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Optimal Power Allocation for Poisson Channels
With Time-Varying Background Light

Ain-ul-Aisha, Lifeng Lai, Member, IEEE, and Yingbin Liang, Member, IEEE

Abstract—In this paper, we study Poisson fading channels with
time-varying background light. Different from most of the ex-
isting work on fading Poisson channel that focus on the case
with time-varying channel gain, our model is motivated by indoor
optical wireless communication systems, in which the noise level
is affected by the strength of the background light. We study
both the single-input single-output and the multiple-input and
multiple-output channels. For each channel, we consider scenarios
with and without delay constraints. For the case without a delay
constraint, we characterize the optimal power allocation scheme
that maximizes the ergodic capacity. For the case with a strict
delay constraint, we characterize the optimal power allocation
scheme that minimizes the outage probability. We also provide
several numerical examples to demonstrate the analytic results.

Index Terms—Ergodic capacity, outage probability, Poisson
channels, time-varying background light.

I. INTRODUCTION

THE Poisson channel is a model suitable for free-space
optical (FSO) communications and visible light commu-

nications (VLC) [2] with direct-detection receivers. In case of
such receivers as the randomness in photon arrival is more
than the thermal noise, Poisson model is considered as the
appropriate model [3]. Compared to the Gaussian channel that
has been extensively studied, the Poisson channel is less well
understood due to several technical challenges. In particular,
Poisson channels are non-linear, not scale-invariant and have
continuous inputs and discrete outputs [4]. Consequently,
Poisson channels are difficult to analyze.

Recently, there have been great interests in analyzing Poisson
fading channels. There are two major types of fading models,
that with time-varying channel gains and that with time-varying
noise (e.g., background light) levels, for Poisson fading models.
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These two types of models are not equivalent and cannot be
treated equivalently, because Poisson channels are not scale-
invariant. This is different from Gaussian fading channels, in
which channels with varying noise levels can be converted to
channels with varying channel gains due to the scale-invariant
property.

The first type of Poisson fading channels with time-varying
channel gains have been studied in [5]–[8], which characterized
the ergodic and outage capacities. These studies developed
useful information theoretic tools that will also be used in our
paper. Furthermore, [9] investigated this type of fading channels
when the channel gains are log-normal random variables. The
performance of the channel in both high and low signal to noise
ratio regimes are studied based on lower and upper bounds on
the channel capacity. [10] investigated the outage probabilities
of several diversity schemes. [11] studied a single-input single-
output (SISO) Poisson channel with channel state information
(CSI) perfectly known at the receiver and partially known at the
transmitter. The goal is to maximize the ergodic capacity of the
channel, with partial information at the transmitter obtained by
an error-free feedback link with a finite rate constraint from the
receiver to the transmitter. [12] investigated the behavior of the
outage capacity for the decode-and-forward multi-hop Poisson
fading channel for FSO, where the atmospheric turbulence
contributes to the fading in the channel. The paper has char-
acterized the optimal power control function under different
assumptions on the availability of the CSI at the transmitter.

The second type of Poisson fading channels with time-
varying noise levels have been much less studied with only
a few exceptions as we describe below. In fact, such models
arise in many practical scenarios. For instance, in indoor optical
wireless communications, the noise levels at the receiver are
affected by the temperature and the strength of the background
light, as the noise level increases when the temperature or the
strength of the background light increases. In addition, the
noise level is higher when other light sources are also on.
[13] studied the optimal power allocation for 2-fold parallel
poisson channel for constant dark current, which can be viewed
as an equivalent SISO channel with time-varying noise levels.
A recent work [14] also studied the channel with time-varying
noise levels under an assumption that the transmitter knows the
noise realization at the receiver.

In this paper, we study the second type of Poisson fading
channels with time-varying noise levels. Our model is clearly
different from the first type of Poisson fading models studied
in [5]–[12], [15] due to the non-equivalence of the two types of
models as we explain above. Our study is also different from
[13], in which the model is equivalently SISO and the study
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focused on the case with two channels (equivalently two noise
levels), whereas here we study the more general SISO case
with arbitrary number of noise levels and the multiple-input
multiple-output (MIMO) channel. Our study also differentiates
from [14] in that we make a mild assumption that only the noise
level (a statistic quantity) rather than the realization of the noise
is known at the transmitter.

More specifically, we study both SISO and MIMO channels
with and without delay constraints. Our contributions lie in a
comprehensive characterization of the optimal power allocation
schemes to achieve the ergodic capacity (for the case with
no delay constraints) and to minimize the outage probability
(for the case with delay constraints). Here, the delay constraint
is measured by the number of fading blocks after which the
receiver decodes information (i.e., codewords). The delay can
also be viewed as the number of fading blocks that a codeword
is allowed to span. If there is no delay constraint, then the
codeword length is allowed to be infinite, in which case we
use the ergodic capacity as the performance metric. If there is a
delay constraint that requires the receiver to decode after a finite
number of blocks, then we focus on the outage probability that
captures the performance of such a scenario. For both scenarios,
we assume that the transmitter knows the noise level. As will
be clear in the sequel, this is a reasonable assumption because
the noise level here represents a statistic quantity but not the
realization of the noise. Hence, the amount of feedback needed
from the receiver to the transmitter is limited. In addition, as
the noise level is affected by the background light, it can be
effectively measured at the transmitter. This can further reduce
the amount of feedback necessary for the transmitter to learn
the value of the noise level.

For the case with no delay constraint, we establish the
ergodic capacity, and characterize the corresponding optimal
power allocation scheme as a function of the noise level that
achieves the ergodic capacity. For the case with a strict delay
constraint, our goal is to minimize the probability that the
instantaneous achievable rate is less than a given threshold,
i.e., the outage probability. Minimizing the outage probability
directly is very challenging. In order to solve this problem,
we apply the techniques developed in [16] to study a number
of related optimization problems. From the solutions of these
optimization problems, we then characterize the optimal power
allocation scheme that minimizes the outage probability. Both
problems are significantly more challenging than the corre-
sponding problems in the Gaussian channels.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model. In Section III,
we analyze the SISO channel. In Section IV, we extend our
analysis to the MIMO case. We present several numerical
examples in Section V. Finally, we provide concluding remarks
in Section VI.

II. SYSTEM MODEL

In this section, we introduce the model considered in this
paper. As shown in Fig. 1, we consider a MIMO Poisson chan-
nel with N transmitter antennas and M receiver antennas. Let

Fig. 1. MIMO Poisson channel with time-varying background light.

Xn(t) be the input of the nth transmitter antenna and Ym(t) be the
doubly-stochastic Poisson process observed at the mth receiver
antenna. The relationship between them can be described as:

Ym(t) = P
(

N∑
n=1

SnmXn(t) + λm(t)

)
, (1)

in which Snm is the channel response between the nth transmitter
antenna and mth receiver antenna, λm(t) is the dark current at
the mth receiver antenna, which signifies the background light,
and P(·) is the non-linear transformation converting the light
strength to the doubly-stochastic Poisson process that records
the timing and number of photon’s arrivals. In particular, for any
time interval [t, t + τ ], the probability that there are j photons
arriving at receiver antenna m is

Pr {Ym(t + τ ) − Ym(t) = j} = e−�m�
j
m

j! , (2)

�m =
∫ t+τ

t

[
N∑

n=1

SnmXn(t
′) + λm(t′)

]
dt′. (3)

We consider the maximum and average sum power constraint,
i.e. the transmitted signal Xn(t) must satisfy the following
constraints:

0 ≤ Xn(t) ≤ An, (4)

1

T

∫ T

0

N∑
n=1

Xn(t)dt ≤ σ

N∑
n=1

An, (5)

in which An is the maximum power allowed for antenna n and
σ is the average to peak power ratio. In our model, we assume
that Snm is constant while λm(t) is time-varying. This model is
motivated by the fact that the dark current is a physical param-
eter that depends on the temperature and the background lights
in the environment, which naturally change throughout the
day. We consider block fading model, in which λm(t) is fixed
for a block of symbols and then changes to another independent
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value at the beginning of the next block. Furthermore, we
assume that the transmitter knows λm. This can be justified
for two reasons. Firstly, λm does not represent the realization
of the noise, but is a statistical quantity that characterizes the
average behavior of the noise process. Hence, it is reasonable
that the receiver feeds back the information about λm albeit with
a certain rate limit. Secondly, λm is affected by the background
light and temperature, which can be measured at both the
transmitter and the receiver. In this paper, we assume that the
distribution of λ satisfies the following properties: (i) Pr{λ(t) >

0} = 1, (ii) E[λ(t)] < ∞, and (iii) E[λ(t) log λ(t)] < ∞.
We note that the model considered here is different from

the one considered in [5], [6], [8], [11], [12], [15], in which
the channel gain Snm is time-varying while λm is fixed. This is
because the case of varying dark currents can not be converted
to the case of varying channel gain, due to the nonlinearity of
the Poisson channel unlike the Gaussian channels. However,
some techniques developed in these studies are useful for
solving the problems studied in our paper.

III. SISO CHANNEL ANALYSIS

We first study a special case with N = 1 and M = 1, namely
the SISO channel, to introduce main tools used in the MIMO
case in Section IV. As M = N = 1, we drop the subscripts m
and n in variables in this section for notational convenience.

A. Preliminary

In preparation for the further development, we first review
existing results and techniques for the case when λ is fixed.
In particular, Wyner [17] developed a binary approximation
method that converts the complicated continuous time contin-
uous input discrete output Poisson channel into a discrete time
binary input binary output channel. It is much simpler to handle
the binary channel, and it is shown in [17] that this binary
approximation does not reduce the capacity.

In this binary approximation, the time is divided into inter-
vals, each with duration �. In each time interval (i − 1)� ≤
t ≤ i�, the input waveform X(t) is set to be a constant, which is
equal to A with probability μ and is equal to 0 with probability
1 − μ. Hence, μ can be viewed as the duty-cycle. Therefore, to
satisfy the average power constraint (5), we require μ ≤ σ . Let
X� be a binary random variable with

X� =
{

1 if X(t) = A,

0 if X(t) = 0.
(6)

It is clear that Pr{X� = 1} = 1 − Pr{X� = 0} = μ.
At the receiver side, the receiver records only whether or

not there is exactly one photon arriving during each time
interval (i − 1)� ≤ t ≤ i�. Let Y� be a binary random variable
whose value is 1 if the receiver observes one photon in the
small interval �, and is 0 otherwise. Using (2), one can easily
compute the transition probabilities

Pr{Y� = 1|X� = 0} = λ�e−λ�,

Pr{Y� = 1|X� = 1} = (SA + λ)�e−(λ+SA)�.
(7)

It is easy to see that the capacity of the binary channel
defined by X� → Y� is max

0≤μ≤σ
I(X�; Y�), and the normalized

value 1
�

max
0≤μ≤σ

I(X�; Y�) is an achievable rate for the original

Poisson channel. Remarkably, [17] showed that this simple
scheme is capacity achieving, and the capacity of the SISO
Poisson non fading channel is given by

CSISO = lim
�→0

1

�
max

0≤μ≤σ
I(X�; Y�). (8)

Using (7), it was shown in [17] that

CSISO = max
0≤μ≤σ

[
μ(SA + λ) log(SA + λ)

+ (1 − μ)λ log λ − (μSA + λ) log(μSA + λ)
]
. (9)

Intuitively, the first term in (9) corresponds to the case when
the transmitter is on (i.e., X(t) = A and the Poisson arrival rate
at the receiver is SA + λ), which happens with probability μ.
The second term corresponds to the case when the transmitter
is off (i.e., X(t) = 0 and the Poisson arrival rate at the receiver
is λ), which happens with probability 1 − μ. The third term
corresponds to the average case (i.e., the average Poisson arrival
rate at the receiver is μSA + λ). The optimal value of μ can be
easily obtained by solving the optimization problem (9).

B. Ergodic Capacity

In this section, we characterize the ergodic capacity of the
Poisson fading channel. Following [17], it can be shown that
the input X(t) can be limited to be two levels without loss
of optimality: either X(t) = A or X(t) = 0. However, the prob-
ability that X(t) = A can be adjusted depending on the noise
level λ(t). Let μ(t) be the time-varying duty cycle of the
two-level waveform, then the average power constraint can be
written as

E [μ(t)] ≤ σ. (10)

Using (9), the ergodic capacity can be characterized as

Cf
SISO = max

μ(t)
E [I (μ(t), λ(t))] , (11)

s.t. E [μ(t)] ≤ σ, (12)

0 ≤ μ(t) ≤ 1, (13)

in which the expectation is over λ and

I (μ(t), λ(t))

= μ(t) (SA + λ(t)) log (SA + λ(t))

+ (1 − μ(t)) λ(t) log λ(t)

− (μ(t)SA + λ(t)) log (μ(t)SA + λ(t))

�= μ(t)ζ (SA, λ(t)) − ζ (μ(t)SA, λ(t)) , (14)

where ζ(x, y) = (x + y) log(x + y) − y log y.
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In the following, for notational convenience, we write μ(t)
as μ. We characterize the optimal power allocation μopt for the
constrained optimization problem (11)–(13).

For 0 ≤ μ ≤ 1, we note that ∂2I(μ,λ(t))
∂μ2 is negative, which

implies that I(μ, λ(t)) is a strictly concave function of μ in the
range of our interest.

To obtain the optimal power allocation solution μopt for (11),
we first consider the unconstrained version of (11) with (12) and
(13) ignored. In particular, for any fading block with a given
value of λ(t), we examine the maximal rate that the channel
can support:

rmax = max
μ

I (μ, λ(t)) . (15)

Let μo be the corresponding maximizer. For this unconstrained
problem, it is easy to obtain that

μo =
(
1 + λ(t)

SA

)(
1+ λ(t)

SA

)

(
λ(t)
SA

)(
λ(t)
SA

) e−1 − λ(t)

SA
. (16)

Now, we examine (16) in detail. We first have the following
result, which can be proved easily.

Lemma 1:

0 ≤ μo ≤ 1. (17)

This result implies that μo satisfies the constraint (13).
In the following, we consider the constraint (12). We have

two cases.
Case 1): If

E[μo] ≤ σ. (18)

In this case, μo also satisfies condition (12). Since I(μ, λ(t))
is a strictly concave function of μ in the range of our interest, it
is clear that μo is the maximizer for the original problem with
constraints. That is

μopt = μo and Cf
SISO = E[rmax]. (19)

Case 2): If

E[μo] > σ. (20)

In this case, μo does not satisfy the condition (12). Hence
μo is not the maximizer for the problem (11) with the average
power constraint. To obtain the optimal solution for (11), we
consider the Lagrangian function:

L(μ, η) = E [ψ(μ)]
�= E [I (μ, λ(t)) − ημ] . (21)

Since I(μ, λ(t)) is a strictly concave function of μ and −ημ is
a linear function of μ, we know that ψ(μ) is a strictly concave
function of μ. From the Euler-Lagrange equation:

∂ψ(μ)

∂μ
= SA

[
−

(
log

(
μ + λ(t)

SA

)
+ 1

)

+
(

1 + λ(t)

SA

)
log

(
1 + λ(t)

SA

)

− λ(t)

SA
log

λ(t)

SA

]
− η = 0,

we have

μη =
(
1 + λ(t)

SA

)(
1+ λ(t)

SA

)

(
λ(t)
SA

)(
λ(t)
SA

) e−1e
−η
SA − λ(t)

SA
. (22)

Now, we consider the constraint 0 ≤ μ ≤ 1. It is easy to see
that μη ≤ μo for any positive η. From Lemma 1, we know
that μη ≤ 1. However, μη might be smaller than 0. If this
occurs, from the fact that ψ(μ) is a strictly concave function
of μ, we know that ψ(μ) is a strictly decreasing function of
μ in the range μ > 0. Hence, if μη < 0, the constraint μ ≥ 0
implies that μopt = 0. If μη > 0, we have μopt = μη. Hence,
we can write μopt = μ+

η∗ , in which η∗ should be chosen such

that E[μ+
η∗ ] = σ .

We summarize the above analysis with the following
Theorem.

Theorem 2: The optimal power allocation scheme that solves
(11) (i.e., achieves the ergodic capacity of the Poisson fading
channel) is given by

μopt =
{

μ+
η∗ if E[μo] > σ

μo if E[μo] ≤ σ.
(23)

C. Outage Probability

In this section, we study the scenario with a strict delay
constraint. In particular, we assume that each codeword needs
to be transmitted within a fading block. Let r0 be the target rate.
Then an outage event occurs if I(μ, λ(t)) < r0. Our goal is to
find the optimal power allocation strategy that minimizes the
outage probability. Hence, we solve the following optimization
problem.

Problem-1 (P1):

min Pr {I (μ, λ(t)) < r0} , (24)

s.t. E[μ] ≤ σ, (25)

0 ≤ μ ≤ 1. (26)

Again, we use μopt to denote the solution for this optimiza-
tion problem.

Directly solving P1 is challenging. Following a similar
strategy as used for the Gaussian channel [16], we first solve
several related optimization problems, from which we obtain
the optimal solution for (24).

In the first step, we examine the maximal rate rmax, obtained
in (15), that the channel can support for any given value of λ(t).
Following the discussion on (15), the optimal duty cycle that
achieves rmax is μo given in (16). From Lemma 1 it is clear
that 0 ≤ μo ≤ 1. We now compare rmax with r0. Intuitively,
for a given block with λ(t), if rmax < r0, then we should not
transmit at this fading block and save the power for the future
use, because an outage event will occur no matter what the
value of μ we choose. On the other hand, if rmax > r0, there
exist choices of μ such that the achievable rate is larger than r0.
These are the regions of interest in the second step below.
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In the second step, we investigate for any given value of λ(t),
what is the minimal value of μ that achieves the target rate r0
or higher.

Problem-2 (P2):

min μ, (27)
s.t. I (μ, λ(t)) ≥ r0. (28)

Let μ̂ be the minimizer for P2. Clearly, for those values of λ(t)s
such that rmax is less than r0, P2 does not have a solution. For
other values of λ(t)s, using the solution μo specified in (16), we
have the following two cases:

• If rmax = r0, then μ̂ must be equal to μo.
• If rmax > r0, then the optimal power μ̂ equals μ̌ that

satisfies the following equation so as to reduce the power
consumption

r0 = I
(
μ̌(λ), λ(t)

)
, (29)

from which μ̌ can be solved easily.

With the solutions to P2, we canobtain the optimal solution for
an unconstrained version of P1. In the unconstrained versionof
P1, the average power constraint is ignored. It is easy to see that

μ∗(λ) =

⎧⎪⎨
⎪⎩

0 if rmax < r0

μo if rmax = r0

μ̌ if rmax > r0.

(30)

is a solution for the unconstrained version of P1. It is also clear
that 0 ≤ μ∗(λ) ≤ 1 due to Lemma 1.

Now, we include the average power constraint into
consideration.

Theorem 3: The optimal power allocation μopt of P1 that
achieves the smallest outage probability is characterized as
follows.

If E[μ∗] ≤ σ , then μopt = μ∗.
If E[μ∗] > σ , then μopt is given by

μopt(λ) =
{

μ∗(λ) with probability ŵ,

0 with probability (1 − ŵ),
(31)

where ŵ is given by

ŵ =

⎧⎪⎨
⎪⎩

1 if μ∗(λ) < p∗

w∗ if μ∗(λ) = p∗

0 if μ∗(λ) > p∗,
(32)

with

w∗ = σ − �(p∗)
�(p∗) − �(p∗)

, (33)

and

p∗ = sup {p : �(p) < σ } , (34)

and

�(p) =
∫

R(p)

μdF(λ),

�(p) =
∫

R(p)

μdF(λ),

Here F(λ) is the distribution of the dark current and the regions
are defined by:

R(p) = {λ ∈ R \ r0 : μ < p},
R(p) = {λ ∈ R \ r0 : μ ≤ p}.

Proof: The proof follows similar steps as those in [16]
and [5], and is omitted for brevity. �

Theorem 3 implies that if μ∗(λ) specified in (30) does not
satisfy the average power constraint, the optimal solution can
be obtained by setting it to be equal to μ∗ with a probability
ŵ, and we should choose ŵ properly so that the average power
constraint is satisfied.

IV. MIMO CHANNEL ANALYSIS

For the ease of the presentation, we will present the results
for M = 1 and N = 2 in details. We will briefly discuss how to
extend the results to the case with general values of M and N
in Section IV-D.

A. With Constant λ

In this subsection, we will first focus on the case in which
λ is a constant. Hence, the power allocation is only among
transmitters. The solution to this problem will be used to study
the general case with time-varying λ.

As discussed in Section III, without loss of optimality, the
input of a single antenna Poisson channel can be limited to
two levels, i.e., X(t) = A or X(t) = 0. The same idea can be
extended to the channel with two transmitter antennas and
the input of each antenna can be restricted to two levels, i.e.
Xn(t) = An or Xn(t) = 0. Let μn be duty-cycle of antenna n,
i.e., the probability of Xn(t) = An. Similar to Section III, the
capacity of the Poisson channel with two transmitter antennas,
one receiver antenna, and a fixed dark current level with a total
power constraint is given by

CMIMO = max
μ1A1+μ2A2≤σ(A1+A2)

0≤μ1≤1
0≤μ2≤1

I(μ1, μ2, λ), (35)

in which

I(μ1, μ2, λ) (36)

�= (μ1 − κ)(S1A1 + λ) log(S1A1 + λ)

+ (μ2 − κ)(S2A2 + λ) log(S2A2 + λ)

+ κ(S1A1 + S2A2 + λ) log(S1A1 + S2A2 + λ)

+ (1 − (μ1 + μ2 − κ)) λ log λ

− (μ1S1A1 + μ2S2A2 + λ) log(μ1S1A1 + μ2S2A2 + λ)

= (μ1 − κ)ζ(S1A1, λ) + (μ2 − κ)ζ(S2A2, λ)

+ κζ(S1A1 + S2A2, λ) − ζ(μ1S1A1 + μ2S2A2, λ),

(37)
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where κ is the probability with which both antenna 1 and 2
remain active. Each term in (36) has the same interpretation
as the corresponding formula for the single antenna case (9).
In particular, in (36), the first term corresponds to the case
when only antenna 1 is active (i.e. X1(t) = A1 and the Poisson
arrival rate at the receiver is S1A1 + λ), which happens with
probability μ1 − κ . The second term corresponds to the case
where only antenna 2 is active (i.e. X2(t) = A2 and the Poisson
arrival rate at the receiver is S2A2 + λ), which happens with
probability μ2 − κ . The third term corresponds to the case
when both antennas 1 and 2 are active (i.e. X1(t) = A1 and
X2(t) = A2 and the Poisson arrival rate at the receiver is S1A1 +
S2A2 + λ), which happens with probability κ and the fourth
term corresponds to the case when both of the transmitters are
off and only the dark current is observed at the receiver. The last
term corresponds to the average case (i.e. the average Poisson
arrival rate at the receiver is μ1S1A1 + μ2S2A2 + λ).

Unlike the single antenna case in (9), it needs a bit of
work to solve the optimization problem (35). First, using the
property of ζ(x, y), it has been proved in [6], that if the antenna
with the smaller duty cycle is on (i.e., the antenna with the
smaller value of μn), the other antenna should also be active
for the optimality. This implies that κ = min{μ1, μ2}. Hence to
calculate the optimal solution of (35), we consider the following
two cases:

Case 1): μ1 ≥ μ2. In this case, (37) can be simplified as

I(μ1 − μ2, μ2, λ) = (μ1 − μ2)ζ(S1A1, λ) (38)

+ μ2ζ(S1A1 + S2A2, λ)

− ζ(μ1S1A1 + μ2S2A2, λ).

Case 2): μ1 ≤ μ2. In this case, (37) can be simplified as

I(μ2 − μ1, μ1, λ) = (μ2 − μ1)ζ(S2A2, λ) (39)

+ μ1ζ(S1A1 + S2A2, λ)

− ζ(μ1S1A1 + μ2S2A2, λ).

Hence, (35) can be written as

CMIMO = max{Cμ1≥μ2, Cμ2≥μ1}, (40)

in which Cμ1≥μ2 is given by (corresponds to case 1 above)

Cμ1≥μ2 = max I(μ1 − μ2, μ2, λ) (41)

s.t. μ1 − μ2 ≥ 0, (42)

μ1 ≤ 1, (43)

μ2 ≥ 0, (44)

μ1A1 + μ2A2 ≤ σ(A1 + A2), (45)

and Cμ2≥μ1 corresponds to case 2 above and can be written in
a similar manner.

Hence, to solve (35), we need to find Cμ1≥μ2 and Cμ2≥μ1 .
Due to the symmetry, one can focus on case 1 and solve (41),
as case 2 is similar. The solution to Cμ1≥μ2 can be obtained
using following steps. First, we will solve (41) by ignoring

the total power constraint (45). Then, we check whether the
obtained solution satisfies the total power constraint or not. If
yes, the solution is optimal. If not, we then need to do further
calculation.

Step 1: Following the strategy outlined above, we first con-
sider the following optimization problem

Cμ1≥μ2 = max I(μ1 − μ2, μ2, λ) (46)

s.t. μ1 − μ2 ≥ 0, (47)

μ1 ≤ 1, (48)

μ2 ≥ 0. (49)

To solve this problem, we further ignore (48) and (49). We will
discuss at the end of step 1 that ignoring these conditions does
not affect the solution.

Setting x1 = μ1 − μ2 and x2 = μ2, the Lagrangian for (46)
with the constraint (47) only is given by:

L(x1, x2, η) = I(x1, x2, λ) − ηx1.

Let (x∗
1, x∗

2, η
∗) be the optimizer, and the corresponding KKT

conditions are:

∂L
∂x1

∣∣∣∣
x∗

1,x∗
2

= ∂I

∂x1

∣∣∣∣
x∗

1,x∗
2

− η∗ = 0,

∂L
∂x2

∣∣∣∣
x∗

1,x∗
2

= ∂I

∂x2

∣∣∣∣
x∗

1,x∗
2

= 0,

η∗x∗
1 = 0.

After solving the KKT conditions, we conclude that x∗
1 = 0

and x∗
2 can be obtained from

∂I

∂x2

∣∣∣∣
x∗

1=0,x∗
2

= λB log

(
1 + Bα(B)

1 + x∗
2B

)
= 0,

where

α(x) = 1

x

(
e−1(1 + x)

(
1+ 1

x

)
− 1

)
, (50)

B = S1A1 + S2A2

λ
. (51)

Hence, x∗
2 = α(B).

In summary, the solution to (46) with only the con-
straint (47) is μ∗

1 = μ∗
2 = α(B). It is easy to show that 0 ≤

α(B) ≤ 1. Hence, μ∗
1 = μ∗

2 = α(B) satisfy conditions (48) and
(49). As the result, (α(B), α(B)) is the solution to (46) with
constraints (47)–(49).

Step 2: In this step, we follow similar steps as those in [6]
to check whether the solution (α(B), α(B)) obtained in Step 1
satisfies the sum power constraint (45) or not. If α(B) ≤ σ , then
(α(B), α(B)) also satisfies the sum power constraint, hence is
the optimal solution to (41). On the other hand, if α(B) > σ ,
(α(B), α(B)) violates the sum power constraint, and hence can
not be the solution. In this case, the sum power constraint
is active in the optimal solution. To solve for optimality, we
convert the given problem into a single variable optimization
problem: max

μ∗
1

I(μ∗
1)= I((1 + a)(μ∗

1 − σ), (1 + a)σ − aμ∗
1, λ),
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which is obtained by writing μ∗
2 as function of μ∗

1 using the av-
erage power constraint μ∗

1A1 + μ∗
2A2 = σ(A1 + A2). Here, a =

A1/A2 and μ∗
1 is constrained to be between σ and

(
1 + 1

a

)
σ .

By simple calculations, the optimal solution for max
μ∗

1

I(μ∗
1) is

found out to be:

ω = e−1

A1(S1 − S2)

×
(

(S1A1 + λ)(S1A1+λ)(1+a)

λλ(S1A1 + S2A2 + λ)(S1A1+S2A2+λ)a

) 1
A1(S1−S2)

− (1 + a)σS2A2 + λ

A1(S1 − S2)
. (52)

Now, we check whether ω satisfies the corresponding constraint
or not. If yes, ω is the optimal solution to I(μ∗

1) (therefore, it is
also optimal for (41)). If not, we need to modify the solution.
First, it is easy to check that I(μ∗

1) is a concave function of
μ∗

1. Hence, if ω < σ , we set μ∗
1 = σ , which implies μ∗

2 = σ .
Similarly, if ω > (1 + 1/a)σ , we set μ∗

1 = (1 + 1/a)σ , which
implies μ∗

2 = 0.
We have the following Lemma regarding the optimal duty

cycle that maximize Cμ1≥μ2 .
Lemma 4: The optimal solution to the optimization problem

(41) is given by

(
μ∗

1, μ
∗
2

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α(B), α(B)) If α(B) ≤ σ,

(ω, (1 + a)σ − aω) If α(B) > σ and

σ ≤ ω ≤ (1 + 1/a)σ,

(σ, σ ) If α(B) > σ and

ω < σ,

((1 + 1/a)σ, 0) If α(B) > σ and

ω > (1 + 1/a)σ.

We can obtain Cμ2≥μ1 in a similar manner and therefore
finally obtain CMIMO via (40).

B. Ergodic Capacity

We now study the case in which λ(t) is a time varying random
variable and characterize the ergodic capacity. We derive the
optimal power allocation strategy using the results developed
Section IV-A. To maximize the ergodic capacity in the presence
of the time-varying dark current, we have:

Cf
MIMO = max

E[μ1(t)A1+μ2(t)A2]≤σ(A1+A2)

0≤μ1(t)≤1
0≤μ2(t)≤1

E [�(t)] , (53)

where the expectation is over random variable λ(t) and �(t) =
I(μ1(t), μ2(t), λ(t)) and we use (μ

opt
1 , μ

opt
2 ) to denote the max-

imizer for (53). We follow the same strategy developed in the
SISO case, and use a two-step approach to solve this problem.

Step 1: First, we ignore the average power constraint, and
find the maximal rate that the channel can support for any given
value of λ(t).

rmax = max I (μ1, μ2, λ(t)) , (54)

s.t. 0 ≤ μ1 ≤ 1, (55)

0 ≤ μ2 ≤ 1. (56)

We use (μo
1, μ

o
2) to denote the maximizer of this problem.

As shown in Section IV-A, for any given value of λ(t),

max
μ1,μ2

I (μ1, μ2, λ(t)) = max {�1(t),�2(t)} ,

where �1(t) = max
μ1,μ2

I(μ1 − μ2, μ2, λ(t)) and �2(t) = max
μ1,μ2

I(μ2 − μ1, μ1, λ(t)). Therefore, problem (54) can be split into
two separate problems. Due to the symmetry, we focus on �1(t)
(the other case being similar), which can be written as:

max I (μ1 − μ2, μ2, λ(t)) , (57)

s.t. μ1 ≤ 1, (58)

μ2 ≥ 0, (59)

μ1 ≥ μ2. (60)

For a given value of λ(t), problem (57) is the same as problem
(46). Following the analysis of (46), it is clear that μ1 =
μ2 = α(B(t)) is the solution to (57), where α(·) is defined
in (50) and B(t) is defined in (51) with λ replaced by λ(t).
Similarly, μ1 = μ2 = α(B(t)) is also the solution to problem
�2(t). As the result, the solution to problem (54) is (μo

1, μ
o
2) =

(α(B(t)), α(B(t))).
Step 2: Now we check whether the solution (μo

1, μ
o
2) ob-

tained in Step 1 satisfies the average power constraint or not,
i.e., we check whether the following inequality holds or not:

E
[
μo

1A1 + μo
2A2

] ≤ σ(A1 + A2). (61)

If (61) holds, the optimal solution to (53) is (μ
opt
1 , μ

opt
2 ) =

(μo
1, μ

o
2), and Cf

MIMO = E[rmax].
If (61) does not hold, then (μo

1, μ
o
2) can not be the optimal

solution to (53), as it violates the average power constraint.
Therefore, in the optimal solution, the average power constraint
is active, and hence problem (53) is equivalent to:

Cf
MIMO = max

E[σ ′(t)]=σ

0≤σ ′(t)≤1

E [�(t)] , (62)

where �(t) = max
μ1(t)A1+μ2(t)A2=σ ′(t)(A1+A2)

0≤μ1(t)≤1
0≤μ2(t)≤1

�(t). We note that, in the

optimization problem inside E[·], the value of λ(t) is fixed,
and hence the results in Section IV-A are applicable. More
specifically, we use results in step 2 of Section IV-A, because
the sum power constraint is active here. Using the results in
Section IV-A, we can write the mutual information term inside
E[·] as a function of σ ′(t), and hence the problem is converted
into an optimization problem of σ ′(t). Due to its complex form
(as shown in Lemma 4), it is difficult to obtain an analytical
form of the optimal solution. However, one can set μ1(t) =
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μ2(t) and obtain a computable solution, which is optimal when
σ is large.

In summary, we have the following proposition regarding the
optimal power allocation scheme for the ergodic capacity.

Proposition 5: The optimal power allocation strategy that
achieves the ergodic capacity (namely the optimization problem
in (53)) is given by(

μ
opt
1 , μ

opt
2

)
=

{
(α (B(t)) , α (B(t))) If E [α (B(t))] ≤ σ,

solution of (62) If E [α (B(t))] > σ.

(63)

As we can see here, when the average power constraint σ

is large, we obtain the closed form expression for the optimal
allocation scheme. When σ is small, we do not have the closed
form solution as the form of the function is too complicated.
Alternatively, suboptimal solutions with good properties can
be numerically computed easily as discussed in the paragraph
after (62).

C. Outage Probability

In this section, we consider the case with a strict delay
constraint, for which the strategy developed in Section III-C
for the SISO case is useful. Let r0 be the target rate, hence
an outage event occurs if I(μ1, μ2, λ(t)) < r0. The goal is to
minimize the outage probability.

Problem-1-MIMO (P1-M):

min Pr {I (μ1, μ2, λ(t)) < r0} , (64)

s.t. E[μ1A1 + μ2A2] ≤ σ(A1 + A2). (65)

We use (μ
opt
1 , μ

opt
2 ) to denote the minimizer of this problem.

Similar to the SISO case studied in Section III, we first solve
several related optimization problems, which help to obtain the
optimal solution for P1-M.

We first examine the maximal rate rmax that the channel can
support for any given value of λ(t), namely, the optimization
problem (54). Following Step 1 in Section IV-B, (μo

1, μ
o
2) =

(α(B(t)), α(B(t))) is the power allocation strategy that achieves
rmax for each block.

Similar to Section III, we then compare rmax with r0. If
rmax < r0, then the transmitter should not transmit anything and
save the power for future use. If rmax = r0, then the only choice
of power control that avoids outage is the power that achieves
rmax. The interesting case is when rmax > r0. In this case, there
are multiple (in fact infinitely many) power control choices that
can avoid outage. In the following, we find the minimal sum
power that avoids the outage.

Problem-2-MIMO (P2-M):

min μ1A1 + μ2A2, (66)

s.t. I (μ1, μ2, λ(t)) ≥ r0. (67)

We use (μ̂1, μ̂2) to denote the optimal solution to P2-M.
For those λ(t)s such that rmax is less than r0, P2-M does

not have a solution. For other values of λ(t)s, we consider the
following two cases:

• If rmax = r0 then μ̂1 = μ̂2 = α(B(t)).

• If rmax > r0 then (μ̂1, μ̂2) = (μ̌1, μ̌2), such that
(μ̌1, μ̌2) is the solution of the following problem
P2a-M.

Problem-2a-MIMO (P2a-M):

min μ1A1 + μ2A2, (68)

s.t. I (μ1, μ2, λ(t)) = r0. (69)

To solve this problem, we consider two subproblems.
The first subproblem is:
P2a-M-sub1:

min μ1A1 + μ2A2, (70)

s.t. I (μ1 − μ2, μ2, λ(t)) = r0, (71)

μ1 ≥ μ2. (72)

Let (μ̃1, μ̃2) be the solution.
The second subproblem of P2a-M is
P2a-M-sub2:

min μ1A1 + μ2A2, (73)

s.t. I (μ2 − μ1, μ1, λ(t)) = r0, (74)

μ2 ≥ μ1. (75)

Let (μ̄1, μ̄2) be the solution. Following the similar approach in
Corollary 1 of [5], the solutions to these sub problems can be
found using KKT conditions.

As I(μ1, μ2, λ)=max{I(μ1−μ2, μ2, λ), I(μ2−μ1, μ1, λ)},
then from the solutions to the two subproblems P2a-M-sub1
and P2a-M-sub2, the optimal solution of P2a-M is given by

(μ̌1, μ̌2) =
{

(μ̃1, μ̃2) if μ̃1A1 + μ̃2A2 ≤ μ̄1A1 + μ̄2A2,

(μ̄1, μ̄2) otherwise.

Therefore, the solution to problem P-1M with the absence of
the average power constraint can be written as:

(
μ∗

1(λ), μ∗
2(λ)

) =

⎧⎪⎨
⎪⎩

(0, 0) if rmax(λ) < r0(
μo

1, μ
o
2

)
if rmax(λ) = r0

(μ̌1, μ̌2) if rmax(λ) > r0.

(76)

Now, we check the average power constraint. Depending on
whether (μ∗

1, μ
∗
2) satisfies E[μ∗

1A1 + μ∗
2A2] ≤ σ(A1 + A2) or

not, we have the following two cases.

Case 1): E[μ∗
1A1 + μ∗

2A2] ≤ σ(A1 + A2). In this case, we
have (μ

opt
1 , μ

opt
2 ) = (μ∗

1, μ
∗
2).

Case 2): E[μ∗
1A1 + μ∗

2A2] > σ(A1 + A2). In this case, we
need to modify (μ∗

1, μ
∗
2) to obtain (μ

opt
1 , μ

opt
2 ). Following

similar arguments as in Section III, we can conclude
that, if E[μ∗

1A1 + μ∗
2A2] > σ(A1 + A2), then the optimal

solution (μ
opt
1 , μ

opt
2 ) of P1-M is given by

(
μ

opt
1 , μ

opt
2

)
=

{(
μ∗

1, μ
∗
2

)
with probability ŵ

(0, 0) with probability (1 − ŵ),

(77)
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in which ŵ has the following form

ŵ =

⎧⎪⎨
⎪⎩

1 if σ̄ (t) < p∗

w∗ if σ̄ (t) = p∗

0 if σ̄ (t) > p∗,
(78)

where w∗ is given by (33), p∗ is given by (34) and σ̄ =
μ∗

1A1+μ∗
2A2

A1+A2
.

In summary, we have the following proposition regarding
the optimal power allocation strategy that minimize the outage
probability.

Proposition 6: The optimal power allocation strategy that
minimizes the outage probability is given by

(
μ

opt
1 , μ

opt
2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

specified in (76) If E
[
μ∗

1A1 + μ∗
2A2

]
≤ σ(A1 + A2),

specified in (77) If E
[
μ∗

1A1 + μ∗
2A2

]
> σ(A1 + A2).

D. Extension to General MIMO Case

For the case with an arbitrary number of transmit and receive
antennas, i.e., general values of N and M, we can follow the
similar steps as in the previous sections to obtain the optimal
power control policy that maximizes the ergodic capacity and
the optimal power control policy that minimizes the outage
probability. In particular, for any N, if the transmitter antenna
with the smallest duty cycle is active, then the other antennas
should also be active. Hence, there are N + 1 states. As the
result, the mutual information I(μN(t), λ(t)) has N + 1 terms,
each corresponding to one state. Thus in order to obtain the
ergodic capacity, we solve

Cf
MIMO = max

E[
∑

i μi(t)Ai]≤σ
∑

i Ai

E
[
I
(
μN(t), λ(t)

) ]
, (79)

where

I
(
μN(t), λ(t)

) =
M∑

m=1

[
N∑

n=1

νnζ

(
n∑

k=1

SkmAk, λm(t)

)

− ζ

(
N∑

n=1

νn

n∑
k=1

SkmAk, λm(t)

)]
, (80)

and when μn > μn+1, n = 1, . . . , N − 1,

νn =
{

μn − μn+1 n = 1, . . . , N − 1

μN n = N.
(81)

The solution of (79) can be obtained following the same ap-
proach as in Section IV-B by examining cases with different
ordering of duty cycles.

Fig. 2. The ergodic capacity vs. A.

To minimize the outage probability, we consider

min Pr{I(μN(t), λ(t)) < r0}, (82)

s.t. E

[∑
i

μi(t)Ai

]
≤ σ

∑
i

Ai, (83)

which can be solved following the similar steps as explained
in Section IV-C by examining cases with different ordering of
duty cycles.

V. NUMERICAL RESULTS

In this section, we present several numerical examples to
illustrate the results obtained in the previous two sections. In
the simulations, we set M = 1, and consider two cases with
N = 1 and N = 2, respectively. Furthermore, λ(t) is chosen as a
uniform random variable such that λ(t) ∼ U[1, 2]. For fair com-
parison between N = 1 and N = 2 case, we have ensured that
both the total power constraints and average power constraints
are equal by setting A = 30 for N = 1 and A1 = A2 = 15
for N = 2.

A. Ergodic Capacity

Fig. 2 illustrates the ergodic capacity as a function of the
maximum amplitude for both N = 1 and N = 2, for λ(t) ∼
U[1, 2]. It is evident from the figure that as A increases, the
ergodic capacity increases monotonically. If the number of
antennas at the transmitter is larger, the increment in the ergodic
capacity is more evident. For comparison, in the figure, we
also plot curves for the ergodic capacity when the constant
power allocation strategy is employed. The figure shows that
the adaptive power allocation for multiple transmitting antennas
observe significant improvement in the ergodic capacity when
A is increased, as compared to the case with the constant power
control for multiple transmitting antennas and adaptive power
control for a single transmitting antenna.

Fig. 3 further illustrates the comparison between the ergodic
rate achieved with and without adaptive power control. In this
figure, we plot the rate as a function of σ for A1 = A2 = 15,
N = 2 and M = 1 when λ(t) ∼ U[0.5, 8.0]. It can be observed
from the figure that initially as σ increases, the ergodic ca-
pacity increases. But after reaching a certain threshold point,
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Fig. 3. The ergodic capacity vs. σ for N = 2, comparing the adaptive and the
constant power allocation.

Fig. 4. The ergodic capacity vs. power for both multi-antenna and single-
antenna cases.

increasing σ does not affect the ergodic capacity. This is due
to the fact that once σ is large enough, as discussed in (63),
(α(B(t)), α(B(t))) satisfy the total power constraint E[μ1A1 +
μ2A2] ≤ σ(A1 + A2), and then the optimal power allocation
strategy and the ergodic capacity do not depend on σ . It is
shown in the figure that the gain achieved by adaptive power al-
location is more obvious when E[μ1A1 + μ2A2] ≤ σ(A1 + A2)

is satisfied and for the smaller values of S. From the figure, it is
clear that when σ is small, both the adaptive and constant power
control have the same rate. This can be explained as follows.
For the adaptive power control, solving (52) shows that for the
given parameters, ω < 0. Therefore, from Lemma 4, we know
that the optimal power allocation strategy is (μ1, μ2) = (σ, σ ),
which is the same as the constant power control case.

Fig. 4 illustrates the ergodic capacity as a function of the
total power for both N = 1 and N = 2 with A = 30 and A1 =
A2 = 15. As the total power (i.e. σA for N = 1 and σ(A1 + A2)

for N = 2) increases, the ergodic capacity also increases. As
discussed above, after reaching a certain threshold, the increase
in power does not affect the ergodic capacity.

Fig. 5 compares the ergodic capacity of two transmitter
antennas and one receiver with the one transmitter and two
receiver antennas while keeping the power constraints (i.e.,
total power and average power constraint) to be the same
when S = 0.5. For both cases we assume that for each re-
ceiver, the corresponding dark current is uniformly distributed
in the interval [1, 2]. It is clear from the figure that the

Fig. 5. The ergodic capacity vs. power for M = 1, N = 2 and M = 2, N = 1.

Fig. 6. Pout vs. r0, comparing N = 1 with N = 2.

Fig. 7. Pout vs. r0, comparing the adaptive power allocation with the constant
power allocation.

two receiver antennas case has a better performance. This
can be explained by the mutual information formulas. For
(M = 1, N = 2), when μ1 ≥ μ2, the mutual information
is given by (μ1 − μ2)ζ(S1A1, λ) + μ2ζ(S1A1 + S2A2, λ) −
ζ(μ1S1A1 + μ2S2A2, λ), while for (M = 2, N = 1), it is given
by: μζ(SA, λ1) − ζ(μSA, λ1) + μζ(SA, λ2) − ζ(μSA, λ2).

B. Outage Probability

Fig. 6 plots the outage probability as a function of the target
rate r0. For this simulation, A = 30, A1 = A2 = 15 and σ =
0.03725 for both N = 1 and N = 2, for the fair comparison
between N = 1 and N = 2. It is evident from the figure that as
r0 increases, Pout also increases. Furthermore, the outage prob-
ability for N = 1 increases more rapidly than that of N = 2. As
the figure is in logarithmic scale and log 0 is not defined, hence
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Fig. 8. Pout vs. power, comparing N = 1 with N = 2.

Fig. 9. Pout vs. power, comparing the adaptive power allocation with the
constant power allocation.

the figure only shows the values when the outage probability is
larger than 0. Fig. 7 compares the relationship between the tar-
get rate r0 and the probability for the adaptive power allocation
and the constant power allocation when A1 = A2 = 15 and σ =
0.03725. It shows that the outage probability of the adaptive
power allocation responds gradually to the increase in the target
rate as compared to the constant power allocation where the
outage probability abruptly increases when r0 increases. This
figure also shows the values of outage probability when Pout >

0. Fig. 8 shows that as the power increases, Pout decreases
and r0 = 1.2. Furthermore, we can observe that, after a certain
point, the increase in power does not lead to further decrease in
Pout. Similar to the ergodic case, the reason for this phenomena
is that once the available power is large enough, the optimal
power allocation strategy and hence the outage probability does
not depend on the available power anymore. From the figure, we
also see that when S = 0.2, the outage probability for N = 1
is always 1. The value of Pout = 0 for S = 0.5, N = 2 when
power is larger than 2.45 and Pout = 0 for S = 0.5, N = 1,
when power is larger than 3.

Fig. 9 shows the improvement achieved by the multi-antenna
dynamic power allocation as compared to multi-antenna con-
stant power allocation and shows that when the available power
increases, the adaptive power allocation scheme reduces the out-
age probability more significantly as compared to the constant
power allocation for A1 = A2 = 15 and r0 = 1.2. Pout = 0
when power is larger than 2.45.

Fig. 10 compares the outage probabilities for the cases with
(M = 1, N = 2) and (M = 2, N = 1) with S = 0.2. From the

Fig. 10. Pout vs. r0, Comparing M = 1, N = 2 with M = 2, N = 1 with
adaptive power allocation.

figure, it is clear that Pout is higher for M = 1, N = 2 case
than for the M = 2, N = 1, which is consistent with the mutual
information formula and the comparison in Fig. 5.

VI. CONCLUSION

We have studied Poisson fading channels with varying noise
levels. We have considered cases with and without strict delay
constraints. For the case without a strict delay constraint, we
have characterized the optimal power allocation scheme that
achieves the ergodic capacity. For the case with a strict delay
constraint, we have characterized the optimal power allocation
strategy that minimizes the outage probability. We have also
provided numerical results to illustrate the analytical results
obtained in this paper.
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