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Bayesian Quickest Change-Point Detection
With Sampling Right Constraints
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Abstract— In this paper, Bayesian quickest change detection
problems with sampling right constraints are considered. In par-
ticular, there is a sequence of random variables whose probability
density function will change at an unknown time. The goal is
to detect this change in a way such that a linear combination
of the average detection delay and the false alarm probability is
minimized. Two types of sampling right constrains are discussed.
The first one is a limited sampling right constraint, in which the
observer can take at most N observations from this random
sequence. Under this setup, we show that the cost function can
be written as a set of iterative functions, which can be solved
by Markov optimal stopping theory. The optimal stopping rule
is shown to be a threshold rule. An asymptotic upper bound
of the average detection delay is developed as the false alarm
probability goes to zero. This upper bound indicates that the
performance of the limited sampling right problem is close to that
of the classic Bayesian quickest detection for several scenarios
of practical interest. The second constraint discussed in this
paper is a stochastic sampling right constraint, in which sampling
rights are consumed by taking observations and are replenished
randomly. The observer cannot take observations if there are
no sampling rights left. We characterize the optimal solution,
which has a very complex structure. For practical applications,
we propose a low complexity algorithm, in which the sampling
rule is to take observations as long as the observer has sampling
rights left and the detection scheme is a threshold rule. We show
that this low complexity scheme is first order asymptotically
optimal as the false alarm probability goes to zero.

Index Terms— Bayesian quickest change-point detection,
sampling right constraint, sequential detection.

I. INTRODUCTION

QUICKEST change-point detection aims to detect an
abrupt change in the probability distribution of a sto-

chastic process with a minimal detection delay. Bayesian
quickest detection [1], [2] is one of the most important
formulations. In the classic Bayesian setup, there is a sequence
of random variables {Xn, n = 1, 2, . . .} with a geometrically
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distributed change-point �. Before the change-point �, the
sequence X1, . . . , X�−1 is assumed to be independent and
identically distributed (i.i.d.) with probability density function
(pdf) f0(x), and after �, the sequence is assumed to be i.i.d.
with pdf f1(x). The goal is to find an optimal stopping time τ ,
at which the change is declared, that minimizes the detection
delay under a false alarm constraint.

In recent years, this technique has found a lot of applications
in wireless sensor networks [3]–[9] for network intrusion
detection [10], seismic sensing [11], structural health mon-
itoring, etc. In such applications, sensors are deployed to
monitor their surrounding environment for abnormalities. Such
abnormalities, which are modeled as change-points, typically
imply certain activities of interest. For example, a sensor
network may be built into a bridge to monitor its structural
health condition. In this case, a change may imply that a
certain structural problem, such as an inner crack, has occurred
in the bridge. In this context, the false alarm probability and
the detection delay between the time when a structural problem
occurs and the time when an alarm is raised are of interest.

In the classic quickest change detection setups, one can
observe the underlying signal at each time slot. In the above
mentioned applications, however, the situation is different.
Taking samples and computing statistics cost energy. Sensors
are typically powered by batteries with limited capacity and/or
are charged randomly with renewable energy. Hence in these
applications, it is unlikely that one can take samples at all
time slots. For example, for sensors powered by a battery, they
are subjected to a limited energy constraint. Hence, they have
only limited energy to make a fixed number of observations.
For sensors powered by renewable energy, they are subjected
to a stochastic energy constraint. The sensors cannot take
observations unless there are energy left in the battery.

In this paper, motivated by above applications, we extend
the classic Bayesian quickest change-point detection by impos-
ing casual energy constraints. Specifically, we relax the
assumption in the classic Bayesian setup that the observer can
observe the underlying signal freely at any time slots. Instead,
we assume that an observation can be taken only if the sensor
has energy left in its battery. The sensor has the freedom to
choose the sampling time, but it has to plan its use of energy
carefully due to the energy constraint. The goal of the sensor
is to find the optimal sampling strategy (or the optimal energy
utility strategy) and the optimal stopping rule to minimize the
average detection delay under a false alarm constraint. The
optimal solutions of the proposed problems are obtained by
dynamic programming (DP). However, the optimal solutions
in general do not have a close form expression due to the
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iterative nature of DP. Although the optimal solutions can be
solved numerically, numerical method provides us little insight
of the optimal solutions. Hence, in this paper, we also conduct
asymptotic analysis and design low-complexity asymptotically
optimal schemes.

In particular, we consider two types of constraints in this
paper. The first one is a limited observation constraint. Specif-
ically, the sensor is allowed to take at most N observations.
After taking each observation, the sensor needs to decide
whether to stop and declare a change, or to continue sampling.
If the sensor decides to continue, it also then needs to
determine the next sampling time. In this paper, we develop the
optimal stopping rule and the sampling rule for this problem.
The optimal stopping rule is shown to be a threshold rule,
and the optimal sampling time of the nth observation is the
one minimizing the most updated cost function. An asymptotic
upper bound of the average detection delay is developed as the
false alarm probability goes to zero. The derived upper bound
indicates that the average detection delay is close to that of
the setup without energy constraint [12] when N is sufficiently
large or when f0 and f1 are close to each other.

The second constraint being considered is a stochastic
energy constraint. This constraint is designed for sensors pow-
ered by renewable energy. In this case, the energy stored in the
sensor is consumed by taking observations and is replenished
by a random process. The sensor cannot store extra energy if
its battery is full, and the sensor cannot take observations if
its battery is empty. Hence, the sensor needs to find a strategy
to use its energy efficiently. Under this constraint, we develop
the optimal stopping rule and the optimal sampling rule. The
complexity of the optimal solution, however, is very high.
To address this issue, we design a low complexity algorithm in
which the sensor takes observations as long as there is energy
left in its battery and the sensor detects the change by using a
threshold rule. We show that this simple algorithm is first order
asymptotically optimal as the false alarm probability goes to
zero.

Although these problem formulations are originally moti-
vated by wireless sensor networks, their applications are not
limited to this area. For example, in clinical trials, it is
desirable to quickly and accurately obtain the efficiency of
certain medicine or therapy with limited number of tests, since
it might be very costly and sometime even health-damaging to
conduct a test. Hence, the limited observation constraint can
be applied in this scenario. Therefore, in the remainder of this
paper, instead of using application specific concepts such as
“sensor” and “energy constraint”, we use general terms such
as “observer” and “sampling right constraint”.

The problems considered in this paper are related to recent
works on the quickest change-point detection problem that
take the observation cost into consideration. In particular, [13]
assumes that each observation is worth either 1 if it is observed
or 0 if it is skipped. [13] is interested in minimizing both
the Bayesian detection delay and the total cost made by tak-
ing observations. Moreover, [13] considers both discrete and
continuous time case and shows the existence of the optimal
stopping rule-sampling strategy pair. [14], which considers
the Bayesian quickest change-point detection problem with

sampling right constraints in the continuous time scenario,
is also relevant to our paper. [14] considers two cases: the
observer has a fixed sampling rights or the observer’s sampling
rights arrive according to a Poisson process. [14] characterizes
the optimal solution for these problems. Compared with [13]
and [14], our paper focuses the discrete time case, and provides
low complexity asymptotically optimal solutions as well as
optimal solutions.

We also briefly mention other related papers. The first
main line of existing works considers the problem under a
Bayesian setup. In particular, [10] considers a wireless network
with multiple sensors monitoring the Bayesian change in the
environment. Based on the observations from sensors at each
time slot, the fusion center decides how many sensors should
be activated in the next time slot to save energy. [15] takes the
average number of observations taken before the change-point
into consideration, and it provides the optimal solution along
with low-complexity but asymptotically optimal rules. [16] is
a recent comprehensive survey that summarizes the current
development on the Bayesian quickest change-point detection
problem. There are also some existing works consider the
problem under minmax setting. For example, [17] considers
the non-Bayesian quickest detection with a stochastic sampling
right constraint. [18] and [19] extend the constraint of the
average number of observations into non-Bayesian setups and
sensor networks. [20] is a recent survey on the quickest
change-point detection problem which comprehensively sum-
marizes the progress made on both Bayesian and non-Bayesian
setups.

The remainder of this paper is organized as follows. Our
mathematical model for the Bayesian quickest change-point
detection problem with sampling right constraints is described
in Section II. Section III presents the optimal solution and
the asymptotic upper bound for the limited sampling right
problem. Section IV provides the optimal and the asymp-
totically optimal solution for the stochastic sampling right
problem. Numerical examples are given in Section V. Finally,
Section VI offers concluding remarks.

II. MODEL

Let {Xk, k = 1, 2, . . .} be a sequence of random variables
with an unknown change-point �. {Xk}’s are i.i.d. with pdf
f0(x) before the change-point �, and i.i.d. with pdf f1(x)
after �. The change-point � is modeled as a geometric random
variable with parameter ρ, i.e., for 0 < ρ < 1, 0 ≤ π < 1,

P(� = λ) =
{

π λ = 0

(1 − π)ρ(1 − ρ)λ−1 λ = 1, 2, . . .
(1)

We use Pπ to denote the probability measure under which
� has the above distribution. We will denote the expectation
under this measure by Eπ . Additionally, we will use Pλ and Eλ

to denote the probability measure and the expectation under
the event {� = λ}.

We assume that the observer initially has N sampling
rights, and her sampling rights are consumed when she takes
observations and are replenished randomly. The sampling right
replenishing procedure is modeled as a stochastic process
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Fig. 1. The observer’s decision flow.

ν = {ν1, ν2, . . . , νk , . . . }, where νk is the amount of sampling
rights collected by the observer at time slot k. Specially,
νk ∈ V = {0, 1, 2, . . .}, in which {νk = 0} implies that she
obtains no sampling right at time slot k and {νk = i} implies
that she collects i sampling rights at k. We use pi = Pν

(νk = i) to denote its probability mass function (pmf).
We assume that {νk} is i.i.d. over k.

The observer can decide when to spend her sampling rights
to take observations. Let μ = {μ1, μ2, . . . , μk, . . . } be the
sampling strategy with μk ∈ {0, 1}, in which {μk = 1} means
that she spends one sampling right on taking observation at
time slot k and {μk = 0} means that no sampling right is spent
at k and hence no observation is taken.

We are interested in the case that the observer has a finite
sampling right capacity C . Let Nk be the amount of sampling
rights at the end of time slot k. Nk evolves according to

Nk = min{C, Nk−1 + νk − μk} (2)

with N0 = N . The observer’s strategy μ must obey a causality
constraint: the observer cannot take an observation at time
slot k if she has no sampling right at that time slot. Hence,
the admissible strategy set can be written as

U = {μ : Nk ≥ 0, k = 1, 2, . . . .}. (3)

The observer spends sampling rights to take observations.
We denote the observation sequence as {Zk, k = 1, 2, . . .} with

Zk =
{

Xk if μk = 1
φ if μk = 0,

in which φ denotes no observation.
We call an observation Zk a non-trivial observation if

μk = 1, i.e., if the observation is taken from the environment.
Denote ti as the time instance that the observer makes the
i th observation, then μti = 1 and the non-trivial observation
sequence can be denoted as {Xt1, Xt2, . . . , Xtn , . . .}.

The observation sequence {Zk} generates the filtration
{Fk}k∈N with

Fk = σ(Z1, · · · , Zk, {� = 0}), k = 1, 2, . . . .

and F0 contains the sample space 
 and {� = 0}.
Figure 1 illustrates the observer’s decision flow. At each

time slot k, the observer has to make two decisions: the
sampling decision μk and the terminal decision δk ∈ {0, 1}.
These two decisions are based on different information. First,
the observer needs to decide whether she should spend a
sampling right to take an observation (μk = 1) or not (μk = 0)
after she obtains the information of νk . In general, μk depends

casually on the observation process, the sampling strategy and
the sampling right replenishing process, i.e.,

μk = gk(Z
k−1
1 , νk

1 , μk−1
1 ), (4)

in which Zk−1
1 denotes {Z1, . . . , Zk−1}, νk

1 and μk−1
1 are

defined in a similar manner, and gk is the sampling strategy
function used at k. After making each observation Zk (whether
it is a non-trival observation in the case of μk = 1 or it is
a trivial observation in the case of μk = 0), the observer
needs to decide whether she should stop sampling and declare
that a change has occurred (δk = 1), or to continue the
sampling procedure (δk = 0). Therefore, δk is a Fk measurable
function. We introduce a random variable τ to denote the time
when the observer decides to stop, i.e., {τ = k} if and only
if {δk = 1}, then τ is a stopping time with respect to the
filtration {Fk}.

We notice that the distribution of Zk is related to both
Xk and μk . Unlike the classic Bayesian setup which only
takes the expectation with respect to Pπ , in our setup we
should take the expectation with respect to both Pπ and Pν.
Hence, we use the superscript ν over the probability measure
and the expectation to emphasize that we are working with a
probability measure taken the distribution of the process ν into
consideration. Specifically, we use Pν

π and E
ν
π to denote the

probability measure and the expectation under �, respectively;
and we use Pν

λ and E
ν
λ under the event {� = λ}.

In this paper, our goal is to design a strategy pair (τ, μ)
to minimize the detection delay subject to a false alarm
constraint. In particular, the average detection delay (ADD)
is defined as

ADD(π, N, τ, μ) = E
ν
π

[
(τ − �)+

]
,

where x+ = max{0, x}, and the probability of the false alarm
(PFA) is defined as

PFA(π, N, τ, μ) = Pν
π (τ < �).

With the initial probability π0 = π and the initial sampling
right N0 = N , we want to solve the following optimization
problem:

(P1) min
μ∈U ,τ∈T

ADD(π, N, τ, μ)

subject to PFA(π, N, τ, μ) ≤ α.

in which T is the set of all stopping times with respect to the
filtration {Fk} and α is the false alarm level. By Lagrangian
multiplier, for each α the optimization problem (P1) can be
equivalently written as

(P2) J (π, N) = inf
μ∈U ,τ∈T

U(π, N, τ, μ),

where

U(π, N, τ, μ) � E
ν
π

[
c(τ − �)+ + 1{τ<�}

]
(5)

for an appropriately chosen constant c. We would like to
characterize J (π, N) in this paper.
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III. PROBLEMS WITH THE LIMITED SAMPLING

RIGHT CONSTRAINT

We first consider a special case that p0 = Pν (νk = 0) = 1,
that is, other than the initial sampling rights, there will be no
additional sampling rights arriving at the observer. Hence she
can take at most N0 = N observations from the sequence {Xk}
for the detection purpose. Therefore, we name the sampling
right causality constraint as a limited sampling right constraint
in this case.

From (2) and (3), it is easy to verify that there are at
most N nonzero elements in μ. Hence, instead of considering
μ = {μk} with infinite elements, we can describe the sampling
strategy by the sampling time sequence μ = {t1, . . . , tη},
where tη is the time instance that the observer takes the last
observation, and η is the number of observations taken by the
observer when she stops. Hence, in this paper we term η as the
sample size, and we notice that η is a random variable whose
realization varies from different trials. The admissible strategy
set (3) can be equivalently written as UN = {μ : η ≤ N} in
this case.

In addition, as indicated in Section II, in general we need
to take the expectation with respect to both Pπ and Pν.
However, in this special case we only need to take expec-
tation with respect to Pπ since the process ν has no ran-
domness. Therefore, E

ν
π and Pν

π can be replaced by Eπ

and Pπ respectively. In particular, the cost function can be
written as

U(π, N, τ, μ) = Eπ

[
c(τ − �)+ + 1{τ<�}

]
. (6)

A. Optimal Solution

Let πk be the posterior probability that a change has
occurred at the kth time instance, namely

πk = P(� ≤ k|Fk), k = 0, 1, . . . . (7)

Using Bayes’ rule, πk can be shown to satisfy the recursion

πk =
{

�0(πk−1), if μk = 0
�1(Xk, πk−1), if μk = 1,

(8)

in which

�0(πk−1) = πk−1 + (1 − πk−1)ρ, (9)

and

�1(Xk, πk−1)

= �0(πk−1) f1(Xk)

�0(πk−1) f1(Xk) + (1 − �0(πk−1)) f0(Xk)
. (10)

It turns out that πk is a sufficient statistic for this problem,
as the next result demonstrates.

Proposition 1: For each sampling strategy μ and stopping
rule τ

U(π, N, τ, μ) = Eπ

[
1 − πτ + c

τ−1∑
k=0

πk

]
. (11)

Proof: An outline of the proof is provided as follows:

U(π, N, τ, μ) = Eπ

[
c(τ − �)+ + 1{τ<�}

]
= Eπ

[
c(τ − �)1{τ≥�} + 1{τ<�}

]
= Eπ

[
c

τ−1∑
k=0

1{�≤k} + 1{τ<�}

]

= Eπ

[
c

τ−1∑
k=0

πk + (1 − πτ )

]
.

A detailed proof follows closely to that of [21, Proposition 5.1]
and is omitted for brevity. �

We first have the following lemma characterizing some
properties of the optimal (τ, μ).

Lemma 1: Let μ = {t1, . . . , tη} be an admissible sampling
strategy, and τ be a stopping time. If η < N and τ > tη, then
(τ, μ) is not optimal.

Proof: The proof is provided in Appendix A. �
This result implies that if the observer has any sampling

rights left, it is not optimal for him to stop at time slot k
without taking an observation at k. In other words, the only
scenario in which the observer may stop sometime after an
observation is taken occurs when she has exhausted all her
sampling rights. From this lemma, we immediately have the
following result.

Corollary 1: If μ∗ = {t∗1 , . . . , t∗η∗} is the optimal sampling
strategy, then on the event {η∗ < N}, we have τ ∗ = t∗η∗ .

We solve (P2) by using the dynamic programming principle.
Similar to the approach used in [22], we define a functional
operator G as

GV (π) = min

{
1 − π, inf

m≥1
Eπ

[
c

m−1∑
k=0

πk + V (πm)

]}
, (12)

in which

π0 = π,

πk = π +
k∑

i=1

(1 − π)ρ(1 − ρ)i−1, k = 1, · · · m − 1,

πm = �0(πm−1) f1(Xm)

�0(πm−1) f1(Xm) + (1 − �0(πm−1)) f0(Xm)
.

Using this functional operator, we can introduce a set of
iteratively defined functions:

V0(π) = min
m≥0

[
c

m−1∑
k=0

πk + 1 − πm

]
, (13)

Vn(π) = GVn−1(π), n = 1, . . . , N. (14)

The operator G converts (P2) to a Markov stopping problem.
Specifically, we have the following result:

Theorem 1: For all n = 0, · · · , N, π0 = π ∈ [0, 1), we
have

J (π, n) = Vn(π).

Furthermore, by letting t∗0 = 0, the optimal sampling time
for (P2) can be determined by

t∗n+1 − t∗n = arg min
m≥1

Eπt∗n

[
c

m−1∑
k=0

πk + VN−n−1(πm)

]
, (15)
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for n = 0, 1, . . . , N − 1. The optimal sampling size is given
as

η∗ = inf
{
0 ≤ n ≤ N : πt∗n ∈ Sn

}
, (16)

in which Sn is the stopping domain defined as

Sn�
{

πtn : 1 − πtn≤ inf
m≥1

Eπtn

[
c

m−1∑
k=0

πk + VN−n−1(πm)

]}
,

for n = 0, · · · , N − 1, and SN � [0, 1]. In addition, the
optimal stopping time is given as

τ ∗ = t∗η∗ + m∗1{η∗=N}, (17)

where

m∗ = arg min
m≥0

Eπt∗N

[
c

m−1∑
k=0

πk + 1 − πm

]
.

Proof: The proof is provided in Appendix B. �
Remark 1: Theorem 1 indicates that the observer cannot

decide the sampling time tn+1 until she takes the nth obser-
vation. The conditional expectation on the right hand side
of (15) is a function of πtn , which can only be obtained after
making the nth observation. Hence, the optimal sampling time
is characterized by the sampling interval, which is the time that
the observer should wait after she makes the nth observation,
on the left hand side of (15).

Remark 2: Using Theorem 1, we now give a heuristic
explanation of the operator G and the iterative function (14).
In particular, Vn(π) is the minimum cost when there are only
n sampling rights left. We could choose either to stop, which
costs 1 − π , or to continue and take another observation at
m that minimizes the expectation of the future cost. Therefore,
the minimizer m in the definition of the operator G is the next
sampling time, and πk’s in G are the posterior probabilities
that are consistent with the expressions (7)-(10).

Let
π̄ = 1 − π, ρ̄ = 1 − ρ,

it is easy to verify that

m−1∑
k=0

πk = m − π̄

ρ
(1 − ρ̄m), (18)

πm = (1 − π̄ ρ̄m) f1(Xm)

(1 − π̄ ρ̄m) f1(Xm) + (π̄ ρ̄m) f0(Xm)
. (19)

Hence GV (π) can be simplified as

GV (π) = min

{
1 − π, inf

m≥1{
c

(
m− π̄

ρ
(1−ρ̄m)

)
+Eπ [V (πm)]

}}
, (20)

and V0(π) can be simplified as

V0(π) = min
m≥0

[
c

(
m − π̄

ρ
(1 − ρ̄m)

)
+ π̄ ρ̄m

]
. (21)

Based on this form, the optimal stopping time can be further
simplified to a threshold rule. We define

πU
n = inf{π ∈ [0, 1]|1 − π = VN−n(π)},

for n = 0, . . . , N , and the threshold rule is described in the
following theorem.

Theorem 2: For each n ≤ N, Vn(π) is a concave function
of π and Vn(1) = 0. Furthermore, the optimal stopping rule
for the N sampling right problem can be given as a threshold
rule. Specifically,

η∗ = min{n : πt∗n ∈ Sn}, (22)

where

Sn = {πtn : πtn ≥ πU
n } (23)

for n = 0, . . . , N − 1 and SN = [0, 1]. Moreover, if η∗ < N,
then τ ∗ = tη∗; if η∗ = N, then

τ ∗ = inf
{

k ≥ tN : πk ≥ πU
N

}
. (24)

Proof: The proof is provided in Appendix C.
Remark 3: We notice that η∗ is a threshold rule if η∗ < N,

but it is not a threshold rule if η∗ = N in Theorem 2.
Hence η∗ = N is true even if πt∗N < πU

N . This is consistent
with our intuition that the observer cannot take more than
N observations. However, on the event {πt∗N < πU

N }, the
optimal stopping rule is still a threshold rule due to the fact
that V0(π) is concave and V0(π) is bounded by 1 − π .

Although Theorem 2 simplifies the optimal stopping rule
into a threshold rule, the optimal strategy still has a very
complex structure as the optimal sampling rule is in general
difficult to characterize. From (15), one can see that the
optimal sampling rule depends on Vn(π). Generally Vn(π)
does not have a close form for a general value of n, and it could
only be calculated numerically. For reader’s convenience,
Table I summarizes the numerical procedure for the calculation
of the optimal solution. Although the problem can be solved
numerically, numerical calculation provides little insight for
the optimal solution. This motivates us to conduct asymptotic
analysis in the next subsection.

B. Asymptotic Upper Bound

In this subsection, we investigate if there are any scenarios
under which the performance of the limited sampling right
problem would approach to the performance of the classic
Bayesian detection.

The performance of the classic Bayesian case, in which the
observer can take observations at every time slot, is certainly
a lower bound of the performance of the N sampling right
problem. In this case, the asymptotic performance is given
in [12]. Hence we have

ADD(π, N, τ ∗, μ∗) ≥ | log α|
D( f1|| f0) + | log(1 − ρ)| (1 + o(1)),

(25)

where D( f1|| f0) is the Kullback-Leibler (KL) divergence of
f1 and f0.

We consider a uniform sampling strategy with a threshold
stopping rule. In particular, the observer adopts a sampling
strategy μ = {ς, 2ς, . . . , ης}, i.e., she takes observations
every ς symbols, and she adopts a stopping rule τ = inf{nς :
πnς ≥ 1 − α, n ∈ N}. The performance of this uniform
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TABLE I

OPTIMAL ALGORITHM FOR N SAMPLING RIGHT PROBLEM

sampling strategy serves as an upper bound of the performance
of the N sampling right problem. In particular, we have the
following proposition:

Proposition 2 (Asymptotic Upper Bound): As α → 0, if the
number of sampling rights satisfies

N ≥ | log α|
| log(1 − ρ)|ς (26)

for some constant ς < ∞, then

ADD(π, N, τ ∗, μ∗)

≤ | log α|ς
D( f1|| f0) + | log(1 − ρ)|ς (1 + o(1)). (27)

Proof: The proof is provided in Appendix D. �
Remark 4: In the conventional asymptotic analysis, one is

interested in the average detection delay when α → 0. For the
limited observation case (0 ≤ N < ∞), it is easy to find that

ADD(π, N, τ ∗, μ∗) = | log α|
| log(1 − ρ)| (1 + o(1)). (28)

However, this result brings little information since this ADD
can be achieved by any sampling strategy with the threshold
rule τ = inf{k : πk ≥ 1 − α}. (28) could only indicate the
order of the average detection delay of the limited sampling
right problem. In order to obtain an informative result, in
Proposition 2, we consider an alternative condition (26).
This condition is weaker than the limited sampling rights
constraint, but is stronger than the condition that the observer
has infinity many sampling rights, which is assumed in the
classic Bayesian setting.

Remark 5: One can notice from (26) that N → ∞ when
α → 0 for any given ρ. However, this is different from the
classic Bayesian quickest detection. In the classic Bayesian

problem, the observer has so many sampling rights that she
can take observation at every time slot. But (26) cannot
guarantee the observer can achieve the false alarm constraint
at her last sampling right if she takes sample at every
time instance. It guarantees only that one can achieve the false
alarm constraint by the uniform sampling with interval ς .

From Proposition 2, we can identify scenarios under which
the performance of the N sampling right problem is close to
that of the classic Bayesian problem. Here we give two such
cases. In the first case, when N satisfies (26) with ς = 1, from
(25) and (27), we can see that the upper bound and the lower
bound are identical, and hence the ADD of the N sampling
right problem will be close to that of the classic Baysian
problem. For a problem with a finite sampling rights N , this
condition can be achieved when ρ → 1. Intuitively, in the large
ρ case, even a few samples can lead to a small false alarm
probability, hence the N sampling right problem is close to the
classic Bayesian problem. In another scenario, if D( f1|| f0)
close to 0, i.e. f0 and f1 are very close to each other, the
difference between the ADD of the N sampling right problem
and that of the classic Bayesian problem is on the order
o(log α). Intuitively, in this scenario, the information provided
by the likelihood ratios of observations is quite limited, and
therefore, the decision making mainly depends on the prior
probability of the change-point �.

IV. PROBLEMS WITH THE STOCHASTIC SAMPLING

RIGHT CONSTRAINT

In this section, we study the optimal solution for the
problem in the general setup when ν is a stochastic process
described in Section II.
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A. Optimal Solution

Denote the posterior probability as

πk = Pν
π (τ ≤ k|Fk).

Following the similar procedure as in Proportion 1, for any
μ and τ , we can convert the cost function into following
form:

U(π, N, τ, μ) = E
ν
π

[
1 − πτ + c

τ−1∑
k=0

πk

]
. (29)

This problem can be solved by the backward induction
method. In particular, we first solve a finite horizon problem,
then we extend the solution to the infinite horizon problem by
a limit argument. Hence, we first consider a finite horizon
problem with a horizon T , that is, we consider the case
that the observer must stop at a time no later than T .
We define

J T
k (πk, Nk ) � inf

μT
k+1∈UT

k+1,τ∈T T
k

U(πk, Nk , τ, μ
T
k+1),

with

U(πk, Nk , τ, μ
T
k+1) � E

ν
πk

[
1 − πτ + c

τ−1∑
i=k

πi

]
,

in which μT
k = {μk, μk+1, . . . , μT } is the strategy adopted

by the observer from k to T , UT
k = {μT

k : Ni ≥ 0,∀i =
k, . . . , T } is the admissible set of sampling strategies, and
T T

k = {τ ∈ T : k ≤ τ ≤ T } is the set of admissible stopping
times. We notice that by setting k = 0, J T

0 (π0, N0) is the cost
function for the finite horizon problem with a horizon T .

We then introduce a set of iteratively defined functions. Let

V T
T (πT , NT ) = 1 − πT ,

and for k = T − 1, T − 2, . . . , 0, we define

W T
k+1(πk, Nk , νk+1)

= min
{
E

ν
πk

[V T
k+1(πk+1, Nk+1)|νk+1, μk+1 = 0],

E
ν
πk

[V T
k+1(πk+1, Nk+1)|νk+1, μk+1 = 1]},

V T
k (πk, Nk)

= min{1 − πk, cπk + E
ν[W T

k+1(πk, Nk , νk+1)]}.
This set of functions convert the finite horizon problem

into a Markov stopping problem. Specifically, we have the
following theorem:

Theorem 3: For all k = 1, 2, . . . , T , we have

J T
k (πk, Nk) = V T

k (πk, Nk).

Furthermore, the optimal sampling strategy is given as

μ∗
k = arg min

μk∈{0,1}
E

ν
πk−1

[V T
k (πk, Nk)|νk, μk].

The optimal stopping rule is given as

τ ∗ = inf
{

0 ≤ k ≤ T : 1 − πk

≤ cπk + E
ν[W T

k+1(πk, Nk , νk+1)]
}

.

Proof: This proof is provided in Appendix E. �

Remark 6: Using Theorem 3, we now give a heuristic
explanation of the iterative functions W T

k+1 and V T
k . In each

time slot, as shown in Figure 1, the observer needs to make
two decisions: the sampling decision μk and the terminal deci-
sion δk . Both decisions affect the cost function, however these
two decisions are based on different information. In particular,
the observer decides whether to take an observation or not at
time slot k after she knows how many sampling rights has been
collected at time slot k. Hence, μk is a function of νk , πk−1
and Nk−1 . When μk is decided, the observer could determine
the way that πk and Nk evolve, and hence the decision δk

is a function of πk and Nk . Actually, the iterative function
V T

k is the cost function associated with δk, and W T
k is that

associated with μk . At the end of time slot k, the observer
could choose either to stop, which costs 1−πk, or to continue.
Since μk+1 is the next decision after δk , the future cost in V T

k
is E

ν[W T
k+1]. On the other hand, since δk+1 is the decision

after μk+1, hence the observer chooses μk+1 based on the
rule that the future cost is minimized, that is the conditional
expectation of V T

k+1 is minimized, which leads the expression
of W T

k+1 .
In the following, we use a limit argument to extend

the above conclusion to the infinite horizon problem. Since
V T

k (πk, Nk ) ≥ 0 and

V T +1
k (πk, Nk ) ≤ V T

k (πk, Nk ),

which is true due to the fact that all strategies admissible for
horizon T are also admissible for horizon T +1. As the result,
the limit of V T

k (πk, Nk ) as T → ∞ exists. Furthermore, as
πk and Nk are homogenous Markov chains, the form of the
limit function is the same for different values of k, which we
define as

V (πk, Nk ) � lim
T →∞ V T

k (πk, Nk).

Similarly, we have

W (πk , Nk , νk+1) � lim
T →∞ W T

k+1(πk, Nk , νk+1).

By the monotone convergence theorem, the iterative func-
tions can be written as

W (πk, Nk , νk+1)

= min
{
E

ν
πk

[V (πk+1, Nk+1)|νk+1, μk+1 = 0],
E

ν
πk

[V (πk+1, Nk+1)|νk+1, μk+1 = 1]} ,

V (πk, Nk )

= min{1 − πk, cπk + E
ν[W (πk , Nk , νk+1)]}.

Hence, we have the following conclusion for the infinite
horizon problem.

Theorem 4: The optimal sampling strategy for (P2) is given
as

μ∗
k = arg min

μk∈{0,1}
E

ν
πk−1

[V (πk, Nk )|νk, μk]. (30)

The optimal stopping rule is given as

τ ∗ = inf
{
k ≥ 0 : 1−πk ≤cπk +E

ν[W (πk , Nk , νk+1)]
}
. (31)
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B. Asymptotically Optimal Solution

The optimal solution for the stochastic sampling problem
has a very complex structure. In this subsection, we propose
a low complexity algorithm and show that it is asymptotically
optimal when α → 0. The proposed algorithm is

μ̃∗
k =

{
1 if Nk−1 + νk ≥ 1
0 if Nk−1 + νk = 0,

(32)

and

τ̃ ∗ = inf{k ≥ 0|πk ≥ 1 − α}. (33)

That is, the observer adopts a greedy sampling strategy in
which she takes observations as long as she has sampling
rights left, and she declares that the change has occurred when
the posterior probability exceeds a pre-designed threshold.
In the following, we show the asymptotic optimality of this
algorithm in two steps. In the first step, we derive a lower
bound on the average detection delay for any sampling strategy
and any stopping rule. In the second step, we show that
(μ̃∗, τ̃ ∗) achieves this lower bound asymptotically, which then
implies that (μ̃∗, τ̃ ∗) is asymptotically optimal. To proceed,
we define the likelihood ratio of the observation sequence
{Zk} as

L(Zk) =
{

f1(Xk)
f0(Xk)

, if μk = 1
1, if μk = 0,

(34)

and denote l(Zk) = log L(Zk) as the log likelihood ratio.
The lower bound on the detection delay is presented in the
following theorem:

Theorem 5: As α → 0,

inf
μ∈U ,τ∈T

ADD(π, N, τ, μ)

≥ | log α|
p̃D( f1|| f0) + | log(1 − ρ)| (1 + o(1)), (35)

with p̃ � E
ν[μ̃∗].

Proof: This proof is provided in Appendix F. �
To study the asymptotic optimality of (μ̃∗, τ̃ ∗), we need to

impose some additional assumptions on f1 and f0. Specifi-
cally, for any ε > 0, we define the random variable

T (λ)
ε � sup

{
n ≥ 1 :

∣∣∣1
n

λ+n−1∑
i=λ

l(Zi ) − p̃D( f1|| f0)
∣∣∣ > ε

}
,

in which the supremum of an empty set is defined as 0. Under
the sampling strategy μ̃∗, we make additional assumptions that

E
ν
λ

[
T (λ)

ε

]
< ∞ ∀ε > 0 and ∀λ ≥ 1 (36)

and

E
ν
π

[
T (�)

ε

]
=

∞∑
λ=1

E
ν
λ

[
T (λ)

ε

]
P(� = λ) < ∞, ∀ε > 0. (37)

With these assumptions, we have following result:

Theorem 6: If (36) and (37) hold, then (μ̃∗, τ̃ ∗) is asymp-
totically optimal as α → 0. Specifically,

ADD(π, N, τ̃ ∗, μ̃∗)

= | log α|
p̃D( f1|| f0) + | log(1 − ρ)| (1 + o(1)). (38)

Proof: This proof is provided in Appendix G. �
Remark 7: More general assumptions corresponding

to (36) and (37) are termed as “r-quick convergence”
and “average-r-quick convergence” [12], respectively.
In particular, (36) and (37) are special cases for r = 1. The
“r-quick convergence” was originally introduced in [23]
and has been used previously in [24] and [25] to show the
asymptotic optimality of the sequential multi-hypothesis test.
The “average-r-quick convergence” was introduced in [12]
to show asymptotic optimality of the Shiryaev-Roberts (SR)
procedure in the Bayesian quickest change-point problem.

Remark 8: The above theorems indicate that N0 does not
affect the asymptotic optimality. Since the detection delay goes
to infinity as α → 0, a finite initial N0, which could contribute
only a finite number of observations, does not reduce the
average detection delay significantly. However, the sampling
right capacity C could affect the average detection delay since
p̃ is a function of C and ν.

Remark 9: Since there is no penalty on the observation cost
before the change-point, one may expect the observer to take
observations as early as possible for the quickest detection
purpose, and hence expect the greedy sampling strategy to be
exactly optimal. However, taking observations too aggressively
before the change-point will affect how many sampling rights
the observer can use after the change-point, although there is
no penalty on the observations cost before the change-point.
Theorem 4 shows that the optimal sampling strategy should be
a function of πk , Nk and νk . Intuitively, an observer will save
the sampling rights for future use when she has little energy
left (Nk is small) or when she is pretty sure that the change-
point has not occurred yet (πk is small). To use the greedy
sampling at the very beginning may reduce the observer’s
sampling rights at the time when the change occurs, hence
increase the detection delay. Therefore, the greedy sampling
strategy is only first order asymptotically optimal but not
exactly optimal.

Remark 10: In our recent work [17], we also show that
the greedy sampling strategy is asymptotically optimal for the
non-Bayesian quickest change-point detection problem with
a stochastic energy constraint. Here, we provide a high-
level explanation why the greedy sampling strategy performs
well for both Bayesian and non-Bayesian case. In asymptotic
analysis of both cases (either PFA goes to zero or the average
run length to false alarm goes to infinity), the detection delay
goes to infinity, hence the observer needs infinitely many
sample rights after the change-point. These sample rights
mainly come from the replenishing procedure νk . After the
change-point, the greedy sampling strategy is the most efficient
way to consume the sampling rights collected by the observer.
Before the change-point, the greedy sampling might not be the
best strategy, but the penalty incurred by this sub-optimality in
terms of the detection delay is at most C (the finite sampling
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Fig. 2. PFA v.s. ADD under S N R = 0dB and ρ = 0.1.

right capacity of the observer), which is negligible when the
detection delay goes to infinity.

V. NUMERICAL SIMULATION

In this section, we give some numerical examples to illus-
trate the analytical results of the previous sections. In these
numerical examples, we assume that the pre-change dis-
tribution f0 is Gaussian with mean 0 and variance σ 2.
The post-change distribution f1 is Gaussian distribution with
mean 0 and variance P + σ 2. In this case, the KL diver-
gence is D( f1|| f0) = 1

2

[
log 1

1+P/σ 2 + P
σ 2

]
. And we denote

SN R = 10 log(P/σ 2).
The first set of simulations are related to the limited

sampling problem. In the first scenario, we illustrate the
relationship between ADD and PFA with respect to N . In this
simulation, we take π0 = 0, ρ = 0.1 and SN R = 0dB, from
which we know that D( f1|| f0) ≈ 0.15 and | log(1−ρ)| ≈ 0.11
in this case. The simulation results are shown in Figure 2.
In this figure, the blue line with squares is the simulation result
for N = 30, the green line with stars and the red line with
circles are the results for N = 15 and N = 8, respectively.
The black dash line is the performance of the classic Bayesian
problem, which serves as a lower bound for the performance
of our problem. The black dot dash line is the performance
of the uniform sampling case with sampling interval ς = 11
(One can verify this value by putting α = 10−5 and N = 8
into (26)), which serves as an upper-bound for the performance
of our problem. As we can see, these three lines lie between
the upper bound and the lower bound. Furthermore, the more
sampling rights the observer has, the shorter detection delay
the observer can achieve, and the closer the performance is to
the lower bound.

In the second scenario, we discuss the relationship between
ADD and PFA with respect to different ρ. In this simulation,
we set π0 = 0, N = 8 and SN R = 0dB. The simulation
results are shown in Figure 3. In this figure, the red line with
circles is the performance with ρ = 0.2, the green line
with stars and the blue line with squares are the performances
with ρ = 0.5 and ρ = 0.8, respectively. The three black
dash lines from the top to the bottom are the lower bounds

Fig. 3. PFA v.s. ADD under S N R = 0dB and N = 8.

Fig. 4. PFA v.s. ADD under S N R = −5dB and ρ = 0.4.

obtained by the classic Bayesian case with ρ = 0.2, ρ = 0.5
and ρ = 0.8, respectively. From this figure we can see that,
as ρ increases, the distance between the performance of our
scheme and the lower bound is reduced. For the case ρ = 0.8,
the performance of N = 8 is almost the same as that of the
lower bound, which verifies our analysis that when ρ is large,
the performance of limited sampling right problem is close to
that of the classic one.

In the third scenario, we consider the case when f0 and f1
are close to each other. In the simulation, we set the SN R =
−5dB and ρ = 0.4. One can verify that D( f1|| f0) = 0.02,
which is only about 4% of the value | log(1 − ρ)|. In this
simulation, we set N = 15 and ς = 2 to achieve a false alarm
probability 10−5. The simulation results are shown in Figure 4.
As we can see, the distance between the upper bound, which
is the black dot dash line obtained by the uniform sampling
with ς = 2, and the lower bound, which is the black dash
line obtained by the classic Bayesian case, is quite small,
and therefore the performance of the limited sampling right
problem (the blue line with squares) is quite close to the lower
bound.

In the last simulation, we examine the asymptotic optimality
of (μ̃∗, τ̃ ∗) for the stochastic sampling right problem. In the



GENG et al.: BAYESIAN QUICKEST CHANGE-POINT DETECTION 6483

Fig. 5. PFA v.s. ADD under strategy (τ̃∗, μ̃∗).

simulation, we set C = 3, and we assume that the amount of
sampling right is taken from the set V = {0, 1, . . . , 4}. In this
case, the probability transition matrix of the Markov chain Nk

under μ̃∗ is given as

P =

⎡
⎢⎢⎢⎣

p0 + p1, p2, p3, p4

p0, p1, p2, p3 + p4

0, p0, p1,
∑4

i=2 pi

0, 0, p0,
∑4

i=1 pi

⎤
⎥⎥⎥⎦ .

In the simulation, we set p0 = 0.85, p1 = 0.1, p2 = 0.03,
p3 = 0.01, p4 = 0.01, then the stationary distribution is
w̃ = [0.7988, 0.0988, 0.0624, 0.0390]T and p̃ = 1 − p0w̃0 =
0.3610. Furthermore, we set σ 2 = 1 and SN R = 5dB.
The simulation result is shown in Figure 5. In this figure
the red line with squares is the performance of the pro-
posed strategy (τ̃ ∗, μ̃∗), and the black dash line is calculated
by | log α|/( p̃D( f1|| f0) + | log(1 − ρ)|). As we can see,
along all the scales, these two curves are parallel to each
other, which confirms that the proposed strategy, (τ̃ ∗, μ̃∗),
is asymptotically optimal as α → 0 since the constant
difference can be ignored when the detection delay goes to
infinity.

VI. CONCLUSION

In this paper, we have analyzed the Bayesian quickest
change detection problem with sampling right constraints. Two
types of constraints have been considered. The first one is a
limited sampling right constraint. We have shown that the cost
function of the N sampling right problem can be characterized
by a set of iterative functions, each of them could be used
for determining the next sampling time or the stopping time.
The second constraint is a stochastic sampling right constraint.
Under this constraint, we have shown that the greedy sampling
strategy coupled with a threshold stopping rule is first order
asymptotically optimal as α → 0.

In terms of future work, it will be interesting to design
a low complexity algorithms for the limited sampling right
problem. It will also be interesting to develop higher order
asymptotically optimal solutions for the stochastic sampling

right problem. We will also extend the current work to the
distributed sensor network setting.

APPENDIX A
PROOF OF LEMMA 1

Let μ = (t1, · · · , tη) be a sampling strategy and τ = ts be a
stopping time such ts > tη and η < N . Notice that t1, · · · , tη
are time instances at which observations are taken, and ts is
the time instance at which no sample is taken but the observer
announces that a change has occurred. Since η< N , meaning
that there is at least one sampling right left, we construct
another strategy μ̃ = (t1, · · · , tη, ts) and τ̃ = ts + m∗, in
which we will take another observation at time ts and then
claim that a change has occurred at time ts + m∗. Here m∗ is
chosen as

m∗ = arg min
m≥0

H (πts , m),

in which

H (π, m) � Eπ

[
c

m−1∑
k=0

πk + 1 − πm

]

with

π0 = π,

πk = π +
k∑

i=1

(1 − π)ρ(1 − ρ)i−1

= π + (1 − π)[1 − (1 − ρ)k], k = 1, . . . m.

Then, we have

U(π, N, τ̃ , μ̃) = Eπ

⎡
⎣c

ts+m∗−1∑
k=0

πk + 1 − πts+m∗

⎤
⎦

= Eπ

[
c

ts−1∑
k=0

πk + H (πts , m∗)
]

≤ Eπ

[
c

ts−1∑
k=0

πk + H (πts , 0)

]

= Eπ

[
c

ts−1∑
k=0

πk + 1 − πts

]

= U(π, N, τ, μ).

Hence, by taking one more observation at time ts and then
deciding whether a change has occurred or not can reduce
the cost. This implies that if there are sampling rights left,
it is not optimal to claim a change without first taking
a sample.

APPENDIX B
PROOF OF THEOREM 1

We show this theorem by induction: it is clear that
J (π, 0) = V0(π). Suppose J (π, n − 1) = Vn−1(π), we show
that J (π, n) = Vn(π).
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Firstly, we show that J (π, n) ≥ Vn(π). If the optimal
sampling strategy for (11) is tη = 0, then the optimal stopping
time is τ = 0 by Corollary 1. In this case, it is easy to
verify that J (π, n) = Vn(π) = 1 − π . Hence the conclusion
J (π, n) ≥ Vn(π) holds trivially. If the optimal strategy tη 
= 0,
then any given strategy μ = {t1, · · · , tη} with t1 = 0 is not
optimal, since it simply reduces the set of admissible strategies
without bringing any benefit. In the following we consider the
sampling strategy with tη 
= 0 and t1 
= 0.

Let μ = {t1, · · · , tη} be any sampling strategy with t1 
=
0 in Un , then we construct another sampling strategy μ̃ via
μ̃ = {t2, · · · , tη}, which is in Un−1. We have

U(π, n, τ, μ)

= Eπ

[
1 − πτ + c

τ−1∑
k=0

πk

]

= Eπ

⎡
⎣c

t1−1∑
k=0

πk + 1 − πτ + c
τ−1∑
k=t1

πk

⎤
⎦

= Eπ

[
c

t1−1∑
k=0

πk + U(πt1, n − 1, τ, μ̃)

]

≥ Eπ

[
c

t1−1∑
k=0

πk + J (πt1, n − 1)

]

≥ inf
m≥1

Eπ

[
c

m−1∑
k=0

πk + Vn−1(πm)

]

≥ min

{
1 − π, inf

m≥1
Eπ

[
c

m−1∑
k=0

πk + Vn−1(πm)

]}
. (39)

Since this is true for any μ ∈ Un with t1 
= 0, and we also
know that the strategy μ with t1 = 0 could not be optimal
unless tη = 0, then we have

J (π, n) = inf
μ

U(π, n, τ, μ) ≥ GVn−1(π) = Vn(π).

Secondly, we show that J (π, n) ≤ Vn(π). Assume the
optimal sampling strategy is μ∗ = {t∗1 , t∗2 , . . . , t∗η∗ } ∈ Un and
the optimal stopping time is τ ∗, another strategy is denoted
as μ = {t1, t̃2, . . . , t̃η} with stopping time τ̃ , where t1 is an
arbitrary sampling time, μ̃ = {t̃2, . . . , t̃n} with τ̃ is the optimal
strategy achieves J (πt1, n −1) = U(πt1, n −1, τ̃ , μ̃). We have

J (π, n) ≤ Eπ

[
c

t1−1∑
k=0

πk + J (πt1, n − 1)

]

because (τ̃ , μ) is not optimal. Since the above inequality holds
for every t1, we have

J (π, n) ≤ inf
m≥0

Eπ

[
c

m−1∑
k=0

πk + Vn−1(πm)

]

≤ inf
m≥1

Eπ

[
c

m−1∑
k=0

πk + Vn−1(πm)

]
.

Moveover, we have

J (π, n)
(a)≤ J (π, 0) = inf

τ
Eπ

[
1 − πτ + c

τ−1∑
k=0

πk

]
(b)≤ 1 − π,

in which (a) is true because the admissible strategy set of
J (π, n) is larger than that of J (π, 0), and (b) is true because
τ = 0 is not necessarily optimal for J (π, 0). Therefore, we
have

J (π, n) ≤ min

{
1 − π, inf

m≥1
Eπ

[
c

m−1∑
k=0

πk + Vn−1(πm)

]}

= Vn(π).

Then we can conclude that J (π, n) = Vn(π).
The optimality of (15) can be verified by putting it into (39),

whose inequalities will then become equalities. Further, we can
obtain

VN−n(πt∗n )

= min

⎧⎨
⎩1 − πt∗n , Eπt∗n

⎡
⎣c

t∗n+1−1∑
k=0

πk + VN−n−1(πt∗n+1
)

⎤
⎦
⎫⎬
⎭ .

Notice that {πt∗n } is a Markov chain, hence (16) can be imme-
diately obtained by the Markov optimal stopping theorem.
By Corollary 1, on {η∗ < N} we have τ ∗ = t∗η∗ . On {η∗ = N},
by (13) it is easy to verify that

τ ∗ − t∗η∗ = arg min
m≥0

Eπt∗N

[
c

m−1∑
k=0

πk + 1 − πm

]
.

Let

m∗ = arg min
m≥0

Eπt∗N

[
c

m−1∑
k=0

πk + 1 − πm

]
,

then

τ ∗ = (t∗η∗ + m∗)1{η∗=N} + t∗η∗1{η∗<N}
= t∗η∗ + m∗1{η∗=N}.

APPENDIX C

PROOF OF THEOREM 2

It is easy to see that 0 ≤ Vn(π) ≤ 1 for any n ≤ N ,
and Vn(1) = 0. We next prove the concavity of Vn(π) by
inductive arguments. Clearly V0(πk) is a concave function of
πk and V0(1) = 0. Suppose Vn−1(πk) is a concave function
of πk , we show that Vn(πk) is a concave function.

We denote

An(π) = Eπ [Vn−1(πm)],
and we show that An(π) is a concave function.

Let π1
k ∈ [0, 1] and π2

k ∈ [0, 1] and θ ∈ [0, 1], then for any
fixed m, we have

θ An(π
1
k ) + (1 − θ)An(π

2
k )

= θEπ1
k
[Vn−1(π

1
k+m)] + (1 − θ)Eπ2

k
[Vn−1(π

2
k+m)]

=
∫

(θVn−1(π
1
k+m) f (xk+m |π1

k , m)

+ (1 − θ)Vn−1(π
2
k+m) f (xk+m |π2

k , m))dxk+m

=
∫

[ϑVn−1(π
1
k+m ) + (1 − ϑ)Vn−1(π

2
k+m)]
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×[θ f (xk+m |π1
k , m) + (1 − θ) f (xk+m |π2

k , m)]dxk+m

(a)≤
∫

Vn−1(ϑπ1
k+m + (1 − ϑ)π2

k+m)

×[θ f (xk+m |π1
k , m) + (1 − θ) f (xk+m |π2

k , m)]dxk+m

in which

ϑ = θ f (xk+m |π1
k , m)

θ f (xk+m |π1
k , m) + (1 − θ) f (xk+m |π2

k , m)
,

and (a) is due to the inductive assumption that Vn−1(·) is a
concave function. Now, define

π3
k = θπ1

k + (1 − θ)π2
k ,

we can verify that

π3
k+m

= [1− (1− π3
k )(1 − ρ)m ] f1(Yk+m)

[1−(1−π3
k )(1−ρ)m] f1(Yk+m )+(1−π3

k )(1−ρ)m f0(Yk+m)

= ϑπ1
k+m + (1 − ϑ)π2

k+m .

At the same time, we have

θ f (xk+m |π1
k , m) + (1 − θ) f (xk+m |π2

k , m) = f (xk+m |π3
k , m).

Hence,

θ An(π
1
k ) + (1 − θ)An(π

2
k ) ≤ Eπ3

k

[
Vn−1(π

3
k+m)

]
= An(π

3
k ).

Therefore, An(π) = Eπ

[
Vn−1(πm)

]
is a concave function.

As the result, infm
{
Eπ

[
Vn−1(πm)

]}
is also concave since it

is the minimum of concave function. Then,

c

(
m − π̄k

ρ
(1 − ρ̄m)

)
+ inf

m≥1
Eπk

[
Vn−1(πk+m)

]
(40)

is also a concave function of πk . Further, Vn(πk) is a concave
function of πk since it is the minimum of two concave
functions.

By the fact that {Vn(π), n = 1, . . . , N} is a family of
concave functions, {Vn(π), n = 1, . . . , N} are dominated by
1 − π and Vn(1) = 0, we immediately conclude that τ is a
threshold rule. By Corollary 1 and Theorem 1, we can easily
obtain (22) and (24).

APPENDIX D
PROOF OF PROPOSITION 2

In the proof, we assume π0 = 0. This assumption will not
affect the asymptotic result but will simplify the mathematical
derivation.

We consider a uniform sampling scheme with sample
interval ς . Since it is not optimal for the observer to take
an observation every ς time slots, the ADD of the uniform
sampling scheme is larger than that of the optimal strategy.
Define

� � min{n : nς ≥ �}. (41)

The random variable � acts as the change-point when there
is uniform sampling, since from observing {Xς , X2ς , . . .}, we
cannot tell whether the change happens at � or at �ς . In the

following, we derive the ADD when we use {Xkς } to detect �,
and we use the following stopping rule

γ = min{n : πnς > 1 − α}. (42)

In the first step, we relax the condition (26) and consider that
N = ∞. We notice that the problem of detecting � based on
{Xkς } is still under the Bayesian framework. The distribution
of � is given as

q0 = P(� = 0) = 0,

qk = P(� = k) = (1 − ρ)(k−1)ς
[
1 − (1 − ρ)ς

]
.

From (2.6) and (3.1) in [12], we have

d = lim
k→∞

− log P(� ≥ k + 1)

k
= ς | log(1 − ρ)|.

And on {� = k}
1

n

k+n−1∑
i=k

l(Xiς ) → D( f1|| f0) as n → ∞,

where l(Xiς ) = log f1(Xiς )/ f0(Xiς ) is the log-likelihood
ratio. Then, by [12, Th. 3], we have

E
[
γ −�|γ ≥�

]≤ | log α|
D( f1|| f0)+ς | log(1−ρ)|(1+o(1)). (43)

In the second step, we take (26) into consideration and we
show that P(N ≥ γ ) → 1 as α → 0. This result indicates
that (26) can guarantee that the observer has enough sampling
rights so that she can always stop with some sampling rights
left. Therefore, (43) still holds with probability 1 when we
take the constraint (26) into consideration.

By (26), we have(
1

1 − ρ

)Nς

≥ 1

α
or (1 − ρ)Nς ≤ α. (44)

Therefore,

P(� ≥ N) =
∞∑

n=N+1

P(� = n) = (1 − ρ)Nς< α,

and it is clear that P(� ≥ N) → 0 when α → 0.
In the following, we show P(γ > N > �) → 0 as α → 0.

Notice that

{γ > N} ⇔ {max{π0, . . . , πNς } < 1 − α}
⇔ ∩N

i=0{πiς < 1 − α}.
Following [16, eq. (3.7)], we can rewrite πi as

πiς = Rρ,i

Rρ,i + 1
1−(1−ρ)ς

, (45)

in which

Rρ,i =
i∑

k=1

i∏
j=k

[
1

(1 − ρ)ς
L(X jς )

]
, (46)

where L(X jς ) = f1(X jς )
f0(X jς ) is the likelihood ratio. One

can show (45) and (46) by inductive argument using
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(19) and Rρ,i = (1 + Rρ,i−1)
1

(1−ρ)ς L(Xiς ). Therefore,
we have

Rρ,N =
N∑

k=1

N∏
j=k

[
1

(1 − ρ)ς
L(X jς )

]

=
[

1

(1 − ρ)ς

]N N∑
k=1

[(1 − ρ)ς ]k−1
N∏

j=k

L(X jς )

≥ 1

α

N∑
k=1

[(1 − ρ)ς ]k−1
N∏

j=k

L(X jς ).

Finally, we have

P(γ > N > �) ≤ P(γ > N)

= P
(
∩N

i=0{πiς < 1 − α}
)

≤ P
(
πNς < 1 − α

)
= P

(
Rρ,N <

1 − α

α

1

1 − (1 − ρ)ς

)

≤ P

⎛
⎝ N∑

k=1

qk

N∏
j=k

L(X jς ) < 1 − α

⎞
⎠ . (47)

By (26) we have N → ∞ when α → 0, hence

N∑
k=1

qk

N∏
j=k

L(X jς ) →
∞∑

k=1

qk

∞∏
j=k

L(X jς )

= Eπ

[ ∞∏
k=�

L(Xkς )

]
= ∞.

Therefore

P(γ > N > �) ≤ P(γ > N) → 0.

Then

P(N ≥ γ ) = 1 − P(� ≥ N) − P(γ > N > �)

→ 1. (48)

As α → 0, we have

Eπ

[
γ − �|γ ≥ �

] = Eπ

[
(γ − �)+

]
1 − P(γ < �)

→ Eπ

[
(γ − �)+

]
.

Let τ � inf{nς : πnς > 1 − α} = γ ς . Since 0 ≤ �ς − � ≤
ς − 1 and ς < ∞, we obtain

Eπ

[
(τ − �)+

]
≤ | log α|ς

D( f1|| f0) + | log(1 − ρ)|ς (1 + o(1)) + (ς − 1).

= | log α|ς
D( f1|| f0) + | log(1 − ρ)|ς (1 + o(1)). (49)

Since the uniform sampling scheme and the stopping time τ
are not optimal, the detection delay of the optimal strategy
(τ ∗, μ∗) is less than Eπ

[
(τ − �)+

]
. Hence the conclusion of

Proposition 2 holds.

APPENDIX E
PROOF OF THEOREM 3

We show this theorem by induction: it is easy to
see that J T

T (πT , NT ) = V T
T (πT , NT ). Suppose that

J T
k+1(πk+1, Nk+1) = V T

k+1(πk+1, Nk+1), we show
J T

k (πk, Nk ) = V T
k (πk, Nk ).

We immediately obtain that J T
k (πk, Nk ) ≤ V T

k (πk, Nk )
since J T

k (πk, Nk) is defined as the minimum cost over T T
k

and UT
k+1. In the following, we show that J T

k (πk, Nk) ≥
V T

k (πk, Nk ).
By the recursive formulae of V T

k and W T
k+1, we can

obtain

V T
k (πk, Nk )

= min
{

1 − πk, cπk + E
ν [W T

k+1(πk, Nk , νk+1)]
}

= min

⎧⎨
⎩1 − πk, cπk +

∞∑
j=0

p j W T
k+1(πk, Nk , j)

⎫⎬
⎭

= min

⎧⎨
⎩1 − πk, cπk +

∞∑
j=0

p j min

{
E

ν
πk

[V T
k+1(πk+1, Nk+1)|νk+1 = j, μk+1 = 0],

E
ν
πk

[V T
k+1(πk+1, Nk+1)|νk+1 = j, μk+1 = 1]

}⎫⎬
⎭. (50)

On the other hand, for J T
k (πk, Nk ) we have

J T
k (πk, Nk)

= inf
μT

k+1∈UT
k+1,τ∈T T

k

E
ν
πk

[
1 − πτ + c

τ−1∑
i=k

πi

]

= inf
μT

k+1∈UT
k+1,τ∈T T

k

[
E

ν
πk

[
1 − πτ + c

τ−1∑
i=k

πi

]
1{τ=k}

+ E
ν
πk

[
1 − πτ + c

τ−1∑
i=k

πi

]
1{τ≥k+1}

]

= inf
μT

k+1∈UT
k+1,τ∈T T

k

[
(1 − πk) 1{τ=k}

+ E
ν
πk

[
1 − πτ + cπk + c

τ−1∑
i=k+1

πi

]
1{τ≥k+1}

]

= min

{
1 − πk, cπk

+ inf
μT

k+1∈UT
k+1,τ∈T T

k+1

E
ν
πk

[
1 − πT + c

T −1∑
i=k+1

πi

]}

= min

{
1 − πk, cπk

+ inf
μT

k+1∈UT
k+1,τ∈T T

k+1

E
ν
πk

[
E

ν
πk+1

[
1 − πT + c

T −1∑
i=k+1

πi

]]}
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= min

{
1 − πk, cπk

+ inf
μT

k+1∈UT
k+1,τ∈T T

k+1

E
ν
πk

[
U(πk+1, Nk+1, τ, μT

k+2)
]}

. (51)

At the same time, we have

E
ν
πk

[
U(πk+1, Nk+1, τ, μ

T
k+2)

]

=
∞∑

j=0

p jE
ν
πk

[
U(πk+1, Nk+1, τ, μT

k+2)

∣∣∣∣νk+1 = j

]

(a)≥
∞∑

j=0

p j min

{
E

ν
πk

[
U(πk+1, Nk+1, τ, μT

k+2)

∣∣∣∣νk+1 = j,

μk+1 = 0

]
,

E
ν
πk

[
U(πk+1, Nk+1, τ, μ

T
k+2)

∣∣∣∣νk+1 = j, μk+1 = 1

]}
,

(52)

in which (a) holds because E
ν
πk

[U(πk+1, Nk+1,

τ, μT
k+2)|νk+1 = j ] is a linear combination of E

ν
πk

[U(πk+1,

Nk+1, τ, μ
T
k+2)|νk+1 = j, μk+1 = i ] for i = 0, 1. Substituting

(52) into (51), and using inequalities inf(a+b) ≥ inf a+inf b,
inf min{a, b} ≥ min{inf a, inf b} and inf E[·] ≥ E[inf(·)], we
obtain

J T
k (πk, Nk )

≥ min

⎧⎨
⎩1 − πk, cπk +

∞∑
j=0

p j min

{
E

ν
πk

[
inf

μT
k+1∈UT

k+1,T∈T T
k+1

U(πk+1, Nk+1, τ, μ
T
k+2)

∣∣∣∣νk+1 = j,

μk+1 = 0

]
,

E
ν
πk

[
inf

μT
k+1∈UT

k+1,T ∈T T
k+1

U(πk+1, Nk+1, τ, μT
k+2)

∣∣∣∣νk+1 = j,

μk+1 = 1

]}

=
∞∑
j=0

p j min

{
E

ν
πk

[
J T

k+1(πk+1, Nk+1)

∣∣∣∣νk+1 = j,

μk+1 = 0
]
,

E
ν
πk

[
J T

k+1(πk+1, Nk+1)

∣∣∣∣νk+1 = j, μk+1 = 1

]}
. (53)

Since we assume that J T
k+1(πk+1, Nk+1) = V T

k+1(πk+1, Nk+1),
by (50) and (53) we can obtain J T

k (πk, Nk ) ≥ V T
k (πk, Nk ).

APPENDIX F
PROOF OF THEOREM 5

In this proof, we can consider the case that N0 = C , i.e.,
the observer has a maximum amount of sampling rights at the

beginning. The lower bound for the ADD of this case will
certainly be the lower bound for the ADD of the case with
N0 < C . The proof of Theorem 5 requires several supporting
propositions and [12, Th. 1], which are presented as follows.

Proposition 3: E
ν[μ̃∗] exists, and 0 < E

ν[μ̃∗] ≤ 1.
Proof: The outline of this proof is described as fol-

lows: by (2), one can show that Nk is a regular Markov
chain under μ̃∗. Denote the stationary distribution of Nk as
w̃ = [w̃0, w̃1, . . . , w̃C ]T , where w̃i is the stationary probabil-
ity for the state Nk = i . By the definition of μ̃∗, it is easy
to verify that E

ν[μ̃∗
k ] = 1 − p0w̃0 as k → ∞. Hence the

statement holds. The detailed proof of this proposition follows
that of [17, Lemma 5.1], hence we omit the proof here for
brevity. �

Proposition 4: Given � = λ, we have

lim
r→∞ Pν

λ

{
1

r
max

0<h≤r

λ+h∑
i=λ

l(Zi )≥ (1+ε) p̃D( f1|| f0)

}
→ 0

∀ε > 0, (54)

where p̃ = E[μ̃∗].
Proof: Following the proof of [17, Proposition C.1],

we can obtain that the inequality

1

r

r+λ−1∑
i=λ

l(Zi ) ≤ p̃D( f1|| f0), as r → ∞, (55)

holds almost surely under Pν
λ for any λ ≥ 1.

For any ε > 0, define

T̂ (λ)
ε = sup

{
r ≥ 1

∣∣∣∣1r
λ+r−1∑

i=λ

l(Zi ) > (1 + ε) p̃D( f1|| f0)

}
.

Due to (55), we have

Pν
λ

{
T̂ (λ)

ε < ∞
}

= 1,

which indicates

lim
r→∞ Pν

λ

{
1

r
max

0<h≤r

k+h∑
i=k

l(Zi ) ≥ (1 + ε) p̃D( f1|| f0)

}
→ 0.

�
Let q = p̃D( f1|| f0). From [12, eq. (2.6)] we have

d = − lim
k→∞

log P(� ≥ k + 1)

k
= | log(1 − ρ)|. (56)

To prove Theorem 5, we need [12, Th. 1], which is restated
as follows:

Lemma 2 (12, Th. 1): Let {Zk} be a sequence of random
variables with a random change-point �. Under {� = λ}, the
conditional distribution of Zk is f0(·|Zk−1

1 ) for k < λ and is
f1(·|Zk−1

1 ) for k ≥ λ. Denote P∞ as the probability measure
under {� = ∞}. Denote l(Zk) as

l(Zk) = log
f1(Zk|Zk−1

1 )

f0(Zk|Zk−1
1 )

.

Let

d = − lim
k→∞

log P(� ≥ k + 1)

k
.
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If the condition

lim
r→∞ Pλ

{
1

r
max

0<h≤r

m+h∑
i=λ

l(Zi ) ≥ (1 + ε)q

}
→ 0,

∀ε > 0 and ∀λ ≥ 1 (57)

holds for some constant q > 0. Denote qd = q + d . Then, for
all r > 0 as α → 0,

inf
τ

Eλ[(τ − λ)r |τ ≥ λ] ≥
( | log α|

qd

)r

(1 + o(1)).

inf
τ

Eπ [(τ − �)r |τ ≥ �] ≥
( | log α|

qd

)r

(1 + o(1)).

Proof: Please refer to [12]. �
In our case, for any arbitrary but given sampling strategy μ,

the conditional density

f0(Zk |Zk−1
1 ) = f0(Xk)P ({μk = 1}) + δ(φ)P ({μk = 0}) ,

f1(Zk |Zk−1
1 ) = f1(Xk)P ({μk = 1}) + δ(φ)P ({μk = 0}) ,

where δ(φ) is the Dirac delta function. Therefore, the log
likelihood ratio in Theorem 2 is

l(Zk) = log
f1(Zk |Zk−1

1 )

f0(Zk|Zk−1
1 )

=
{

log f1(Zk)
f0(Zk)

, if μk = 1
0, if μk = 0

,

which is consistent with the definition in (34). Moreover,
for any sampling strategy, (57) holds for the constant q =
p̃D( f1|| f0). Correspondingly, qd = p̃D( f1|| f0)+| log(1−ρ)|.
Therefore, by choosing r = 1, and combining Lemma 2 with
Propositions 3 and 4, we have:

inf
μ∈U ,τ∈T

E
ν
π [τ − �|τ ≥ �]

≥ | log α|
p̃D( f1|| f0) + | log(1 − ρ)| (1 + o(1)).

Since

E
ν
π [τ − �|τ ≥ �] = E

ν
π [(τ − �)+]

1 − Pν
π (τ < �)

≤ E
ν
π [(τ − �)+]

1 − α
,

as α → 0, we have

inf
μ∈U ,τ∈T

E
ν
π [(τ −�)+]≥ | log α|

p̃D( f1|| f0)+| log(1−ρ)|(1+o(1)).

APPENDIX G
PROOF OF THEOREM 6

In this appendix we prove that the proposed strategy
(τ̃ ∗, μ̃∗) can achieve the lower bound presented in Theorem 5.
In this proof, we can consider the case that N0 = 0, i.e., the
observer does not have any sampling rights at the beginning.
If the lower bound of the ADD can be achieved by this case,
then it must be achievable for the case with N0 > 0. Define

Rk � log
πk

1 − πk
.

The proposed stopping rule can be expressed in terms of Rk as

τ̃ ∗ = inf

{
k ≥ 0 : Rk ≥ log

1 − α

α

}
.

Let b � log 1−α
α . As α → 0, we have b = | log α|(1 + o(1)).

By (8), (9), (10) and (34), it is easy to verify that

Rk = Rk−1 + l(Zk) + | log(1 − ρ)| + log

(
1 + ρ

1 − πk−1

πk−1

)
.

Using this recursive formula repeatedly, we obtain

Rk =
k∑

i=1

l(Zi ) + k| log(1 − ρ)| + log

(
π0

1 − π0
+ ρ

)

+
k∑

i=2

log

(
1 + ρ

1 − πi−1

πi−1

)
.

We notice that the third item in the above expression is a
constant. Since the threshold b in the proposed stopping rule
will go to infinity as α → 0, this constant item can be
ignored in the asymptotic analysis. For simplicity, we assume
log( π0

1−π0
+ ρ) = 0 in the rest of this appendix.

Let

Sk �
k∑

i=1

l(Zi ) + k| log(1 − ρ)|,

τs � inf{k ≥ 0 : Sk ≥ b}.
It is easy to see τ̃ ∗ ≤ τs since Rk ≥ Sk . The following
proposition indicates that τs can achieve the lower bound
presented in Theorem 5, hence τ̃ ∗ is asymptotically optimal.

Proposition 5: As b → ∞,

E
ν
π [τs − �|τs ≥ �]

≤ b

p̃D( f1|| f0) + | log(1 − ρ)| (1 + o(1)). (58)

Proof: On the event {� = λ}, we can decompose Sn into
two parts if n ≥ λ:

Sn = Sλ−1
1 + Sn

λ , (59)

where

Sλ−1
1 �

λ−1∑
i=1

l(Zi ) + (λ − 1)| log(1 − ρ)|,

Sn
λ �

n∑
i=λ

l(Zi ) + (n − λ + 1)| log(1 − ρ)|.

We first show that as r → ∞
1

r
Sλ+r−1
λ

a.s.→ p̃D( f1|| f0) + | log(1 − ρ)|. (60)

Let r̂ be the number of non-zero elements in
{μλ,μλ+1, . . . , μλ+r−1}, then as r → ∞, we have

r̂

r
= 1

r

λ+r−1∑
i=λ

μi
a.s.→ E[μ] = p̃.

Let {a1, . . . , ar̂ } be a sequence of time slots in which the
observer takes observations after λ. That is, λ ≤ a1 < . . . <
ar̂ ≤ λ + r − 1 and μai = 1. By the strong law of large
numbers, as r̂ → ∞

1

r̂

r̂∑
i=1

l(Xai )
a.s.→ D( f1|| f0).



GENG et al.: BAYESIAN QUICKEST CHANGE-POINT DETECTION 6489

Then we have

1

r
Sλ+r−1
λ = 1

r

[
λ+r−1∑

i=λ

l(Zi ) + r | log(1 − ρ)|
]

= r̂

r

1

r̂

r̂∑
i=1

l(Xai ) + | log(1 − ρ)|
a.s.→ p̃D( f1|| f0) + | log(1 − ρ)|.

In the following, we denote qd = p̃D( f1|| f0) + | log(1 − ρ)|.
By (59), we can rewrite τs as

τs = inf
{

j > 0 : S j
λ ≥ b − Sλ−1

1

}
.

Hence,

Sτs−1
λ < b − Sλ−1

1 . (61)

Define the random variable

T̃ (λ)
ε � sup

{
n ≥ 1 : |n−1Sλ+n

λ − qd | > ε
}

.

By (60), we have T̃ (λ)
ε < ∞ almost surely. By (36) and (37),

it is easy to verify that E
ν
λ[T̃ (λ)

ε ] < ∞ and E
ν
π [T̃ (�)

ε ] < ∞.
On the event {τs > T̃ (λ)

ε + (λ − 1)}, we have

Sτs −1
λ > (τs − λ + 1)(qd − ε),

hence

τs − λ + 1 <
Sτs−1
λ

qd − ε
<

b − Sλ−1
1

qd − ε
. (62)

Then we have

τs − λ + 1

<
b − Sλ−1

1

qd − ε
1{

τs>T̃ (λ)
ε +(λ−1)

} + T̃ (λ)
ε 1{

τs≤T̃ (λ)
ε +(λ−1)

}

<
b − Sλ−1

1

qd − ε
+ T̃ (λ)

ε .

Taking the conditional expectation on both sides, since
T̃ (λ)

ε < ∞, then as α → 0 (b → ∞) we have

E
ν
λ[τs − λ|τs ≥ λ]
≤ b

qd − ε
− E

ν
λ[Sλ−1

1 |τs ≥ λ]
qd − ε

+ E
ν
λ[T̃ (λ)

ε |τs ≥ λ]

= b

qd − ε
(1 + o(1)) − E

ν
λ[Sλ−1

1 |τs ≥ λ]
qd − ε

.

Therefore,

E
ν
π [τs − �|τs ≥ �]

= 1

Pν
π (τs ≥ �)

E
ν
π [τs − �; τs ≥ �]

= 1

Pν
π (τs ≥ �)

∞∑
λ=1

P(� = λ)Eν
λ[τs − λ|τs ≥ λ]Pν

λ (τs ≥ λ)

≤ b

qd − ε
−

E
ν
π

[
S�−1

1 |τs ≥ �
]

qd − ε
+ E

ν
π [T̃ (�)

ε |τs ≥ �]

= b

qd − ε
(1 + o(1)) −

E
ν
π

[
S�−1

1 |τs ≥ �
]

qd − ε
. (63)

In the following, we show that E
ν
π [S�−1

1 |τs ≥ �] is finite.
Let r̃ be the number of nonzero elements in {μ1, . . . , μλ−1},
and denote {b1, . . . , br̃ } as the time slots that the observer
takes observation before λ, we have

E
ν
λ

[
Sλ−1

1

]
(a)= E

ν∞
[

Sλ−1
1

]

= E
ν∞

[
λ−1∑
i=1

l(Zi )

]
+ (λ − 1)| log(1 − ρ)|

= E∞

⎡
⎣ r̃∑

i=1

l(Xbi )

⎤
⎦+ (λ − 1)| log(1 − ρ)|

= −r̃ D( f0|| f1) + (λ − 1)| log(1 − ρ)|,
where (a) is true because Pν∞ and Pν

λ are the same for
observations taken before λ. Since r̃ < λ and D( f0|| f1) ≥ 0,
we have

−λD( f0|| f1) < E
ν
λ

[
Sλ−1

1

]
< λ| log(1 − ρ)|.

Since

E
ν
π [S�−1

1 ] =
∞∑

k=1

E
ν
λ

[
Sλ−1

1

]
P(� = λ),

we have

− D( f0|| f1)

1 − ρ
< E

ν
π

[
S�−1

1

]
<

| log(1 − ρ)|
1 − ρ

.

Therefore, E
ν
π [Sλ−1

1 ] is bounded. We notice that as α → 0,
{τs ≥ �} approaches to an almost sure event. Then

E
ν
π

[
S�−1

1 |τs ≥ �
]

→ E
ν
π

[
S�−1

1

]
as α → 0.

By (63) we obtain

E
ν
π [τs − �|τs ≥ �] ≤ b

qd − ε
(1 + o(1)). (64)

Since the above equation holds for any ε > 0, then

E
ν
π [τs − �|τs ≥ �] ≤ b

qd
(1 + o(1)).

�
Using the above proposition and the fact τ̃ ∗ ≤ τs , we have

E
ν
π

[
(τ̃ ∗ − �)+

] ≤ E
ν
π

[
(τs − �)+

]
= E

ν
π [τs − �|τs ≥ �][1 − P(τs < �)]

≤ b

qd
(1 − α)(1 + o(1))

= b

qd
(1 + o(1)).
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