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Abstract— A (layered) broadcast approach is studied for the
fading wiretap channel without the channel state information
(CSI) at the transmitter. Two broadcast schemes, based on
superposition coding and embedded coding, respectively, are
developed to encode information into a number of layers and
use stochastic encoding to keep the corresponding information
secret from an eavesdropper. The layers that can be successfully
and securely transmitted are determined by the channel states
to the legitimate receiver and the eavesdropper. The advantage
of these broadcast approaches is that the transmitter does
not need to know the CSI to the legitimate receiver and the
eavesdropper, but the scheme still adapts to the channel states of
the legitimate receiver and the eavesdropper. Three scenarios of
block fading wiretap channels with stringent delay constraints
are studied, in which either the legitimate receiver’s channel,
the eavesdropper’s channel, or both channels are fading. For
each scenario, the secrecy rate that can be achieved via the
broadcast approach developed in this paper is derived, and the
optimal power allocation over the layers (or the conditions on
the optimal power allocation) is also characterized. A notion
of probabilistic secrecy, which characterizes the probability that
a certain secrecy rate of decoded messages is achieved during
one block, is also introduced and studied for scenarios when
the eavesdropper’s channel is fading. Numerical examples are
provided to demonstrate the impact of the CSI at the transmitter
and the channel fluctuations of the eavesdropper on the average
secrecy rate. These examples also demonstrate the advantage of
the proposed broadcast approach over the compound channel
approach.

Index Terms— Channel state information, fading channel,
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I. INTRODUCTION

AS A COMPLEMENT to cryptographic techniques, phys-
ical layer security exploits physical channel randomness

for secure transmissions without the use of secret keys.
Such an approach was first introduced by Wyner in [1] via
the wiretap channel model, and was further extended to a
more general broadcast scenario by Csiszár and Körner in
[2]. More recently, there has been a surge in interest in
applying this approach to wireless networks (see the recent
monographs [3] and [4] for overviews of recent work). As
physical layer security exploits physical channel statistics to
achieve secure communication, successful implementation of
this approach depends crucially on the transmitter’s knowledge
about the channel state information (CSI). Previous studies
have been mostly focused on scenarios in which the CSI is
available to the transmitter although there are some exceptions,
e.g., [5]–[8] and the references mentioned below. However,
in wireless networks, such CSI may not be available to the
transmitter possibly due to limited feedback resources. (The
receivers, however, may be able to estimate the channel states.)
More specifically for security concerns, eavesdroppers do not
generally have incentive to feed their channel states back to
transmitters. A reasonable approach to model channel uncer-
tainty is the compound wiretap channel, e.g., [9]–[13], and
arbitrary varying channel [14], [15], which guarantee secure
message transmission under any channel state, in particular
under the worst channel state. However, in order to guarantee
the performance for the worst case which may occur only
rarely, the channel resources are not used in an efficient
manner if the actual channel state is better than the worst
case. The focus of this paper is on the design of schemes
that achieve as high a secrecy rate as the legitimate receiver’s
channel supports, and as the eavesdropper’s channel permits.
Since the channel state is unknown to the transmitter, the
problem we address here is to design communication schemes
that do not exploit channel state realizations but still adapt to
the actual channel state that occurs in order to achieve as good
a secrecy performance as possible.

Towards this end, a novel (layered) broadcast approach is
especially appealing. This approach has been introduced for
wireless systems without secrecy constraints in [16] based
on superposition coding first introduced in [17] for broadcast
channels. In this strategy, the transmitter splits the entire
message into a number of components with each component
being transmitted via one layer of input. These layers of inputs
are then combined into one channel input using superposition
encoding. The receiver decodes the layers one after another
via successive interference cancelation. The realization of the
channel state of the receiver determines up to which layer
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the receiver can decode. More layers of messages can be
decoded if the receiver’s channel state is better. Hence, with
a fixed coding scheme that does not require the transmitter
to know the receiver’s channel state, such an approach still
allows the receiver to obtain as many layers of messages as
its instantaneous channel state supports. We also note that
the notion of the broadcast approach addressed in [16] has
been conceptually extended and streamlined by introducing
variable-to-fixed channel coding in [18].

In this paper, we generalize the broadcast approach in [16]
to the fading wiretap channel, in which both the legitimate
receiver’s and eavesdropper’s channels are time-varying block
fading channels, i.e., the channel states are constant over one
block and change ergodically across blocks. In particular, the
CSI, i.e., the instantaneous channel realizations, are not known
at the transmitter, and are known only at the corresponding
receivers. A delay constraint is assumed so that messages must
be transmitted within one block, i.e., coding across blocks
as in [5] is not allowed. Our goal is to design transmis-
sion schemes such that the legitimate receiver decodes more
information as its channel gets better, and out of information
decoded at the legitimate receiver, more information is kept
secure from the eavesdropper, as the eavesdropper’s channel
gets worse. We wish to characterize the rate of information
that is decodable at the legitimate receiver and is secure from
the eavesdropper. In particular, the performance measure of
interest here is the delay-limited secrecy rate averaged over a
long time range. This is different from the outage performance
studied in [19]–[21], which focused on the delay-limited rate
only over a short time range (say one coherence block).

We first develop two types of broadcast approaches respec-
tively for two simpler fading channel scenarios in which only
one of the channels is fading. These two approaches are then
combined to study the general scenario in which both channels
are fading. In the first scenario, only the legitimate receiver’s
channel is fading and the eavesdropper’s channel is constant.
For this scenario, the entire message is split into a number of
layers with each layer employing stochastic encoding [1], [2]
(also see [3, Section 2.3]) to achieve secrecy. These layers are
then combined using superposition coding. Depending on its
channel state, the legitimate receiver can decode messages up
to a certain layer. Since the eavesdropper’s channel is constant,
all layers of messages are guaranteed to be kept secure from
the eavesdropper via the stochastic encoding. Based on this
approach, we derive the average secrecy rate over a large
number of blocks for a given power allocation across layers
of messages. We then employ the Euler equation derived in
the calculus of variations to characterize the optimal power
allocation to achieve an optimal average secrecy rate.

In the second scenario, only the eavesdropper’s channel is
fading and the legitimate receiver’s channel is constant. In
contrast to the first scenario, in which layers of messages are
encoded into codewords in different subcodes, here all layers
of messages are encoded into one codeword in an embedded
fashion as in [22]. Each layer of messages corresponds to one
index that identifies the codeword. In particular, lower layers
of messages serve as randomization for protecting higher
layers of messages from the eavesdropper. Depending on the

eavesdropper’s channel state, all messages down to certain
layers are kept secure from the eavesdropper. We then derive
the average secrecy rate over a large number of blocks. We
further show that the secrecy rate achieved by this broad-
cast approach is the best secrecy rate that the instantaneous
channel allows although the transmitter does not know the
eavesdropper’s CSI. The only sacrifice due to the lack of the
CSI at the transmitter is that some lower layer messages may
not be kept secure from the eavesdropper. This is in contrast
to the first type broadcast approach developed for the case
when the legitimate receiver has a fading channel, for which
all messages transmitted over the channel are guaranteed to
be kept secure from the eavesdropper, but the secrecy rate
achieved may not be optimal.

For the third scenario, in which both channels to the
legitimate receiver and the eavesdropper undergo fading, we
combine the two types of broadcast approaches developed
above. In particular, the entire message is split into layers iden-
tified by two-dimensional index pairs (say along horizonal and
vertical index directions). For a given state of the legitimate
receiver (i.e., a fixed horizonal index), all layers of messages
are encoded via the vertical indices into one codeword in an
embedded fashion via the broadcast approach developed for
the second scenario, and codewords with different horizonal
indices are then encoded together via the broadcast approach
developed for the first scenario. Depending on its channel
state, the legitimate receiver can decode messages up to a
certain layer indexed by a horizonal index. Also depending on
the eavesdropper’s channel state, messages down to a certain
layer indexed by a vertical index can be kept secure from the
eavesdropper. Based on this scheme, we derive the average
secrecy rate over a large number of blocks for a given power
allocation across the layers of messages. We also employ
the Euler equation to characterize necessary conditions for
an optimal power allocation to achieve the optimal average
secrecy rate. We further illustrate the structure of the optimal
power allocation via a numerical example.

We note that from the three scenarios mentioned above,
it is clear that the broadcast approach does not guarantee
that all transmitted messages are kept secure from the eaves-
dropper for all eavesdropper states for the scenarios when
the eavesdropper experiences a fading channel. The eaves-
dropper’s actual channel state realization determines which
layers of messages are secure, and the probability that such
a state occurs determines the probability of achieving the
corresponding secrecy rate. We hence introduce and study
a notion of probabilistic secrecy, which characterizes the
probability that certain layers of decoded messages are kept
secure, i.e., the probability that the corresponding secrecy
rate is achievable. Furthermore, the probabilistic secrecy also
suggests that our broadcast approach protects different layers
of messages unequally with higher layers of messages being
more likely to be secure. Hence, for scenarios in which mul-
tiple messages with heterogeneous security demands need to
be simultaneously transmitted over the channel, the messages
with higher levels of security demands should be encoded
into layers with larger indices so that these messages are less
likely to be learned by the eavesdropper. We also note that
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the probabilistic secrecy is different from the deterministic
secrecy required for the classical wiretap channel [1], the
fading wiretap channel (see, e.g., [5], [23] and [24]), and the
compound wiretap channel (see, e.g., [9]–[13]), in which all
messages decoded by the legitimate receiver are guaranteed to
be secure (with probability one).

We then provide numerical examples to demonstrate the
impact of the CSI at the transmitter and the channel fluctua-
tions of the eavesdropper on the average secrecy rate. These
numerical results suggest that the legitimate receiver’s CSI
affects the secrecy rates much more than the eavesdropper’s
CSI. Without the legitimate receiver’s CSI, the transmitter has
to spread its power to accommodate a number of possible state
realizations, and such power spreading reduces the secrecy
rate. However, the eavesdropper’s CSI affects mostly the legiti-
mate receiver’s knowledge about which layers of messages are
secure, but does not affect much the amount of information
that is kept secure from the eavesdropper. Another important
factor that affects the secrecy rate are the channel fluctuations
(i.e., fading) of the eavesdropper, which create opportunities
for achieving better secrecy rates.

We finally note that this study is different from the recent
study in [25]. This study applies the conceptual idea of the
original broadcast approach in [16] of transmitting layers of
messages, but the actual coding scheme is different from that
in [16] by incorporating stochastic coding either for each
layer of messages or in an embedded fashion to guarantee
secrecy for messages. Hence, secrecy is achieved solely via
the broadcast approach, and no further feedback from the
legitimate receiver is allowed to assist secrecy achievement.
However, the study in [25] uses the original coding scheme in
[16] for signal transmission, which does not guarantee secrecy,
and secrecy of messages is instead achieved by allowing
feedback from the legitimate user.

The organization of the paper is as follows. In Section II,
we introduce our system model. In Sections III, IV, and V,
we study the three scenarios in more detail. In Section VI,
we provide numerical examples. Finally, in Section VII, we
conclude the paper with some comments on future directions.
We note that although the first two scenarios are special
cases of the third scenario, they are presented separately for
developing two types of broadcast approaches that are useful
for the general scenario. Including these two scenarios also
helps to understand better the combined approach for the third
scenario.

II. SYSTEM MODEL

In this paper, we study the fading wiretap channel
(see Fig. 1), in which a transmitter sends a message to a
legitimate receiver and wishes to keep this message secret
from an eavesdropper. Both the legitimate receiver’s and the
eavesdropper’s channels are corrupted not only by additive
complex Gaussian noise, but also by multiplicative fading
gain coefficients. The channel input-output relationship for one
channel use is given by

Y = H X + W and Z = G X + V (1)

Fig. 1. An illustration of the fading wiretap channel.

where X is the input from the transmitter, Y and Z are
outputs at the legitimate receiver and the eavesdropper respec-
tively, H and G are fading channel gain coefficients, and
the noise variables W and V are independent proper com-
plex Gaussian random variables with zero means and unit
variances. The noise variables are independent and identically
distributed (i.i.d.) over channel uses. The fading gain H and G
are assumed to experience block fading, i.e, they are constant
within a block and change ergodically across blocks. The
block length are assumed to be sufficiently long such that
one codeword can be successfully transmitted if properly
constructed.1 The channel input is subject to an average power
constraint P over each block, i.e.,

1

n

n∑

i=1

E
[
|Xi |2

]
≤ P (2)

where i denotes the symbol time (i.e., channel use) index, and
where n is the blocklength.

It is assumed that the transmitter does not know the instan-
taneous channel state information, and each receiver knows its
own channel state. Each message is required to be transmitted
within one block, i.e., the message is transmitted under a delay
constraint. The legitimate receiver is required to decode the
transmitted message with a small probability of error at the
end of each block, and the message needs to be kept as secure
as possible from the eavesdropper. The measure of security is
based on the equivocation rate given by

1

n
H (W |Zn) (3)

where Zn denotes the received outputs at the eavesdropper
over one block, and hence depends on the channel state
realization of the eavesdropper during this block. The message
W is kept secure from the eavesdropper during one block if
there exists a positive εn that approaches zero as n goes to
infinity such that

1

n
H (W |Zn) ≥ 1

n
H (W ) − εn .

In this paper, it is not required that all messages transmitted
over the channel be perfectly secure. However, our perfor-
mance measure is the secrecy rate, which is the rate of the

1We note that here we implicitly assume that the block length is the same
for both the legitimate receiver’s channel and the eavesdropper’s channel.
Such an assumption is not strictly needed. In fact, as long as the common
divisor of the block lengths of the legitimate receiver and the eavesdropper is
sufficiently large to accommodate one codeword, all the results developed in
the paper hold. In this case, each codeword length is the same as the common
divisor, and each actual block may contain multiple codewords.
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messages that are kept secure from the eavesdropper. If all
messages transmitted over one block are viewed as a single
message, then our performance measure can be interpreted
as the level of secrecy achieved for this message, i.e., the
equivocation of the message. Furthermore, we are interested
in characterizing the secrecy rate under the delay constraint,
but averaged over a large number of blocks. Namely, if we let
R(H, G) to denote the achievable secrecy rate corresponding
to the channel state pair (H, G), then the average secrecy rate
is given by E[R(H, G)].

We also introduce the notion of probabilistic secrecy, which
characterizes the probability that a certain secrecy rate of
decoded messages can be achieved during a block, i.e.,
decoded messages at a certain rate can be kept secure from
the eavesdropper. Such a probabilistic manner arises because
the eavesdropper’s channel is random and unknown to the
transmitter, and hence encoding at the transmitter may not
guarantee all messages decoded by the legitimate receiver to be
secure from the eavesdropper at any eavesdropper’s state. The
state of the eavesdropper determines which messages are kept
secure, and the probability that such a state occurs determines
the probability of achieving the corresponding secrecy rate.

III. FADING CHANNEL TO LEGITIMATE RECEIVER

In this section, we study the case in which only the
legitimate receiver experiences a block fading channel, i.e.,
H is a constant over one block and changes independently to
another realization from one block to another. The channel to
the eavesdropper is assumed to be a constant, i.e., G is fixed
and is hence known to every node. The transmitter does not
know the instantaneous channel state to the legitimate user, but
the legitimate receiver is assumed to know the channel state.
In the sequel, we first develop a layered broadcast approach
for the case with a discrete fading state and then generalize
the approach to the case with a continuous fading state.

A. Discrete Legitimate Channel States

We first consider the case in which the legitimate receiver
has a finite number of channel states, i.e., H may take L
values, say H1, . . . , HL with |H1| ≤ |H2| ≤ · · · ≤ |HL|.
For this channel, we propose a (layered) broadcast approach,
which generalizes the approach introduced in [16] for the
broadcast channel without secrecy constraints. More specif-
ically, the entire message is split into L parts, i.e., L layers of
messages denoted by Wl for l = 1, . . . , L.

Definition 1: A secrecy rate tuple (R1, . . . , RL) is achiev-
able if there exists a coding scheme that encodes the messages
W1, . . . , WL at the rate tuple (R1, . . . , RL) such that for
l = 1, . . . , L, the legitimate receiver decodes Wl with a small
probability of error if its channel realization is Hl , and all
messages W1, . . . , WL are kept secure from the eavesdropper.

We note that the above definition does not involve the prob-
abilities assigned to the legitimate receiver’s channel states,
and involves only specification of the messages that should
be decoded and kept secure at each state. In this sense, the
model here can be viewed as a system with multiple legitimate

receivers with each satisfying a decoding-secrecy requirement
specified in the above definition.

The following theorem characterizes secrecy rate tuples that
can be achieved by a broadcast approach.

Theorem 1: For the fading wiretap channel with the legit-
imate receiver having one of the L fading states H1, . . . , HL ,
where |G| < |H1| ≤ |H2| ≤ · · · ≤ |HL|, and with the
eavesdropper having a fixed channel state G, the following
secrecy rate tuples (R1, . . . , RL) are achievable:

Rl = log

(
1 + |Hl|2 Pl

1 + |Hl|2 ∑L
k=l+1 Pk

)

− log

(
1 + |G|2 Pl

1 + |G|2 ∑L
k=l+1 Pk

)
, l = 1, . . . , L (4)

where Pl denotes the transmission power assigned for trans-
mitting Wl and satisfies the power constraint

∑L
l=1 Pl ≤ P .

Remark 1: For the case when the legitimate receiver also
has a fixed fading state (i.e., the channel now is the Gaussian
wiretap channel), the total secrecy rate of all messages follow-
ing from Theorem 1 is optimal. Hence, the broadcast approach
that we develop (see the proof of Theorem 1) is optimal for
the Gaussian wiretap channel.

We note that in this degraded setting, since messages
decoded by a receiver with a worse channel state should
also be decoded by the receiver with a better channel state,
the legitimate receiver at the channel state Hl can decode
W1, . . . , Wl if (R1, . . . , RL ) is achievable. Hence, the total
rate of the messages that the legitimate receiver at the state
Hl can decode is given by

l∑

j=1

R j =
l∑

j=1

[
log

(
1 + |H j |2 Pj

1 + |H j |2 ∑L
k= j+1 Pk

)

− log

(
1 + |G|2 Pj

1 + |G|2 ∑L
k= j+1 Pk

)]

=
[ l∑

j=1

log

(
1 + |H j |2 Pj

1 + |H j |2 ∑L
k= j+1 Pk

)]

− log

(
1 + |G|2 ∑l

k=1 Pk

1 + |G|2 ∑L
k=l+1 Pk

)
. (5)

We also note that the second term in (4) seems to suggest
that the eavesdropper may also decode the current layer by
removing interference caused by the layers that it has decoded.
However, this interpretation is misleading. We will show below
that the eavesdropper does not obtain any information about
the messages W1, . . . , WL , i.e., perfect secrecy is achieved for
all layers of messages.

We next provide the proof of the above theorem, which
describes the layered broadcast approach in more detail.

Proof of Theorem 1: We consider a codebook that contains
L subcodebooks corresponding to L layers (see Fig. 2). For
each layer l, the subcodebook Cl contains 2nR̃l codewords
xn

l (wl) indexed by wl = 1, . . . , 2nR̃l , where

R̃l = log

(
1 + |Hl|2 Pl

1 + |Hl|2 ∑L
k=l+1 Pk

)
, (6)
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Fig. 2. A codebook for the broadcast approach.

1
n

∑n
i=1 x2

li (wl) ≤ Pl for wl = 1, . . . , 2nR̃l , and
∑L

l=1 Pl ≤ P .
These codewords are divided into 2nRl bins, where

Rl = log

(
1 + |Hl |2 Pl

1 + |Hl|2 ∑L
k=l+1 Pk

)

− log

(
1 + |G|2 Pl

1 + |G|2 ∑L
k=l+1 Pk

)
. (7)

The encoding scheme is described as follows. In order to
transmit a message tuple (w1, . . . , wL), for each l, the message
wl is mapped into the wl th bin in the subcodebook Cl , and
one codeword xn

l in the bin is randomly chosen with a uniform
distribution over the entire bin. The final input transmitted over
the channel is given by

xn =
L∑

l=1

xn
l .

Following steps similar to those in [3, Section 2.3], it can
be shown that there exists a codebook as described above such
that if this codebook and the encoding scheme as described
above are applied to the Gaussian wiretap channel with
the channels to the legitimate receiver and the eavesdropper
respectively being at the state Hl and G, the legitimate receiver
can successfully decode W1, . . . , Wl with a small probabil-
ity of error. Furthermore, the eavesdropper can successfully
decode Xn

l with a small probability of error if it knows
W1, . . . , Wl for all l = 1, . . . , L. Based on this property, it
can be shown that

1

n
H (W1, . . . , WL |Zn) ≥ 1

n
H (W1, . . . , WL ) − εn (8)

where εn goes to zero as n approaches infinity. The above
equation implies that perfect secrecy is achieved asymptoti-
cally as n approaches infinity. The details can be specialized
from the proof for Theorem 4 in Section V-A.

B. Continuous Legitimate Channel State

In this subsection, we generalize our result for the discrete
fading channel to the continuous fading channel. We still
assume that only the legitimate receiver’s channel is block
fading and the eavesdropper’s channel is fixed. Hence, the
legitimate receiver’s channel gain H can take continuous
values. For each channel state H = h, we let s = |h|2, and

Fig. 3. An illustration of layers of messages.

use s as an index for the layer of the message that is intended
for the legitimate receiver at the state h to decode. For each
layer s, we assume that the transmitter allocates power ρ(s)ds.
We use �(s) to denote the total power allocated to the layers
corresponding to better channel states, i.e., the states ŝ such
that ŝ > s. Hence,

�(s) =
∫ ∞

s
ρ(x)dx, (9)

and

ρ(s) = −�′(s). (10)

We note that in this paper we consider only the case in which
�(s) is differentiable.

The following result on the average secrecy rate follows
directly by applying Theorem 1.

Corollary 1: For the fading wiretap channel with the legit-
imate receiver having a block fading channel with continuous
states and the eavesdropper having a fixed channel state G,
the average secrecy rate under the delay constraint achieved
via a broadcast approach is given by

R = log e max
�(x)

∫ ∞

|G|2
(1−F(x))

[ −x�′(x)

1+x�(x)
+ |G|2�′(x)

1+|G|2�(x)

]
dx (11)

where f (·) is the probability density function of the fading
state s, and F(·) is the cumulative distribution function of s.

Proof of Corollary 1: Following from (4), we obtain the
following secrecy rate corresponding to layer s = |h|2. It is
clear that if s ≤ |G|2, then d R = 0. If s > |G|2, then the
secrecy rate is given by

d R = log

(
1 + sρ(s)ds

1 + s�(s)

)
− log

(
1 + |G|2ρ(s)ds

1 + |G|2�(s)

)

≈ log e

[
sρ(s)ds

1 + s�(s)
− |G|2ρ(s)ds

1 + |G|2�(s)

]
(12)

where the second approximate equation follows because ds
approaches zero. This approximation can be made rigorous
because for any given δ > 0, there must exist an interval
[−a, a] centered around x = 0 such that

x ≤ ln(1 + x) ≤ (1 + δ)x, ∀x ∈ [−a, a].
It can be seen that if the legitimate receiver’s channel is

at state s, then it can decode messages corresponding to all
layers x if x ≤ s (see Fig. 3). Hence, the total secrecy rate
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achievable if the legitimate receiver’s channel is at state s is
given by

R(s) = log e
∫ s

|G|2
xρ(x)dx

1 + x�(x)
− |G|2ρ(x)dx

1 + |G|2�(x)
. (13)

Averaging the above rate over all fading state realizations of
the legitimate receiver’s channel, we obtain

R =
∫ ∞

|G|2
f (s)R(s)ds

= log e
∫ ∞

|G|2
(1 − F(x))

[
xρ(x)

1 + x�(x)
− |G|2ρ(x)

1 + |G|2�(x)

]
dx

where f (·) is the probability density function of the fading
state s, and F(·) is the cumulative distribution function of s.
The above average rate can be further improved by optimizing
over power allocations ρ(·), or equivalently �(·). We can also
use (10) to replace ρ(x) in the final equation for the average
rate, which completes the proof.

To obtain the optimal average rate R given in (11) and
the corresponding optimal power allocation function �(·), we
study the following optimization problem. In particular, we
focus on continuous power allocation functions, i.e., �(·) is a
continuous function defined over [0,∞).

max
�(x)

∫ ∞

|G|2
S(x,�(x),�′(x))dx

subject to 0 ≤ �(x) ≤ P, �′(x) ≤ 0, for x ≥ 0 (14)

where

S(x,�(x),�′(x))

= (1 − F(x))

[ −x�′(x)

1 + x�(x)
+ |G|2�′(x)

1 + |G|2�(x)

]
. (15)

The following theorem characterizes the structure of the opti-
mal power allocation function.

Theorem 2: Let

η(x) = 1 − F(x) − (x − |G|2) f (x)

x f (x)(x − |G|2) − (1 − F(x))|G|2 . (16)

An optimal solution to (14), if one exists, has the following
structure. There exist 0 ≤ x1 < y1 < x2 < y2 < · · · <
xm < ym , such that η(x) is strictly decreasing over [xi , yi ] for
i = 1, . . . , n, η(x1) = P , η(yn) = η(x0) = 0, η(yi ) = η(xi+1)
for i = 1, . . . , m − 1, and

�∗(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0 ≤ x ≤ x1;
η(x) xi ≤ x ≤ yi ,

for i = 1, . . . , m;
η(yi ) = η(xi+1), yi < x < xi+1,

for i = 1, . . . , m − 1;
0 ym ≤ x .

(17)

Remark 2: The functions �(x) that satisfy the conditions
given in Theorem 2 may not be unique.

Remark 3: In Theorem 2, ym may be infinity.
Proof of Theorem 2: Based on the property that

0 ≤ �(x) ≤ P , and the fact that �(x) is continuous and

nonincreasing, it is clear that any optimal �∗(x) if one exists
must have the following form:

�∗(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0 ≤ x ≤ x1;
a strictly decreasing function xi ≤ x ≤ yi ,

for i = 1, . . . , m;
a constant, yi < x < xi+1,

for i = 1, . . . , m − 1;
0 ym ≤ x .

(18)

where 0 ≤ x1 < y1 < x2 < y2 < · · · < xm < ym .
The optimization problem (14) is a problem of the con-

strained calculus of variation. We thus apply the technique
in [26] to provide a necessary condition that �∗(x) satisfies.
Over the intervals (x1, y1], [xi , yi ] for i = 2, . . . , m − 1, and
[xm, ym), since �∗(x) is strictly decreasing, it does not satisfy
the inequality constraints in (14) with equality, i.e., it is not on
the boundary of the constraint set. Due to the complementary
slackness conditions [26], the following Euler equation must
be satisfied:

S� − d

dx
S�

′ = 0, (19)

where

S� = ∂S(x,�(x),�′(x))

∂�
,

S�′ = ∂S(x,�(x),�′(x))

∂�′ .

For the function S(x,�(x),�′(x)) given in (15), we obtain

S� = (1 − F(x))

[
x2�

′
(x)

(1 + x�(x))2 − |G|4�′(x)

(1 + |G|2�(x))2

]

S�′ = (1 − F(x))

[ −x

1 + x�(x)
+ |G|2

1 + |G|2�(x)

]

d

dx
S�

′ = x f (x)

1 + x�(x)
− f (x)|G|2

1 + |G|2�(x)

+(1 − F(x))

[
x2�

′
(x) − 1

(1 + x�(x))2 − |G|4�′
(x)

(1 + |G|2�(x))2

]
.

We substitute the above equations into the Euler equation and
obtain

�∗(x) = η(x) = 1 − F(x) − (x − |G|2) f (x)

x f (x)(x − |G|2) − (1 − F(x))|G|2 , (20)

over the intervals (x1, y1], [xi , yi ] for i = 2, . . . , m − 1,
and [xm, ym). This also implies that η(x) must be strictly
decreasing over these intervals. Due to the continuity of �∗(x),
the values of �∗(x) over (yi , xi+1) are given by η(yi ) =
η(xi+1) for i = 1, . . . , m − 1, which also implies that η(x)
must satisfy η(yi ) = η(xi+1) for i = 1, . . . , m − 1. Also due
to the continuity of �∗(x), η(x1) = P , and η(ym) = 0.

We note that in order to obtain �∗(x) and the intervals
[xi , yi ] for i = 1, . . . , m, one can start from setting �(0) = P ,
and gradually increase x to identify the intervals during which
the right-hand-side (RHS) of equation (20) strictly decreases
until the RHS of (20) drops to zero. These intervals are
then [xi , yi ] for i = 1, . . . , m. The function �∗(x) is clearly
obtained during this process.
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Example 1: In this example, we consider the case when
the channel to the legitimate receiver experiences Rayleigh
fading. Hence, s = |H |2 is exponentially distributed, and

f (x) = 1

σ1
e
− x

σ1 and F(x) = 1 − e
− x

σ1 , x ≥ 0 (21)

where σ1 is the parameter of the exponential distribution.
Substituting (21) into (16), we obtain

η(x) = σ1 − x + |G|2
x(x − |G|2) − σ1|G|2 . (22)

By solving η(x1) = P and η(y1) = 0, we obtain

y1 = σ1 + |G|2, and

x1 = (P|G|2−1)+
√

(P|G|2−1)2+4P(Pσ1|G|2+|G|2+σ1)
2P . (23)

It is easy to check that |G|2 < x1 < y1. We also note that
η(x) is strictly decreasing over the range [x1, y1], because the
numerator of η(x) is decreasing, and the denominator of η(x)
is increasing over the interval [x1, y1]. Since x1 and y1 are both
unique solutions to η(x1) = P and η(y1) = 0, respectively,
and η(x) is strictly decreasing over [x1, y1], the optimal �∗(x)
is thus given by

�∗(x) =

⎧
⎪⎨

⎪⎩

P 0 ≤ x ≤ x1;
η(x) x1 ≤ x ≤ y1;
0 y1 ≤ x .

(24)

Since the above �∗(x) is the unique function that satisfies the
conditions given in Theorem 2, it is the only possible optimal
solution for the power allocation function.

By taking the derivative of �∗(x), we obtain

ρ∗(x) = −�∗′(x)

= −x2 + 2σ1x − 2σ1|G|2 + 2|G|2x − |G|4
(x(x − |G|2) − σ1|G|2)2 . (25)

By substituting �∗(x) and �∗′(x) to (11), we can obtain the
optimal average secrecy rate via a broadcast approach for the
Rayleigh fading channel. Numerical results are provided in
Section VI.

IV. FADING CHANNEL TO EAVESDROPPER

In this section, we study the case in which only the
eavesdropper experiences a block fading channel, i.e., G is a
constant over each block, and changes independently from one
block to another. The legitimate receiver’s channel gain H is
assumed to be a constant, and is thus known to all nodes. As
for the case in which only the legitimate receiver’s channel
is fading, it is assumed that the transmitter does not know
the instantaneous channel state to the eavesdropper, but the
eavesdropper knows its own channel state. In the rest of this
section, we first study the case with a discrete fading state,
and then generalize our result to the case with a continuous
fading state.

A. Discrete Eavesdropping Channel States

We first consider the case in which the eavesdropper has
a finite number of channel states, i.e., G may take L values,
say G1, . . . , GL with |G1|2 < |G2|2 < · · · < |GL |2 < |H |2.
We note that if the eavesdropper’s best state is better than
the legitimate receiver’s state |H |2, then no message can
be made secure for the eavesdropper’s states that are better
than |H |2. However, our following results are still applicable
by considering only the eavesdropper’s states that are worse
than |H |2.

For this case, we develop a second type of broad-
cast approach that is different from the one developed in
Section III. To proceed, we start by splitting the entire message
into L layers of messages W1, W2, . . . , WL .

Definition 2: A secrecy rate tuple (R1, . . . , RL) is achiev-
able if there exists a coding scheme that encodes W1, . . . , WL

at the rate tuple (R1, . . . , RL ) such that the legitimate receiver
can decode all messages with a small probability of error,
and message Wl is kept secure from the eavesdropper if the
eavesdropper’s channel state is Gl for l = 1, . . . , L.

The following theorem characterizes achievable secrecy rate
tuples via a broadcast approach.

Theorem 3: Consider the fading wiretap channel with
the legitimate receiver having a fixed channel state H and
the eavesdropper possibly having one of L fading states
G1, . . . , GL with |G1|2 < |G2|2 < · · · < |GL |2 < |H |2. The
following secrecy rate tuples (R1, . . . , RL ) are achievable:

Rl = log
(

1 + |Gl+1|2 P
)

− log
(

1 + |Gl |2 P
)

,

for l = 1, . . . , L − 1; (26)

RL = log
(

1 + |H |2 P
)

− log
(

1 + |GL |2 P
)
. (27)

Since the messages that are secure from the eavesdropper
with the state G j are also secure from the eavesdropper with
the state Gl if |G j | > |Gl |, all Wl , . . . , WL are secure from
the eavesdropper at the state Gl if (R1, . . . , RL ) is achievable.
Hence, the total rate of the messages that are secure from the
eavesdropper at the channel state Gl is given by

Rl + Rl+1+ · · · + RL = log
(
1 + |H |2 P

)
−log

(
1 + |Gl |2 P

)
.

(28)

We note that the secrecy rate in (28) is equal to the
secrecy capacity of the channel with the state pair (H, Gl).
Hence, the second type broadcast approach (described in the
proof for Theorem 3) achieves the best secrecy rate that the
instantaneous channel allows although the transmitter does not
know the eavesdropper’s CSI. The only sacrifice due to the
lack of the CSI at the transmitter is that some lower layer
messages may not be kept secure from the eavesdropper. This
is in contrast to the first type of broadcast approach developed
for the case when the legitimate receiver has a fading channel,
for which all messages transmitted over the channel are
guaranteed to be kept secure from the eavesdropper, but the
secrecy rate achieved may not be optimal.

We note that although the legitimate receiver does not know
the eavesdropper’s channel state, the broadcast approach still
prevents the eavesdropper from knowing certain layers of
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information with these layers determined by the eavesdrop-
per’s channel state. However, without knowing the eavesdrop-
per’s channel state, the legitimate receiver knows only the
probability that certain layers of messages are kept secure,
which is referred to as probabilistic secrecy and is studied in
the following subsection.

We next provide the details of the proof for Theorem 3,
in which the second type broadcast approach is developed in
detail.

Proof of Theorem 3: In contrast to the broadcast approach
developed for proving Theorem 1 that employs a subcodebook
for each layer of messages, the broadcast approach here
generalizes the embedding code structure proposed in [22]
that uses only one codebook. Each codeword is indexed by
a random index and all layers of messages. Depending on
the channel state of the eavesdropper, up to certain layers of
messages jointly with the random index serve as randomness
to protect the remaining higher-layer messages. In this way,
these higher-layer messages can be viewed as a vector bin
number, and the lower-layer messages and the random index
can be viewed as the index (vector) of the codeword within
each bin. In particular, the entire code can be viewed in an
embedded fashion in that each layer of messages serves as a
bin number with the corresponding bins being embedded into
larger bins indexed by messages one layer higher. We describe
this codebook in more detail as follows.

We construct a codebook that contains 2n log
(
1+|H |2 P

)
code-

words xn , which are indexed by (q, w1, . . . , wL−1, wL) with

q = 1, 2, . . . , 2n log
(
1+|G1|2 P

)
,

w1 = 1, 2, . . . , 2n
[
log

(
1+|G2|2 P

)−log
(
1+|G1|2 P

)]
,

w2 = 1, 2, . . . , 2n
[
log

(
1+|G3|2 P

)−log
(
1+|G2|2 P

)]
,

...

wL−1 = 1, 2, . . . , 2n
[
log

(
1+|G L |2 P

)−log
(
1+|G L−1|2 P

)]
,

wL = 1, 2, . . . , 2n
[
log

(
1+|H |2 P

)−log
(
1+|G L |2 P

)]
. (29)

Using this codebook, to transmit a message tuple
(w1, w2, . . . , wL), the encoder randomly selects an
index q with the uniform distribution and transmits
xn(q, w1, w2, . . . , wL). To connect this approach to the
wiretap binning scheme, here, for an eavesdropper’s channel
state Gl , the codewords in the codebook can be viewed as
being assigned to the bins indexed by (wl, . . . , wL).

Using the codebook structure specified in (29) and fol-
lowing steps similar to those in [3, Section 2.3], it can be
shown that there exists a codebook with the above struc-
ture such that if this codebook and the above encoding
scheme are applied, then the legitimate receiver can decode
Xn , and hence W1, . . . , WL , with a small probability of
error. Furthermore, for l = 1, . . . , L, if the eavesdrop-
per’s channel state is Gl , then the eavesdropper can decode
the channel input Xn with a small probability of error if
it knows Wl , . . . , WL . Based on this property, it can be
shown that

1

n
H (Wl, . . . , WL |Zn

l ) ≥ 1

n
H (Wl, . . . , WL) − δn (30)

Fig. 4. An illustration of the layers of messages that are secure from the
eavesdropper.

where δn goes to zero as n approaches infinity. The above
equation implies that perfect secrecy is achieved asymptoti-
cally as n approaches infinity. The details can be specialized
from the proof for Theorem 4 in Section V-A.

We note that the broadcast approach developed above
is different from the original broadcast approach [16] and
the one developed in Section III in that the power is not
spread over layers of messages because one codebook that
contains information about all layers of messages is employed.
Furthermore, our scheme generalizes the embedding scheme
in [22] (that treats the scenario with two eavesdropper’s
channel states) to the broadcast approach with multiple-layer
embedding to accommodate multiple eavesdropper’s channel
states. This scheme is further extended for the case with an
infinite number of layers in the following subsection. More
importantly, our scheme with multiple-layer embedding does
not result in reduction in the secrecy rate due to the single
codebook design and no power spreading over layers.

B. Continuous Eavesdropping Channel State

We now generalize the result in the preceding subsection to
the case in which the eavesdropper has a continuous channel
state, i.e., the channel gain G takes continuous values. In this
case, the message should be encoded correspondingly to a
continuum of layers. For each state G = g, we let u = |g|2,
and use u as an index for the layer of the message that needs
to be kept secure from the eavesdropper in the state g. The
following result follows directly from Theorem 3.

Corollary 2: For the fading wiretap channel with the
legitimate receiver having a fixed channel state H and the
eavesdropper having a block fading channel, the average
secrecy rate under the delay constraint achieved via the broad-
cast approach based on embedded coding is given by

R = Q(|H |2) log
(
1+|H |2P

)
−

∫ |H |2

0
q(u) log(1+u P)du (31)

where q(·) and Q(·) are the probability density function and
cumulative distribution function of |G|2, respectively.

We note that the above rate R can be easily computed
numerically.

Proof of Corollary 2: Following from (28), the total secrecy
rate when the eavesdropper’s channel state is u = |G|2 is given
as follows (see Fig. 4):

R(u) =
{

log
(
1 + |H |2 P

) − log(1 + u P), if u < |H |2
0, otherwise.

(32)



850 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Averaging the above rate over all eavesdropper’s channel state
realizations, we obtain

R =
∫ |H |2

0
q(u)R(u)du

=
∫ |H |2

0
q(u)

[
log

(
1 + |H |2 P

)
− log(1 + u P)

]
du (33)

= Q(|H |2) log
(

1 + |H |2P
)

−
∫ |H |2

0
q(u) log(1 + u P)du,

(34)

which concludes the proof.
Based on the above proof, we now characterize the prob-

abilistic secrecy for this scenario, i.e., the probability that
a given secrecy rate R is achievable, denoted by Pr(R). It
is clear from (32) that if R is greater than the maximum
rate log

(
1 + |H |2P

)
decodable at the legitimate receiver,

Pr(R) = 0. Otherwise, in (32), we set R(u R) = R to obtain

u R = 2log
(
1+|H |2 P

)−R − 1

P
which is the best eavesdropper’s state such that messages with
the rate R are still secure. Since these messages are also secure
for any eavesdropper’s state u ≤ u R , Pr(R) should be equal to
Pr{u ≤ u R}, which is Q(u R), i.e., the cumulative probability
distribution of u evaluated at u R . In summary, Pr(R) is
given by

Pr(R) =
{

Q (u R) for R ≤ log
(
1 + |H |2P

);
0 otherwise.

V. FADING CHANNELS TO BOTH LEGITIMATE RECEIVER

AND EAVESDROPPER

In this section, we study the general case, in which both
the legitimate receiver and the eavesdropper experience block
fading channels, i.e., H and G are constant over each block,
and change independently to other realizations from one block
to another. It is assumed that the transmitter knows neither the
instantaneous channel state to the legitimate receiver nor the
channel state to the eavesdropper, but the legitimate receiver
and the eavesdropper know their corresponding channel states.
As in the previous sections, we start with the case when the
channel gains have finite numbers of states. We then study the
case with continuous channel states.

A. Discrete Legitimate and Eavesdropping Channel States

We first consider the case in which both the legitimate
receiver and the eavesdropper have finite numbers of channel
states, i.e., H and G take one of H1, . . . , HL values and one
of G1, . . . , GK values, respectively, where |H1| < · · · < |HL|
and |G1| < · · · < |GK |. For each 1 ≤ l ≤ L, we use Kl to
denote the largest index of the state level of G that is below
Hl , i.e., Kl = max|Gk |≤|Hl | k. We develop a broadcast approach
that combines the two broadcast approaches developed in
Sections III and IV. We first split the entire message into a
number of components Wl[1,Kl ] for 1 ≤ l ≤ L, where Wl[1,Kl ]
denotes Wl1, . . . , WlKl .

Definition 3: A secrecy rate tuple {Rl[1,Kl ]}l=1,...,L is
achievable if there exists a coding scheme that encodes the
messages Wl[1,Kl ] at the rates Rl[1,Kl ] for 1 ≤ l ≤ L
such that if the legitimate receiver’s channel is at Hl and
the eavesdropper’s channel is at Gk for 1 ≤ l ≤ L and
1 ≤ k ≤ Kl , then the legitimate receiver decodes the message
Wlk with a vanishing probability of error and the eavesdropper
is kept ignorant of the message Wlk .

We note that in the above definition, we consider only rate
components with state indices (l, k) such that 1 ≤ l ≤ L
and 1 ≤ k ≤ Kl . This implies that for each fixed k, we
consider only those l such that |Gk| ≤ |Hl|, and equivalently
for each given l, we consider only those 1 ≤ k ≤ Kl .
Consequently, Definition 3 specializes to Definitions 1 and 2
for the corresponding scenarios, respectively. For example, for
scenario 1, in which the eavesdropper is at a fixed state k,
we consider those states l of the legitimate receiver such that
|Gk| ≤ |Hl|. Then, the requirement in Definition 3 becomes
that the legitimate receiver decodes the messages Wlk if its
state is at Hl , and the eavesdropper is kept ignorant of the
messages Wlk for all l under consideration for a fixed k (i.e.,
those l such that |Gk| ≤ |Hl|). This precisely reduces to
Definition 1. The same is true for scenario 2.

The following theorem characterizes achievable secrecy rate
tuples via a broadcast approach.

Theorem 4: For the fading wiretap channel with the legit-
imate receiver having one of L fading states H1, . . . , HL

with |H1| < · · · < |HL| and the eavesdropper having one
of K fading states G1, . . . , GK with |G1| < · · · < |GK |,
the following secrecy rate tuples (R1,[1,K1], . . . , RL[1,KL ]) are
achievable:

Rlk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log

(
1 + |Gk+1|2 Pl

1+|Gk+1|2 ∑L
j=l+1 Pj

)

− log

(
1 + |Gk |2 Pl

1+|Gk |2 ∑L
j=l+1 Pj

)
,

for 1 ≤ l ≤ L, 1 ≤ k ≤ Kl − 1

log

(
1 + |Hl |2 Pl

1+|Hl |2 ∑L
j=l+1 Pj

)

− log

(
1 + |G Kl |2 Pl

1+|G Kl |2
∑L

j=l+1 Pj

)
,

for 1 ≤ l ≤ L, k = Kl

(35)

where Pl denotes the transmission power assigned to state l
and satisfies the power constraint

∑L
l=1 Pl ≤ P .

We note that since the messages that are decodable by the
legitimate receiver at any state H j can also be decoded by
the legitimate receiver at the state Hl if |H j | < |Hl|, the
legitimate receiver at the state Hl can decode all messages
W1[1,K1], . . . , Wl,[1,Kl ] for l = 1, . . . , L. And since the mes-
sages that are secure from the eavesdropper with any state G j

are also secure from the eavesdropper with the state Gk if
|G j | > |Gk |, all W1[k,K1], . . . , WL[k,KL ] are secure from the
eavesdropper at the state Gk .

We also note that similarly to the case in which only the
channel to the eavesdropper is fading, employment of the
broadcast approach does not require that the legitimate receiver
know the channel state to the eavesdropper. However, with-
out knowing the eavesdropper’s channel state, the legitimate
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receiver understands only the probability that certain layers of
messages are kept secure, which is studied in the following
subsection as probabilistic secrecy.

Proof of Theorem 4: The basic idea is to com-
bine the two types of broadcast approaches developed in
Sections III and IV. The details are as follows.

We consider a codebook that contains L subcodebooks
corresponding to L layers of the legitimate receiver’s
channel. For each layer l, the subcodebook Cl contains

2
n log

(
1+|Hl |2 Pl/(1+|Hl |2 ∑L

j=l+1 Pj )
)

codewords xn
l indexed by

(ql, wl1, wl2, . . . , wlKl ), where

ql = 1, 2, . . . , 2
n log

(
1+ |G1|2 Pl

1+|G1|2 ∑L
j=l+1 Pj

)

,

wl1 = 1, 2, . . . ,

2
n

[
log

(
1+ |G2|2 Pl

1+|G2 |2 ∑L
j=l+1 Pj

)
−log

(
1+ |G1|2 Pl

1+|G1|2 ∑L
j=l+1 Pj

)]

,

wl2 = 1, 2, . . . ,

2
n

[
log

(
1+ |G3|2 Pl

1+|G3|2 ∑L
j=l+1 Pj

)
−log

(
1+ |G2|2 Pl

1+|G2|2 ∑L
j=l+1 Pj

)]

,
...

wl(Kl−1) = 1, 2, . . . ,

2
n

[
log

(
1+ |GKl

|2 Pl

1+|GKl
|2 ∑L

j=l+1 Pj

)
−log

(
1+ |GKl −1|2 Pl

1+|GKl −1|2 ∑L
j=l+1 Pj

)]

,

wlKl = 1, 2, . . . ,

2
n

[
log

(
1+ |Hl |2 Pl

1+|Hl |2
∑L

j=l+1 Pj

)
−log

(
1+ |GKl

|2 Pl

1+|GKl
|2 ∑L

j=l+1 Pj

)]

. (36)

The encoding scheme is described as follows. To trans-
mit a set of messages w1[1,K1], . . . , wL ,[L ,KL ], for each
l = 1, . . . , L, the transmitter randomly and uniformly selects
ql , and ql together with wl[1,kl ] determines a codeword
xn

l (ql, wl1, . . . , wlKl ). The input transmitted over the channel
is then given by

xn =
L∑

l=1

xn
l (ql, wl1, . . . , wlKl ).

Following steps similar to those in [3, Section 2.3], it can
be shown that there exists a codebook as described above
such that if the legitimate receiver has the channel state
Hl , then it can decode Xn

1 , . . . , Xn
l , and hence the messages

W1[1,K1], . . . , Wl[1,Kl ], with a small probability of error, and
if the eavesdropper’s channel is at Gk , then the eavesdropper
can successfully decode Xn

l with a small probability of error
if it knows Wl[k,Kl ] and Xn

1 , . . . , Xn
l−1, for l = 1, . . . , L. More

formally, this property implies that there exists a positive δn

which approaches zero as n goes to infinity such that for
k = 1, . . . , K ,

H (Xn
1 |Zn

k , W1[k,K1]) ≤ nδn

H (Xn
2 |Zn

k , W2[k,K2], Xn
1 ) ≤ nδn

...

H (Xn
L|Zn

k , WL[k,KL ], Xn
1 , . . . , Xn

L−1) ≤ nδn (37)

where Zn
k denotes the channel output received by the eaves-

dropper if its channel state is Gk .
From the codebook construction, it is clear that if the

legitimate receiver has a channel realization Hl , it can decode
Xn

1 , . . . , Xn
l , and hence the messages W1[1,K1], . . . , Wl[1,Kl ]. It

is then sufficient to show that if the eavesdropper is in the state
Gk , the messages W1[k,K1], . . . , WL[k,KL ] are kept secure from
the eavesdropper. Towards this end, we compute the following
equivocation rate:

H (W1[k,K1], . . . , WL[k,KL ]|Zn
k )

= H (W1[k,K1], . . . , WL[k,KL ], Zn
k ) − H (Zn

k )

= H (W1[k,K1], . . . , WL[k,KL ], Zn
k , Xn

1 , . . . , Xn
L)

−H (Xn
1, . . . , Xn

L |W1[k,K1], . . . , WL[k,KL ], Zn
k ) − H (Zn

k )

= H (W1[k,K1], . . . , WL[k,KL ], Xn
1 , . . . , Xn

L)

+H (Zn
k |W1[k,K1], . . . , WL[k,KL ], Xn

1 , . . . , Xn
L)

−H (Xn
1, . . . , Xn

L |W1[k,K1], . . . , WL[k,KL ], Zn
k ) − H (Zn

k )

≥ H (Xn
1 , . . . , Xn

L) + H (Zn
k |Xn

1 , . . . , Xn
L)

−H (Xn
1, . . . , Xn

L |W1[k,K1], . . . , WL[k,KL ], Zn
k ) − H (Zn

k ),

(38)

where in the last step, the first term follows from the
chain rule and nonnegativity of the entropy, and the sec-
ond term follows due to the Markov chain relationship
(W1[k,K1], . . . , WL[k,KL ]) → (Xn

1 , . . . , Xn
L) → Zn

k .
Following from the codebook construction and the encoding

scheme, it is clear that Xn
1 , . . . , Xn

L are independently and
uniformly distributed over their corresponding subcodebooks.
Hence, we obtain

H (Xn
1 , . . . , Xn

L)=n
L∑

l=1

log

(
1+ |Hl|2 Pl

1+|Hl|2 ∑L
j=l+1 Pj

)
. (39)

Using (37), we obtain

H (Xn
1, . . . , Xn

L |W1[k,K1], . . . , WL[k,KL ], Zn
k ) < nεn (40)

where εn approaches zero if n goes to infinity.
We also compute

1

n

[
H (Zn

k |Xn
1 , . . . , Xn

L) − H (Zn
k )

]

≥ − 1

n

n∑

i=1

log

(
|Gk|2

L∑

l=1

E[|Xli |2] + 1

)
(41)

≥ − log

(
|Gk |2

n

n∑

i=1

L∑

l=1

E[|Xli |2] + 1

)
(42)

≥ − log

(
1 + |Gk |2

L∑

l=1

Pl

)
. (43)
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Hence,

1

n
H (W1[k,K1], . . . , WL[k,KL ]|Zn

k )

≥
L∑

l=1

log

(
1 + |Hl|2 Pl

1 + |Hl|2 ∑L
j=l+1 Pj

)

− log

⎛

⎝1 + |Gk|2
L∑

j=1

Pj

⎞

⎠ − ε

=
L∑

l=1

[
log

(
1 + |Hl |2 Pl

1 + |Hl|2 ∑L
j=l+1 Pj

)

− log

(
1 + |Gk|2 Pl

1 + |Gk |2 ∑L
j=l+1 Pj

) ]
− ε, (44)

where the last step applies

log

⎛

⎝1 + |Gk |2
L∑

j=1

Pj

⎞

⎠

=
L∑

l=1

log

(
1 + |Gk |2 Pl

1 + |Gk |2 ∑L
j=l+1 Pj

)
. (45)

Comparing equation (44) with the rates of the messages
given in (36), we conclude that perfect secrecy is achieved
asymptotically as n approaches infinity.

B. Continuous Channel States

We now generalize our result in the preceding subsection to
the case in which the channel states take continuous values.
For each channel state pair (H, G) = (h, g), we let (s, u) =
(|h|2, |g|2), and use (s, u) to index layers of messages. For
each layer s, we assume that the transmitter allocates power
ρ(s)ds, and we use �(s) to denote the total power allocated
to the layers with better channel states, i.e., the states ŝ such
that ŝ > s. Hence,

�(s) =
∫ ∞

s
ρ(x)dx (46)

and

ρ(s) = −�′(s). (47)

Following from Theorem 4, we obtain the following result
on the average secrecy rate.

Corollary 3: For the fading wiretap channel with both the
legitimate receiver and the eavesdropper having block fading
channels with continuous channel states, the average secrecy
rate under the delay constraint achieved via the broadcast
approach described above is given by

R = log e max
�(x)∫ ∞

0
dx(1 − F(x))�′(x)

[ −x Q(x)

1 + x�(x)
+

∫ x

0
du

uq(u)

1 + u�(x)

]

(48)

where F(·) and Q(·) are cumulative distribution functions for
s and u, respectively.

Proof of Corollary 3: Consider the case when the legitimate
receiver and the eavesdropper have the channel states (s, u) =
(|h|2, |g|2). Following from (35), if s > u, then the rate of

Fig. 5. An illustration of the layers of messages that are decodable at the
legitimate receiver and secure from the eavesdropper.

the messages that can be decoded by the legitimate receiver
at the state s while being kept secure from the eavesdropper
at the state u is given by

d R = log

(
1 + sρ(s)ds

1 + s�(s)

)
− log

(
1 + uρ(s)ds

1 + u�(s)

)

≈ log e

[
sρ(s)ds

1 + s�(s)
− uρ(s)ds

1 + u�(s)

]
(49)

where the second equation follows because ds approaches
zero. If s ≤ u, then d R = 0. Since all messages corresponding
to the legitimate receiver’s state x such that x < s can be
decoded by the legitimate receiver at state s, the total rate of
the messages that can be decoded by the legitimate receiver
at the state s and also be kept secure from the eavesdropper
at the state u is given by

R(s, u) = log e
∫ s

u

[
xρ(x)

1 + x�(x)
− uρ(x)

1 + u�(x)

]
dx (50)

if s > u, and R(s, u) = 0 if s ≤ u. An illustration of the
layers of messages that contribute to the secrecy rate R(s, u)
is depicted in Fig. 5.

Averaging the above rate over all fading state realizations
of the legitimate receiver’s channel and the eavesdropper’s
channel, we obtain

R =
∫ ∞

0
ds

∫ s

0
du f (s)q(u)R(s, u)

= log e
∫ ∞

0
du

∫ ∞

u
ds f (s)q(u) (51)

×
∫ s

u
dx

[
xρ(x)

1 + x�(x)
− uρ(x)

1 + u�(x)

]

= log e
∫ ∞

0
duq(u)

×
∫ ∞

u
dxρ(x)

[
x

1 + x�(x)
− u

1 + u�(x)

]∫ ∞

x
ds f (s)

= log e
∫ ∞

0
duq(u)

×
∫ ∞

u
dx(1 − F(x))ρ(x)

[
x

1 + x�(x)
− u

1 + u�(x)

]

= log e
∫ ∞

0
dx(1 − F(x))ρ(x)

×
[

x

1 + x�(x)

∫ x

0
duq(u) −

∫ x

0
du

uq(u)

1 + u�(x)

]

= log e
∫ ∞

0
dx(1 − F(x))ρ(x)

×
[

x Q(x)

1 + x�(x)
−

∫ x

0
du

uq(u)

1 + u�(x)

]
. (52)
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The average rate R given above can be further improved
by optimizing over all possible power allocation functions
ρ(·), or equivalently, over all possible cumulative power
allocation functions �(·). We can also use (47) to replace
ρ(x) with −�′(x), which concludes the proof.

As in Section IV, we can also characterize the probability
that a given secrecy rate R is achievable, denoted by Pr(R).
By setting u = 0 in (50), we obtain the following total rate
of the messages that the legitimate receiver at the state s can
decode:

R(s) = log e
∫ s

0

xρ(x)

1 + x�(x)
dx .

We set R(sT ) = R, and can numerically obtain sT , which
represents the lowest state of the legitimate receiver that can
decode the messages at the rate R. If s < sT , the probability
of achieving the secrecy rate R when the legitimate receiver’s
state is in s is zero, i.e., Pr(R|s) = 0. Otherwise, for any state
s ≥ sT , we characterize the probability that the given secrecy
rate R is achievable. Towards this end, we set R(s, u R ) = R
in (50), and then fix s and solve the equation to obtain u R(s),
which is a function of s. Such u R(s) exists because R(s, u)
in (50) is monotonic as a function of u, and can be found
numerically. It is clear that u R(s) is the best eavesdropper’s
state such that messages with the rate R are secure. Since
these messages are also secure in any eavesdropper’s state
û ≤ u R(s), Pr(R|s) = Q(u R(s)). Thus, the total probability
Pr(R), which is the probability that the messages with the
given rate R are secure from the eavesdropper, can be obtained
by averaging P(R|s) over all states s ≥ sT , and is given by

Pr(R) =
∫ ∞

sT

f (s)Q(u R(s))ds.

From the legitimate receiver’s point of view, since it
knows its own channel state, the conditional probability
P(R|s) = Q(u R(s)) characterizes the probability to achieve
a certain secrecy rate R at the current block with the state
s = |H |2.

In order to obtain the optimal average secrecy rate R given
in (48), we need to solve the following optimization problem:

max
�(x)

∫ ∞

0
S(x,�(x),�′(x))dx

subject to 0 ≤ �(x) ≤ P, �′(x) ≤ 0, for x ≥ 0; (53)

where

S(x,�(x),�′(x))=(1−F(x))Q(x)
−x�′(x)

1+x�(x)

+ (1−F(x))�′(x)

∫ x

0

uq(u)

1+u�(x)
du. (54)

Theorem 5: An optimal solution to (53), if one exists, has
the following structure. There exist 0 ≤ x1 < y1 < x2 < y2 <
· · · < xm < ym , and a function η(x), such that η(x) satisfies

(1−F(x))Q(x)

(1+xη(x))2 = x f (x)Q(x)

1+xη(x)
− f (x)

∫ x

0

uq(u)

1+uη(x)
du (55)

and is strictly decreasing over [xi , yi ] for i = 1, . . . , m,
η(x1) = P , η(ym) = 0, η(yi ) = η(xi+1) for i = 1, . . . , m − 1,

and an optimal �∗(x) is given by

�∗(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0 ≤ x ≤ x1;
η(x) xi ≤ x ≤ yi ,

for i = 1, . . . , m;
η(yi) = η(xi+1), yi < x < xi+1,

for i = 1, . . . , m − 1;
0 ym ≤ x .

(56)

Proof: The argument is similar to that for proving
Theorem 2. Hence, we here provide only details for obtain-
ing the Euler condition (55). Due to the complementary
slackness conditions, over the intervals (x1, y1], [xi , yi ] for
i = 2, . . . , m − 1, and [xm, ym), since �∗(x) does not
satisfy the inequality constraints with equality, i.e., it is not
on the boundary of the constraint set, then the following Euler
equation must be satisfied:

S� − d

dx
S�

′ = 0. (57)

For the function S(x,�(x),�′(x)) given in (54), we obtain

S� = (1 − F(x))Q(x)
x2�

′
(x)

(1 + x�(x))2

+(1 − F(x))�′(x)

∫ x

0

−u2q(u)

(1 + u�(x))2 du , (58)

S�′ = (1 − F(x))Q(x)
−x

1 + x�(x)

+(1 − F(x))

∫ x

0

uq(u)

1 + u�(x)
du , (59)

d

dx
S�

′ = [− f (x)Q(x) + (1 − F(x))q(x)] −x

1 + x�(x)

+(1 − F(x))Q(x)
−1 + x2�′(x)

(1 + x�(x))2

− f (x)

∫ x

0

uq(u)

1 + u�(x)
du + (1 − F(x))

xq(x)

1 + x�(x)

−(1 − F(x))

∫ x

0

u2q(u)�′(x)

(1 + u�(x))2 . (60)

We substitute the above equations into the Euler equation and
obtain the condition given in (55).

Example 2: Consider the case when the channels to the
legitimate receiver and the eavesdropper experience indepen-
dent Rayleigh fading, i.e., s and u are exponentially distributed
as characterized by

f (x) = 1

σ1
e
− x

σ1 and F(x) = 1 − e
− x

σ1 , x ≥ 0, (61)

q(x) = 1

σ2
e
− x

σ2 and Q(x) = 1 − e
− x

σ2 , x ≥ 0. (62)

where σ1 and σ2 are parameters for the exponential distribu-
tions of s and u, respectively.

The Euler condition (55) now becomes

1 − e
− x

σ2

(1 + x�(x))2 − x(1 − e
− x

σ2 )

σ1(1 + x�(x))

+ 1

σ1σ2

∫ x

0

ue
− u

σ2

1 + u�(x)
du = 0. (63)
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Fig. 6. An optimal function �(x) for the Rayleigh fading channel with
P = 10d B and σ1 = σ2 = 1.

Consider the case with σ1 = σ2 = 1. Following from the
above condition, if �(y1) = 0, then y1 satisfies

2 − 2e−y1 − y1 = 0

whose root can be computed numerically and is equal to

y1 = 1.5936.

Using the condition (63), it is easy to find a �∗(x) function
that satisfies the necessary condition given in Theorem 5.
We plot the function �∗(x) in Fig. 6 for the case with the
power P = 10d B and σ1 = σ2 = 1. We note that this function
�∗(x) is strictly decreasing over the interval [x1, y1], which
suggests that the optimal solution is unique if it exists.

This example also demonstrates the impact of probabilistic
secrecy, under which we achieve a positive secrecy rate under
delay constraints for certain channel state realizations as
demonstrated in Section VI. However, under a deterministic
secrecy constraint that requires all transmitted messages be
secure from the eavesdropper, only zero secrecy rate can be
achieved for any block. Even over a large number of blocks,
the secrecy rate is zero under a deterministic secrecy constraint
if the legitimate receiver and the eavesdropper have the same
channel statistics whereas the secrecy rate is positive under the
probabilistic secrecy for the same scenario as for the above
example.

VI. NUMERICAL RESULTS

In this section, we provide numerical examples to demon-
strate the impact of the CSI at the transmitter on the average
secrecy rate. We also compare the average secrecy rates for
the three scenarios studied in the paper.

We first consider scenario 1 as studied in Example 1, in
which only the legitimate receiver’s channel is fading with
the Rayleigh distribution and the eavesdropper’s channel is
constant. The distribution of s = |H |2 is exponential with the
parameter σ1 = 2, i.e., p(s) = 1

σ1
e−s/σ1. The eavesdropper’s

channel state is at |G|2 = 0.5. In Fig. 7, we plot the average
secrecy rates achieved via the broadcast approach and compare
them with the rates achievable when the legitimate receiver’s
CSI is known at the transmitter and the eavesdropper. With
the legitimate receiver’s CSI at the transmitter, the average
secrecy rate (which is also the capacity) can be obtained by
averaging the secrecy rate for each channel state over the state

Fig. 7. Comparison of rates for scenario 1: only the channel to the legitimate
receiver is fading.

distribution and optimizing over all possible power allocation
over the channel states as given below

R̄ = max
P(s):Es [P(s)]≤P∫ ∞

|G|2

[
log (1+s P(s))−log

(
1+|G|2 P(s)

)]
ρ(s)ds (64)

where the optimizing power allocation can be obtained by
using the Lagrangian multiplier method as in [21] and [23].

It is clear from Fig. 7 that the knowledge of the legitimate
receiver’s CSI provides a great advantage in achieving better
secrecy rates. Due to the lack of the CSI, the transmitter’s
power is spread over many layers of messages in order to
accommodate possibly occurring channel states. However,
when the CSI is available, the transmitter spends all its power
for the particular state realization at each coherence block. In
this way, the CSI helps to use the transmitter’s power more
efficiently. We also note that if one adopts the compound
channel approach [12] that requires secrecy no matter which
legitimate receiver’s state occurs, then the secrecy rate for
this example is zero. Hence, the broadcast approach offers an
attractive alternative to the compound channel approach [12]
although the transmitter does not have the CSI. We also note
that for this scenario, if there is no delay constraint, even if the
transmitter does not know the CSI, it can exploit the statistics
of the legitimate receiver’s channel to achieve a better secrecy
rate. Here, the channel statistics help to avoid power spreading
whereas the broadcast approach inherently degrades the rates
due to power spreading over layers.

We then study scenario 2, in which only the eavesdropper’s
channel is fading with the Rayleigh distribution and the
legitimate receiver’s channel is constant. The distribution of
u = |G|2 is exponential with the parameter σ2 = 0.5, i.e.,
p(u) = 1

σ2
e−u/σ2 . The legitimate receiver’s channel state is

at |H |2 = 2. In Fig. 8, we plot the average secrecy rates
achieved via the broadcast approach and compare them with
the rates achievable when the eavesdropper’s CSI is known at
the transmitter. With the eavedropper’s CSI at the transmitter,
the average secrecy rate (which is also the capacity) under the
delay constraint is given by

R̄ = max
P(u):Eu[P(u)]≤P

∫ |H |2

0

[
log

(
1+|H |2P(u)

)
−log (1+u P(u))

]
q(u)du (65)
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Fig. 8. Comparison of rates for scenario 2: only the channel to the
eavesdropper is fading.

where the optimizing power allocation can be obtained by
using the Lagrangian multiplier method as in [21] and [23].

It is clear from Fig. 8 that the rates corresponding to the
two cases are very close, suggesting that the knowledge of
the eavesdropper’s CSI does not provide much advantage to
achieve better secrecy rates. This is not surprising, as we
have seen in Section IV that the broadcast approach already
achieves the maximum possible secrecy rate for each block.
The small gap between the two rates is because with the CSI,
the transmitter can adapt its power allocation over the channel
states to achieve a better rate. Another role that the CSI plays
is that with the CSI the transmitter guarantees secrecy for all
transmitted messages, whereas without the CSI the transmitter
does not guarantee secrecy for all transmitted messages, and
the legitimate receiver knows only the probability that a certain
secrecy rate is achievable without the eavesdropper’s CSI.
Hence, without the CSI, a certain amount of power is wasted
over some layers of messages that happens not to be secure
for certain realizations of the channel state; whereas with the
CSI, this amount of power can be used to convey information
securely. We note that this does not mean that the gap between
the two cases in Fig. 8 bounds the information leakage,
because the same amount of power may generate different
values of rates if it is used differently.

We further note that the secrecy rate that can be achieved
using the compound channel approach is zero for this example
due to the assumption that all transmitted messages must be
secure no matter which eavesdropper’s state occurs. Therefore
the broadcast approach adopted here again offers an attrac-
tive alternative to the compound channel approach. However,
unlike the first scenario and the compound channel approach,
the broadcast approach developed here does not guarantee the
secrecy of the entire message and achieves only probabilistic
secrecy.

We now consider scenario 3 as studied in Example 2, in
which both the channel to the legitimate receiver and the
channel to the eavesdropper are fading. The distributions of
s = |H |2 and u = |G|2 are independent and are both
exponential with the parameters σ1 = 2 and σ2 = 0.5, i.e.,
p(s) = 1

σ1
e−s/σ1 and p(u) = 1

σ2
e−u/σ2 , respectively. In Fig. 8,

we plot the average secrecy rates achieved via the broadcast
approach and compare them with the rates achievable when
both channels’ CSI is known at the transmitter and the eaves-

Fig. 9. Comparison of rates for scenario 3: the channels to both the legitimate
receiver and the eavesdropper are fading.

Fig. 10. Comparison of rates for the three scenarios.

dropper. With the CSI at the transmitter, the average secrecy
rate (which is also the capacity) under the delay constraint is
given by

R̄ = max
P(u,s):Es,u [P(s,u)]≤P

∫ ∞

0
ds

∫ s

0
duρ(s)q(u)

× [
log (1 + s P(s, u)) − log (1 + u P(s, u))

]
(66)

where the optimizing power allocation can be obtained by
using the Lagrangian multiplier method as in [21] and [23].
From our understanding of scenarios 1 and 2, the gap between
the rates corresponding to the two cases is mainly due to
the lack of the legitimate receiver’s CSI which results in
the transmitter’s power being spread over states. Similar to
scenario 2, the secrecy rate that can be achieved using the
compound channel approach is zero for this example. There-
fore the broadcast approach adopted here again improves the
secrecy rate although the entire message may not be fully kept
secure. We also note that Figs. 7–9, study only the impact of
the CSI at the transmitter on the average secrecy rate. If we
include the information revealing rate (i.e., the leakage rate)
to the eavesdropper, such impact may be different under this
metric. Hence, it would be of interest to study the information
revealing rate, which would provide a complementary view to
the achievable secrecy rate studied here.

We further compare the average secrecy rates for the three
scenarios in Fig. 10, none of which have the CSI at the
transmitter. It is clear from the figure that scenario 2 has the
best rate, and scenario 3 has a better rate than scenario 1.
It is easy to understand that scenario 3 has worse rates than
scenario 2 because the transmitter’s power is spread over
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Fig. 11. Comparison of the probabilities of a rate R is decoded and secure
for scenario 3.

Fig. 12. Comparison of the probabilities of a rate R is decoded and secure
for scenario 3.

the states due to no knowledge of the legitimate receiver’s
CSI. However, it may seem counter-intuitive that scenario 3
has better rates than scenario 1. This is due to the fact that
when the eavesdropper’s channel is fading, there is a good
chance that its state is below the channel average, and such
channel fluctuation facilitates achievement of a better secrecy
rate and overcomes the effect of no eavesdropper’s CSI at the
transmitter. Therefore, the two major factors that affect the
secrecy rate are the knowledge of the legitimate receiver’s
CSI and the channel fluctuation of the eavesdropper. The
knowledge of the eavesdropper’s CSI only weakly affects the
secrecy rate.

We now study the performance of the probabilistic secrecy
for scenario 3. Figs. 11 and 12 plot and compare the proba-
bilities of achieving a certain target secrecy rate over a large
number of blocks for a number of values of σ1 and σ2. It can be
seen from Fig. 11 that with σ1 fixed, the probability of secrecy
becomes larger as σ2 decreases. This is reasonable because a
smaller σ2 implies less chance that the eavesdropper’s channel
can be in a good state, which results in a higher probability
of achieving a certain secrecy rate. It can also be seen from
Fig. 12 that with σ2 fixed, the probability of secrecy becomes
larger as σ1 increases. This is also reasonable because a larger
σ1 implies a better legitimate receiver’s channel, and hence
results in higher probability of achieving a target secrecy rate.

VII. DISCUSSION AND CONCLUSION

In this paper, we have studied a (layered) broadcast
approach for fading wiretap channels. We have developed
two broadcast approaches for the cases in which either the

legitimate receiver’s or the eavesdropper’s channel is fading,
respectively, and have combined these two approaches for the
general case in which both nodes’ channels are fading. For
each case, we have obtained the average secrecy rate achieved
under the delay constraint by using the broadcast approach
and have derived the optimal power allocation across layers.
We have also introduced a notion of probabilistic secrecy,
and characterized the probability that a given secrecy rate is
achievable for the valid scenarios when the eavesdropper’s
channel is fading. Moreover, we have provided numerical
examples to demonstrate how the CSI at the transmitter and
the channel fluctuations of the eavesdropper affect the average
secrecy rate.

Here, we provide some further notes on the notion of prob-
abilistic secrecy. The design goal of this paper is to maximize
the secrecy rate, i.e., to transmit as many bits as possible in
secret. In order to achieve this goal, it is unavoidable to leak
information, because there is no CSI at the transmitter, and
the information designed to be secure when the eavesdropper’s
state is weak can be leaked if the eavesdropper’s state turns
out to be strong. In this sense, the notion of probabilistic
secrecy can be defined in a more general way to include
both the average secrecy rate and the average leakage rate
as performance measures. In this case, the average secrecy
versus leakage rates dictate a rate region, which captures the
tradeoff between the two rates. Characterization of such a rate
region depends on the actual power allocations across layers if
the layered approach is applied, i.e., each point in the region
is achieved by a specific power allocation scheme. Optimizing
various combinations of the secrecy and leakage rates achieves
boundary points of the region. From this more general view-
point, the problem we study is a special case, optimizing only
the secrecy rate without the leakage rate constraint.

We note that if the focus is on the leakage rate, power alloca-
tion schemes can be significantly different from what we study
in this paper. We use a simple example to illustrate this as
follows. Suppose the legitimate receiver has two states H1 and
H2, and the eavesdropper has two states G1 and G2. We further
assume that |H2| > |G2| > |H1| > |G1|. For such a system, if
we want to minimize the leakage rate, we should assign power
only to one layer corresponding to the state pair (H2, G2) so
that no information can be leaked (and hence the leakage rate
is zero), although now the receiver decodes only at the state
H2. However, if we aim at maximizing the secrecy rate and do
not consider the leakage rate, we should assign power to three
layers respectively corresponding to the state pairs (H2, G2),
(H2, G1) and (H1, G1). Clearly for this case, there is
inevitable information leakage associated with layers (H2, G1)
and (H1, G1) if the state turns out to be (H2, G2). This
example suggests that the leakage rate can vary significantly
depending on how we design the power allocation scheme.

It is clear that the more general notion of probabilistic
secrecy facilitates the evaluation of the secrecy rate and the
leakage rate as functions of power allocations across layers
(i.e., across the fading parameters at the legitimate user and the
eavesdropper assuming both are unavailable at the transmitter).
What to optimize depends on the application, and we have
focused on the secrecy rate in this paper. Our study can
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be viewed as a generalization of the broadcast approach in
[16] and the variable-to-fixed channel rate coding in [18],
where the later becomes a special case when the eavesdropper
enjoys no received signal (i.e., zero fading realization). Other
choices of the performance measure are also possible, which
result in different optimization problems (which are not always
guaranteed to have analytical solutions) and consequently
different transmission schemes as demonstrated above.

Several directions are interesting to explore in the future.
The development of upper bounds on the average achievable
secrecy rate remains open. Although the secrecy capacity for
the case in which the CSI is known at the transmitter can
serve as an upper bound, such a bound in general is not
tight. It is thus interesting to provide tighter upper bounds
in order to better understand how well the broadcast approach
performs. Moreover, since under the system model studied
here, not all information is secure from the eavesdropper,
it is interesting to study how much information is revealed
to the eavesdropper jointly with the average secrecy rate.
The tradeoff between the rates would provide a more general
characterization of the performance. For the case with a delay
constraint, it is of interest to explore the broadcast approach
jointly with a key-based technique recently proposed in [27].
It is also of interest to study the broadcast approach for the
case with a relaxed delay constraint, in which coding over
a few blocks is allowed. Some ideas in [28] may be further
explored for the case with a secrecy constraint. It is also of
great importance to evaluate the penalty incurred by delay
constraints, in particular, a stringent one-block constraint, by
comparing the secrecy rate under a delay constraint and the
ergodic secrecy rate. As a final comment, it is of interest to
explore whether progressive encoding of layering as appeared
in, e.g., [29] and [30], could be useful for the fading wiretap
channel. The idea is that layers would be progressively (but not
independently) encoded, which can be useful for studying the
channel with secrecy constraints, and may be closely related
to the embedded coding proposed in [22].
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