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Distributed Detection With Vector Quantizer
Wenwen Zhao, Student Member, IEEE, and Lifeng Lai, Member, IEEE

Abstract—Motivated by distributed inference over big datasets
problems, we study multiterminal distributed inference problems
when each terminal employs vector quantizer. The use of vec-
tor quantizer enables us to relax the conditional independence
assumption normally used in the distributed detection with scalar
quantizer scenarios. We first consider a case of practical interest
in which each terminal is allowed to send zero-rate messages to
a decision maker. Subject to a constraint that the error exponent
of the type 1 error probability is larger than a certain level, we
characterize the best error exponent of the type 2 error probabil-
ity using basic properties of the r-divergent sequences. We then
consider the scenario with positive rate constraints, for which we
design schemes to benefit from the less strict rate constraints.

Index Terms—Distributed detection, exponential-type
constraints, error exponent, hypothesis testing.

I. INTRODUCTION

I NFERRING the relationship among multiple random vari-
ables from data plays an important role in machine learning,

statistical inference, and wireless sensor network applications.
The centralized setting in which all of the data is available at
one terminal is well studied. The distributed setting, in which
available data is stored/observed at multiple terminals con-
nected by channels with limited capacities, is more challenging
and has attracted significant recent research interests [3]–[20].

Of particular interest to this paper is a class of distributed
detection problems. In the class of distributed detection prob-
lems considered, there are L terminals Xi, i = 1, . . . , L, where
terminal Xi has observations related to random variable Xi.
These terminals can send information related to their own data
using a limited rate to a decision maker Y . Based on the mes-
sages received from these terminals and its own data related
to random variable Y , the decision maker Y tries to determine
which of the following two hypotheses is true:

H0 : PX1...XLY vs H1 : QX1...XLY ,

in which PX1...XLY and QX1...XLY are two different prob-
ability mass functions (PMFs). As the communication rates
between the terminals and the decision maker are limited, ter-
minal Xi has to quantize/compress its observations Xn
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being the number of samples available at terminal Xi. The focus
of the distributed detection is to design the quantizers and deci-
sion functions under various resources (e.g., communication
cost) and performance (e.g., error probabilities) constraints.

There have been a large number of existing work on dis-
tributed detection problems, see [6]–[20] and reference therein.
Most of the existing work consider the scalar quantizer, in
which the quantizer at terminal Xi quantizes each component
of Xn

i one by one. This setup is well suited for certain sensor
network applications, as the complexity of the scalar quantizer
is low and it incurs minimal decision delay. Under this scalar
quantization setup, it is typically assumed that the obser-
vations at different terminals are conditionally (conditioned
on the hypothesis) independent. The problem become very
challenging once this conditional independence assumption
is relaxed [6], [7]. Some interesting recent work have made
important progress for the case with correlated observations
[11], [12], [15].

In this paper, we focus on distributed detection problems with
vector quantizer, in which the observations are processed in
blocks. This setup is not only related to the distributed detec-
tion problems motivated by sensor networks, it is also relevant
to recent interests in distributed inference/learning over large
data set problems [3]–[5]. In these distributed inference over
large data set problems, available data is stored in multiple
terminals. In these setups, the computational cost at each termi-
nal is less of a concern than the communication cost between
terminals. The use of vector quantizer allows us to borrow
powerful tools from information theory for distributed detec-
tion/inference problems. As we will show in the paper, these
tools enable us to make progress in understanding the general
problems without the conditional independence assumptions.

We first focus on the zero-rate compression case in which
each terminal is only allowed to send messages to the deci-
sion maker with a diminishing rate (zero-rate compression).
If the decision maker were required to fully recover the data
of terminals Xis as in the distributed source coding problems
[21], [22], this zero-rate compression is not enough. However,
in our setup, this zero-rate compression will still be valuable
for the decision maker for statistical inference. In addition, we
impose an exponential-type constraint on the type 1 error prob-
ability (i.e., the type 1 error probability is required to decrease
exponentially fast with a certain error exponent). We fully char-
acterize the best achievable error exponent of the type 2 error
probability under these zero-rate compression and exponential-
type type 1 error probability constraints by providing matching
lower and upper bounds. A clear benefit of this zero-rate com-
pression approach is that the terminals only need to consume
a limited amount of communication resources. In addition, we
show that a very simple scheme in which each terminal only
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sends the empirical distribution (or an approximation of it) is
optimal. This implies that the complexity of the optimal scheme
employed by sensors in practical detection problem can be very
low. Furthermore, we provide an example in which the perfor-
mance of the scheme with zero-rate compression is very close
to that of the centralized case.

We then extend the study to the positive rate constraints case.
Compared with the zero-rate compression case, in this scenario,
each terminal can convey more information to the decision
maker. As the general problem is very complicated, we focus
on the special case of testing against independence. The case
with (X1, . . . , XL) all at one terminal (with Y being at another
terminal) was first considered by Ahlswede and Csiszár [23].
In [23], the problem was converted to a source coding with
a helper problem. However, this approach may not work for
our case, as the corresponding problem will be a source cod-
ing with multiple helpers problem, which is still open. In our
paper, we use a different approach to exploit the more flexible
rate constraints and characterize the corresponding type 2 error
exponents. Furthermore, we provide an upper-bound on the best
achievable type 2 error exponent using any scheme that satisfies
the communication rate and type 1 error exponents.

Our work is also related to several existing interesting works
[24]–[30] that study distributed detection/estimation problems
using vector quantizers. Of particular relevance, among these
contributions, [26], [27] considered a similar setup with the
exponential-type constraint on the type 1 error probability and
zero-rate constraint on the communication. [26] provided a
lower bound on the type 2 error exponent. Later [27] estab-
lished an upper bound that coincides with the lower bound
derived in [26] by converting the exponential-type constraint
problems to the constant-type constraint problems considered
in [25]. Furthermore, as mentioned above, the problem of test-
ing against independence was first studied by Ahlswede and
Csiszár [23], which provided a matching upper and lower bound
on the type 2 error exponent. The key difference between the
model considered in [23], [26], [27] and our model is that [23],
[26], [27] focused on the case where (X1, . . . , XL) are all at
one terminal (with Y being at another terminal), while in our
model these random variables are all at different terminals.

The remainder of the paper is organized as follows. In
Section II, we introduce the model studied in this paper. In
Section III, we present out results for the zero-rate compression
case. In Section IV, we focus on the scenario with positive rate
constraints. In Section V-B, we use several numerical examples
to illustrate analytical results obtained in this paper. Finally, we
offer some concluding remarks in Section VI.

II. MODEL

Consider a system with L terminals: Xi, i = 1, . . . , L and
a decision maker Y . Each terminal and the decision maker
observe a component of the random vector (X1, . . . , XL, Y )
that take values in a finite set X1 × . . .×XL × Y and admit a
joint PMF with two possible forms:

H0 : PX1...XLY , H1 : QX1...XLY . (1)

Fig. 1. Model

With a slight abuse of notation, we use Xi to denote both the
terminal and the alphabet set from which the random vari-
able Xi takes values. (Xn

1 , . . . , X
n
L, Y

n) are independently
and identically generated according to one of the above joint
PMFs. In other words, (Xn

1 , . . . , X
n
L, Y

n) is generated by
either PnX1...XLY

or QnX1...XLY
. In a typical hypothesis test-

ing problem, one determines which hypothesis is true under
the assumption that (Xn

1 , . . . , X
n
L, Y

n) are fully available at the
decision maker. In this paper, we consider a distributed setting
in which Xn

i , i = 1, . . . , L and Y n are at different locations.
In particular, terminal Xi observes only Xn

i and terminal Y
observes only Y n. Terminals Xis are allowed to send messages
to the decision maker Y . Using Y n and the received messages,
Y determines which hypothesis is true. We denote this system
as SX1...XL|Y . Figure 1 illustrates the system model. In the fol-
lowing, we will use the term “decision maker” and terminal Y
interchangeably. Here, Y n is used to model any side informa-
tion available at the decision maker. If Y is set to be an empty
set, then the decision maker does not have side information.

After observing the data sequence xni ∈ Xn
i , terminal Xi will

use a vector quantizer (will also be called encoder in the sequel)
fi to transform the sequence xni into a message fi(xni ), which
takes values from the message set Mi

fi : Xn
i → Mi = {1, 2, . . . ,Mi}, (2)

with rate constraint:

1

n
logMi ≤ Ri, i = 1, . . . , L. (3)

Using messages Mi, i = 1, . . . , L and its side information
Y n, the decision maker will employ a decision function ψ to
determine which hypothesis is true:

ψ : M1 × . . .×ML × Yn → {H0, H1}. (4)

For any given vector quantizers fi, i = 1, . . . , L and deci-
sion function ψ, one can define the acceptance region as

An = {(Xn
1 , . . . , X

n
L, Y

n) ∈ Xn
1 × . . .×Xn

L × Yn :

ψ(f1(X
n
1 ) . . . fL(X

n
L)Y

n) = H0}. (5)

Correspondingly, the type 1 error probability is defined as

αn = PnX1...XLY (Ac
n), (6)

in which Ac
n denotes the complement of An, and the type 2

error probability is defined as

βn = QnX1...XLY (An). (7)
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Our goal is to design the quantization functions fi, i =
1, . . . , L and the decision function ψ to maximize the type 2
error exponent under certain type 1 error and communication
rate constraints (3).

More specifically, we consider two kinds of type 1 error
constraint, namely:

• Constant-type constraint

αn ≤ ε (8)

for a prefixed ε > 0, which implies that the type 1 error
probability must be smaller than a given threshold; and

• Exponential-type constraint

αn ≤ exp(−nr) (9)

for a given r > 0, which implies that the type 1 error prob-
ability must decrease exponentially fast with an exponent
no less than r. Hence the exponential-type constraint is
stricter than the constant-type constraint.

To distinguish these two different type 1 error constraints, we
use different notations to denote the corresponding type 2 error
exponent.

• Under the constant-type constraint, we define the type 2
error exponent as

θ(R1, . . . , RL, ε) = lim inf
n→∞

(
− 1

n
log

(
min

f1,...,fL,ψ
βn

))
,

in which the minimization is over all fis and ψ satisfying
condition (3) and (8).

• Under the exponential-type constraint, we define the type
2 error exponent as

σ(R1, . . . , RL, r) = lim inf
n→∞

(
− 1

n
log

(
min

f1,...,fL,ψ
βn

))
,

in which the minimization is over all fis and ψ satisfying
condition (3) and (9).

Here, we would like to highlight main differences between
our work and the large number of existing work in distributed
detection [6]–[20]:

• Most of the existing work focus on scalar quantizer that
performs observation-by-observation processing, i.e.,
fi(x

n) = (fi,1(xi(1)), . . . , fi,t(xi(t)), . . . , fi,n(xi(n))).
In other words, at time t, the scalar quantizer quantizes
observation xi(t) into fi,t(xi(t)) without consideration
of all other observations. In our work, we consider vector
quantizer. The use of vector quantizer allows us to borrow
powerful tools from information theory for distributed
detection/inference problems. Furthermore, it enables us
to consider zero-rate compression problems, which are of
practical importance in big data applications.

• In the scalar quantizer problems, it is assumed that the
observations at the terminals are conditionally indepen-
dent (conditioned on the hypothesis), i.e., it is assumed
that

PX1...XLY = PX1
. . . PXL

PY , (10)

and QX1...XLY = QX1
. . . QXL

QY . (11)

One of the main reasons for this assumption is that, under
the scalar quantzier setup, the problem quickly becomes
intractable when the observations are not conditionally
independent. With the vector quantizer, as shown in the
sequel, one can make substantial progress without the
conditional independence assumption.

• While most of the existing works [6]–[20] with communi-
cation theoretic flavor focus on minimizing the exact error
probability (and hence is a challenging task), our work
focuses on maximizing the error exponent and hence it is
an asymptotic setup.

III. TESTING UNDER ZERO-RATE COMPRESSION

WITH EXPONENTIAL-TYPE CONSTRAINTS

In this section, we focus on the “zero-rate” compression,
i.e.,R1 = . . . = RL = 0 under the exponential-type constraint.
More specifically, we assume

as n→ ∞, Mi → ∞, (12)

but

Ri =
1

n
logMi ↓ 0, i = 1, . . . , L. (13)

In this case, σ(R1, . . . , RL, r) will be denoted as
σ(0, . . . , 0, r). This zero-rate compression is of practical
interest, as the normalized (normalized by the length of the
data) communication cost is minimal. It is well-known that in
the traditional distributed source coding with side information
problems [21], [22], whose goal is to recover (Xn

1 , . . . , X
n
L) at

terminal Y , this zero-rate information is not useful. However,
in our setup, the goal is only to determine which hypothesis is
true. This zero-rate information will be very useful.

The scenario with zero rate compression under the constant-
type constraint has been considered in [25]. We will discuss the
scenario with zero rate compression under the exponential-type
constraint (9).

In the following subsections, we first review several concepts
that are useful for our development. We then characterize the
type 2 error exponent with L = 2 before extending the result to
the general case.

A. Preliminary

Following [22], for any sequence xn = (x(1), . . . , x(n)) ∈
Xn, the relative frequencies (empirical PMF) π(a|xn) �
n(a|xn)/n, ∀a ∈ X of the components of xn is called the type
of xn and is denoted by tp(xn). Here n(a|xn) is the total
number of indices t at which x(t) = a.

Furthermore, we call a random variable X(n) that has the
same distribution as tp(xn) as the type variable of xn.

For any given sequence xn, we can measure how likely this
sequence is generated from a PMF PX using the concept of
typical sequence [22] and r-divergent sequence [26]. Roughly
speaking, a sequence xn is said to be typical if the empirical
PMF is close to PX . More precisely, xn is called to be typical
if |π(a|xn)− PX(a)| ≤ εPX(a), ∀a ∈ X for a given ε. We use
T

(n)
ε to denote the set of typical sequences.
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The concept of r-divergent sequences also plays an important
role in the following development. Here, we review the defini-
tion and some important properties of r-divergent sequences.
More details and properties of r-divergent sequences can be
found in [26].

Definition 1: ([26]) Let X be a random variable taking val-
ues in a finite set X with PMF PX , and r ≥ 0. An n-sequence
xn = (x1, . . . , xn) ∈ Xn is called r-divergent sequence for
X if

D(X(n)||X) ≤ r, (14)

where X(n) is the type variable of xn and D(·||·) is the
Kullback-Leibler (KL) divergence of the two random variables
involved. The set of all r-divergent sequences is denoted by
Snr (X).

In particular, Sn0 (X) (i.e., r = 0) represents the set of all xn

sequences such that tp(xn) = PX . The following lemma from
[26] summarizes key properties of r-divergent sequences.

Lemma 1: ([26]) Let r > 0 be fixed.
1) PnX(Snr (X)) ≥ 1− (n+ 1)|X | exp(−nr).
2) Let xn ∈ Xn and X be a random variable in X , then

Pr(Xn = xn) = exp
[
−n(H(X(n)) +D(X(n)||X))

]
.

(15)

3) Let An be a subset of Xn and

PnX(An) ≥ 1− exp(−nr) (16)

holds. Let An(X
(n)) � An ∩ Sn0 (X(n)), we have∣∣∣An(X

(n))
∣∣∣ ≥ (1− (n+ 1)|X | exp[−n(r − cn)]

)

×
∣∣∣Sn0 (X(n))

∣∣∣
(17)

with cn = D(X(n)||X).

B. The Case With L = 2

In this subsection, to assist the presentation, we first focus
on the case with L = 2 and provide details on how to char-
acterize σ(0, 0, r). We will then discuss the general case in
Section III-C.

We first establish an upper bound on the error exponent that
any scheme can achieve. We will follow the similar strategy as
in [27]. In particular, we will first convert a problem with the
exponential-type constraint to a corresponding problem with
the constant-type constraint. We then obtain an upper bound on
the error exponent using the results in [25] for the constant-type
constraint.

Theorem 1: Let PX1X2Y be arbitrary and QX1X2Y > 0. For
zero-rate compression in SX1X2|Y withR1 = R2 = 0, the error
exponent satisfies

σ(0, 0, r) ≤ σopt, (18)

in which

σopt � min
P̃X1X2Y ∈Hr

D
(
P̃X1X2Y ||QX1X2Y

)
(19)

Fig. 2. σopt for zero-rate hypothesis testing

Fig. 3. Model for achievability in zero-rate compression

with

Hr =
{
P̃X1X2Y : P̃X1

= P̂X1
, P̃X2

= P̂X2
, P̃Y = P̂Y

for some P̂X1X2Y ∈ ϕr

}
, (20)

ϕr =
{
P̂X1X2Y : D(P̂X1X2Y ||PX1X2Y ) ≤ r

}
. (21)

Proof: Please refer to Appendix A. �
Figure 2 illustrates a geometric interpretation of σopt. In a

centralized detection problem, Xn
1 , X

n
2 and Y n are all avail-

able to the decision maker, so the decision maker knows the
joint distribution of the observations. Setting the acceptance
region as all observations whose empirical joint PMF having
a KL-divergence to PX1X2Y less than or equal to r, expressed
by ϕr in Figure 2, then the best type 2 error exponent is the
dashed line fromQX1X2Y to ϕr in Figure 2, denoted as σ′

opt. In
our distributed setting, different sequences are observed at dif-
ferent terminals and sent to the decision maker using zero-rate
compression. Hence, the decision maker only gets the infor-
mation about the marginal empirical PMF of the observations.
Consequently, we should search over all joint distributions that
have the same marginal distributions with the ones in ϕr, which
is the region Hr. Therefore, the best type 2 error exponent is the
solid line from QX1X2Y to Hr.

Now, we present a scheme that can achieve the type 2 error
exponent characterized in Theorem 1. Instead of showing that
σ(0, 0, r) ≥ σopt directly, we show that σopt is achievable in a
transformed model. The original model with L = 2 is shown
in Figure 3 (a), denoted as SX1X2|Y . In the original model, the
decision maker is located in terminal Y , so it has full access
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to Y n. This model can also be viewed as a scenario in which the
decision maker is located in a separate terminal and terminal Y
also sends encoded messages to the decision maker, but its rate
R is so large (R ≥ log |Y|) that the decision maker can fully
recover Y n. This new view is shown in Figure 3 (b). Therefore,
the two system shown in Figure 3 (a) and (b) are equivalent,
resulting in σ(0, 0, r) = σ(0, 0, log |Y|, r). However, if the rate
for terminal Y is not large enough, such as R = 0, which is
shown in Figure 3 (c), then the decision maker cannot fully
recover Y n, thus it has less information than the decision maker
in Figure 3 (b), and yields a larger error probability. Hence, we
have σ(0, 0, r) = σ(0, 0, log |Y|, r) ≥ σ(0, 0, 0, r). We denote
the system in Figure 3 (b) and (c) as SX1X2Y . If we can show
that σ(0, 0, 0, r) ≥ σopt in SX1X2Y , then we have σ(0, 0, r) ≥
σopt in SX1X2|Y .

In the following, we will describe a scheme to show that
σ(0, 0, 0, r) ≥ σopt in SX1X2Y . Before proceeding to the for-
mal proof, we first describe the high level idea of the scheme.
After observing xni , terminal Xi knows the type tp(xni ) and
sends tp(xni ) (or an approximation of it, see below) to the
decision maker. Terminal Y does the same. As there are at
most n|Xi| types [31], the rate required for sending the type
from terminal Xi is (|Xi| log n)/n, which goes to zero as n
increases. After receiving all type information from the termi-
nals, the decision maker will check whether there is a joint
type P̃X1X2Y ∈ Hr such that its marginal types are the same
as the information received from the terminals. If yes, the deci-
sion maker declares H0 to be true, otherwise declares H1 to be
true. If the message size Mi is less than n|Xi|, then instead of
the exact type information tp(xni ), each terminal will send an
approximated version. Details on how to approximate the type
will be provided in the proof. As long asMi → ∞, the approxi-
mation will be close (to be made precise in the proof) to the true
type, and hence the decision maker can still use the above men-
tioned decision rule. We will show that this scheme can achieve
σopt in SX1X2Y .

The following theorem provides details about the above
mentioned idea.

Theorem 2: For zero-rate compression in SX1X2Y with
R1 = R2 = R = 0, the error exponent satisfies

σ(0, 0, 0, r) ≥ σopt (22)

where σopt is defined as (19).

Proof: First, define g-distance from any joint distribution
to PX1X2Y as

g
(
X̃1, X̃2, Ỹ

)
= min

P̂X1X2Y

P̂X1
= P̃X1

P̂X2
= P̃X2

P̂Y = P̃Y

D
(
P̂X1X2Y ||PX1X2Y

)
(23)

which is continuous in ((P̃X1
)x1∈X1

, (P̃X2
)x2∈X2

, (P̃Y )y∈Y).
Next, divide the (|X1|+ |X2|+ |Y|) dimensional unit cube

into equal-sized M1 ×M2 ×M small cells with each edge of
length κ1 along the first |X1| components, each edge of length
κ2 along the |X2| components and each edge of length τ along
the |Y| components, where

κ1 =M
−1/|X1|
1 , κ2 =M

−1/|X2|
2 , τ =M−1/|Y|,

in which

M1 → ∞,M2 → ∞,M → ∞, (24)

but logMi/n→ 0 for i = 1, 2 and logM/n→ 0, as n→ ∞
(i.e., zero-rate compression for all three terminals).

Choose and fix a representative point in each cell for every
set of variables (X̃1, X̃2, Ỹ ). Then in a given cell, we make
its representative variable set (X̌1, X̌2, Y̌ ) correspond in such a
way that((P̌X1

)x1∈X1
, (P̌X2

)x2∈X2
, (P̌Y )y∈Y) is the represen-

tative point of ((P̃X1
)x1∈X1

, (P̃X2
)x2∈X2

, (P̃Y )y∈Y). For each
terminal, after observing its sequence, determines its type and
then finds the index of the corresponding edge. Each terminal
then sends the index to the decision maker. After receiving all
the indexes, the decision maker can determine the cell index.
Since we have assumed (24), we see that with any η > 0∣∣∣P̃X1

− P̌X1

∣∣∣ < η, x1 ∈ X1, (25)
∣∣∣P̃X2

− P̌X2

∣∣∣ < η, x2 ∈ X2, (26)
∣∣∣P̃Y − P̌Y

∣∣∣ < η, y ∈ Y, (27)

for sufficiently large n ≥ n0(η). Furthermore, the continuity of
g(X̃1, X̃2, Ỹ ) in (X̃1, X̃2, Ỹ ) yields∣∣∣g (X̃1, X̃2, Ỹ

)
− g

(
X̌1, X̌2, Y̌

)∣∣∣ < η. (28)

Denoting by (X̌
(n)
1 , X̌

(n)
2 , Y̌ (n)) the representative point of

(X
(n)
1 , X

(n)
2 , Y (n)) where X(n)

1 , X
(n)
2 and Y (n) are the type

variables of xn1 ∈ Xn
2 , xn2 ∈ Xn

2 and yn ∈ Yn respectively, we
set an acceptance region

An =
{
(xn1 , x

n
2 , y

n) : g
(
X̌

(n)
1 , X̌

(n)
2 , Y̌ (n)

)
≤ r + 2η

}
.

More precisely, our decoding scheme is as follows. Upon
receiving (M1,M2,M), find the representative point and its
joint distribution. Then calculate the g-distance from this joint
distribution to PX1X2Y . If the g-distance is less than or equal
to r + 2η, then we decide H0 is true and vice versa. In other
words, we first find the region of joint distributions which has
a g-distance to PX1X2Y less than or equal to r + 2η, which is
visualized in Figure 4 as Hr+2η . Then after knowing the joint
distribution of the representative point, we can tell whether it is
in Hr+2η or not. If it is in Hr+2η , we decideH0 is true and vice
versa. In Figure 4, we use a square region to denote all possible
joint distributions of the representative points.

Now we analyze the two types of error probability. For any
ρ > 0 set

ξρ = {(xn1 , xn2 , yn) : g(X(n)
1 , X

(n)
2 , Y (n)) ≤ ρ};

then in view of (28) it is clear that

ξr+η ⊂ An ⊂ ξr+3η (29)

It is easy to see that (xn1 , x
n
2 , y

n) ∈ ξr+η if (xn1 , x
n
2 , y

n) ∈
Snr+η(X1X2Y ), that is Snr+η(X1X2Y ) ⊂ ξr+η , which yields

1− αn = PnX1X2Y (An) ≥ 1− exp(−nr)
for n large enough. Hence, the constraint (9) is satisfied.
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Fig. 4. Visualization of acceptance region

On the other hand, from the second inclusion in (29),

βn = QnX1X2Y (An)
≤ QnX1X2Y (ξr+3η)

≤
∑

X
(n)
1 X

(n)
2 Y (n)

g(X
(n)
1 , X

(n)
2 , Y (n)) ≤ r + 3η

exp(−nD(X
(n)
1 X

(n)
2 Y (n)||QX1X2Y ))

≤ (n+ 1)|X1||X2||Y|

max

X
(n)
1 X

(n)
2 Y (n)

g(X
(n)
1 , X

(n)
2 , Y (n)) ≤ r + 3η

exp(−nD(X
(n)
1 X

(n)
2 Y (n)||QX1X2Y ))

≤ (n+ 1)|X1||X2||Y|

exp

⎡
⎢⎢⎣−n

⎧⎪⎪⎨
⎪⎪⎩

min
X̃1X̃2Ỹ

g(X̃1, X̃2, Ỹ ) ≤ r + 3η

D(X̃1X̃2Ỹ ||QX1X2Y )

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ .

Therefore,

σ(0, 0, 0, r) ≥ min
P̃X1X2Y ∈Hr+3η

D(P̃X1X2Y ||QX1X2Y ),

which establishes (22) if we let η → 0. �
As σ(0, 0, r) = σ(0, 0, log |Y|, r). From Theorem 2, we have

σ(0, 0, r) = σ(0, 0, log |Y|, r)
≥ σ(0, 0, 0, r) ≥ σopt.

Coupled with Theorem 1, we have:
Theorem 3: Let PX1X2Y be arbitrary and QX1X2Y > 0. For

zero-rate compression in SX1X2|Y with R1 = R2 = 0 and type
1 error constraint (9), the best type 2 error exponent

σ(0, 0, r) = σopt, (30)

where σopt is defined as (19).
Proposition 4: Given PX1X2Y and QX1X2Y , the problem of

finding σopt defined in (19) is a convex optimization problem.

Proof: First, given QX1X2Y , it is easy to verify that the
objective function D(P̃X1X2Y ||QX1X2Y ) in (19) is a convex
function of P̃X1X2Y .

Then, we show that the feasible set Hr defined in (20) is
also convex. Suppose P̃ ′

X1X2Y
∈ Hr and P̃ ′′

X1X2Y
∈ Hr, and

P̃ ′
X1X2Y

has the same marginal PMFs with P̂ ′
X1X2Y

∈ ϕr, and

P̃ ′′
X1X2Y

has the same marginal PMFs P̂ ′′
X1X2Y

∈ ϕr. Setting

P̃ ′′′
X1X2Y = πP̃ ′

X1X2Y + (1− π)P̃ ′′
X1X2Y ,

for 0 ≤ π ≤ 1, we will show that P̃ ′′′
X1X2Y

∈ Hr, i.e. Hr is a
convex set. As we have

P̃ ′′′
X1

= πP̃ ′
X1

+ (1− π)P̃ ′′
X1

= πP̂ ′
X1

+ (1− π)P̂ ′′
X1
,

and similar results with P̃ ′′′
X2

and P̃ ′′′
Y , we can conclude that

P̃ ′′′
X1X2Y

has the same marginal distribution as πP̂ ′
X1X2Y

+

(1− π)P̂ ′′
X1X2Y

. Due to the convexity of D(P̂X1X2Y ||
PX1X2Y ) with respect to P̂X1X2Y for a given PX1X2Y , we
have (πP̂ ′

X1X2Y
+ (1− π)P̂ ′′

X1X2Y
) ∈ ϕr. This implies that

P̃ ′′′
X1X2Y

∈ Hr, and hence Hr is a convex set.
As the result, for any given PX1X2Y andQX1X2Y , character-

izing σopt is a convex optimization problem and can be solved
efficiently. �

C. General Case

The results of the previous section can be extended to the
general case with L terminals. We have the following the-
orem, whose proof follows the similar steps as in those in
Section III-B and hence is omitted for conciseness.

Theorem 5: Let PX1,...,XLY be arbitrary and QX1,...,XLY

> 0. For zero-rate compression in SX1...XL|Y with Ri = 0,
i = 1, . . . , L and type 1 error constraint (9), the best type 2 error
exponent

σ(0, . . . , 0, r)

= min
P̃X1...XLY ∈Hr

D(P̃X1...XLY ||QX1...XLY ) (31)

where

Hr =
{
P̃X1...XLY : P̃Xi

= P̂Xi
, P̃Y = P̂Y , i = 1, . . . , L

for some P̂X1...XLY ∈ ϕr

}
, (32)

ϕr =
{
P̂X1...XLY : D

(
P̂X1...XLY ||PX1...XLY

)
≤ r

}
.

(33)

Similar to (19), characterizing (31) is a convex optimization
problem, hence it can be solved efficiently.

IV. TESTING AGAINST INDEPENDENCE WITH

CONSTANT-TYPE CONSTRAINTS

In this section, we consider the scenario with positive com-
munication rate constraints, i.e., Ri > 0, under the constant-
type constraint. As the general case is a very complex problem
even for L = 1 [27], we focus on the testing against indepen-
dence case in which we are interested in determining whether
X1, . . . , XL and Y are independent or not. Hence, the two
hypotheses are

H0 : PX1...XLY , H1 : QX1...XLY = PX1...XL
PY .
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To facilitate the presentation, in the following, we only provide
details for the L = 2 case. The results can be extended to the
generalL case with proper modifications. ForL = 2, our goal is
to characterize θ(R1, R2, ε) under αn ≤ ε and communication
constraints (3).

Compared with the zero-rate compression case discussed in
Section III, in this scenario, each terminal can convey more
information to the decision maker as the communication rate
constraint Ri > 0 is less strict. Before presenting the formal
proof, we first describe high level ideas on how to exploit the
more flexible rate constraints (terms in the following will be
made precise in the proof). For a given rate constraintRi, termi-
nal Xi first generates a quantization codebook containing 2nRi

quantization sequences. After observing xni , terminal Xi picks
one sequence uni from the quantization codebook to describe
xni and sends this sequence to the decision maker. After receiv-
ing the descriptions from terminals, the decision maker will
declare that the hypothesis H0 is true if the descriptions from
these terminals and the side-information at the decision maker
are correlated. Otherwise, the decision maker will declare H1.
The following theorem provides details of the scheme and error
probability analysis.

Theorem 6: In system SX1X2|Y with Ri > 0, i = 1, 2, con-
straint on type 1 error probability (8) and communication
constraints (3), the error exponent of the type 2 error probability
is lower bounded by

θ(R1, R2, ε) ≥ max
PU1|X1

PU2|X2

I(U1U2;Y ), (34)

in which the maximization is over PUi|Xi
’s such that

I(Ui;Xi) ≤ Ri and |Ui| ≤ |Xi|+ 1.

Proof: In the following, ε > ε′ > ε′′ > ε′′′ are given small
numbers.

Quantization codebook generation. Fix a conditional
PMF PU1U2|X1X2Y = PU1|X1

PU2|X2
that attains the max-

imum in (34). Let PU1
(u1) =

∑
x1
PX1

(x1)PU1|X1
(u1|x1)

and PU2
(u2) =

∑
x2
PX2

(x2)PU2|X2
(u2|x2). Randomly and

independently generate 2nR1 sequences un1 (m1), m1 ∈
{1, . . . , 2nR1} each according to

∏n
i=1 PU1

(u1i). Randomly
and independently generate 2nR2 sequences un2 (m2), m2 ∈
{1, . . . , 2nR2} each according to

∏n
i=1 PU2

(u2i). These
sequences constitute the codebook C, which is revealed to all
terminals.

Encoding (Quantization). After observing sequence xn1 , ter-
minal X1 finds a un1 (m1) such that (xn1 , u

n
1 (m1)) ∈ T

(n)
ε′′′ , and

sends the index m1 to terminal Y . If there is more than one
such index, it sends the smallest one among them. If there is no
such index, it selects an index from [1, . . . , 2nR1 ] uniformly at
random. Similarly, after observing a sequence xn2 , terminal X2

finds a un2 (m2) such that (xn2 , u
n
2 (m2)) ∈ T

(n)
ε′′′ , then it sends

the indexm2 to terminal Y . If there is more than one such index,
it sends the smallest one among them. If there is no such index,
it selects an index from [1, . . . , 2nR2 ] uniformly at random.

Testing. Upon receiving m1 and m2, terminal Y sets the
acceptance region An for H0 to

An = {(m1,m2, y
n) : (un1 (m1), u

n
2 (m2), y

n) ∈ T (n)
ε },

where the jointly typical set T (n)
ε is defined with respect to

PX1X2Y , PU1|X and PU2|X2
.

Error probability analysis. Terminal Y chooses Ĥ �= H0 if
and only if one or more of the following events occur:

ε1 =
{
(Un1 (m1), X

n
1 ) /∈ T

(n)
ε′′′ for all m1 ∈ [1 : 2nR1

]}
,

ε2 =
{
(Un2 (m2), X

n
2 ) /∈ T

(n)
ε′′′ for all m2 ∈ [1 : 2nR2

]}
,

ε3 =
{
(Un1 (M1), U

n
2 (M2), Y

n) /∈ T (n)
ε

}
.

Hence, An = (ε1 ∪ ε2 ∪ ε3)c.
After tedious and lengthy computation, we can show that

αn = PnX1X2Y (Ac
n) ≤ ε, (35)

βn = QnX1X2Y (An) ≤ 2−n(I(U1U2;Y )−δ(ε)), (36)

if the conditions specified in the theorem are satisfied. Details
of the error probability analysis can be found in Appendix B.
Hence, we have (34). �

Finally, we establish an upper bound on the type 2 error
exponent that any scheme can achieve.

Theorem 7: In system SX1X2|Y with Ri ≥ 0, i = 1, 2, con-
straint on type 1 error probability (8) and communication con-
straints (3), the best error exponent for type 2 error probability

lim
ε→0

θ(R1, R2, ε) ≤ max
U1U2

I(U1U2;Y ) (37)

in which the maximization is over Ui’s such that Ri ≥
I(Ui;Xi), |Ui| ≤ |Xi|+ 1, U1 → X1 → (X2, Y ) and U2 →
X2 → (X1, Y ).

Proof: We will show that for any encoding and decoding
scheme that satisfies the type 1 error constraint αn ≤ ε and rate
constraints (3), the type 2 error exponent must satisfy (37).

First, for any scheme that satisfies the type 1 error and rate
constraints, we have

D(PM1M2Y n ||PM1M2
PY n)

=
∑

(m1,m2,yn)∈An

PM1M2Y n log
PM1M2Y n

PM1M2
PY n

+
∑

(m1,m2,yn)∈Ac
n

PM1M2Y n log
PM1M2Y n

PM1M2
PY n

(a)

≥ (1− αn) log
1− αn
βn

+ αn log
αn

1− βn

= (1− αn) log
1

βn
+ αn log

1

1− βn
−H(αn)

≥ (1− αn) log
1

βn
−H(αn)

(b)

≥ (1− ε) log
1

βn
−H(αn).

where Mi = fi(X
n
i ), i = 1, 2, αn and βn are defined in (6)

and (7), and H(αn) is

H(αn) � −(1− αn) log(1− αn)− αn logαn. (38)



112 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 2, NO. 2, JUNE 2016

In the derivation above, (a) is true due to the log sum inequality
[22] and (b) follows by the constraint (8).

Hence we have the following upper bound

lim
ε→0

θ(R1, R2, ε) ≤ lim
n→∞

1

n
D(PM1M2Y n ||PM1M2

PY n)

= lim
n→∞

1

n
I(M1M2;Y

n)

= lim
n→∞

1

n
(H(Y n)−H(Y n|M1M2))

= H(Y )− lim
n→∞

1

n
H(Y n|M1M2). (39)

If we simplify 1
nH(Y n|M1M2), we obtain the desired bound.

In Appendix C, we show that

1

n
H(Y n|M1M2) = H(Y |U1U2),

for properly chosen U1U2 satisfying the conditions specified in
the statement of theorem. Combing this with (39), we obtain
the desired result. �

V. APPLICATION

In the section, we provide some examples and numerical
results to illustrate the application of the results developed in
Section III and Section IV.

A. Classical Examples

In this subsection, we provide two examples to show that the
approach established in this paper can be applied to the clas-
sical cases with the conditional independence assumption, i.e.,
testing with hypotheses in (10) and (11).

1) Example for Testing with Zero-Rate Compression: We
can apply our theory on zero-rate compression under the
exponential-type constraint on type 1 error probability to the
case with the conditional independence assumption.

Under the conditional independence assumption,
PX1...XLY = PX1

. . . PXL
PY and QX1...XLY = QX1

. . .
QXL

QY , which is a special case of the general hypotheses
PX1...XLY and QX1...XLY . Hence, Theorem 5 still holds true
for testing under conditionally independent hypotheses.

Corollary 8: Let PX1
. . . PXL

PY be arbitrary and
QX1

. . . QXL
QY > 0. For zero-rate compression in SX1...XL|Y

with Ri = 0, i = 1, . . . , L and type 1 error constraint (9), the
best type 2 error exponent

σ(0, . . . , 0, r)

= min
P̃X1...XLY ∈Hr

D(P̃X1...XLY ||QX1
. . . QXL

QY ) (40)

where

Hr =
{
P̃X1...XLY : P̃Xi

= P̂Xi
, P̃Y = P̂Y , i = 1, . . . , L

for some P̂X1...XLY ∈ ϕr

}
, (41)

ϕr =
{
P̂X1...XLY : D(P̂X1...XLY ||PX1

. . . PXL
PY ) ≤ r

}
.

(42)

We note that the scalar quantizer will send at least one bit
for each observation (i.e., the communication rate is at least
1), hence the scalar quantizer cannot handle this zero-rate
compression scenario. As shown in Corollary 8, the use of vec-
tor quantizer enables us to extend the classic example to the
zero-rate compression scenario.

2) Example for Testing With Positive Communication Rate:
We can apply our coding scheme to the case with a posi-
tive communication rate under the conditional independence
assumption. To facilitate our presentation, we only provide
details for L = 2 case.

Corollary 9: Under conditional independence assumption,
in system SX1X2|Y with Ri ≥ 0, i = 1, 2, constraint on type
1 error probability (8) and communication constraints (3),
the error exponent of the type 2 error probability is lower
bounded by

θ(R1, R2, ε) ≥ max
PU1|X1

PU2|X2
∈ϕ0

min
P̃U1U2X1X2Y ∈ξ0

{
D
(
P̃U1U2X1X2Y ||QU1U2X1X2Y

)}
(43)

where ϕ0 is

ϕ0 =
{
PU1|X1

PU2|X2
: R1 ≥ I(U1;X1), R2 ≥ I(U2;X2),

|U1| ≤ |X1|+ 1, |U2| ≤ |X2|+ 1} ,

and ξ0 is

ξ0 =
{
P̃U1U2X1X2Y : P̃U1X1

= PU1X1
,

P̃U2X2
= PU2X2

,

P̃U1U2Y = PU1U2Y

}
. (44)

Proof: The proof can be obtained by properly modifying
the proof of Theorem 6. The details are provided in Appendix D
for completeness. �

We note that the scalar quantizer can be applied to the pos-
itive rate case under the conditional independence assumption.
In fact, the optimal scalar quantizer that minimizes the error
probability is known. However, the optimal scalar quantizer
relies on an optimization over thresholds used for the quanti-
zation, which needs to be carried out numerically for different
problems. Due to this reason, it is challenging to obtain error
exponent formulas for the optimal scalar quantizer.

B. Numerical Results

In this section, we provide several numerical examples to
illustrate the results obtained in Section III and Section IV.

1) Numerical Results for Testing With Zero-rate
Compression Under Exponential-Type Constraints: In
Figure 5, we illustrate σopt, namely the optimal type 2 error
exponent characterized in Theorem 3, as a function of the type
1 error exponent constraint r. For comparison, we also plot the
corresponding curve for the centralized case. In the figure, the
solid line represents σopt and the dashed line is the optimal
type 2 error exponent for the centralized case. In generating
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Fig. 5. σ(0, 0, r) vs r with D(PX1X2Y ||QX1X2Y ) = 0.0624

Figure 5, we set X1, X2 and Y as binary random variables.
Furthermore, we set

PX1X2Y =

{
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

}

and

QX1X2Y =

{
1

12
,
1

12
,
5

72
,
7

72
,
1

6
,
1

6
,
1

6
,
1

6

}
.

It is easy to verify that D(PX1X2Y ||QX1X2Y ) = 0.0624. From
Figure 5, we can see that the type 2 error exponent obtained
in the distributed case is smaller than that of the centralized
case for every r. This is reasonable as in the centralized case,
the decision maker has full access to all observations and
hence makes less error. Furthermore, the type 2 error expo-
nents for both settings are close to 0 when r > 0.062, which
makes sense as when r > D(PX1X2Y ||QX1X2Y ), no matter
what observation is observed, the decision maker decides H0

is true.
Figure 6 illustrates σopt for different PMFs. In generating

Figure 6, we keep PX1X2Y same as above, but changeQX1X2Y

to

QX1X2Y =

{
1

12
,
1

12
,
1

12
,
1

12
,
1

6
,
1

6
,
1

6
,
1

6

}
.

In this case, D(PX1X2Y ||QX1X2Y ) = 0.0588. From
Figure 6, we can see that the type 2 error exponent obtained in
the distributed setting is quite close to that of the centralized
case. This implies that, for certain PMFs, the distributed setting
with a proper zero-rate compression can achieve a performance
close to that of the centralized setting.

2) Numerical Results for Testing Against Independence
Under Constant-Type Constraints: In Figure 7, we illustrate
θ(R1, R2, ε) discussed in Theorem 6 as a function of the rate
constraints. In generating this figure, we again set X1, X2 and
Y to be binary random variables and set

PX1X2Y =

{
1

6
,
1

3
,
1

12
,
1

6
, 0, 0,

1

8
,
1

8

}
,

Fig. 6. σ(0, 0, r) vs r with D(PX1X2Y ||QX1X2Y ) = 0.0588

Fig. 7. θ(R1, R2, ε) vs R = R1 = R2 with D(PX1X2Y ||QX1X2Y ) =
0.2229

from which one can calculate QX1X2Y = PX1X2
PY .

Furthermore, to make the computation feasible, we assume
|Ui| = |Xi| = 2 in the simulation. In order to visualize the
result better, we make R1 = R2 = R. Hence, we demonstrate
a lower bound on the type 2 error exponent achievable using
our scheme.

From Figure 7, we can see that the type 2 error exponent
increases as R increases, which makes sense as the constraint
is relaxed, the decision maker can get more information about
Xn

1 and Xn
2 , and thus make less error. Furthermore, when

R is large enough, the decision maker can fully recover Xn
1

and Xn
2 , which is then the same as the centralized setting.

According to Stein’s lemma, in the centralized setting, the type
2 error exponent equals D(PX1X2Y ||PX1X2

PY ). In our simu-
lation, D(PX1X2Y ||PX1X2

PY ) = 0.2229, and we can see that
the maximum value in Figure 7 is quite close to 0.2229.
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VI. CONCLUSION

In this paper, we have discussed distributed inference prob-
lems with vector quantizers. Using properties of r-divergence
sequences, we have characterized the best error exponent of
the type 2 error probability under the zero-rate compres-
sion and exponential-type type 1 error probability constraints.
Furthermore, we have discussed the problem of testing against
independence under the constant-type constraint on the type 1
error probability. We have derived a lower bound and upper-
bound on the type 2 error exponent.

APPENDIX A
PROOF OF THEOREM 1

In this appendix, we present the proof of Theorem 1. In this
proof, we need to show that for any encoding and decoding
scheme that meets the type 1 error constraint, we have (18). Let
An be an arbitrary acceptance region such that

αn ≤ exp(−nr), r > 0 (45)

where

αn = PnX1X2Y (Ac
n). (46)

Equations (45) and (46) imply that

PnX1X2Y (An) ≥ 1− exp(−n(r − γ)), ∀n ≥ n0, (47)

where γ > 0 is an arbitrarily small constant, and n0 is a
sufficiently large positive integer.

Next, select an arbitrary “internal point” PX10X20Y0
∈ ϕr,

where ϕr is specified in (21). Then clearly

D(PX10X20Y0
||PX1X2Y ) < r. (48)

Define

T̂n(δ) =
{

joint types P̂n on Xn
1 ×Xn

2 × Yn :

D
(
P̂n||PX10X20Y0

)
< δ

}
(49)

where δ > 0 is an arbitrary constant. Then, in view of (48) and
the uniform continuity of the divergence, for all P̂n ∈ T̂n(δ) it
holds that

cn ≡ D
(
P̂n||PX1X2Y

)
< r − 2γ, (50)

provided that we take γ > 0 and δ > 0 sufficiently small.
Consequently, according to Lemma 1, we have∣∣∣An

(
P̂n

)∣∣∣ ≥ (1− (n+ 1)|X1||X2||Y| exp(−nγ))
∣∣∣S0

(
P̂n

)∣∣∣
(51)

for all P̂n ∈ T̂n(δ). Now we define the set

Tn(δ) =
{
(xn1 , x

n
2 , y

n) ∈ Xn
1 ×Xn

2 × Yn :

X
(n)
1 X

(n)
2 Y (n) ∈ T̂n(δ)

}
(52)

and consider an i.i.d. random sequence of length n generated
according to the probability distribution PX10X20Y0

. Then, from
(51), we have

PnX10X20Y0
(An)

≥ PnX10X20Y0
(An ∩ Tn(δ))

=
∑

P̂n∈T̂n(δ)

PnX10X20Y0
(An ∩ S0(P̂n))

=
∑

P̂n∈T̂n(δ)

PnX10X20Y0
(An(P̂n))

=
∑

P̂n∈T̂n(δ)

∑
tp(xn

10,x
n
20,y

n
0 )=P̂n

(xn
10,x

n
20,y

n
0 )∈An

PnX10X20Y0
(Xn

10 = xn10,

Xn
20 = xn20, Y

n
0 = yn0 )

(a)
=

∑
P̂n∈T̂n(δ)

∑
tp(xn

10,x
n
20,y

n
0 )=P̂n

(xn
10,x

n
20,y

n
0 )∈An

exp
[
−n
(
H
(
X

(n)
10 X

(n)
20 Y

(n)
0

)

+D
(
X

(n)
10 X

(n)
20 Y

(n)
0 ||X10X20Y0

))]

=
∑

P̂n∈T̂n(δ)

∣∣∣An(P̂n)
∣∣∣ exp [−n(H (X(n)

10 X
(n)
20 Y

(n)
0

)

+D
(
X

(n)
10 X

(n)
20 Y

(n)
0 ||X10X20Y0

))]

≥
∑

P̂n∈T̂n(δ)

(
1− (n+ 1)|X1||X2||Y| exp(−nγ)

)
|S0(P̂n)|

exp
[
−n

(
H
(
X

(n)
10 X

(n)
20 Y

(n)
0

)

+D
(
X

(n)
10 X

(n)
20 Y

(n)
0 ||X10X20Y0

))]

≥
(
1− (n+ 1)|X1||X2||Y| exp(−nγ)

)
∑

P̂n∈T̂n(δ)

PnX10X20Y0
(S0(P̂n))

=
(
1− (n+ 1)|X1||X2||Y| exp(−nγ)

)
PX10X20Y0

(T̂n(δ))

≥
(
1− (n+ 1)|X1||X2||Y| exp(−nγ)

)

×
(
1− (n+ 1)|X1||X2||Y| exp(−nδ)

)
, (53)

where (a) is true due to (15), and the last step is true due to (17).
Now consider the zero-rate (R1 = 0, R2 = 0, R ≥ 0)

hypothesis testing problem with

H0 : PX10X20Y0
vs H1 : QX1X2Y . (54)

Then, for this hypothesis testing problem, if we use the same
acceptance region An as above, the type 1 error probability

α(0)
n = 1− PnX10X20Y0

(An)

≤ 1−
(
1− (n+ 1)|X1||X2||Y| exp(−nγ)

)

×
(
1− (n+ 1)|X1||X2||Y| exp(−nδ)

)

≤ ε,

where ε is the constant-type constraint on the type 1 error
probability.

Hence, for the hypothesis testing problem (54), the accep-
tance region An satisfies the constant-type type 1 error proba-
bility constraint.
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From [25], we know that the type 2 error exponent

θ(0, 0, ε) ≤ min
P̃X1X2Y ∈L0

D
(
P̃X1X2Y ||QX1X2Y

)
, (55)

where

L0 =
{
P̃X1X2Y : P̃X1

= PX10
, P̃X2

= PX20
, P̃Y = PY0

}
.

On the other hand, we note that PX10X20Y0
was arbitrary as

long as condition (48) is satisfied. Therefore, in the light of the
definition of Hr, we see that the infimum of the right-hand side
in (55) over all possible internal points PX10X20Y0

satisfying
(48) coincides with

min
P̃X1X2Y ∈Hr

D(P̃X1X2Y ||QX1X2Y ).

Thus (55) reduces to

σ(0, 0, r) ≤ min
P̃X1X2Y ∈Hr

D(P̃X1X2Y ||QX1X2Y ).

APPENDIX B
ERROR PROBABILITY ANALYSIS FOR THEOREM 6

To analyze the type 1 error probability, we have

αn = PnX1X2Y (Ac
n)

= PnX1X2Y (ε1 ∪ ε2 ∪ ε3)
≤ PnX1X2Y (ε1) + PnX1X2Y (ε2) + PnX1X2Y (ε

c
1 ∩ εc2 ∩ ε3).

We now bound each term.
1) By the covering lemma [22, Section 3.7],

PnX1X2Y (ε1) → 0

as n→ ∞ if

R1 ≥ I(U1;X1) + δ(ε)

and

PnX1X2Y (ε2) → 0

as n→ ∞ if

R2 ≥ I(U2;X2) + δ(ε).

2) To bound the last term, we need three steps, each of which
uses a version of the Markov lemma [22, Section 12.1].

Step 1: Show that (Un2 (M2), X
n
1 , X

n
2 ) ∈ T

(n)
ε′′ with a

probability tends to 1 as n increases.
Since Xn

2 |{Un2 (M2)=u
n
2 , X

n
1 =xn1} ∼∏n

i=1 PX2|X1

(x2i|x1i) and ε′′ > ε′′′, by the Markov lemma, Pr{(Un2
(M2), X

n
1 , X

n
2 ) /∈ T

(n)
ε′′ } tends to zero as n→ ∞.

Step 2: Show that (Un1 (M1), U
n
2 (M2), X

n
1 , X

n
2 ) ∈

T
(n)
ε′ with a probability tends to 1 as n increases.

From the distribution we draw Un1 (M1) and Un2 (M2), we
have the Markov chain

Un2 (M2) ↔ Xn
2 ↔ Xn

1 ↔ Un1 (M1).

As (un2 , x
n
1 , x

n
2 ) ∈ T

(n)
ε′′ and from the Markov chain we

know that

Pr{Un1 (M1) = un1 |Un2 (M2) = un2 , X
n
1 = xn1 , X

n
2 = xn2}

= Pr{Un1 (M1) = un1 |xn1}.

By the covering lemma, Pr{(xn1 , Un1 ) ∈ T
(n)
ε′′ } converges

to 1 as n→ ∞, that is Pr{Un1 (M1) = un1 |xn1} satisfies the
first condition in the Markov lemma. Then we show that it
also satisfies the second condition in the Markov lemma.
For all un1 ∈ T

(n)
ε′′ (U1|xn1 ),

Pr{Un1 (M1) = un1 |Xn
1 = xn1 }

= Pr{Un1 (M1) = un1 , U
n
1 (M1) ∈ T

(n)
ε′′ (U1|xn1 )

|Xn
1 = xn1 }

= Pr{Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 )|Xn

1 = xn1 }
× Pr{Un1 (M1) = un1 |Un1 (M1) ∈ T

(n)
ε′′ (U1|xn1 ),

Xn
1 = xn1 }

≤ Pr{Un1 (M1) = un1 |Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ),

Xn
1 = xn1 }

=
∑
m1

Pr{Un1 (M1) = un1 ,M1 = m1|

Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ), Xn

1 = xn1 }
=
∑
m1

Pr{Un1 (M1) = un1 |Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ),

Xn
1 = xn1 ,M1 = m1}

× Pr{M1 = m1|Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ), Xn

1 = xn1 }
(a)
=
∑
m1

Pr{Un1 (m1) = un1 |Un1 (m1) ∈ T
(n)
ε′′ (U1|xn1 )}

× Pr{M1 = m1|Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ), Xn

1 = xn1 }
(b)
≤
∑
m1

Pr{M1=m1|Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ), Xn

1 =xn1 }

2−n(H(U1|X1)−δ(ε′′))

= 2−n(H(U1|X1)−δ(ε′′)),

where (a) follows since

Pr{Un1 (M1) = un1 |Un1 (M1) ∈ T
(n)
ε′′ (U1|xn1 ),

Xn
1 = xn1 ,M1 = m1}

= Pr{Un1 (m1) = un1 |Un1 (m1) ∈ T
(n)
ε′′ (U1|Xn

1 = xn1 ),

Xn
1 = xn1 ,M1 = m1}

= Pr{Un1 (m1) = un1 |Un1 (m1) ∈ T
(n)
ε′′ (U1|xn1 )}.

(b) follows from properties of typical sequences.
Similarly, we can also prove that for every un1 ∈
T

(n)
ε′′ (U1|xn1 ) and n sufficiently large,

Pr{Un1 (M1) = un1 |Xn
1 = xn1}

≥ (1− ε′′)2−n(H(U1|X1)+δ(ε
′′)).
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Hence, this satisfies the second condition in the Markov
Lemma. By the Markov lemma, we have (Un1 (M1),

Un2 (M2), X
n
1 , X

n
2 ) ∈ T

(n)
ε′ .

Step 3: Show that(Y n, Un1 (M1), U
n
2 (M2)) ∈ T

(n)
ε

with a probability tends to 1 as n increases.
First, (Un1 (M1), U

n
2 (M2)) ↔ (Xn

1 , X
n
2 ) ↔ Y n forms a

Morkov chain as (Un1 (M1), U
n
2 (M2)) is a function of

(Xn
1 , X

n
2 ). According to Step 1 and Step 2, we have

(Un1 (M1), U
n
2 (M2), X

n
2 , X

n
1 ) ∈ T

(n)
ε′ , and Y n is drawn

∼∏n
i=1 PY |X1X2

(yi|x1i, x2i), hence, by the Markov

lemma, we have (Y n, Un1 (M1), U
n
2 (M2)) ∈ T

(n)
ε with a

probability tends to 1 as n increases. This implies that
PnX1X2Y

(εc1 ∩ εc2 ∩ ε3) tends to 0 as n increases.
Combining all steps above, we have that αn ↓ 0 as n

increases, hence the type 1 error probability constraint is
satisfied.

For the type 2 error probability, assume in this case that H1

is true. Then

βn = (PnX1X2
PnY )(An)

= (PnX1X2
PnY )(ε

c
1 ∩ εc2 ∩ εc3)

= (PnX1X2
PnY )(ε

c
1)× (PnX1X2

PnY )(ε
c
2)

× (PnX1X2
PnY )(ε

c
3|εc1 ∩ εc2)

We now bound each factor.
1) By the covering lemma, (PnX1X2

PnY )(ε
c
1) → 1 as

n→ ∞ if

R1 ≥ I(U1;X1) + δ(ε)

and (PnX1X2
PnY )(ε

c
2) → 1 as n→ ∞ if

R2 ≥ I(U2;X2) + δ(ε).
2)

(PnX1X2
PnY )(ε

c
3|εc1 ∩ εc2)

=
∑

(un
1 ,u

n
2 ,y

n)∈T (n)
ε

(PnX1X2
PnY ){Un1 (M1) = un1 ,

Un2 (M2) = un2 , Y
n = yn|εc1 ∩ εc2}

=
∑

(un
1 ,u

n
2 ,y

n)∈T (n)
ε

PnX1X2
{Un1 (M1) = un1 ,

Un2 (M2) = un2 |εc1 ∩ εc2} × PnY {Y n = yn|εc1 ∩ εc2}
≤ 2n(H(U1U2Y )+δ(ε))2−n(H(U1U2)−δ(ε′))2−n(H(Y )−δ(ε′))

= 2−n(I(U1U2;Y )−δ(ε)).

Combining the bounds on the three factors, we have

βn ≤ 2−n(I(U1U2;Y )−δ(ε)).

In summary, the type 1 error probability averaged over all
codebooks is upper bounded by ε if

R1 ≥ I(U1;X1) and R2 ≥ I(U2;X2),

while the type 2 error probability averaged over all codebooks is
upper bounded by 2−n(I(U1U2;Y )−δ(ε)). Therefore, there exists
a codebook such that

θ(R1, R2, ε) ≥ I(U1U2;Y ),

R1 ≥ I(U1;X1),

R2 ≥ I(U2;X2).

This completes the achievability proof.

APPENDIX C
PROOF OF THEOREM 7

Now we simplify the upper bound in (39) in the following
steps. First consider

nR1 ≥ H(M1)

≥ I(M1;X
n
1 )

=
n∑
i=1

I(M1;X1i|Xi−1
1 )

=

n∑
i=1

I(M1X
i−1
1 ;X1i)

(a)
=

n∑
i=1

I(M1X
i−1
1 Xi−1

2 ;X1i)

(b)
=

n∑
i=1

I(U1i;X1i),

where (a) follows since X1i ↔ (M1, X
i−1
1 ) ↔ Xi−1

2 forms a
Markov chain, which can be derived by the following:

(Xn
1 , X1i) ↔ Xi−1

1 ↔ Xi−1
2

(c)⇒ (M1, X1i) ↔ Xi−1
1 ↔ Xi−1

2

(d)⇒ X1i ↔ (M1, X
i−1
1 ) ↔ Xi−1

2 , (56)

(c) is true as M1 is a function of Xn
1 and (d) is true due to the

weak union property of Markov chain [32]. (b) is true by identi-
fying U1i = (M1, X

i−1
1 , Xi−1

2 ) and noting that U1i ↔ X1i ↔
(X2i, Yi) forms a Markov chain as

(Xn
1 , X

i−1
1 , Xi−1

2 ) ↔ X1i ↔ (X2i, Yi)

⇒ (M1, X
i−1
1 , Xi−1

2 ) ↔ X1i ↔ (X2i, Yi).

Following similar steps as above, we have

nR2

(e)

≥
n∑
i=1

I(M2X
i−1
2 Y i−1;X2i)

(f)
=

n∑
i=1

I(U2i;X2i),

where (e) follows since Y i−1 ↔ (M2, X
i−1
2 ) ↔ X2i; (f) is

true by identifying U2i = (M2, X
i−1
2 , Y i−1) and noting that

U2i ↔ X2i ↔ (X1i, Yi).
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Finally, we consider

H(Y n|M1M2) =

n∑
i=1

H(Yi|M1M2Y
i−1)

≥
n∑
i=1

H(Yi|M1M2Y
i−1Xi−1

1 Xi−1
2 )

=

n∑
i=1

H(Yi|U1iU2i).

Define the time-sharing random variable Q to be the uni-
formly distributed over [1 : n] and independent of (M1,M2,
Xn

1 , X
n
2 , Y

n), and identify U1 = (U1Q, Q), U2 = (U2Q, Q, )
X1 = X1Q, X2 = X2Q, and Y = YQ. Clearly, we have U1 ↔
X1 ↔ (X2, Y ) and U2 ↔ X2 ↔ (X1, Y ) forms three Markov
chains. Hence we have shown

R1 ≥ I(U1;X1), R2 ≥ I(U2;X2),

lim
ε→0

θ(R1, R2, ε) ≤ H(Y )−H(Y |U1U2) = I(Y ;U1U2),

for some conditional PMF PU1|X1
and PU2|X2

.

APPENDIX D
PROOF OF COROLLARY 9

In the following, ε > ε′ > ε′′ > ε′′′ are given small numbers.
Quantization codebook generation. Fix a joint distribution

attaining the maximum of (43), which satisfies PU1U2X1X2Y =
PX1

PX2
PY PU1|X1

PU2|X2
. Let PU1

(u1) =
∑
x1
PX1

(x1)
PU1|X1

(u1|x1), and PU2
(u2) =

∑
x2
PX2

(x2)PU2|X2
(u2|x2).

Randomly and independently generate M1 = 2n(I(U1;X1)+η)

sequences un1 (m1), m1 ∈ {1, . . . ,M1} each according to∏n
i=1 PU1

(u1i). Randomly and independently generate
M2 = 2n(I(U2;X2)+η) sequences un2 (m2), m2 ∈ {1, . . . ,M2}
each according to

∏n
i=1 PU2

(u2i). These sequences constitute
the codebook c, which is revealed to all terminals. We use C to
denote the set of all possible codebooks.

Encoding (Quantization). After observing sequence xn1 , ter-
minal X1 finds a un1 (m1) such that (xn1 , u

n
1 (m1)) ∈ T

(n)
ε′′′ , and

sends the index m1 to terminal Y . If there is more than one
such index, it sends the smallest one among them. If there is no
such index, it selects an index from [1, . . . ,M1] uniformly at
random. Similarly, after observing a sequence xn2 , terminal X2

finds a un2 (m2) such that (xn2 , u
n
2 (m2)) ∈ T

(n)
ε′′′ , then it sends

the indexm2 to terminal Y . If there is more than one such index,
it sends the smallest one among them. If there is no such index,
it selects an index from [1, . . . ,M2] uniformly at random.

Testing. Upon receiving m1 and m2, terminal Y sets the
acceptance region An for H0 to

An ={(m1,m2, y
n) : (un1 (m1), u

n
2 (m2), y

n) ∈ T (n)
ε },

where the jointly typical set T (n)
ε is defined with respect to

PX1
PX2

PY , PU1|X and PU2|X2
.

Error probability analysis. Terminal Y chooses Ĥ �= H0 if
and only if one or more of the following events occur:

ε1 = {(Un1 (m1), X
n
1 ) /∈ T

(n)
ε′′′ for all m1 ∈ [1 :M1]},

ε2 = {(Un2 (m2), X
n
2 ) /∈ T

(n)
ε′′′ for all m2 ∈ [1 :M2]},

ε3 = {(Un1 (M1), U
n
2 (M2), Y

n) /∈ T (n)
ε }.

Hence, An = (ε1 ∪ ε2 ∪ ε3)c.
To analyze the type 1 error probability, we have

αn = (PnX1
PnX2

PnY )(Ac
n)

= (PnX1
PnX2

PnY )(ε1 ∪ ε2 ∪ ε3)
≤ (PnX1

PnX2
PnY )(ε1) + (PnX1

PnX2
PnY )(ε2)

+ (PnX1
PnX2

PnY )(ε3).

We now bound each term.
1) By the covering lemma [22, Section 3.7],

(PnX1
PnX2

PnY )(ε1) → 0

as n→ ∞ if

R1 ≥ I(U1;X1) + δ(ε)

and

(PnX1
PnX2

PnY )(ε2) → 0

as n→ ∞ if

R2 ≥ I(U2;X2) + δ(ε).
2)

(PnX1
PnX2

PnY )(ε
c
3)

=
∑

(un
1 ,u

n
2 ,y

n)∈T (n)
ε

(PnX1
PnX2

PnY ){Un1 (M1) = un1 ,

Un2 (M2) = un2 , Y
n = yn}

=
∑

(un
1 ,u

n
2 ,y

n)∈T (n)
ε

PnX1
{Un1 (M1) = un1}

PnX2
{Un2 (M2) = un2}PnY {Y n = yn}

≤ 2n(H(U1U2Y )+δ(ε))2−n(H(U1))−δ(ε′))2−n(H(U2))−δ(ε′))

2−n(H(Y )−δ(ε′))

= 2−n(H(U1)+H(U2)+H(Y )−H(U1)−H(U2)−H(Y )−δ(ε))

→ 1.

To calculate the type 2 error probability, assume in this case
that H1 is true. For m1 ∈ [1 :M1], m2 ∈ [1 :M2], and yn ∈
T

(n)
ε (Y |un1 (m1), u

n
2 (m2)), define

Sm1,m2
(xn2 , y

n) ={un1 (m1)} × {un2 (m2)} × T (n)
ε (X1|

un1 (m1))× T (n)
ε (X2|un2 (m2))× {yn},

and

ϕn =

M1⋃
m1=1

M2⋃
m2=1

⋃
yn∈T (n)

ε (Y |un
1 (m1),un

2 (m2))

Sm1,m2
(yn).



118 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 2, NO. 2, JUNE 2016

Suppose U
(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n) is a type variable of

(un1 , u
n
2 , x

n
1 , x

n
2 , y

n) ∈ Sm1,m2
(yn), then

QnX1
QnX2

QnY (x
n
1 , x

n
2 , y

n)

= exp[−n(H(X
(n)
1 X

(n)
2 Y (n))

+D(X
(n)
1 X

(n)
2 Y (n)||QX1

QX2
QY ))].

Denoting N(U
(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)) the number of those

elements (un1 , u
n
2 , x

n
1 , x

n
2 , y

n) ∈ ϕn that have (U
(n)
1 U

(n)
2 X

(n)
1

X
(n)
2 Y (n)) as their type variable, it follows that

N(U
(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n))

≤ exp
[
n(I(X1;U1) + I(X2;U2) +H

(
X

(n)
1 |U (n)

1 Y (n)
)

+H
(
X

(n)
2 |U (n)

1 U
(n)
2 X

(n)
1 Y (n)

)

+H(Y |U1U2) + 2η + 2ε)]

= exp
[
n(I(X1;U1) + I(X2;U2) +H

(
X

(n)
1 |U (n)

1 Y (n)
)

+H
(
X

(n)
2 |U (n)

1 U
(n)
2 X

(n)
1 Y (n)

)

+H(Y ) + 2η + 2ε)] .

Hence,

βn = QnX1
QnX2

QnY (An)

≤
∑

U
(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

exp
[
−n
(
k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)

− 2η − 2ε
)]
, (57)

where

k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)

= H
(
X

(n)
1 X

(n)
2 Y (n)

)
+D

(
X

(n)
1 X

(n)
2 Y (n)||QX1

QX2
QY

)

− I(X1;U1)− I(X2;U2)−H
(
X

(n)
1 |U (n)

1 Y (n)
)

−H
(
X

(n)
2 |U (n)

1 U
(n)
2 X

(n)
1 Y (n)

)
−H(Y ), (58)

and the sum is taken over all possible type variables of elements
(un1 , u

n
2 , x

n
1 , x

n
2 , y

n) ∈ ϕn. Hence, we have (un1 (m1), x
n
1 )

∈ T
(n)
ε (U1X1), (un2 (m2), x

n
2 ) ∈ T

(n)
ε (U2X2), and (un1 (m1),

un2 (m2), y
n) ∈ T

(n)
ε (U1U2Y ). This implies that the sum ranges

over all possible type variables (U (n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)) such

that, for all u1 ∈ U1, u2 ∈ U2, x1 ∈ X1, x2 ∈ X2, and y ∈ Y ,

|P
U

(n)
1 X

(n)
1

(u1x1)− PU1X1
(u1x1)| ≤ εPU1X1

(u1x1),

|P
U

(n)
2 X

(n)
2

(u2x2)− PU2X2
(u2x2)| ≤ εPU2X2

(u2x2),

|P
U

(n)
1 U

(n)
2 Y (n)(u1u2y)− PU1

PU2
PY (u1u2y)|

≤ εPU1
PU2

PY (u1u2y).

Thus, we can rewrite (58) as

k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)

= H(X̃1X̃2Ỹ ) +D(X̃1X̃2Ỹ ||QX1
QX2

QY )

− I(X̃1; Ũ1)− I(X̃2; Ũ2)−H(Ỹ )

−H(X̃1|Ũ1Ỹ )−H(X̃2|Ũ1Ũ2X̃1Ỹ ) + δ(ε), (59)

with some variable Ũ1Ũ2X̃1X̃2Ỹ such that

P̃U1X1
= PU1X1

, P̃U2X2
= PU2X2

,

P̃U1U2Y = PU1U2Y ,

where δ(ε) → 0. Through some calculation, we can get

k
(
U

(n)
1 U

(n)
2 X

(n)
1 X

(n)
2 Y (n)

)
(60)

= D(P̃U1U2X1X2Y ||QU1U2X1X2Y ) + δ(ε), (61)

where QU1|X1
= PU1|X1

, PU2|X2
= QU2|X2

.
Thus, by (57) and (60), we have

βn ≤ (n+ 1)|U1|·|U2|·|X1|·|X2|·|Y|

max
P̃U1U2X1X2Y ∈ξ(U1U2)

exp
[−n(D(P̃U1U2X1X2Y ||QU1U2X1X2Y )

+δ(ε)− 2η − 2ε)] .
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