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Abstract—We consider a distributed parameter estimation
problem, in which multiple terminals send messages related to
their local observations using limited rates to a fusion center who
will obtain an estimate of a parameter related to the observations
of all terminals. It is well known that if the transmission rates
are in the Slepian-Wolf region, the fusion center can fully recover
all observations and hence can construct an estimator having the
same performance as that of the centralized case. One natural
question is whether Slepian-Wolf rates are necessary to achieve
the same estimation performance as that of the centralized case.
In this paper, we show that the answer to this question is
negative. We establish our result by explicitly constructing an
asymptotically minimum variance unbiased estimator (MVUE)
that has the same performance as that of the optimal estimator
in the centralized case while requiring information rates less than
the conditions required in the Slepian-Wolf rate region. The key
idea is that, instead of aiming to recover the observations at the
fusion center, we design universal schemes enabling the fusion
center to compute a sufficient statistic using rates outside of the
Selpian-Wolf region.

Index Terms—Distributed learning, MVUE, estimation algo-
rithm, Slepian-Wolf rates, universal encoding/decoding scheme.

I. INTRODUCTION

Motivated by applications in sensor networks and other
areas, the problem of distributed estimation has been exten-
sively investigated from various perspective [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].
As observations are distributed over multiple terminals in the
distributed setting, the performances of distributed estimators
are no better than those of centralized estimators who have
access to all observations. The question we address in this
paper is, to achieve the same performance as that of the
centralized setup, how much information has to be exchanged
in the distributed setting.

We consider this problem for the following setup. There
are two random variables (X,Y ) with a joint probability
mass function (PMF) Pθ(X,Y ) parameterized by an unknown
parameter θ. Two terminals A and B observe Xn and Y n

respectively and send messages related to their own local
observations with limited rates to terminal C, which will then
obtain an estimate of the unknown parameter. It is well known
that if the transmission rates from the terminals are inside
the Slepian-Wolf rate region [18], there exists a universal
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coding scheme [19] that enables terminal C to fully recover
(Xn, Y n). Hence, once the transmission rates are inside the
Slepian-Wolf rate region, the performance of the best estimator
for the distributed setup is the same as that of the best estimator
for the centralized case.

One natural question is: are Slepian-Wolf rates necessary
to achieve the same estimation performance as that of the
centralized case? The answer to this question has significant
implications in the distributed estimation. If the answer is yes,
then to obtain the best estimate of the unknown parameter
requires transmission rates to be so high that they are sufficient
to fully recover the observations at the decoder, hence no
rate reduction is possible. On the other hand, if the answer
is no, then the observations can be compressed beyond the
limits of source coding for full observation recovery. At a
first glance, the answer to this question should be no as
we are only interested in estimating a parameter related to
the observations and are not interested in recovering the
observations themselves. However, all existing related works
indicate otherwise. For example, [20] addressed the same
question and suggested that Slepian-Wolf rates might be
necessary. In addition, the performance of the best known
estimator by Han and Amari [21] does not match that of the
centralized case when the information rates are outside of the
Slepian-Wolf rate region. Furthermore, [22] showed that, under
certain conditions, extracting even one bit of information from
distributed sources is as hard as recovering full observations
and hence requires the information rates to be in the Slepian-
Wolf rate region.

In this paper, we show that the answer to this question is
indeed no. We establish our result by explicitly constructing
a distributed estimation algorithm that achieves the same
performance as that of the optimal estimator for the centralized
case while using information rates outside of the Slepian-Wolf
region. The main observation is that, to construct an estimator
that has the same performance as that of the centralized case,
the fusion center needs only sufficient statistics not full data.
Based on this observation, the key idea of our algorithm is
that, instead of trying to fully recover the source observations,
we design schemes that enable the fusion center to recover
sufficient statistics using less information rates.

To illustrate the idea, we first consider binary symmetric
sources (i.e., both Xn and Y n are binary sequences) param-
eterized by an unknown parameter θ. For this model, in our
algorithm, we first design a universal coding/decoding scheme
that enables terminal C to compute component-wise module-
two sum Zn = Xn ⊕ Y n, which can be achieved using rates



outside of the Slepian-Wolf rate region, and then construct an
estimator using Zn. Here ⊕ denotes element-wise xor. We
show that our estimator is an asymptotically minimum vari-
ance unbiased estimator (MVUE) [23] and achieves the same
variance index as that of the best estimator in the centralized
case. We then generalize our study to general binary sources
models that are not necessarily symmetric anymore. Compared
with the symmetric case, there are two additional challenges:
1) Zn alone is not a sufficient statistic anymore; and 2)
We do not have an MVUE to compare the performance to
anymore, as it is not clear whether an MVUE exists and even
if it exists its form is model dependent. To address the first
issue, we modify our scheme and ask the transmitters to send
additional information (more specifically, empirical marginal
PMF) that requires diminishing rate. Combining Zn with these
additional information, the fusion center can then construct
the empirical joint PMF, which is a sufficient statistic. To
address the second issue, we show a stronger result that for any
centralized estimator, we can construct a plugin estimator with
the same performance by using the only decoded information
at terminal C. We further extend our results to a more general
class of non-binary sources and show that our algorithm can
also achieve the same performance as that of the best estimator
in the centralized case while using transmission rates less than
the conditions required in the Slepian-Wolf rate region. Finally,
although our estimation algorithm achieves the centralized
performance at rates less than Slepian-Wolf rates, there is no
optimality guarantee at very low rates which can be the case
for a number of practical applications. To address this, we
propose a practical design of our estimation algorithm and
show that it outperforms the best known estimator by Han
and Amari [21] at all rates. In [21], the authors established
their estimation algorithm by introducing auxiliary random
variables and solving the maximum-likelihood equation. They
showed that their estimation algorithm achieves a smaller
variance than the estimator by Zhang and Berger [24].

This paper builds and substantially expand upon our recent
conference paper [1]. Compared with [1], we provide detailed
proof for the case with binary symmetric sources, we extend
our results to general binary sources in Section IV, we also
propose a practical design of our estimator that achieves a
good performance at all compression rates in Section VI, and
we add more numerical results in Section VII.

The rest of the paper is organized as follows. We introduce
the problem formulation in Section II. In Section III, we es-
tablish our main results for binary symmetric sources, then we
generalize it to non-symmetric binary sources in Section IV.
We extend our work to a more general class of information
sources in Section V. We propose a practical design of our
estimation algorithm in Section VI. We present the simulation
results in Section VII. Finally, we conclude the paper in
Section VIII.

II. PROBLEM FORMULATION

Consider two information sources X and Y taking val-
ues from the discrete alphabets X and Y , respectively.

(Xn, Y n) = {(Xi, Yi)}ni=1 are n independently and identi-
cally distributed (i.i.d.) observations drawn according to the
parametric joint PMF Pθ(X,Y ) where θ ∈ Θ is the unknown
parameter. We assume that the range of Θ is bounded and
hence θu , max{| inf(Θ)|, | sup(Θ)|} is finite. We consider a
distributed setup in which Xn are observed at terminal A and
Y n are observed at terminal B. Using limited rates, these two
terminals send messages related to their own local observations
to a fusion center (terminal C), which will then obtain an
estimate θ̂ of θ using these messages. The setup is illustrated
in Fig. 1.
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Fig. 1: System Model.

In particular, terminal A employs an encoding function
g1 : Xn → g1(Xn), while terminal B employs an encoding
function g2 : Y n → g2(Y n). The code rates are

RX =
log ||g1||

n
,RY =

log ||g2||
n

, (1)

where ||gi|| is the cardinality of the encoding function gi.
From g1(Xn) and g2(Y n), the decoder obtains an estimate

θ̂ of the unknown parameter θ using estimator ψ:

θ̂ = ψ(g1(Xn), g2(Y n)). (2)

To evaluate the quality of the estimator, we use the variance
index that is defined as1

Vθ[θ̂] = lim
n→∞

nVarθ[θ̂] = lim
n→∞

nEθ[(θ̂ − E[θ̂])2]. (3)

It is desirable to have an estimator that is asymptotically
unbiased, i.e., Eθ[θ̂] → θ as n → ∞, range-preserving, i.e.,
the range of the estimation function ψ is Θ, and has a small
variance index.

It is well-known that, if the coding rates satisfy (will be
called Slepian-Wolf rates in the sequel)

RX ≥ Hθ(X|Y ), (4)
RY ≥ Hθ(Y |X), (5)

RX +RY ≥ Hθ(X,Y ), (6)

there exists universal source coding schemes [19] (i.e., the
coding scheme does not depends on the value of the unknown
parameter θ) such that the decoder can reconstruct Xn and
Y n with a diminishing error probability. Here, Hθ(·) and

1Throughout the paper, we use the subscript θ to emphasize the fact that
value of the quantity of interest depends on the parameter θ.



Hθ(·|·) denote the entropy and conditional entropy respec-
tively. Hence, if (4)-(6) are satisfied, we can obtain the same
estimation performance as that of the centralized case.

The question we ask in this paper is: are Slepian-Wolf rates
necessary to achieve the same estimation performance as that
of the centralized case? [20] investigated the same question
and suggested that Slepian-Wolf rates appear to be necessary
for achieving the centralized estimation performance. In this
paper, we show that Slepian-Wolf rates are not necessary.
In particular, we show that there indeed exists a class of
PMFs and the corresponding distributed estimators that require
communication rates less than the Slepian-Wolf rates while
still achieving the same performance as that of the best
estimator for the centralized case.

Throughout the paper, we use an upper case letter U to
denote a random variable, a lower case letter u to denote
a realization of U , and U to denote the discrete alpha-
bet from which U takes values. For any sequence un =
(u(1), · · · , u(n)) ∈ Un, the relative frequencies (empirical
PMF) π(a|un) , n(a|un)/n,∀a ∈ U of the components of
un is called the type of un. Here n(a|un) is the total number
of indices t at which u(t) = a. Chapter 11 of [25] contains a
comprehensive overview of useful properties of the type.

III. BINARY SYMMETRIC CASE

In this section, to illustrate our main idea, we first consider
the case of binary symmetric sources with |X | = |Y| = 2 and a
joint PMF of (X,Y ) as given in Table I, in which the unknown
parameter θ ∈ Θ = (0, 1). The insights obtained here will be
generalized to more general models in later sections.

X/Y 0 1
0 θ/2 (1− θ)/2
1 (1− θ)/2 θ/2

TABLE I: The joint PMF of binary symmetric sources.

Note that for this model, neither terminal A nor terminal
B alone will be able to obtain a meaningful estimation of
the value of θ, as the marginal distributions of X and Y are
independent of θ. On the other hand, to estimate θ, the fusion
center does not need to know (Xn, Y n) fully. It is easy to
check that the component-wise module-two sum Zn = Xn ⊕
Y n , [X1 ⊕ Y1, · · · , Xi ⊕ Yi, · · · , Xn ⊕ Yn] is a sufficient
statistic for estimating θ. Hence, as long as the fusion center
can compute Zn, it can construct an estimator that has the
same performance as that of the centralized case. Based on this
observation, we show that, to estimate θ for this class of PMFs,
we can achieve the centralized estimation performance using
rates that do not satisfy (4)-(6). We establish this result using
two steps: 1) in the first step, we design a universal encoder
at terminals A and B and universal decoder at terminal C
to compute the modulo-two sum Zn = Xn ⊕ Y n; 2) in the
second step, we construct an estimator using Zn and analyze
its performance.

A. Step 1: Computing Zn

Here, we discuss how to universally compute Zn = Xn ⊕
Y n at terminal C. Towards this goal, we will use the same
linear code at both encoders and use a minimum entropy
decoder at terminal C.

Since the encoders at terminals A and B are the same, we
use the following simplified notation

f = g1 = g2,

R = RX = RY . (7)

The following theorem shows that as long as R ≥
Hθ(X|Y ) = Hθ(Y |X), the decoder can reconstruct Zn with
a diminishing error probability.

Theorem 1: If

R ≥ Hθ(X|Y ) = Hθ(Y |X), (8)

there exist universal encoding/decoding functions to recon-
struct Zn = Xn ⊕ Y n at terminal C with an exponentially
decreasing error probability.

Proof: The proof follows a similar structure as the proofs
in [26] and [19]. In particular, using the ideas in [19], we
modify the proof of [26] to make it universal.
Random Code Generation: We use a linear code f with an
encoding matrix A of size n×nR to map {0, 1}n to {0, 1}nR.
Hence ||f || = 2nR. We independently generate each entry of
A using a uniform binary distribution, i.e., each entry of A is
0 or 1 with probability 0.5.
Encoding: The encoded messages of the realizations xn ∈
{0, 1}n and yn ∈ {0, 1}n are

f(xn) = xnA,

f(yn) = ynA, (9)

in which the operations are all in binary field.
Decoding: The decoder first combines the messages into a
single message as

f(xn)⊕ f(yn). (10)

It follows from the code linearity that

f(xn)⊕ f(yn) = f(xn ⊕ yn) = f(zn). (11)

From f(xn ⊕ yn), terminal C uses a minimum entropy
decoder to obtain ẑn. In particular, for each z̄n such that
f(z̄n) = f(xn ⊕ yn), the minimum entropy decoder first
calculates the entropy of its type, then picks the one that has
the least entropy to be the decoded sequence. In the following,
to simplify the notation, we use Z̄(n) and Z(n) to denote
dummy random variables whose PMFs PZ̄(n) and PZ(n) are
the same as the types of z̄n and zn, respectively. The final
decoded message is denoted as

ẑn = φ(f(zn)), (12)

where φ denotes the minimum entropy decoding function.
Error Probability Analysis: A decoding error occurs if and
only if there exists a sequence ẑn 6= zn such that

f(ẑn) = f(zn) and H(Ẑ(n)) ≤ H(Z(n)). (13)



The error probability, averaging over all possible codebooks,
is

P (n)
e =

∑
zn∈{0,1}n

Pθ(z
n)Pr(ẑn 6= zn) =

∑
f

Pr(f)P
(n)
e,f , (14)

in which Pθ(z
n) , Pr(Zn = zn), and P

(n)
e,f denotes the

error probability if a particular codebook f is used. By
analyzing (14), we show that there exists a particular codebook
f∗ such that P (n)

e,f∗ → 0 exponentially as n → ∞ as long as
the conditions in the theorem are satisfied. Detailed analysis
can be found in Appendix A. This implies that if we use f∗,
then the fusion center will be able to compute Zn with an
exponentially decreasing error probability.

Theorem 1 implies that the required rates to decode Zn =
Xn ⊕ Y n with a small error probability is

RX ≥ Hθ(X|Y ), (15)
RY ≥ Hθ(Y |X). (16)

This rate region is larger than the Slepian-Wolf region in (4)-
(6), as the condition RX +RY ≥ Hθ(X,Y ) is not necessary
anymore.

B. Step 2: Estimation
After obtaining Ẑn, which is equal to Zn with a probability

converging to 1 exponentially, we then design an asymptoti-
cally MVUE of θ. Our estimator is

θ̂ =
n(0|Ẑn)

n
, (17)

in which the notation n(·|·) is defined in Section II.
Theorem 2: If the conditions in Theorem 1 are satisfied, the

estimator in (17) is an asymptotically MVUE and achieves the
optimal variance index as that of the centralized case.

Proof: We establish this result by showing that the
estimator (17) achieves the same performance as that of the
optimal estimator in the centralized case.

Optimal Centralized Estimator: First consider the central-
ized case in which Xn and Y n are both known perfectly. Let(
n1

n ,
n2

n ,
n3

n ,
n4

n

)
denote the joint type of the sequences xn and

yn, where (n1, n2, n3, n4) are the frequencies of occurrence of
the pairs {(0, 0), (1, 1), (0, 1), (1, 0)}, respectively. The joint
PMF of (xn, yn) is

Pθ(x
n, yn) =

(
θ

2

)(n1+n2)(
1− θ

2

)(n3+n4)

. (18)

Consider the centralized estimator

θ̂c =
(n1 + n2)

n
. (19)

This estimator is unbiased since

Eθ[θ̂c] = θ. (20)

The variance of the estimator is calculated as

Varθ[θ̂c] =
1

n2
Eθ[(n1 + n2)2]− θ2

=
θ(1− θ)

n
. (21)

The variance index is given by

Vθ[θ̂c] = lim
n→∞

nVarθ[θ̂c] = θ(1− θ). (22)

The Cramer-Rao lower bound (CRLB) of the centralized
case is

CRLB = −1/Eθ
[
∂2 ln[Pθ(x

n, yn)]

∂2θ

]
=

θ(1− θ)
n

= Varθ[θ̂c]. (23)

This implies that θ̂c is an MVUE for the centralized case.
Comparison: Now, come back to our decentralized case,

for which our estimator is

θ̂ =
n(0|Ẑn)

n
. (24)

We will compare the performance of θ̂ with that of the optimal
centralized estimator θ̂c.

For the codebook f∗, define T (n)
e as the set of sequences

zns that are incorrectly decoded. Therefore,

P
(n)
e,f∗ =

∑
zn∈T (n)

e

Pθ(z
n). (25)

The expected value of our estimator is given by

Eθ[θ̂] =
∑

zn∈{0,1}n
Pr(Ẑn = zn)

n(0|zn)

n
. (26)

Note that Pr(Ẑn = zn) is not necessarily equal to Pθ(z
n),

and the sum of the probability difference can be bounded as∑
zn∈{0,1}n

|Pr(Ẑn = zn)− Pθ(Zn = zn)|

≤ 2
∑

zn∈T (n)
e

Pθ(z
n) = 2P

(n)
e,f∗ . (27)

We have that

|Eθ[θ̂]− Eθ[θ̂c]|

≤
∑

zn∈{0,1}n
|Pr(Ẑn = zn)− Pθ(Zn = zn)|n(0|zn)

n
.

Since

0 ≤ n(0|zn)

n
≤ 1, (28)

then

|Eθ[θ̂]− Eθ[θ̂c]| ≤
∑

zn∈{0,1}n
|Pr(Ẑn = zn)− Pθ(Zn = zn)|

≤ 2P
(n)
e,f∗ , (29)

in which the last inequality is due to (27).
As P (n)

e,f∗ is shown to converge to zero exponentially fast in
Section III-A, we have

lim
n→∞

Eθ[θ̂] = Eθ[θ̂c] = θ. (30)



This shows that our estimator is asymptotically unbiased.
Similarly, we have

|Varθ[θ̂]− Varθ[θ̂c]|
≤ |Eθ[θ̂2]− Eθ[θ̂2

c ]|+ |Eθ[θ̂]− Eθ[θ̂c]|
≤ 4P

(n)
e,f∗ . (31)

Hence,

|Vθ[θ̂]− Vθ[θ̂c]| ≤ lim
n→∞

4nP
(n)
e,f∗ . (32)

As n→∞, P (n)
e,f∗ → 0 exponentially, we have 4nP

(n)
e,f∗ → 0.

Therefore,
Vθ[θ̂] = Vθ[θ̂c] = θ(1− θ). (33)

This proves that our estimator is asymptotically unbiased and
achieves the same minimum variance that can be achieved
even in the centralized case. Hence, our estimator is optimal.

Slepian-­‐Wolf	
  Region	
  

Fig. 2: F: the rate pair required in our estimator, which is
outside of the Slepian-Wolf rate region.

Combining Theorems 1 and 2, we conclude that, in the
distributed parameter estimation, the Slepian-Wolf rates are not
necessary to achieve the same optimal estimation performance
as that of the centralized case. Fig. 2 illustrates the comparison
between the Slepian-Wolf rate region and the rate pair used in
our estimator.

IV. GENERAL BINARY CASE

In this section, we extend our study to the general binary
source models Pθ(X,Y ). Here, we do not make any particular
assumption of the form of Pθ(X,Y ). For example, Pθ(X,Y )
could be a nonlinear function of θ. Similar to the previous
section, we assume that Pθ(X = i, Y = j) > 0 for all θ ∈ Θ
and i, j ∈ {0, 1}. Compared with the binary symmetric source
model considered in Section III, there are two additional
challenges. First, the component-wise module-two sum Zn

is not a sufficient statistic in general, hence recovering Zn

alone is not enough. Second, unlike the symmetric case in
which we have an MUVE centralized estimator to compare
to, we cannot do that anymore as we are considering general
models whose optimal centralized is model specific (and in

some cases, MUVE may not exist). Despite these challenges,
we prove the following result:

Theorem 3: For any binary source with a parametric PMF
Pθ(X,Y ), where θ ∈ Θ is the unknown parameter and Θ is
a bounded set, there exits an unbiased estimator F̂ based on
Zn = Xn ⊕ Y n that achieves the centralized performance
asymptotically and requires communication rates of

RX = RY ≥ Hθ(Z). (34)

Proof: The proof consists of two main steps: 1) in the
first step, we construct a scheme to enable the fusion center
to compute a sufficient statistic with exponentially diminishing
error probability; 2) in the second step, we establish an estima-
tor using the computed statistics and show that the estimator
achieves the performance of the centralized estimator.
Step 1: Computing a Sufficient Statistic

Different from the binary symmetric case considered in
Section III, Zn is not a sufficient statistic for the general binary
case anymore. Now, we show the joint type PX(n)Y (n) =(
n1

n ,
n2

n ,
n3

n ,
n4

n

)
of the observation sequences (xn, yn) is a

sufficient statistic and show how to compute this statistics at
the fusion center using rates (34).

Let TP
X(n)Y (n)

be the set of all sequence pairs (xn, yn)
that have the joint type PX(n)Y (n) . The conditional PMF of
(Xn, Y n) given the joint type PX(n)Y (n) is

Pθ(x
n, yn|PX(n)Y (n)) =

{
0, if (xn, yn) /∈ TP

X(n)Y (n)

1
||TP

X(n)Y (n)
|| , otherwise , (35)

which is not a function of θ. Therefore, the joint type
PX(n)Y (n) is a sufficient statistic of θ.

Now we show how to compute this statistic at the fusion
center with rates in (34).

Encoding: At terminals A and B, we first encode Xn

and Y n using the same scheme presented in Section III-A.
This will enable terminal C to compute Zn. In addition, each
terminal will send the marginal types PX(n) ∈ P(n)

X and
PY (n) ∈ P(n)

Y of the sequences xn and yn, respectively. The
number of marginal types can be bounded as [25]

||P(n)
X || = ||P

(n)
Y || ≤ (n+ 1)2. (36)

Therefore each of the marginal types can be encoded using
the rate 2 log(n+1)

n , which goes to zero as n increases. Hence,
sending these additional information requires diminishing ad-
ditional rates.

Decoding: At terminal C, we first decode Ẑn using the
same scheme as discussed in Section III-A. Once Ẑn is
decoded, terminal C will compute the joint type P̂X(n)Y (n) =(
n̂1

n ,
n̂2

n ,
n̂3

n ,
n̂4

n

)
by combining Ẑn along with the additional

information PX(n) , PY (n) sent from terminals A and B re-



spectively. In particular, from these information, we have the
following relationship

n̂1 + n̂2 = n(0|Ẑn), (37)
n̂1 + n̂3

n
= PX(n)(x = 0), (38)

n̂1 + n̂4

n
= PY (n)(y = 0), (39)

4∑
i=1

n̂i = n. (40)

From these four equations, we can easily obtain P̂X(n)Y (n) .
Error Probability: Define P (n)

e as

P (n)
e = Pr(P̂X(n)Y (n) 6= PX(n)Y (n)). (41)

As shown in Section III-A, Zn can be decoded at the rates
given in (34) with an exponentially decreasing probability
of error. Furthermore, the marginal types can be perfectly
recovered at asymptotically zero rates, then the joint type
PX(n)Y (n) can be computed with an exponentially decreasing
error probability P (n)

e .
Step 2: Estimation

In the binary symmetric case considered in Section III,
we have MVUE for the centralized case and hence we can
compare our distributed estimator with this centralized MVUE.
In the general binary model, this approach will not work as
we don’t know whether or not an MVUE exists. Furthermore,
even if it exists, the form of MVUE is model specific. In the
following, we show a stronger result that we can achieve the
same performance for any centralized estimator.

First, as PX(n)Y (n) is a sufficient statistic for the cen-
tralized case, by Rao-Blackwell theorem [23], if we want
to minimize the variance of unbiased estimators, we can
focus on estimators that are functions of PX(n)Y (n) , namely
Fc = F (PX(n)Y (n)), for the centralized case. For any unbiased
Fc, we design the following simple plugin estimator

F̂ = F (P̂X(n)Y (n)). (42)

In the following, we compare the performance of Fc and
F̂ . We have that

Eθ[F̂ ] =
∑

P
x(n)y(n)

Pr(P̂X(n)Y (n) = Px(n)y(n))F (Px(n)y(n)), (43)

and

|Eθ[F̂ ]− Eθ[Fc]|
≤

∑
P
x(n)y(n)

|Pr(P̂X(n)Y (n) = Px(n)y(n))− Pθ(Px(n)y(n))|

·|F (Px(n)y(n))|. (44)

Since F (Px(n)y(n)) ∈ Θ and Θ is bounded, we have
|F (Px(n)y(n))| ≤ θu. Furthermore, following similar steps as
that of (27), we have∑
P
x(n)y(n)

|Pr(P̂X(n)Y (n) = Px(n)y(n))− Pθ(Px(n)y(n))| ≤ 2P (n)
e .

As the result, we have

|Eθ[F̂ ]− Eθ[Fc]| ≤ 2P (n)
e θu, (45)

hence

lim
n→∞

Eθ[F̂ ] = Eθ[Fc] = θ, (46)

as P (n)
e goes to zero exponentially. Similarly,

|Varθ[F̂ ]− Varθ[Fc]| ≤ 2P (n)
e (θ2

u + θu). (47)

Therefore,

Vθ[F̂ ] = Vθ[Fc]. (48)

This implies that the plugin distributed estimator F̂ achieves
the same performance as that of the centralized estimator Fc
if the rate condition (34) is satisfied.

Depending on the PMF of the binary source, the required
sum rate to achieve the optimal centralized performance
2Hθ(Z) as obtained using our algorithm can be less than
Slepian-Wolf sum rate Hθ(X,Y ). As an example, consider a
non-symmetric nonlinear binary source with the PMF shown
in Table II.

X/Y 0 1
0 1/4 + θ2 1/4− θ2
1 1/4− θ 1/4 + θ

TABLE II: An example of a joint PMF of a non-symmetric
binary source with θ ∈ Θ = (0, 1/4).

Although the joint PMF given in Table II is not symmetric
and nonlinear in θ, the required rates to obtain an unbiased
estimator that achieves the centralized performance are still
lower than Slepian-Wolf rates as shown in Fig. 3.

Fig. 3: The required rates to achieve the optimal centralized
performance for the binary source given in Table II is lower
than Slepian-Wolf rates.



V. NON-BINARY MODELS

In this section, we extend our results for binary models
to more general class of non-binary models. Let X = Y =
{0, 1, ...,M − 1} and consider the class of PMFs

Pθ(X = i, Y = j) =

{
θ
M , if (i+ j) 6= M − 1
1−θ(M−1)

M , otherwise,
(49)

where θ ∈ Θ = (0, 1
(M−1) ). Note that each information source

has a uniform marginal PMF and setting M = 2 recovers the
binary case.

Similar to the binary case, we first use a linear code and
minimum entropy decoder to reconstruct Zn = (Xn + Y n)
mod M at the decoder and then design an estimator from Zn.
In this section, we use mod M to denote element-wise mod
operation,

In particular, we use a linear code f that maps {0, 1, ...,M−
1}n to {0, 1, ...,M − 1}k. The encoded messages of the real-
izations xn ∈ {0, 1, ...,M − 1}n and yn ∈ {0, 1, ...,M − 1}n
are

f(xn) = xnA,

f(yn) = ynA, (50)

in which the code matrix A has n rows and k columns with
each entry taking values from {0, 1, ...,M − 1}. The coding
rate is

R =
k

n
logM. (51)

The decoder first combines the encoded messages into a
single message as

f(xn) + f(yn) mod M. (52)

The final decoded message is given by

ẑn = φ(f(zn)), (53)

where φ the the minimum entropy decoding function. Follow-
ing the same error probability analysis for the binary case,
we can show that there exists a codebook f∗ (and hence a
particular encoding matrix A) that achieves a probability of
decoding error P (n)

e,f∗ → 0 exponentially as n→∞ if

R ≥ Hθ(Z) = Hθ(X|Y ) = Hθ(Y |X). (54)

Therefore, as long as

RX ≥ Hθ(X|Y ), (55)
RY ≥ Hθ(Y |X), (56)

we can reconstruct Zn = Xn + Y n mod M at the decoder
with an exponentially diminishing error probability.

After obtaining Ẑn, which is equal to Zn with a probability
converging to 1 exponentially, our estimator is

θ̂ =
n− n(M − 1|Ẑn)

n(M − 1)
. (57)

Following similar steps as those in the binary case, we can
show that, if (55)-(56) are satisfied, the estimator in (57) is
asymptotically unbiased and achieves a variance index

Vθ[θ̂] =
θ[1− θ(M − 1)]

M − 1
. (58)

We can further show that (58) is the best variance index that
can be achieved even in the centralized case. This implies that
our algorithm achieves the centralized performance using rates
outside the Slepian-Wolf region.

VI. PRACTICAL APPROACH

In the previous sections, we established an unbiased esti-
mator that achieves the centralized performance for a number
of information sources, while requires less rates than Slepian-
Wolf rates. For binary symmetric sources and its extension, our
estimator achieves the CRLB within the combined regions of
Slepian-Wolf and the dotted region as shown in Fig. 4, where

RX ≥ Hθ(X|Y ),

RY ≥ Hθ(Y |X). (59)

Fig. 4: The low rates inside the dashed region are considered
in this section.

Our estimator is optimal if Zn = Xn⊕Y n is decoded with a
vanishing probability of error. Otherwise, there is no optimal-
ity guarantee. In practical applications, the communications
rates can be lower than our conditions (59). Therefore, we
modify the design of our estimation algorithm in this section
to ensure a good performance at all rates including the low
rates inside the dashed region as shown in Fig. 4. We start
with the case of binary symmetric sources then we extend the
results to the general class of PMFs as presented in Section V.
For binary symmetric sources, we assume that the unknown
parameter θ takes values in (0, t), where t ∈ (0, 0.5) is known.

First, we apply the encoding/decoding scheme introduced
in Section III to encode p observations (xp, yp) and decode
ẑp = xp ⊕ yp , where

p =

{
n, if R ≥ H(t)

b nRH(t)c, otherwise,
(60)



where b·c is an operator that maps its argument to the largest
previous integer, then we modify our estimator as following:

θ̂ =
n(0|Ẑp)

p
. (61)

The following Theorem states the performance bounds of our
estimator.

Theorem 4: If

R ≥ H(t), (62)

our estimator is an asymptotically MVUE. Otherwise, our
estimator is asymptotically unbiased and its variance index
is bounded as

Vθ[θ̂] ≤
H(t)θ(1− θ)

R
. (63)

Proof :
Case 1: R ≥ H(t)

R ≥ H(t)

≥ Hθ(Z) = Hθ(X|Y ) = Hθ(Y |X). (64)

In this case, p = n, and our estimator is given by

θ̂ =
n(0|Ẑn)

n
. (65)

As we proved in the previous sections, this estimator is an
asymptotically MVUE if R ≥ Hθ(Z).

Case 2: R < H(t)
In the centralized case, consider the estimator

θ̂c =
(n1 + n2)

p
, (66)

where n1 and n2 are the frequency of occurrence of the pairs
(0, 0) and (1, 1) in the observations (xp, yp), respectively. We
have that

Eθ[θ̂c] =
pθ

p
= θ, (67)

and

Varθ[θ̂c] =
θ(1− θ)

p
. (68)

In the decentralized case, the effective rate per observation is
given by

Reff =
nR

p
. (69)

Since

p ≤ nR

H(t)
, (70)

then

Reff ≥ H(t) ≥ Hθ(Z). (71)

For this range of rates, we showed that

lim
n→∞

Eθ[θ̂] = Eθ[θ̂c] = θ. (72)

Therefore, our estimator is asymptotically unbiased. We also
have that

Vθ[θ̂] = lim
n→∞

nVarθ[θ̂c]

= lim
n→∞

nθ(1− θ)
p

. (73)

It is obvious that

p ≥ nR

H(t)
− 1. (74)

Hence,

Vθ[θ̂] ≤
H(t)θ(1− θ)

R
. (75)

�

For the general class of PMFs given in (49), we assume that
θ takes values in (0, t), and t ∈ (0, 1

2(M−1) ). We establish our
estimator as

θ̂ =
p− n(M − 1|Ẑp)

p(M − 1)
. (76)

Following similar steps to the proof of Theorem 4, we have
that our estimator is an asymptotically MVUE if R ≥ H(t).
Otherwise, our estimator is asymptotically unbiased and its
variance index is bounded as

Vθ[θ̂] ≤
H(t)θ[1− θ(M − 1)]

R(M − 1)
. (77)

For binary symmetric sources and its extension, we guar-
antee a worst case performance that is a function of the
communication rate R. In the following section, we show that
despite of a small performance degradation in the rate region
H(θ) ≤ R < H(t) as compared to our estimator in Section
V, we managed to achieve a very good performance at low
rates.

VII. NUMERICAL RESULTS

In this section, we use several numerical examples to
illustrate the comparison between our estimators to the best
known estimator by Han and Amari [21]. In the simulation,
we fix the unknown parameter θ and change the encoding rates
RX and RY such that

RX = RY = R ≥ Hθ(Z). (78)

We conduct the comparison for M = 2 and M = 4,
respectively.

For our estimator in Section V and M = 2, the variance
index of our estimator is (33), while the variance index of the
estimator by Han and Amari is calculated in example 3 of [21]

(Vθ[θ̂])HA ' (79)

1

16a2b2

{
1

4
−
(
θ − 1

2

)2

[1− (1− 4a2)(1− 4b2)]

}
,

where a and b are functions of RX and RY , whose expressions
are given in (14.12) and (14.13) of [21], respectively.



Fig. 5: Performance Comparison: θ = 0.05, M = 2

Fig. 6: Performance Comparison: θ = 0.9, M = 2

Fig. 5 and Fig. 6 show the performance gain, in terms of
the variance index, of our estimator over Han and Amari’s
estimator for binary symmetric sources (M = 2) at two
different values of the unknown parameter, θ = 0.05 and
θ = 0.9, respectively. The performance difference is more
noticeable at low rates. For θ = 0.05, the Slepian-Wolf sum
rate is RX + RY = 1.29 bits, while our estimator requires a
sum rate of RX + RY = 2R = 0.57 bits. For θ = 0.9, the
Slepian-Wolf sum rate is 1.47 bits, while our estimator requires
a sum rate of 0.94 bits. Furthermore, for Han and Amari’s
estimator to achieve the centralized performance, the required
sum-rate is 2 bits for both cases, which is not only much larger
than the sum rate required in our estimator but also much
larger than the sum-rate required by conditions specified in
the Slepian-Wolf rate region.

For our estimator in Section V and M = 4, the variance
index of our estimator is given in (58). The performance of

Han and Amari’s estimator relies on the choice of the test
channels. The authors did not specify an optimal choice of
the test channels in order to extend example 3 in [21] to the
case of M = 4. We find the following mapping to be a natural
extension:

Q =

{
0, if X ∈ {0, 1}
1, if X ∈ {2, 3},

T =

{
0, if Y ∈ {0, 1}
1, if Y ∈ {2, 3}.

(80)

Notice that (Q,T ) are distributed according to a binary
symmetric PMF with an unknown parameter α = 2θ. Using
an estimator θ̂ = α̂

2 leads to the following expression for the
variance index:

(Vθ[θ̂])HA ' (81)

1

64a2b2

{
1

4
−
(

2θ − 1

2

)2

[1− (1− 4a2)(1− 4b2)]

}
.

Fig. 7: Performance Comparison: θ = 0.01, M = 4

Fig. 7 compares the variance indices achieved using our
estimator and Han and Amari’s estimator for M = 4 and θ =
0.01. It is clear that our estimator outperforms that of Han and
Amari’s estimator. Furthermore, the performance difference is
more noticeable at low rates. The Slepian-Wolf sum rate is
2.24 bits, while our estimator requires a sum rate of 0.48 bits.

For our practical estimator in Section VI and M = 2, the
variance index of our estimator is bounded as in (77) if R <
H(t). Otherwise, it achieves the CRLB. The variance index
of Han and Amari’s estimator is (79).

For our practical estimator in Section VI and M = 4, the
variance index of our estimator is bounded as in (75) if R <
H(t). Otherwise, it achieves the CRLB. The variance index
of Han and Amari’s estimator is (81).

Fig. 8 and Fig. 9 show that our estimator outperforms
Han and Amari’s estimator at all rates. The performance
difference is more noticeable at very low rates, which makes
our estimator a good choice for applications with low rate
constraints. Our estimator performs better for smaller values
of the range of θ, which is determined by t.



Fig. 8: Performance Comparison: θ = 0.05, M = 2, t = 0.5
and 0.1

Fig. 9: Performance Comparison: θ = 0.01, M = 4, t = 0.16

VIII. CONCLUSION

In this paper, we have answered the question: Are Slepian-
Wolf rates necessary to achieve the same estimation perfor-
mance as that of the centralized case? We have showed that
the answer to this question is negative by constructing an
asymptoticly MVUE for binary symmetric sources using rates
less than the conditions required in the Slepian-Wolf rate
region. We have showed that our estimation algorithm can
work for general binary sources to achieve the centralized
estimation performance. We have also extended our work to a
general class of non-binary information sources by modifying
our estimation algorithm. We have further proposed a practical
design of our estimation algorithm and compared our results
to the best known estimator by Han and Amari to show the
superiority of our estimator.

APPENDIX A
ERROR PROBABILITY ANALYSIS IN THE PROOF OF

THEOREM 1
To analyze the probability of the decoding error, let z̃n ∈
{0, 1}n denote a sequence such that

z̃n 6= zn, f(z̃n) = f(zn). (82)

Let Z̃(n) be a dummy random variable whose PMF PZ̃(n)

is the same as the type of z̃n. Define P(n)

ZZ̃
as the set of all

joint types between any two sequences zn and z̃n. For any
given f (equivalently for a given encoding matrix A), define
Nn
f (ZZ̃) as the number of sequences zn such that there exists

another sequence z̃n having the joint type PZ(n)Z̃(n) ∈ P(n)

ZZ̃
and (82) holds.

Since each entry in A is uniformly distributed, then each
element in f(zn) is uniformly distributed if zn is a nonzero
sequence. Therefore,

Pr(f(zn) = 0) = (0.5)nR =
1

||f ||
, (83)

in which the probability is computed over all codebooks. This
implies that

Pr(f(z̃n) = f(zn)) = Pr(f(z̃n − zn) = 0) =
1

||f ||
. (84)

Define TP
Z(n)Z̃(n)

as the set of all sequence pairs (zn, z̃n)
that have the joint type PZ(n)Z̃(n) , TP

Z(n)
as the set of

all sequences zn that have the marginal type PZ(n) , and
TP

Z̃(n)|Z(n)
(zn) as the set of all sequences z̃n that have the

joint type PZ(n)Z̃(n) with zn. The sizes of the sets TP
Z(n)

and
TP

Z̃(n)|Z(n)
(zn) are bounded as [27]

||TP
Z(n)
|| ≤ 2nH(Z(n)),

||TP
Z̃(n)|Z(n)

(zn)|| ≤ 2nH(Z̃(n)|Z(n))+ε, (85)

where ε is an arbitrary small number. Notice that, for any
given PZ(n)Z̃(n) , Nn

f (ZZ̃) is a random variable (random over
f ) that can be expressed as

Nn
f (ZZ̃) =

∑
zn∈TP

Z(n)

1
(
∃z̃n 6= zn : f(z̃n) = f(zn),

and (zn, z̃n) ∈ TP
Z(n)Z̃(n)

)
=

∑
zn∈TP

Z(n)

1
(
∃z̃n 6= zn : f(z̃n) = f(zn),

and z̃n ∈ TP
Z̃(n)|Z(n)

(zn)
)
,(86)

where 1(·) is the indication function. The expectation of
Nn
f (ZZ̃) over all possible codebooks f is

E[Nn
f (ZZ̃)]

=
∑

zn∈TP
Z(n)

E
[
1
(
∃ z̃n 6= zn : f(z̃n) = f(zn),

and z̃n ∈ TP
Z̃(n)|Z(n)

(zn)
)]

≤
∑

zn∈TP
Z(n)

∑
z̃n∈TP

Z̃(n)|Z(n)
(zn)

Pr(f(z̃n) = f(zn)). (87)



(84), (85), and (87) imply that

E[Nn
f (ZZ̃)] ≤ 2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)

||f ||
. (88)

Applying the Markov’s inequality, we have

Pr

(
Nn
f (ZZ̃) ≥

2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)(||P(n)

ZZ̃
||+ δ)

||f ||

)
≤ 1

||P(n)

ZZ̃
||+ δ

, (89)

where ||P(n)

ZZ̃
|| is the total number of possible joint types and

δ is an arbitrary small number. To simplify the notation, let

Bn(ZZ̃) ,
2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)(||P(n)

ZZ̃
||+ δ)

||f ||
. (90)

Considering all joint types PZ(n)Z̃(n) simultaneously, the
union bound and (89) imply that

Pr
(
Nn
f (ZZ̃) ≤ Bn(ZZ̃), ∀PZ(n)Z̃(n) ∈ P(n)

ZZ̃

)
≥ 1−

||P(n)

ZZ̃
||∑

1

1

||P(n)

ZZ̃
||+ δ

> 0. (91)

Since the probability in (91) is positive, then there exists
a codebook f∗ that the following equation holds for all joint
types PZZ̃ simultaneously

Nn
f∗(ZZ̃) ≤

2n(H(Z(n))+H(Z̃(n)|Z(n))+ε)(||P(n)

ZZ̃
||+ δ)

||f∗||
. (92)

As ||f∗|| = 2nR and ||P(n)

ZZ̃
|| ≤ (n+ 1)4, we further have

Nn
f∗(ZZ̃) (93)

≤ ((n+ 1)4 + δ) 2n(H(Z(n))+H(Z̃(n)|Z(n))+ε−R).

In the following, we will focus on f∗.
Let P

(n)
e,f∗(ZZ̃) denote the portion of error probability

associated with a fixed joint type PZ(n)Z̃(n)

P
(n)
e,f∗(ZZ̃) (94)

,
∑

zn∈TP
Z(n)

Pθ(z
n)1
(
∃z̃n 6= zn : f∗(z̃n) = f∗(zn),

and (zn, z̃n) ∈ TP
Z(n)Z̃(n)

)
.

The total decoding error probability P (n)
e,f∗ , when using f∗,

can be expressed as

P
(n)
e,f∗ =

∑
P
Z(n)Z̃(n)

P
(n)
e,f∗(ZZ̃). (95)

Let A(n)
ε1 denote the set of marginal types PZ(n) such that

|PZ(n)(z = i) − Pθ(z = i)| < ε1
2 for i ∈ {0, 1}, where ε1 is

an arbitrarily small number. Using the definition of A(n)
ε1 , (95)

can be rewritten as

P
(n)
e,f∗ =

∑
P
Z(n)Z̃(n) ,PZ(n)∈A

(n)
ε1

P
(n)
e,f∗(ZZ̃)

+
∑

P
Z(n)Z̃(n) ,PZ(n)∈Ā

(n)
ε1

P
(n)
e,f∗(ZZ̃)

, S1 + S2, (96)

where Ā(n)
ε1 denotes the complimentary set of A(n)

ε1 . For S2,
we have that

P
(n)
e,f∗(ZZ̃) ≤ 2−n(D(P

Z(n) ||Pθ(Z))), (97)

where D(PZ(n) ||Pθ(Z)) is the KullbackLeibler diver-
gence [25] between the marginal type PZ(n) and the true PMF
Pθ(Z) of Z = X ⊕ Y . Using Pinsker’s inequality [28], for
PZ(n) ∈ Ā(n)

ε1 , we have

D(PZ(n) ||Pθ(Z)) ≥ 2ε21. (98)

Therefore,

S2 ≤
∑

P
Z(n)Z̃(n)

2−2nε21

≤ (n+ 1)4 2−2nε21 . (99)

(99) implies that S2 → 0 exponentially as n→∞.
For S1, we have that

P
(n)
e,f∗(ZZ̃) ≤ Nn

f∗(ZZ̃) 2−n(H(Z(n))+D(P
Z(n) ||Pθ(Z)).

(100)
Using (93), we further have

P
(n)
e,f∗(ZZ̃) ≤ (101)

((n+ 1)4 + δ) 2−n
(
D(P

Z(n) ||Pθ(Z))+R−H(Z̃(n)|Z(n))−ε
)
.

As we use the minimum entropy decoder, we have H(Z̃(n)) ≤
H(Z(n)), which implies H(Z̃(n)|Z(n)) ≤ H(Z̃(n)) ≤
H(Z(n)). Therefore,

P
(n)
e,f∗(ZZ̃) (102)

≤ ((n+ 1)4 + δ) 2−n
(
D(P

Z(n) ||Pθ(Z))+R−H(Z(n))−ε
)
.

Since PZ(n) ∈ A(n)
ε1 , it is easy to check that

|H(Z(n))−Hθ(Z)| ≤ D(PZ(n) ||Pθ(Z)) + ε2. (103)

Here

ε2 = −ε1
2

∑
i

logPθ(z = i), (104)

which can be made arbitrarily small as ε1 ↓ 0 for θ ∈ (0, 1).
Therefore,

P
(n)
e,f∗(ZZ̃) ≤ ((n+ 1)4 + δ) 2−n

(
R−Hθ(Z)−ε3

)
, (105)

in which ε3 = ε+ ε2.
This implies that S1 → 0 exponentially as n→∞ if

R ≥ Hθ(Z). (106)



Therefore, (106) is sufficient to guarantee that P (n)
e,f∗ → 0

exponentially as n → ∞. It is easy to check that Hθ(Z) =
Hθ(X|Y ) = Hθ(Y |X). The proof is complete.
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