ aL;
and continue sensing, if aL < LN (vN |λN ) < bL. In
[18], Wald specified a particular choice of thresholds
aL and bL for the non-truncated SPRT as follows:
aL = log β̄sprt/(1 − ᾱsprt), and bL = log(1 − β̄sprt)/ᾱsprt

where ᾱsprt and β̄sprt denote the target false-alarm and
misdetection probabilities, respectively. For a non-truncated
SPRT, the Wald’s choice on aL and bL yields true false-alarm
and misdetection probabilities that are fairly close to the
target ones.

Let z be a RV having the same PDF as zi. It has been
pointed out in [22] that, in SPRT, if hypotheses H0 and H1 are
distinct, then EH0 (z) < 0 < EH1(z), where EHi(·) denotes
the expectation under Hi, i = 1, 2. As evident from (5), one
shortcoming of this SPRT-based sensing algorithm is that the
test statistic contains a modified Bessel function, which may
result in a high implementation complexity. When the perfect
knowledge of the instantaneous amplitude squares of the pri-
mary signals is not available, PDF under H1 is not completely
known, i.e., the alternative hypothesis is composite. Generally
speaking, two approaches, the Bayesian approach and the
generalized likelihood ratio test, can be used to deal with such
a case. In the Bayesian approach, a prior PDF of the amplitude
squares of the primary signals is required and multiple summa-
tions over all possible amplitudes of the primary signals need
to be performed, whereas in the generalized likelihood ratio
test, a maximum likelihood estimation (MLE) of the amplitude
squares of the primary signals is needed [11]. Either of these
two approaches, however, leads to a considerable increase in
the implementation complexity.

III. A LOW-COMPLEXITY SEQUENTIAL SPECTRUM
SENSING ALGORITHM

We now propose a low-complexity sequential spectrum
sensing algorithm depicted as follows:

ΛN =

N∑
i=1

(|ri|2 −Δ
)
, (6)

in which Δ is a fixed and predetermined parameter. Suppose
that the detector has a decision deadline M . That is, the
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detector needs to make a decision within M samples. We
propose the following test procedure

Accept H1 :

if ΛN ≥ b for 0 < N ≤ M − 1, or if ΛM ≥ γ; (7)
Accept H0 :

if ΛN ≤ a for 0 < N ≤ M − 1, or if ΛM < γ; (8)
Continue Sensing :

if ΛN ∈ (a, b) for 0 < N ≤ M − 1 (9)

where a, b, and γ denote three predetermined and fixed
constants satisfying the following conditions: a < 0, b > 0,
and γ ∈ (a, b). In statistical term, the test procedure given in
(7)–(9) is nothing but a truncated sequential test. As depicted
in Fig. 1, the stopping boundaries of the test region consist of
horizonal lines b and a, which we call the upper- and lower-
boundary respectively. Notice that each term |ri|2 −Δ in ΛN

is nothing but a shifted chi-square RV. Hence, we simply name
this sensing algorithm described in (7)-(9) sequential shifted
chi-square test (SSCT). As can be seen from (6), SSCT has a
simple test statistic that contains only the amplitude squares
of the received signals and the parameter Δ.

Let r be a RV with the same PDF as |ri|2 − Δ, which
is the ith incremental term in the test statistic (6). Similar
to the SPRT case, we choose σ2

w < Δ < σ2
w(1 + SNRm) to

ensure EH0(r) < 0 < EH1(r). In SSCT, we have EH0(r) =
σ2
w−Δ and EH1 (r) = σ2

w(1+SNRo)−Δ. Using SNRm ≤ SNRo
and σ2

w < Δ < σ2
w(1 + SNRm), we always have EH0(r) <

0 ≤ SNRo − SNRm < EH1 (r). Note that with this choice, the
constant Δ depends on the minimum detection SNR instead
of the exact operating SNR. Normalize the test statistic ΛN

by σ2
w/2 and define Λ̄N := 2ΛN/σ2

w. We rewrite (6) as

Λ̄N =

N∑
i=1

(vi − 2Δ/σ2
w) (10)

where vi := 2|ri|2/σ2
w. Let ξN denote the sum of vi for

i = 1, . . . , N , i.e., ξN =
∑N

i=1 vi and let Δ̄ denote 2Δ/σ2
w.

Applying this notation, we rewrite Λ̄N as Λ̄N = ξN − NΔ̄.
We let Λ̄0 and ξ0 be 0 for notational simplicity. We further
define ai and bi as: ai = 0 for ℵP

0 , ai = ā+ iΔ̄ for i ∈ ℵ∞
P+1,

and bi = b̄+ iΔ̄ for b ∈ ℵ∞
0 , where ā := 2a/σ2

w, b̄ := 2b/σ2
w,

and P denotes the largest integer not greater than −a/Δ, i.e.,
P := floor(−a/Δ). Applying the notation ξN =

∑N
i=1 vi,

we express the test procedure (7)–(9) as

Accept H1 :

if ξN ≥ bN for 0 < N ≤ M − 1, or if ξM ≥ γ̄M ; (11)
Accept H0 :

if ξN ≤ aN for 0 < N ≤ M − 1, or if ξM < γ̄M ; (12)
Continue Sensing :

if ξN ∈ (aN , bN) for 0 < N ≤ M − 1 (13)

where γ̄M = γ̄ +MΔ̄ with γ̄ := 2γ/σ2
w. The corresponding

test region is depicted in Fig. 2, where the stopping boundaries
comprise two slant line segments. Define αssct and βssct as the
false-alarm and misdetection probabilities of SSCT, respec-
tively.
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Fig. 2. The test region of the transformed test procedure.

The issue of how to select thresholds a, b, and γ is critical to
the performance of SSCT. In [18], Wald proposed a method
to select appropriate thresholds for the non-truncated SPRT.
Since the proposed test procedure in (7)-(9) is a truncated
sequential test and is not necessarily a SPRT, the thresholds
selected by the Wald’s method cannot meet target detection
performance requirements in general.

As a result, an alternative approach to select thresholds is
needed. Typically, the thresholds a, b, γ, the parameter Δ,
and the truncated size M are selected beforehand and off-
line, either purposefully or randomly, and the corresponding
αssct and βssct are then computed. If the resulted αssct and
βssct do not meet the requirement, the thresholds and truncated
size are subsequently adjusted. This process continues until
a desirable error probability performance is obtained. In the
above process, the key and challenging step is to accurately
and efficiently evaluate αssct and βssct as well as ASN for
any prescribed thresholds a, b, γ, the parameter Δ, and the
truncated size M . In the following section, we will show how
to evaluate these quantities for SSCT.

IV. EVALUATIONS OF FALSE-ALARM AND MISDETECTION
PROBABILITIES

In this section, we present the exact false-alarm probability
result, and a numerical integration algorithm that obtains the
misdetection probability in a recursive manner [23] for any
given thresholds. We start by introducing some preparatory
tools, including three integrals that will be used for evaluating
the false-alarm probability.

A. Preparatory Tools

We introduce the first integral as follows:

f (k)
χk

(ξ) =

∫ ξ

χk

dξk

∫ ξk

χk−1

dξk−1 · · ·
∫ ξ2

χ1

dξ1, k ≥ 1 (14)

and f
(k)
χk

(ξ) = 1 for k = 0, where χ0 = ∅ and χk :=
[χ1, . . . , χk−1, χk] with 0 ≤ χ1 ≤ . . . ≤ χk. The superscript
k and the subscript χk are used to indicate that f

(k)
χk

(ξ) is
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a k-fold multiple integral with ordered lower limits specified
by χk. Evidently, the integral f (k)

χk
(ξ) is a polynomial in ξ of

degree k. Lemma 1 shows that the exact value of f (k)
χk

(ξ) can
be computed recursively (refer to Appendix A for the proof).

Lemma 1: The integral f (k)
χk

(ξ) is given by

f (k)
χk

(ξ) =

k−1∑
i=0

f
(k)
i (ξ − χi+1)

k−i

(k − i)!
+ f

(k)
k (15)

where f
(k)
i , i = 0, . . . , k, for k ≥ 1 can be obtained

recursively as follows: f (k)
i = f

(k−1)
i , i ∈ ℵk−1

0 and

f
(k)
k = −

k−1∑
i=0

f
(k−1)
i

(k − i)!
(χk − χi+1)

k−i (16)

with f
(0)
0 = 1. For the case where χ1 = χ2 = . . . = χk = χ,

the coefficients f
(k)
χk

is given by

f (k)
χk

=
1

k!
(ξ − χ)k. (17)

Additionally, the integral f
(k)
χk

(ξ) has the following useful
properties: 1) Differential Property: df (k)

χk
(ξ)/dξ = f

(k−1)
χk−1

(ξ)
with χk−1 = [χ1, . . . , χk−1] and k ≥ 2; 2) Scaling Prop-
erty: f

(k)
tχk

(tξ) = tkf
(k)
χk

(ξ) for t > 0; 3) Shift Property:
f
(k)
χk−δ1k

(ξ − δ) = f
(k)
χk

(ξ).
It is noteworthy to mention that the formula (15) together

with scaling and shift properties are particularly useful in
reducing round-off errors when evaluating f

(k)
χk

(ξ). These two
properties will be used to ensure the numerical stability of the
false-alarm probability computation method presented later in
this section. The second integral that will be useful is

I(0) := 1, and I(n) :=

∫
· · ·

∫
Ω(n)

dξn, n ≥ 1 (18)

where ξn := [ξ1, ξ2, . . . , ξn] with 0 ≤ ξ1 ≤ ξ2 · · · ≤ ξn, and
Ω(n) = {(ξ1, ξ2, . . . , ξn) : 0 ≤ ξ1 ≤ · · · ≤ ξn; ai < ξi <

bi, i ∈ ℵn
1}. For n = 1, we have I(1) =

∫ b1
a1

dξ1 = b1 − a1.
We define c and d as two parameters satisfying 0 ≤ c < d,
aN−1 ≤ c ≤ bN and aN ≤ d. For N ≥ 2, we define the
following vector

ψN
n,c=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[bn+1, . . . , bn+1︸ ︷︷ ︸
Q

, aQ+n+1, . . . , aN−1, c︸ ︷︷ ︸
N−Q−n

], n∈ℵN−Q−2
0

[bn+1, . . . , bn+1, c︸ ︷︷ ︸
N−n

], n ∈ ℵs−1
N−Q−1

bn+11N−n, n ∈ ℵN−2
s

where s and Q denote the integers satisfying bs < c ≤ bs+1

and aQ ≤ b1 < aQ+1 respectively. Let us define Ai as an
(N − n)× (N − n− i) matrix Ai = [IN−i−n|0(N−i−n)×i]

T

with i ∈ ℵN−n
1 . In addition, we define the following vectors

ψN−i
n,c = ψN

n,c ·Ai, i ∈ ℵN−n
1 an2

n1
= [an1+1, . . . , an2 ], n2 ≥

n1 ≥ 0, where ψN−i
n,c is an (N − i−n)× 1 vector and an2

n1
is

an (n1 − n2) × 1 vector. If n1 = n2, we define an2
n1

as ∅. In
what follows, we show that we can compute the exact value of
I(N) in (18) recursively (refer to Appendix B for the proof).

Lemma 2: The exact value of the integral I(N) is given by

I(N) = f
(N)

aN
0
(bN )−⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
I{N≥2}

N−2∑
n=0

(bN − bn+1)
N−nI(n)

(N − n)!
, N ∈ ℵQ

1

N−2∑
n=0

f
(N−n)

ψN
n,aN

(bN )I(n), N ∈ ℵ∞
Q+1

(19)

with I(0) = 1.
The third integral is given by

J
(N)
c,d (θ) : =

∫
· · ·

∫
Υ

(N)
c,d

e−θξNdξN (20)

where θ > 0, N ≥ 1, and Υ
(N)
c,d := {(ξ1, . . . , ξN ) : 0 ≤

ξ1 ≤ . . . ≤ ξN ; ai < ξi < bi, i ∈ ℵN−1
1 ; c < ξN < d}.

Recall that c and d are two non-negative numbers satisfying
aN−1 ≤ c ≤ bN and 0 ≤ c < d and d ≥ aN . We define the
following function

g
(n)
c,d (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(n)
[
θn−Ne−θbn+1 −

N−n∑
i=1

θ−i×

f
(N−n−i)
bn+11N−n−i

(d)e−θd
]
, c ≤ b1, n ∈ ℵN−2

0

I(n)
N−n∑
i=1

θ−i
[
f
(N−n−i)

ψN−i
n,c

(c)e−θc−

f
(N−n−i)

ψN−i
n,c

(d)e−θd
]
, c > b1, n ∈ ℵs−1

0

I(n)
[
θn−Ne−θbn+1 −

N−n∑
i=1

θ−i×

f
(N−n−i)
bn+11N−n−i

(d)e−θd
]
, c > b1, n ∈ ℵN−2

s .

In the cases of (c, d) = (γ̄N ,∞) and (c, d) = (aN , bN), the
exact values of the integral J (N)

c,d (θ) in (20) can be obtained
from the following lemma (refer to Appendix C for the proof).

Lemma 3: For any γ̄N satisfying aN ≤ γ̄N < bN , the exact
values of the integrals J

(N)
γ̄N ,∞(θ) and J

(N)
aN ,bN

(θ) are given by

J
(N)
γ̄N ,∞(θ) =

N∑
i=1

θ−if
(N−i)

aN−i
0

(γ̄N )e−θγ̄N

− I{N≥2}
N−2∑
n=0

g
(n)
γ̄N ,∞(θ) (21)

J
(N)
aN ,bN

(θ) =

N∑
i=1

θ−i
[
f
(N−i)

aN−i
0

(aN)e−θaN − f
(N−i)

aN−i
0

(bN)e−θbN
]

− I{N≥2}
N−2∑
n=0

g
(n)
aN ,bN

(θ). (22)

We next show how to apply these preparatory results to
evaluate the exact false-alarm probability.

B. False-Alarm Probability

Define EN := {ΛN ≥ b and a < Λn < b for n ∈ ℵN−1
1

with N ∈ ℵM−1
1 } and EM := {ΛM ≥ γ and a < Λn < b

for n ∈ ℵM−1
1 } and let PH0(EN ) be the probability of event
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EN occurring under H0. Since the test procedure described
in (7)-(9) is the same as that described in (11)-(13), we have

PH0(EN ) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
PH0(ai < ξi < bi, i ∈ ℵN−1

1 ; ξN ≥ bN),

for N ∈ ℵM−1
1 ;

PH0(ai < ξi < bi, i ∈ ℵM−1
1 ; ξM ≥ γ̄M ),

for N = M.

(23)

Clearly, the false-alarm probability αssct can be written as
αssct =

∑M
N=1 PH0(EN ). The following proposition gives the

exact false-alarm probability αssct.
Proposition 1: The false-alarm probability, αssct, is given by

αssct =
∑M

N=1 PH0(EN ), where PH0 (EN ) is given by

PH0(EN ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AN
b1b

N−2
N

(N − 1)!
, N ∈ ℵP+1

1 ;

AN

[
f
(N−1)

aN−1
0

(bN−1)− I{N≥3}
N−3∑
n=0

e
bn+1

2 PH0(En+1)

× (bN−1 − bn+1)
N−n−12n

(N − n− 1)!

]
, N ∈ ℵQ+1

P+2;

AN

[
f
(N−1)

aN−1
0

(bN−1)−
N−3∑
n=0

f
(N−1−n)

ψN−1
n,aN−1

(bN−1)×

2ne
bn+1

2 PH0(En+1)
]
, N ∈ ℵM−1

Q+2 ;

2−MJ
(M)
γ̄M ,∞(1/2), N = M,

(24)

where AN := 2−(N−1)e−bN/2.
Proof: To compute PH0 (EN ), we need to determine the

joint PDF of the RVs (ξ1, . . . , ξN ). Let pv|H0
(v1, . . . , vN |H0)

and pξ|H0
(ξ1, . . . , ξN |H0) denote the joint PDFs of the RVs

(v1, . . . , vN ) and the RVs (ξ1, . . . , ξN ) under H0, respectively.
Recalling that vi is an exponential RV distributed according
to (3), we can write the joint PDF of the RVs (v1, . . . , vN )

as pv|H0
(v1, . . . , vN |H0) = 2−Ne−

∑N
i=1 vi/2. Since ξN =∑N

i=1 vi, we have v1 = ξ1, v2 = ξ2−ξ1, . . . , vN = ξN−ξN−1,
which yields

pξ|H0
(ξ1, ξ2, . . . , ξN |H0) =

pv|H0
(ξ1, ξ2 − ξ1, . . . , ξN − ξN−1|H0) = 2−Ne−

ξN
2 , (25)

where ξ0 := 0 ≤ ξ1 ≤ · · · ≤ ξN . According to (23) and the
definition of Υ(N)

bN ,∞, we have

PH0(EN ) = PH0

(
(ξ1, ξ2, . . . , ξN ) ∈ Υ

(N)
bN ,∞

)
=

∫
· · ·

∫
Υ

(N)
bN ,∞

2−Ne−ξN/2dξN . (26)

Note that each variable ξi is lower-bounded by the maximum
of ai and ξi−1, and is upper-bounded by the minimum of bi
and ξi+1. Hence, a direct evaluation of (26) is highly complex
due to numerous possibilities of upper- and lower-limits of
(ξ1, ξ2, . . . , ξN ) [20].

Nevertheless, in the case of N ∈ ℵP+1
1 , the parameters ai

for i ∈ ℵN−1
1 are all zeros by the definition of the parameter

P . It implies that ξi is only lower-bounded by ξi−1 for i ∈
ℵN−1
1 , and accordingly the upper-bound of ξi can be readily

identified as bi for i ∈ ℵN−1
1 [20]. Using [20, Eqs. (16) and

(17)] and the fact that {bi}∞i=1 is an arithmetic sequence, we
obtain PH0(EN ) as follows

PH0 (EN )

=

∫ b1

ξ0

dξ1

∫ b2

ξ1

dξ2 · · ·
∫ bN−1

ξN−2

dξN−1

∫ ∞

bN

2−Ne−ξN/2dξN

=
b1b

N−2
N e−bN/2

2N−1(N − 1)!
, N ∈ ℵP+1

1 . (27)

We now consider the case of N ∈ ℵM−1
P+2 . Since ξN ∈

[bN ,∞) and bN > bN−1, the upper-limit of ξN−1 is actually
bN−1 irrespective of ξN . From (18), we can write (26) as

PH0(EN ) =

∫ ∞

bN

2−Ne−ξN/2dξN ·
∫

· · ·
∫

Ω(N−1)

dξN−1

= 2−(N−1)e−bN/2I(N−1) (28)

with N ∈ ℵM−1
P+2 . By applying (18), PH0(EN ) for N ∈ ℵQ+1

P+2

and N ∈ ℵM−1
Q+2 in (24) can be readily obtained. We next

compute PH0(EM ). Since γ̄M ∈ (aM , bM ), the upper-limit
of ξM−1 depends on both ξM and bM−1. Thus, the integrals∫
dξM and

∫ · · · ∫ dξM−1 are not separable. It is clear from
Lemma 3 that P (EM |H0) can be obtained from J

(M)
γ̄M ,∞(θ) by

setting θ = 1/2 and N = M in (21). Hence, we have

PH0(EM ) = PH0

(
(ξ1, . . . , ξM ) ∈ Υ

(M)
γ̄M ,∞

)
=

∫
· · ·

∫
Υ

(M)
γ̄M ,∞

2−Me−ξM/2dξM = 2−MJ
(M)
γ̄M ,∞

(
1/2

)
. (29)

From (27), (28), and (29), we can conclude the proof.
Remark 1: It is worth noting that the false-alarm probability

evaluation problem for SSCT is similar to the well-known
OC evaluation problem in T-SLT for exponential distribution.
Woodall and Kurkjian solved the exact OC problem for T-SLT
with exponential distribution [20]. Nevertheless, the Woodall-
Kurkjian solution to the exact OC problem is not applicable
to evaluate ASN [21]. More precisely, it is not applicable to
evaluate (29) directly. In the preceding proof, we propose a
different method to derive the exact false-alarm probability
αssct. With slight modifications, this method can also be used
to evaluate ASN for T-SLT in the exponential case.

C. Misdetection Probability

We now show how to evaluate the misdetection probability
βssct for SSCT. Evaluating βssct is more difficult than evaluating
αssct. The main reason is that to compute βssct, one needs to
know pH1(vi). However, computing pH1(vi) is intractable ex-
cept when primary signal samples have the constant-modulus
property, i.e., |si|2 = σ2

s . We next show that at a relatively
low detection SNR level, the misdetection probability obtained
by assuming constant-modulus primary signals can be used to
well approximate the actual βssct. Our arguments are primarily
based on the following two properties of SSCT.

The first property shows that as N approaches infinity, the
distribution of the test statistic ξN in SSCT converges to a
normal distribution that is independent of a specific choice of
λ1, λ2, . . . , λN .
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Property 1: The statistical distribution of ξN converges to
a normal distribution given by

ξN ∼
{
N (2N, 4N), under H0,

N (
2N(1 + SNRm), 4N(1 + 2SNRm)

)
, under H1,

as N approaches infinity.
The property can be readily proved by using CLT [22].

However, unlike energy detection, this property alone is not
sufficient to explain that the constant-modulus assumption is
valid in approximating βssct. This is because each ξN for
N = 1, . . . ,M , including small values of N , may potentially
affect the value of βssct. To complete our argument, we first
present the following definitions. Let ξ̃i denote the test statistic
using the constant-modulus assumption, i.e., |si|2 = σ2

s .
Define N := bN for N ∈ ℵM−1

1 and M := γ̄M for
N = M . Let FN and F̃N denote the events that ξN ≥ N ,
and ai < ξi < bi for i ∈ ℵM

1 , and ξ̃N ≥ N and ai < ξ̃i < bi
for i ∈ ℵM

1 , respectively. Let PH1 (FN ) and PH1(F̃N ) denote
the probabilities of the events FN and F̃N under H1. Let
β̃ssct denote the misdetection probability obtained by assuming
constant-modulus signals with average symbol energy σ2

s ,
i.e., |si|2 = σ2

s . As clear from their definitions, we have
βssct =

∑M
N=1 PH1 (FN ) and β̃ssct =

∑M
N=1 PH1(F̃N ).

Let AlN
N denote the event that ai < ξi < bi, i ∈ ℵlN

1 for
some integer lN ∈ ℵN

1 , and let ÃlN
N denote its counterpart

for the constant-modulus case. Let BlN
N denote the event that

ξN ≥ N and ai < ξi < bi, i ∈ ℵN
lN+1 and let B̃lN

N denote
its counterpart in the constant-modulus case. We now present
the second property (refer to Appendix D for the proof).

Property 2: For any ε > 0, if for each N , there exists a
positive integer lN ∈ ℵN

1 such that PH1 (AlN
N ) ≥ 1− ε/(3M),

PH1(ÃlN
N ) ≥ 1 − ε/(3M), and |PH1 (BlN

N ) − PH1 (B̃lN
N )| <

ε/(3M), then |βssct − β̃ssct| ≤ ε.
Relying on these two properties, we provide an outline

of our arguments. To achieve a high detection accuracy at
a low SNR level, ASN and M are typically quite large.
When the sample index N is relatively small, it is highly
unlikely that the test statistics ξN and ξ̃N cross either of the
two boundaries. In such a situation, there exists some integer
lN such that PH1 (AlN

N ) and PH1 (ÃlN
N ) are fairly close to

1 whereas PH1(BlN
N ) and PH1(B̃lN

N ) are fairly close to 0.
Hence, the conditions in Property 2 can be easily satisfied.
On the other hand, when N is relatively large, one can find a
sufficiently large lN such that PH1(AlN

N ) and PH1 (ÃlN
N ) are

fairly close to one while |PH1 (BlN
N )−PH1(B̃lN

N )| is sufficiently
small due to Property 1 guaranteed by the CLT. Collectively, at
a low detection SNR level, β̃ssct evaluated under the constant-
modulus assumption is a close approximation of βssct. There-
fore, we will focus on the case in which all λi’s are equal to
a constant λ := 2|h|2σ2

s/σ
2
w = 2SNRm.

Recall that under H1, vi is a non-central chi-square RV,
whose PDF involves the zeroth-order modified Bessel function
of the first kind as given in (4). Hence, it is mathematically
intractable to evaluate β̃ssct by applying the computational
approach used in Section IV-B. To obtain β̃ssct, we apply a
numerical integration algorithm proposed in [23].

Defining ui = vi − Δ̄, we express Λ̄N in (10) as Λ̄N =∑N
i=1 ui. Clearly, the PDF of ui under hypothesis H1 can be

rewritten as pH1(ui) =
1
2e

−(ui+Δ̄+λ)I0

(√
λ(ui + Δ̄)

)
, ui >

−Δ̄. Note that SSCT observes at most M samples before
making a decision. Let tk denote Λ̄M−k. We also use Gk(tk)
to denote the conditional misdetection probability conditioning
on the follow event: the first (M − k) samples have been
collected, the present observation value is tk = Λ̄M−k, and
the test statistic of the previous (M − k− 1) samples has not
crossed either the upper- or lower-boundary. When ā < tk < b̄
for k = 1, . . . ,M , SSCT needs to collect an additional sample
(the (M − k + 1)th sample). For notation simplicity, we use
u to denote the next observed value of ui. We can write the
conditional probability Gk(tk|u) as

Gk(tk|u) =

⎧⎪⎨
⎪⎩
0 if u > b̄− tk

1 if u < ā− tk

Gk−1(tk + u) if ā− tk ≤ u ≤ b̄− tk.

(30)

Using (30), we can compute Gk(tk) as

Gk(tk) =

∫ ā−tk

−∞
pH1(u)du+

∫ b̄−tk

ā−tk

Gk−1(tk + u)pH1(u)du

(31)

for k = 1, · · · ,M with the following initial condition:
G0(t0) = 0 if t0 ≥ γ̄ and G0(t0) = 1, otherwise. Note
that GM (0) is indeed the misdetection probability β̃ssct. By
applying the backward recursion algorithm described above,
the value of GM (0) is obtained.

Remark 2: Even though evaluation procedures of false-
alarm and misdetection probabilities described in this section
are complicated, they are performed in an off-line basis and are
only used to determine design parameters such as thresholds
a, b, γ, and M . Alternatively speaking, evaluation procedures
of false-alarm and misdetection probabilities are related to
the designs of the sensing algorithms. Nonetheless, they are
not the part of the SSCT-based sensing process and thus the
complexity of these evaluation procedures is not related to the
implementation complexity of SSCT.

V. EVALUATION OF THE AVERAGE SAMPLE NUMBER

In this section, we discuss how to evaluate ASN of the
proposed algorithm. Let Ns denote the number of samples
required to yield a decision. Clearly, Ns is a RV in SSCT,
and its mean value is ASN, which can be written as

E(Ns) = EH0(Ns)π0 + EH1(Ns)π1 (32)

where EHi(Ns) denotes ASN under Hi, and πi denotes the
priori probability of hypothesis Hi, for i = 0, 1.

According to (7)–(9), we have 1 ≤ Ns ≤ M . Hence, we
can express EHi (Ns) as

EHi(Ns) =
M∑

N=1

NPHi(Ns = N), i = 0, 1 (33)

where PHi(Ns = N) is the probability that the detector
makes a decision at the N th sample under Hi. We now
need to determine PHi(Ns = N). Let CN denote the event
that the test statistics (ξ1, ξ2, . . . , ξN ) do not cross either the
upper or lower boundary before or at the N th sample, i.e.,
CN = {(ξ1, ξ2, . . . , ξN ) ∈ Υ

(N)
aN ,bN

} for N ∈ ℵM
1 . For notional
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convenience, let us define C0 as a universe set. Hence, we have
P (C0) = 1. The test procedure described in (11)-(13) implies
that PHi(Ns = N), i = 0, 1 can be obtained as

PHi(Ns = N)
(a)
= PHi

(CN−1

)− PHi

(CN)
, N ∈ ℵM−1

1 (34)

PHi(Ns = M)
(b)
= PHi

(CM−1

)
, N = M (35)

where PHi(CN−1) and PHi(CN ) in (a) denote the respective
probabilities of the following events: under Hi, the test statistic
does not cross either the upper- or lower-boundary before or
at the (N − 1)th sample and the N th sample for N ∈ ℵM−1

1 ,
and PHi(CM−1) in (b) denotes the probability of the following
event: under Hi, the test statistic does not cross either upper-
or lower-boundary before or at the (M−1)th sample. Clearly,
using (34) and (35), we can express (33) as

EHi(Ns) =

M−1∑
N=1

N
(
PHi(CN−1)− PHi(CN )

)

+MPHi(CM−1) = 1 +

M−1∑
N=1

PHi(CN ). (36)

Applying Lemma 3, (25), (34), and (35), we obtain
PH0

(CN)
= 2−NJ

(N)
aN ,bN

(1/2), N ∈ ℵM−1
1 . Hence, accord-

ing to (36), we have

EH0(Ns) = 1 +
M−1∑
N=1

2−NJ
(N)
aN ,bN

(1/2). (37)

We next show how to obtain PH1(CN ), or equivalently
how to obtain PH1(Cc

N ). To compute PH1(Cc
N ), we apply a

similar computation method to the one used in computing the
misdetection probability. It should be noted that Cc

N indicates
the following event: under H1, the test procedure given in
(11)-(13) stops before or at the N th sample, i.e., the test
statistic crosses either the upper or lower boundary before or
at the N th sample. With a slight abuse of notation, we rewrite
Gk(tk) as Gk(tk, γ̄). We use VN to denote the following event:
the test statistic crosses the lower boundary before or at the
N th sample under H1, and we use UN to denote the following
event: the test statistic does not cross the upper-boundary
before or at the N th sample under H1. By the definitions
of VN , UN , and GN , we have PH1(VN ) = GN (0, ā) and
PH1(UN ) = GN (0, b̄). Clearly, we can write PH1 (Cc

N ) as

PH1

(Cc
N

)
= GN (0, ā) + 1−GN (0, b̄) (38)

where GN (t, ā) and GN (t, b̄) can be obtained by applying
(31) recursively. From (38), we have PH1 (CN ) = GN (0, b̄)−
GN (0, ā). According to (36), we have

EH1(Ns) = 1 +

M−1∑
N=1

(GN (0, b̄)−GN (0, ā)). (39)

In the following proposition, we present the ASN of SSCT.
Proposition 2: The ASN of SSCT can be obtained as

E(Ns) = π0

(
1 +

M−1∑
N=1

2−NJ
(N)
aN ,bN

(1/2)
)

+ π1

(
1 +

M−1∑
N=1

(GN (0, b̄)−GN (0, ā))
)
.

TABLE I
SCCT VERSUS ENERGY DETECTION

SNRm (dB) 0 −5 −10 −15
γ̄ −8.5 −5.69 −4 −1.897
b̄ 27 35.32 69.30 158.47
Δ̄ 3 2.316 2.100 2.032

αssct (Monte Carlo) 0.011 0.055 0.103 0.153
αssct (Numerical) 0.011 0.055 0.103 0.153

αed (Energy Detect.) 0.011 0.055 0.101 0.150
βssct (Monte Carlo) 0.008 0.046 0.099 0.154
βssct (Numerical) 0.008 0.047 0.100 0.156

βed (Energy Detect.) 0.008 0.046 0.096 0.149
ASN (Monte Carlo) 26 95 509 3154
ASN (Numerical) 26 96 515 3185
M (Energy Detect.) 40 140 730 4450

Efficiency η 35% 32% 30% 29%

Proof: The proof follows immediately from (32), (37),
and (39).

VI. NUMERICAL EXAMPLES

In this section, we present several numerical examples to
test the SSCT algorithm and validate the results obtained in
Sections IV and V. In these examples, the parameter Δ̄ is
selected to be 2 + SNRm. With this choice of Δ̄, we have
EH0 (|ri|2 − Δ) = EH1(|ri|2 − Δ) = −σ2

s/2, and thus
EH0 (ΛN) = −EH1(ΛN ) for every N ≥ 0. It implies that
statically, the Test Statistic ΛN moves the same distance
on average upwards or downwards at each step. Roughly
speaking, such choice of the parameter Δ will lead to an
approximately same average sample number under H0 or H1.
In the first three test examples, we select the parameter M
to be the minimum required sample number Mmin

ed for energy
detection to achieve the target false-alarm and misdetection
probabilities, and we choose ā to be −b̄. In all test examples,
the channel gains |h| are equal to one, and primary signals
are constant-modulus quadrature phase shift-keying (QPSK)
signals except for Test Example 2, in which the modulation
formats of the primary signals are explicitly stated. Follow-
ing conventional terminology in the sequential detection, we
define the efficiency of SSCT as ESSCT = 1−ASNSSCT/M

ed
min.

Test Example 1: Table I lists false-alarm and misdetec-
tion probabilities and ASN for different SNRm for both
SSCT and energy detection. For SNRm = 0, −5, −10, and
−15 dB, we select the corresponding truncation sizes to be
the minimum sample sizes required by energy detection to
achieve (ᾱed, β̄ed) = (0.01, 0.01), (0.05, 0.05), (0.1, 0.1), and
(0.15, 0.15), respectively. The parameters b̄, Δ̄ and γ̄ are given
in the table. Table I shows that while maintaining a comparable
detection performance, SSCT is capable of achieving about
29% ∼ 35% savings in terms of the average sensing time
as compared with energy detection. We use an abbreviation,
Numerical, in the parenthesis, to indicate the results obtained
by either the exact formula (24) for false-alarm probabilities
or by the numerical integration algorithm for misdetection
probabilities. As can be seen from the table, the results
obtained by the numerical approach and those obtained by
the Monte-Carlo simulation are fairly close.

Test Example 2: In this example, we assume that pri-
mary signals are square 64-quadrature amplitude modulation
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TABLE II
DETECTION PERFORMANCE WITHOUT KNOWING MODULATION TYPES

OF THE PRIMARY SIGNALS

SNRm (dB) 0 −5 −10 −15
βssct (QPSK,Monte Carlo) 0.008 0.046 0.099 0.154
βssct (QPSK,Numerical) 0.008 0.047 0.100 0.156

βed (QPSK,Energy Detect.) 0.008 0.046 0.096 0.149
βssct (64-QAM,Monte Carlo) 0.012 0.048 0.099 0.154
βssct (64-QAM,Numerical) 0.012 0.050 0.103 0.157

βed (64-QAM,Energy Detect.) 0.012 0.047 0.096 0.149
ASN (QPSK,Monte Carlo) 26 95 509 3154
ASN (QPSK,Numerical) 26 96 515 3185

ASN (64-QAM,Monte Carlo) 26 95 509 3154
ASN (64-QAM,Numerical) 26 96 514 3190

TABLE III
MISMATCH BETWEEN SNRm AND SNRo (SNRm = −15 dB)

SNRo (dB) −12 −13 −14 −15
βssct (Monte Carlo) 0.0018 0.0153 0.0629 0.154
βssct (Numerical) 0.0017 0.0151 0.0628 0.156

βed (Energy Detect.) 0.0012 0.0131 0.0584 0.149
ASN (Monte Carlo) 2425 2686 2948 3154
ASN (Numerical) 2499 2769 3035 3185
M (Energy Detect.) 4450 4450 4450 4450

Essct 46% 40% 34% 29%

(QAM) signals with σ2
s = 10SNRm/10σ2

w . Table II lists misde-
tection probabilities and ASN for SSCT and energy detection
when SNRm = 0, −5, −10, and −15 dB. To demonstrate the
fact that SSCT does not rely on the knowledge of the modu-
lation format of primary signals, we determine the parameters
ā, b̄, γ̄, Δ̄, and M in SSCT, by applying QPSK signals with
average symbol energy σ2

s = 10SNRm/10σ2
w while we apply

these design parameters determined by QPSK primary signals
to detect the i.i.d. 64-QAM signal samples, which are drawn
from 64-QAM constellation points with equal probability. It
is evident from the table that the misdetection probabilities
obtained in the 64-QAM case and the QPSK case match
well except for the case of SNRm = 0 dB (correspondingly,
M = 40). This is because M is not large enough to neglect
errors caused by using the CLT approximation. However, the
energy detection and SSCT sensing algorithms have a similar
amount of approximation error in terms of the misdetection
probability.

Test Example 3: In this example, we study the detection
performance of SSCT and the energy detection when there
is a mismatch between SNRo and SNRm. For SNRo = −12,
−13, −14 dB, and SNRm = −15 dB, the false-alarm and
misdetection probabilities and ASN are listed in Table III.
We choose the parameters for SSCT and energy detection
such that target false-alarm and misdetection probabilities are
around (0.15, 0.15) at SNRm = −15 dB. As can be seen
from the table, for both SSCT and energy detection, the
misdetection probabilities decrease as SNRo increases, while
the false-alarm probabilities keep the same. It is clear from the
table that the false-alarm and misdetection (αssct, βssct) satisfy
the target detection error probability requirements. As the
mismatch between SNRo and SNRm increases, the efficiency of
SSCT increases from 29% to 46%. This implies that compared
with the energy detection, SSCT offers an additional flexibility
in striking a desirable sensing time and detection performance
tradeoff in the SNR mismatch case.

TABLE IV
IMPACTS OF TRUNCATION SIZE M (SNRo = −5 dB, MONTE CARLO

SIMULATION)

M ā b̄ γ̄ ASN Tp η
M = 140 −35.32 35.32 −5.69 95.4 26.8% 32%
M = 160 −28.95 23.16 −5.50 76.7 9.2% 45%
M = 180 −27.33 21.54 −6.00 73.1 5.1% 48%
M = 200 −26.40 20.85 −6.32 71.2 3.0% 49%
M = 500 −25.48 19.69 −6.32 68.8 0.005% 51%
M = 1000 −25.42 19.63 −6.32 68.6 0 51%

SPRT − − − 67.9 0 52%

Test Example 4: Let Tp be the probability of the event
that SSCT ends at the M th sample (i.e., the test is truncated
at the M th sample). Table IV lists Tp, the ASN, and the
efficiency of SSCT for various selected combinations of M ,
ā, b̄, and γ̄ at SNRm = −5 dB to achieve target (ᾱssct, β̄ssct) =
(0.055, 0.046). The results shown in the table are obtained
by Monte Carlo simulation. To achieve roughly the same
false-alarm and misdetection probabilities, the sample size for
energy detection is chosen to be 140. As can be seen from this
table, the efficiency of SSCT increases as the truncated size
M increases but the pace of the improvement is diminishing.
Table IV also lists the efficiency of the non-truncated SPRT-
based sensing algorithm presented in Section II-B2. It is clear
from the table that as the truncated size M increases, the
efficiency of SSCT comes fairly close to the one achieved by
the non-truncated SPRT-based sensing algorithm.

VII. CONCLUSION

In CR networks, stringent requirements on the secondary
and opportunistic access to the licensed spectrum necessitate
the need to develop a spectrum sensing algorithm that is able
to quickly detect weak primary signals with high accuracy
in a non-coherent fashion. Motivated by this need, we have
proposed a sequential sensing algorithm that possesses several
desirable features suitable for CR networks. To efficiently
and accurately obtain major performance benchmarks of our
sensing algorithm, we have derived an exact formula for
the false-alarm probability and have developed numerical
integration algorithms to compute the misdetection probability
and ASN.

There are several potential extensions of this work that
deserve further exploration. First, our approach to determine
the design parameters such as the thresholds and the truncated
size follows the original Wald’s approach in the sense that
the cost of observations as well as the cost of the false-
alarm and misdetection events have not been considered. A
Bayesian formulation of SSCT can be an interesting extension.
Second, this work assumes the perfect knowledge on the noise
power at SU, which might be difficult to acquire in practice.
The effect of noise power uncertainty [15] on SSCT is worth
investigating. Third, another extension of this work is to study
sensing-throughput tradeoffs [1] for SSCT.

APPENDIX A
PROOF OF LEMMA 1

We prove the lemma by induction. It is obvious from (14)
that (15) holds for k = 1. Now suppose that (15) and (16)
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hold for the case of k − 1. By definition and the induction
assumption for k − 1, we have

f (k)
χk

(ξ)

=

∫ ξ

χk

( k−2∑
i=0

f
(k−1)
i

(k − 1− i)!
(ξk−1 − χi+1)

k−1−i + f
(k−1)
k−1

)
dξk−1

=

k−1∑
i=0

f
(k−1)
i

(k − i)!
(ξ − χi+1)

k−i −
k−2∑
i=0

f
(k−1)
i

(k − i)!
(χk − χi+1)

k−i.

(40)

Clearly, comparing (15) with (40), we can readily conclude
the recurrence relation given in (16). In particular, when χ1 =

χ2 = . . . = χk, all coefficients f (k)
i except f (k)

0 are zeros and
hence (17) follows immediately.

Since the differential property can be proved in a straight-
forward manner, we omit the proof. We next prove the scaling
property by induction. When k = 1, we have

f
(1)
tχ1

(tξ) =

∫ tξ

tχ1

dξ1 = t(ξ − χ1) = tf (1)
χ1

(ξ).

Hence, the scaling property holds for k = 1. We now suppose
that the property holds for k = n− 1. Applying the induction
assumption and a substitution tξn = u, we can rewrite the
integral f (n)

χn
(ξ) as

f (n)
χn

(ξ) =

∫ ξ

χn

f (n−1)
χn−1

(ξn)dξn =

∫ ξ

χn

t−(n−1)f
(n−1)
tχn−1

(tξn)dξn

= t−n

∫ tξ

tχn

f
(n−1)
tχn−1

(u)du = t−nf
(n)
tχn

(tξ).

Hence, the scaling property holds for k = n. This concludes
the proof. The shift property can be proved in a similar manner
and thus the proof is omitted. �

APPENDIX B
PROOF OF LEMMA 2

Recall that ξN =
∑N

i=1 vi with vi = 2|ri|2/σ2
w. Hence,

(ξ1, ξ2, . . . , ξN ) is a non-decreasing sequence, i.e., ξ0 ≤ ξ1 ≤
· · · ≤ ξN . Fig. 3(a) plots the parameter ξN versus the sample
index N . It is clear from its definition that the region Ω(N)

contains all possible sequences (ξ1, ξ2, . . . , ξN ) (called paths
hereafter) satisfying ξ0 ≤ ξ1 ≤ . . . ≤ ξN and 0 ≤ ai < ξi <
bi. Hence, the ith component of each path (ξ1, ξ2, . . . , ξN ) in
Ω(N) is lower-bounded by the maximum of ξi−1 and ai, and
is upper-bounded by the minimum of ξi+1 and bi. The direct
computation of I(N) is highly complex [20] due to numerous
possibilities for lower- and upper-limits in the integral I(N).
Considering the fact that I(N) can be readily computed if
either the lower- or upper-limit is a constant, we express Ω(N)

into an equivalent set, over which the integration can be readily
computed in a recursive fashion, thereby obviating the need
to exhaustively enumerate these possibilities.

Let φi, i ∈ ℵN
1 , denote a sequence of real numbers with

0 ≤ φ1 ≤ . . . ≤ φN . Let us first define the following set,

Π
(N−n)

φN
n

= {(ξn+1, ξn+2, . . . , ξN ) : 0 ≤ ξn+1 . . . ≤ ξN ;φi <

ξi ≤ ξi+1, i ∈ ℵN−1
n+1 ;φN < ξN < bN} (41)

where φN
n := [φn+1, . . . , φN ] is an (N −n)-dimensional real

vector with the ith entry of the vector φN
n being the lower

bound of ξn+i for i ∈ ℵN−n
1 . We next define the following

non-overlapping subsets of Π(N)

aN
0

,

Ξ(N)
n := {(ξ1, . . . , ξN ) : (ξ1, . . . , ξN ) ∈ Π

(N)

aN
0

,

ai < ξi < bi, i ∈ ℵn
1 ; bn+1 ≤ ξn+1 ≤ ξn+2} (42)

where n ∈ ℵN−2
0 . As can be seen from Figs. 3(b) and

3(c), Π(N)

aN
0

contains all possible paths, (ξ1, ξ2, . . . , ξN ), which
are lower-bounded by (a1, a2, . . . , aN ) and upper-bounded by
(ξ2, ξ3, . . . , ξN , bN ), whereas Ξ(N)

n for n ∈ ℵN−2
0 contains all

possible paths (ξ1, ξ2, . . . , ξN ) having the property that the
first n variables lie in the set Ω(n), i.e., (ξ1, . . . , ξn) ∈ Ω(n),
and the (n + 1)th variable ξn+1 excesses the upper slant
line, i.e., ξn+1 ≥ bn+1. Again, it is clear from its definition
that the set Ω(N) is equal to the difference between the set
Π

(N)

aN
0

and the union of Ξ
(N)
n for n ∈ ℵN−2

0 , i.e., Ω(N) =

Π
(N)

aN
0

∩ ( ∪N−2
n=0 Ξ

(N)
n

)c. Thus, it follows from (18) that

I(N) =

∫
· · ·

∫
Π

(N)

aN
0

dξN −
N−2∑
n=0

∫
· · ·

∫
Ξ

(N)
n

dξN . (43)

We now evaluate two terms on the right-hand side (RHS)
of (43). It is clear from (14) and (41) that the first term on the
RHS of (43) is nothing but f (N)

aN
0
(bN ). We next take a close

look at the second term. The evaluation of the second term is
categorized into the following two cases:

• Case 1: N ≤ Q: In this case, we have bn+1 > b1 ≥
an for any n ∈ {1, . . . , N}. It implies from (42) that
we can express Ξ

(N)
n as Ξ

(N)
n = Ω(n) × [bn+1, ξn+2] ×

· · ·× [bn+1, ξN ]× [bn+1, bN ] for n = 0, . . . , N−2 where
Ω(0) := ∅. According to (41), we have

Ξ(N)
n = Ω(n) ×Π

(N−n)
bn+11N−n

, n ∈ ℵN−2
0 . (44)

Since ξn+1 > bn+1 > bn > ξn, the integral over Ω(n)

and that over Π
(N−n)
bn+11N−n

are separable. Hence, relying
on (19), (42) and (44), we have∫

· · ·
∫

Ξ
(N)
n

dξN =

∫
· · ·

∫
Π

(N−n)
bn+11N−n

dξn+1 · · · dξN×

∫
· · ·

∫
Ω(n)

dξ1 · · · dξn = f
(N−n)
bn+11N−n

(bN )I(n). (45)

• Case 2: N ≥ Q + 1: The proof in this case follows
the same line of argument as that in the previous case.
The key difference is that because N ≥ Q + 1, some
an may be larger than bn+1, as depicted in Fig. 3(d).
To be specific, from the definition of Q, we have aQ ≤
b1 < aQ+1, . . . , aQ+n ≤ bn+1 < aQ+n+1, . . . , aN ≤
bN−Q+1 < aN+1.
1) For n ∈ ℵN−Q−1

0 , we have Ξ
(N)
n =

Ω(n) × [bn+1, ξn+2]× · · · × [bn+1, ξn+Q+1]︸ ︷︷ ︸
Q

×

[aQ+n+1, ξQ+n+2]× · · · × [aN−1, ξN ]× [aN , bN ]︸ ︷︷ ︸
N−Q−n

.
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Fig. 3. An illustration for Proof of Lemma 2.

Equivalently, Ξ
(N)
n = Ω(n) × Π

(N−n)

ψN
n,aN

with

ψN
n,aN

= [bn+1, . . . , bn+1︸ ︷︷ ︸
Q

, aQ+n+1, . . . , aN︸ ︷︷ ︸
N−Q−n

].

2) For n ∈ ℵN−2
N−Q, we have aN ≤ bn+1. Due to

ai ≤ aN for i ∈ ℵN−1
1 , we have ai ≤ bn+1 for all

i ∈ ℵN−1
1 . Since any (ξn+1, . . . , ξN ) ∈ Π

(N−n)

ψN
n,aN

belongs

to a Cartesian product of (N − n) intervals (a hyper-
rectangle) [bn+1, ξn+2] × . . . × [bn+1, ξN ] × [bn+1, bN ]
having the same lower limit bn+1, this case is the same
as Case 1. Equivalently, Ξ(N)

n = Ω(n) × Π
(N−n)

ψN
n,aN

with

ψN
n,aN

= bn+11N−n. Summarizing the preceding results
for Case 2, we have∫

· · ·
∫

Ξ
(N)
n

dξN =

∫
· · ·

∫
Π

(N−n)

ψN
n,aN

dξn+1 · · · dξN×

∫
· · ·

∫
Ω(n)

dξ1 · · · dξn = f
(N−n)

ψN
n,aN

(bN )I(n) (46)

where ψN
n,aN

= [bn+1, . . . , bn+1︸ ︷︷ ︸
Q

, aQ+n+1, . . . , aN︸ ︷︷ ︸
N−Q−n

] for

n ∈ ℵN−Q−1
0 and ψN

n,aN
= bn+11N−n for n ∈ ℵN−2

N−Q.

The proof follows immediately from (43), (45), and (46) and
the fact that the first term on the RHS of (43) is f

(N)

aN
0
(bN ). �

APPENDIX C
PROOF OF LEMMA 3

Though the idea of the proof can be extended to a general
case of aN−1 ≤ c and aN ≤ d, we will consider the following
two cases: Case 1: c := γ̄N ≤ bN and d := ∞, and Case 2:
c := aN and d := bN , which correspond to (21) and (22) re-
spectively. Define the following sets Θ

(N)
c,d := {(ξ1, . . . , ξN ) :

ξ0 ≤ ξ1 ≤ . . . ≤ ξN ; ai < ξi ≤ ξi+1, i ∈ ℵN−1
1 , c < ξN < d},

and Φ
(N,n)
c,d := {(ξ1, . . . , ξN ) : (ξ1, . . . , ξN ) ∈ Θ

(N)
c,d ; ai <

ξi < bi, i ∈ ℵn
1 ; bn+1 < ξn+1 ≤ ξn+2}, where Φ

(N,n)
c,d are

non-overlapping subsets of Θ(N)
c,d for n ∈ ℵN−2

0 . The integral
over Θ(N)

c,d can be readily computed as∫
· · ·

∫
Θ

(N)
c,d

e−θξNdξN =

∫ d

c

e−θξN f
(N−1)

aN−1
0

(ξN )dξN

=

N∑
i=1

θ−i
[
f
(N−i)

aN−i
0

(c)e−θc − f
(N−i)

aN−i
0

(d)e−θd
]

(47)
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where (47) is obtained by using integration by parts repeatedly
and the differential property df

(k)
χk

(ξ)/dξ = f
(k−1)
χk−1

(ξ).
• Case 1: aN ≤ γ̄N ≤ bN and d = ∞. Similarly to

the argument used in Lemma 2, we have Υ
(N)
γ̄N ,∞ =

Θ
(N)
γ̄N ,∞

⋂( ∪N−2
n=0 Φ

(N,n)
γ̄N ,∞

)c and thus we have

J
(N)
γ̄N ,∞(θ) =

∫
· · ·

∫
Θ

(N)
γ̄N ,∞

e−θξNdξN

−
N−2∑
n=0

∫
· · ·

∫
Φ

(N,n)
γ̄N ,∞

e−θξNdξN .

Substituting c = γ̄N and d = ∞ in (47) and using the
fact that e−θd is zero for θ > 0, we have∫

· · ·
∫

Θ
(N)
γ̄N ,∞

e−θξNdξN =

N∑
i=1

θ−if
(N−i)

aN−i
0

(γ̄N )e−θγ̄N .

1) For γ̄N ≤ b1, we have b1 ≥ aN since γ̄N ≥ aN . Since
ξn ≤ bn < bn+1, we have Φ

(N,n)
γ̄N ,∞ = Ω(n) × Π

(N−n)
bn+11N−n

and the integrations over Ω(n) and Π
(N−n)
bn+11N−n

are sep-
arable. Thus, applying integration by parts and the fact
f
(k)
χk

(χk) = 0, we obtain∫
· · ·

∫
Φ

(N,n)
γ̄N ,∞

e−θξNdξN

=

∫
· · ·

∫
Π

(N−n)
bn+11N−n

e−θξNdξn+1 · · · dξN ×
∫

· · ·
∫

Ω(n)

dξ1 · · · dξn

= I(n)
∫ ∞

bn+1

e−θξN f
(N−n−1)
bn+11N−n−1

(ξN )dξN

= I(n)θn−Ne−θbn+1. (48)

2) For γ̄N > b1, we have s ≥ 1 since bs < γ̄N ≤ bs+1.
Similarly to the argument used in Case 2 of the proof of
Lemma 2, we have Φ

(N)
n = Ω(n) ×Π

(N−n)

ψN
n,γ̄N

,

∫
· · ·

∫
Φ

(N,n)
γ̄N ,∞

e−θξNdξN = I(n) ×
N−n∑
i=1⎧⎨

⎩
θ−if

(N−n−i)

ψN−i
n,γ̄N

(γ̄N )e−θγ̄N , n ∈ ℵs−1
0

θ−if
(N−n−i)

ψN−i
n,γ̄N

(bn+1)e
−θbn+1, n ∈ ℵN−2

s .
(49)

This concludes the proof for Case 1.
• Case 2: c = aN and b = bN . Similarly to the method

used in Case 1, we have Υ
(N)
aN ,bN

= Θ
(N)
aN ,bN

⋂( ∪N−2
n=0

Φ
(N,n)
aN ,bN

)c and thus we can express J
(N)
aN ,bN

(θ) as

J
(N)
aN ,bN

(θ) =

∫
· · ·

∫
Θ

(N)
aN,bN

e−θξNdξN

− I{N≥2}
N−2∑
n=0

∫
· · ·

∫
Φ

(N,n)
aN ,bN

e−θξNdξN . (50)

The rest of the proof is analogous to that in Case 1. The
key difference is that in Case 2, the term e−θd is no
longer zero. From (47), the first term on the RHS of (50)
can be readily obtained as∫

· · ·
∫

Θ
(N)
aN ,bN

eθξNdξN =
N∑
i=1

θ−i
[
f
(N−i)

aN−i
0

(aN )eθaN−

f
(N−i)

aN−i
0

(bN )e−θbN
]
. (51)

Since bN−Q < aN ≤ bN−Q+1, we have s = N − Q in
this case. Similarly to the method used to derive (48) and
(49), we have∫

· · ·
∫

Φ
(N,n)
aN ,bN

e−θξNdξN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(n)
[
θn−Ne−θbn+1 −

N−n∑
i=1

θ−i

f
(N−n−i)
bn+11N−n−i

(bN )e−θd
]
, aN ≤ b1, n ∈ ℵN−2

0 ;

I(n)
N−n∑
i=1

θ−i
[
f
(N−n−i)

ψN−i
n,aN

(aN )e−θaN−

f
(N−n−i)

ψN−i
n,aN

(bN )e−θbN
]
, aN > b1, n ∈ ℵN−Q−1

0 ;

I(n)
[
θn−Ne−θbn+1 −

N−n∑
i=1

θ−i

f
(N−n−i)
bn+11N−n−i

(bN )e−θbN
]
, aN > b1, n ∈ ℵN−2

N−Q.

(52)

The proof for Case 2 follows clearly from (50)-(52). �

APPENDIX D
PROOF OF PROPERTY 2

Note that FN = AlN
N ∩ BlN

N and F̃N = ÃlN
N ∩ B̃lN

N .
Applying the inclusion-exclusion identity [24, p. 80], we have
PH1 (FN ) = PH1(AlN

N ) + PH1(BlN
N ) − PH1(AlN

N ∪ BlN
N ) and

PH1 (F̃N ) = PH1(ÃlN
N )+PH1 (B̃lN

N )−PH1(ÃlN
N ∪B̃lN

N ). Thus,
by using the triangle inequality, we have

|PH1(FN )− PH1(F̃N )| ≤
|PH1(AlN

N )− PH1(ÃLN

N )|+ |PH1(BLN

N )− PH1(B̃LN

N )|
+ |PH1(ALN

N ∪ BLN

N )− PH1(ÃLN

N ∪ B̃LN

N )|. (53)

Since 1 − ε/(3M) ≤ PH1(ALN

N ) ≤ 1 and 1 − ε/(3M) ≤
PH1 (ÃLN

N ) ≤ 1, we have 1 − ε/(3M) ≤ PH1(ALN

N ) ≤
PH1 (ALN

N ∪ BLN

N ) ≤ 1 and 1 − ε/(3M) ≤ PH1 (ÃLN

N ) ≤
PH1 (ÃLN

N ∪ B̃LN

N ) ≤ 1. It can be readily inferred from
the above inequalities that |PH1(ALN

N ) − PH1(ÃLN

N )| ≤
ε/(3M) and |PH1(ALN

N ∪ BLN

N ) − PH1(ÃLN

N ∪ B̃LN

N )| ≤
ε/(3M). This, along with the inequality (53) and the as-
sumption |PH1(BLN

N ) − PH1 (B̃LN

N )| ≤ ε/(3M), implies that
|PH1 (FN )−PH1(F̃N )| < ε/M . Hence, we have |βssct−β̃ssct| ≤∑M

i=1 |PH1 (FN )− PH1(F̃N )| ≤ ε. �
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