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Abstract

The problem of simultaneously generating multiple keys for a cellular source model
with a helper is investigated. In the model considered, there are four terminals, X,
X1, X, and A3, each of which observes one component of a vector source. Terminal
Xy wishes to generate two secret keys K; and K respectively with terminals A} and
X5 under the help of terminal X3. All terminals are allowed to communicate over a
public channel. An eavesdropper is assumed to have access to the public discussion.
Both symmetric and asymmetric key generations are considered. In symmetric key
generation models, model la (with a trusted helper) requires that the two keys are
concealed from the eavesdropper, and model 1b (with an untrusted helper) further
requires that the two keys are concealed from the helper in addition to the eavesdropper.
The asymmetric key generation models 2a and 2b are the same as symmetric key
generation models la and 1b, respectively, except that the key K5 is further required
to be concealed from terminal X;. For all models studied, the key capacity region
is established by designing a unified achievable strategy to achieve the cut-set outer
bounds.

1 Introduction

In Shannon’s secrecy system, it is essential that distinct terminals share a common secret key;,
which can be exploited to achieve secure communications. In [1-3], it has been shown that
such a secret key can be established between two remote terminals if each terminal has access
to a component of a vector source sequence and the two terminals can communicate with
each other via a public channel. The generated key can be kept secure from the eavesdropper,
which has full access to the public channel. The key capacity for the two-terminal source
model has been established in these studies. Since then, various models of key generation
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with public discussion have been studied. In [4], the model with two terminals and a helper
was studied and the key capacity was characterized when there is no rate constraint on
the public discussion. Later, in [5], the problem of secret key generation among multiple
(more than two) terminals was studied and the key capacity was established when there
is no constraint on the public discussion. In [6], the same problem was revisited, and the
scenario with only a subset of terminals being allowed to talk publicly was studied and the
capacity was characterized. In [7], an alternative form of the secret key capacity for the
multi-terminal source model was characterized in terms of mutual dependence, which can be
interpreted as generalization of mutual information to more than two variables.

All the studies described above considered the problem of generating a single secret key.
More recently, there is increasing interest in the problem of simultaneously generating mul-
tiple secret/private keys over source models. The model of generating a secret key and a
private key among three terminals was first studied in [8], in which three terminals observe
correlated source outputs, and all three terminals wish to agree on a common secret key
to be kept secure from an eavesdropper while two designated terminals wish to agree on a
private key to be kept secure from both the third terminal and the eavesdropper. In [8], an
outer bound on the key capacity region was provided and was shown to be achievable under a
certain condition. More recently, in [9,10], it was further shown that the outer bound estab-
lished in [8] is also achievable for the remaining cases of this model by employing a random
binning and joint decoding scheme. Hence, the key capacity region for this model is estab-
lished in general. Another so-called cellular source model was recently studied in [11,12],
in which one (base station) terminal wishes to generate independent keys respectively with
a number of (mobile) terminals. In [11], the key sum capacity was established, and inner
and outer bounds on the key capacity region were derived for the special case of two-key
generation with an helper. In [12], the key capacity region was established for a two-key
generation model with an additional requirement that one key should also be kept secure
from the other mobile terminal.

To the best of our knowledge, so far the multi-key capacity region is characterized only
for three-terminal systems. It is thus of interest to investigate whether it is possible to
characterize the multi-key capacity region for systems with more than three terminals. Such
exploration needs to address two challenging issues. (1) Although the key capacity region
for the three-terminal model [8, 10, 12] was shown to be equal to the cut-set bound, it is
not clear at the outset whether the cut-set bound can still be achieved for models with
different secrecy requirements and for four-terminal models with an additional helper. In
general, cut-set bound is less likely achievable as the system gets more complicated. (2) For
the three-terminal model, there are three cuts for generating two keys, and schemes can be
designed to achieve corner points of the cut-set bound for each case of the source distribution.
However, for four-terminal models with a helper, there are six cuts for generating two keys,
and these six cuts yield eight possible cases of the cut-set bound due to different source
distributions. It is not clear whether there exists a unified design of schemes to achieve the
cut-set bound for all cases.

Our contribution in this paper lies in establishing key capacity regions for four source
models (see Figures 1, 2, 3, and 4) of generating a pair of keys, and our results provide



affirmative answers to both of the above issues. In all models, there are four terminals, and
each terminal observes one component of a correlated vector source. Terminals Xy and A}
wish to agree on a key K, and terminals & and X, wish to agree on another independent
key K5. The four terminals are allowed to communicate over a pubic channel, and an
eavesdropper is assumed to have access to the public discussion without ambiguity. The four
models differentiate from each other due to secrecy constraints. Models 1a and 1b address
symmetric key generation, in which secrecy requirements for two keys are the same. Model
la (with a trusted helper) requires that the two keys are concealed from the eavesdropper,
and model 1b (with an untrusted helper) further requires that the two keys are concealed
from terminal A3 in addition to the eavesdropper. In the untrusted helper case, we assume
that the helper is curious but honest, i.e., the helper attempts to infer the information about
the generated keys but still follows the protocol. Models 2a and 2b (with a trusted and an
untrusted helper) have the same secrecy requirements for the two keys as models 1la and 1b,
respectively, except that the key K5 is further required to be concealed from terminal A; for
both models. Thus, models 2a and 2b address asymmetric key generation.

For all of the above four models, we establish the cut-set bound to be the key capacity
region by showing that the cut-set bound is indeed achievable. Furthermore, we construct a
unified achievable strategy to achieve the corner points of the cut-set bound corresponding
to all cases of source distributions. The schemes to achieve different cases vary only in the
rate at which each terminal reveals information to public. Thus, the achievability proof is
significantly simplified. More specifically, the achievable strategy is based on random binning
and joint decoding. Given such a unified strategy, we derive the Slepian-Wolf conditions that
guarantee correct key agreement and derive sufficient conditions that guarantee the secrecy
requirements. Then for each individual case, it is sufficient to verify the public transmission
rates of terminals satisfy the derived Slepian-Wolf conditions and secrecy conditions, which
can be performed easily.

The remainder of the paper is organized as follows. Section 2 introduces the system models.
Section 3 provides our main results on the key capacity region for four models and describes
intuition to design key generation schemes. Section 4 concludes this paper with comments.
Appendix sections provide the detailed technical proofs for our main results.

2 System Models

Consider system models (see Figures 1, 2, 3, and 4) with four distinct terminals X, i =
0,---,3, each of which observes one of the four components of a discrete memoryless vector
source generated based on a joint distribution Px,x, x,x,. Here, for simplicity, we also use &;
to denote the finite alphabet set from which the random variable X; takes values. Terminal
X; observes n independently and identically distributed (i.i.d.) repetitions of X;, denoted
by X. The four terminals can communicate interactively via a public channel with no
rate constraints. The public channel is noiseless in the sense that all four terminals and
an eavesdropper can access the public discussion without ambiguity. We assume that the
eavesdropper does not observe any further information such as source sequences. Without
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Figure 1: Model la. Symmetric key gen-
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Figure 2: Model 1b. Symmetric key gen-
eration with an untrusted helper
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Figure 3: Model 2a. Asymmetric key gen-
eration with a trusted helper

Figure 4: Model 2b. Asymmetric key gen-
eration with an untrusted helper

loss of generality, we assume that the four terminals take turns to transmit for » rounds over
4r consecutive slots. We use 4r random variables I, ..., F,. to denote these transmissions,
where F; denotes the transmission in time slot ¢ for 1 < ¢ < 4r. The transmission F; is a
deterministic function of its own observation X;* ;. and all previous transmissions Fj; ;1) =
(F1,...,F_1). We use F to denote all transmissions in 4r rounds, i.e., F = (Fy,..., Fy,).

In this paper, we study four models, and in all models the base station terminal Xy wishes
to agree on keys K7 and Ky with mobile terminals X} and X3, respectively, under the help of
terminal AX3. The models differentiate from each other due to secrecy requirements. Models
la and 1b address symmetric key generation, in which secrecy requirements for two keys
are the same. Model la (with a trusted helper) requires that the two keys are concealed
from the eavesdropper, and model 1b (with an untrusted helper) further requires that the
two keys are concealed from terminal X3 in addition to the eavesdropper. Models 2a and
2b (with a trusted and an untrusted helper) have the same secrecy requirements for the two



keys as models la and 1b, respectively, except that the key K is further required to be
concealed from terminal X} for both models. Thus, models 2a and 2b address asymmetric
key generation.

We next introduce mathematical conditions that a key pair (K7, K3) should satisfy. A
random variable U is said to be e-recoverable from another random variable V', if there exists
a function f such that

Pr{U £ f(V)} <« (1)

For all models studied in this paper, the key K is required to be e-recoverable at terminals A}
and X; with the public transmission F, i.e., it can be e-recoverable from (X', F) and (X7, F),
respectively, and the key K5 is required to be e-recoverable at terminals Xy and X, with
public transmission F, i.e., it can be e-recoverable from (X', F) and (X7, F), respectively.
Furthermore, K7 and K, should satisfy the uniformity conditions:

1 1
CH(E) 2 —log |l —e, (2)
1 1
EH(KQ) Z ﬁlog |IC2| — €, (3)

where KC; and Ky denote the alphabets of the random variables K; and K5, respectively.

For symmetric key generation with a trusted helper (model 1a) and with an untrusted
helper (model 1b), K; and K, are required to respectively satisfy the secrecy conditions

1
—[<K1K2,F) <€, (4)
n

and
1

—I(K Ky XIF) < e. (5)
n

For asymmetric key generation with a trusted helper (model 2a) and with an untrusted
helper (model 2b), K; and K, are required to respectively satisfy the secrecy conditions

1 1
SI(KGF) <6, —I(KyF,X") < e (6)
n n
and
1 n 1 n n
—I(K;F, X)) <e, —I(KyuF, X7 XY <e. (7)
n n

We note that the parameter € in (2)-(7) can be arbitrarily small as the sequence length n
gets sufficiently large.

In this paper our focus is on weak secrecy requirements as given in (4)-(7). Our results
can be strengthened to satisfy strong secrecy (with 1/n factor removed in (4)-(7)) without
loss of performance by applying the idea in [13].



Definition 1. For each of the above models, a rate pair (Ry, Ry) is said to be achievable if
for every e >0, 6 > 0, and for sufficiently large n, a key pair (K, Ks) can be generated to
satisfy

1 1
EH(KI) > Rl — (5, EH(KQ) > RQ -0 (8)

and (4), (2), and (3) for symmetric key generation with a trusted helper, to satisfy (8) (5),
(2), and (3) for symmetric key generation with an untrusted helper, to satisfy (8), (6), (2),
(3) for asymmetric key generation with a trusted helper, and to satisfy (8), (7), (2), (3) for
asymmetric key generation with an untrusted helper.

Our goal is to characterize the key capacity region that contains all achievable rate pairs
(R1, Ry) for all models.

3 Main Results

In this section, we provide characterizations of the key capacity region for the four models
described in Section 2. We also provide intuitive understanding of these regions and key
generation schemes for achieving these regions with the detailed technical proofs relegated
to appendices.

3.1 Symmetric Key Generation with a Trusted Helper

In this subsection, we study the problem of symmetric key generation with a trusted helper,
in which the generated two keys are required to be secure only from the eavesdropper. To
assist the presentation, we introduce the following notations:

RA = mln{](Xng,Xng),](Xl,XOXQXg)}, (9&)
RB = mln{](XgXl,X2X3),I(X2,X0X1X3)}, (9b)
RC = mln{[(Xo,XlXQXg),I(XUXg,XlXQ)} (9C)

The following theorem characterizes the key capacity region of this model.

Theorem 1. The key capacity region for symmetric key generation with a trusted helper
contains rate pairs (Ry, Ry) satisfying the following inequalities:

Ry < RB; (11)
Ry + R, < Re. (12)
Proof. See Appendix A. m



Since the secrecy constraints on K; and K, are symmetric, the bounds on R, and R, are
also symmetric. These bounds can be intuitively understood as cut-set bounds. In particular,
the upper bound on R; in (10) is due to two cuts separating Xy and &) for generating K (two
more bounds on R; due to the other two cuts separating Xy and &} become redundant due
to the sum rate bound (12)). The upper bound on R, in (11) is due to two cuts separating
Xo and X, for generating K, (two more bounds on Ry due to the other two cuts separating
Xo and &X; become redundant due to the sum rate bound (12)). The sum rate bound (12)
is due to the two cuts separating Xy and (X, Xy) for generating the two keys K; and K,
simultaneously.
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Figure 5: The key capacity region for symmetric key generation with a trusted helper.

The structure of the key capacity region is illustrated in Fig. 5 as the pentagon O-A-P-
Q-B-O. We next describe the idea of constructing an achievable scheme to achieve the key
capacity region. It suffices to show the achievability of the points P and Q. Since the secrecy
constraints on K; and Ky are symmetric, it is sufficient to show that the corner point P is
achievable, and then the achievability of the point Q follows by symmetry. We assume that
RA < Rc, because otherwise the point P would collapse to the point A, which is shown to
be achievable by the previous work [5]. The key rate pair of the point P is given by Ry = Rx
and Ry = Rc — Ry. Corresponding to different source distributions, each of R4 and R¢ can
take one of the two mutual information terms given in (9a) and (9c¢), respectively. Hence, the
coordinates of the point P can take four forms, i.e., case 1 with Ry = I(X;; X0 X2X3) and
RC’ = [(XO;XlXQXg), case 2 with RA = I(XI,X()XQXg) and RC = I(Xng;X1X2>, case 3
with RA = ](Xng, X()XQ) and RC = ](X(), X1X2X3), and case 4 with RA = I(Xng, X()XQ)
and RC = ](XQXg, XlXQ).

We construct a unified scheme to achieve the rate point P for all cases. In our unified
scheme, terminals &}, X, and &5 reveal enough information to public so that terminal A}
can recover X', X3 and X7. Then, K is generated by terminals &j and &} based on X7,
and K is generated by terminals Xy and X, based on X7'. The schemes for the four cases are
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different only in the rate at which each terminal reveals information to public. Let Ri, Ry
and R3 denote the rates at which terminals A}, X and X3 reveal information to public,
respectively. In the following, we explain the main idea of the achievable scheme for each
case.

Case 1. The key rate pair of the point P is given by (I(Xy; XoX2X3), H(X2X5|X:) —
H(X5X3|X0)). Since the rate of K; needs to be maximized, terminal A} should reveal
as little information as possible. Hence, terminals X5 and A3 first reveal information at
the rate Rg + RS = H(X2X3|Xp) so that terminal X} needs to release only at the rate
Ry = H(X1|X,X,X3) in order for X, to recover X. Thus, the rate of K can be as large as
I(X1; XoX2X3). Since the generation of K already uses up information contained in X7,
K, can be generated only based on information contained in X3 and X3 given X7'. Thus,
R, can be as large as H(X2X3|X:1) — H(X5X3|Xy), where the subtraction is due to public
discussion at the rate Ry + R3 = H(X3X35|Xo).

Case 2. The key rate pair of the point P is given by (I(X1; XoX2X3), H(X5|X7) —
H(X5|X¢X3)). The argument for Ry is the same as that for case 1. In case 2, Rg =
I(XoX3; X1X5), which implies that I(XoX3; X;1X5) < I(Xo; X1X2X3). This further implies
I(X1X9; X3) < I(Xo; X3). Thus, in order for terminal Xj to recover X7 and X7, it is more
efficient to let X reveal information first at the rate Ry = H (X3]Xo), and then let X5 reveal
information at the rate Ry = H (X2]|X0X3). Since in this case Xy does not recover X7, the
key rate R2 = H(X2|X1) - H(XQ‘X()X?,)

Case 3. The key rate pair of the point P is given by (I(XoXo2; X1X3), H(X5| X1 X3) —
H(X3|Xy)). The case conditions Ry = I(XoXq; X1X3) and Re = I(Xo; X1X2X3) implies
that Xy and X5 have high correlation, and X; and X3 have high correlation. Thus, a
natural idea for public discussion is to let terminal &j recover X7 and let X; recover X7
first, and then generate K; between terminals Xy and X; to achieve Ry = (X X2; X1 X3).
Since X[ and X3 have been fully used for generating K, then K, can achieve the rate
Ry = H(X| X1 X3) — H(X2|Xy), where the subtraction is due to the public transmission of
terminal &5 to let A recover X3

Case 4. This case does not exist because of the contradiction induced by setting R4 =
I(X0X9; X1X3) and Re = I(XoX35; X1X2) (see (70), (71) in the proof for details).

3.2 Symmetric Key Generation with an Untrusted Helper

In this subsection, we study the problem of symmetric key generation with an untrusted
helper, in which the two generated keys are required to be secure from both the eavesdropper
and the helper terminal X3. The following theorem characterizes the key capacity region of
this model.

Theorem 2. The key capacity region for symmetric key generation with an untrusted helper



contains rate pairs (Ry, Ry) satisfying the following inequalities:

R, < I(Xl;XOX2|X3>, (13)
R2 < [(XQ;X(]Xl’Xg), (14)
R1+R2 < I(Xo,X1X2|X3) (15)
Proof. See Appendix B. n

These bounds can also be intuitively understood as cut-set bounds. In particular, the
upper bound on R; in (13) is due to the cut separating X, and &) for generating K; (one
more bound due to the other cut separating A, and A& is redundant due to the sum rate
bound (15)). The upper bound on Ry in (14) is due to the cut separating Ay and A5 for
generating K5 (one more bound due to the other cut separating Xy and A&} is redundant due
to the sum rate bound (15)). The sum rate bound (15) is due to the cut separating X, and
(X, Xp) for generating two keys K and K, simultaneously. All the bounds (13)-(15) are
conditioned on X3 because both K; and K, are required to be secure from terminal Aj5.

R,
2
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Figure 6: The key capacity region for symmetric key generation with an untrusted helper

Comparing Theorem 2 with Theorem 1, it is clear that the key capacity region for symmet-
ric key generation with an untrusted helper is contained in the key capacity region for sym-
metric key generation with a trusted helper, because it always holds that I(X7; XoX3|X3) <
Ra, 1(X9; XoX1|X3) < Rp and I(Xo; X1X3|X3) < Re. This is reasonable due to the addi-
tional requirement for the keys to be concealed from the helper when the helper is untrusted.

The structure of the key capacity region is illustrated in Fig. 6 as the pentagon O-A-
P-Q-B-O. In order to justify the achievability of the region, by symmetry, it is sufficient
to show the achievability of the point P in Fig. 6. The rate pair at point P is given by
(1(X1; XoXo|X3), H(X3]| X1 X3) — H(X2|X0X3)). The idea to achieve the point P follows the
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unified strategy described in Section 3.1, i.e., public discussion first guarantees that terminal
X recovers X7', X3 and X§ correctly, and then K is generated by terminals &) and &) based
on X7 and K3 is generated by terminals Ay and X, based on XJ. Since the generated keys
should be concealed from the helper terminal X5, X cannot be used as random resource for
generating the keys, although the helper can still participate the public discussion to assist
the recovery of source sequences.

More specifically, since the rate of K; needs to be maximized, terminal X should reveal
as little information as possible. Hence, terminals X5 and A3 first reveal information at
the rate Ry + Rs = H(X,X3|/X() so that terminal &; needs to release only at the rate
Ry = H(X,|XoX5X3) in order for Aj to recover X7. Thus, the rate of K can be as large
as 1(X1; XoX2|X3). Since X3 is an untrusted helper, it can reveal information at any rate.
Hence, R, can be set to be H(X5|XoX3). Consequently, Ry = H(X5|X1X3) — H(X5|XoX5).
Since the generation of K already uses up information contained in X7', K5 can be generated
only based on information contained in X3' given X7 and X3

3.3 Asymmetric Key Generation with a Trusted Helper

In this subsection, we study the problem of asymmetric key generation with a trusted helper,
in which the two generated keys are required to be kept secure from the eavesdropper, and
furthermore, the key Kj is also required to be kept secure from terminal AX;. For concise
presentation, we introduce the following notations:

RA = miH{I(Xng;XoXQ),](Xl;XngXg)}; (16&)
R/B e Hlll’l{](X(),X2X3|X1),I(X2,XOX3|X1>}, (16b)
RC = mln{[(Xo,XlXQXg),[(Xng,XlXQ)} (16(3)

We note that the expressions of R4 and R¢ remain unchanged comparing with those in
Section 3.1, but R’ is different from Rp by having X in the conditioning.

The following theorem characterizes the key capacity region of the model of interest.

Theorem 3. The key capacity region for asymmetric key generation with a trusted helper
contains rate pairs (Ry, Ry) satisfying the following inequalities:

R1 S RA; (17)
Ry < R;S’; (18)
R; + Ry < Re. (19)
Proof. See Appendix C. O]

We note that if X7 is independent of (X, XT', X7'), then the helper terminal is not able to
help in the key generation. In such a case, the key capacity region characterized in Theorem 3
reduces to that established in [12] for the same model without a helper.
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The bounds in Theorem 3 can be intuitively understood as cut-set bounds. In particular,
the upper bound on R; in (17) is due to the two cuts separating Xy and X; for generating
K (two more bounds on R; due to the other two cuts separating Xy and X; are redundant
due to the sum rate bound (19)). The sum rate bound (19) is due to the cut separating Xj
and (X}, Xy) for generating two keys K7 and Ks simultaneously. The upper bound on Ry in
(18) is due to the cut separating Xy and X, for generating K5, and the conditioning on X;
is due to the requirement that K5 be concealed from Aj.

R,
Re |
Re B Q
A
O Ra Rc R,

Figure 7: The key capacity region for asymmetric key generation with a trusted helper

The key capacity region is illustrated in Fig. 7 as the pentagon O-A-P-Q-B-O. We next
describe our idea of constructing an achievable scheme to achieve the key capacity region.
Since the secrecy requirements for the two keys are different, we need to design achievable
schemes to achieve the points P and Q separately. Corresponding to different source distri-
butions, the rate pairs of the points P and Q can take different forms. Interestingly, the same
unified strategy described for the previous models can achieve the points P and Q for all
cases. Namely, terminals X7, Xy and A3 reveal information to public such that terminal A}
can recover (X7, X7, X¥) correctly. Then K is generated based on X7 and K, is generated
based on X7. The schemes for different cases vary only in the rate at which each terminal
reveals information to public. Here, we still use Rl, RQ and ]:23 to denote the rates at which
terminals X7, Xy and A reveal information to public, respectively.

For the point P, it can be observed that its rate coordinates are exactly the same as
those in Section 3.1, and can be shown to be achievable by the same schemes designed in
Section 3.1 for symmetric key generation with a trusted helper. This is because both models
should reach the same maximum rate R; of K due to the same secrecy requirement for K.
Furthermore, since both models should exhaust all random resource in X7 for generating K7,
K5 should be generated from random resource independent from X7 even if it is not required
to be concealed from terminal &} in symmetric key generation. Thus, the two models also

11



have the same rate Ry at the point P.

For the point Q, the rate coordinates are given by (Rc — Rz, R). Corresponding to
different source distributions, each of R and R'; can take one of the two mutual information
terms given in (19) and (18), respectively. Hence, the coordinates of the point Q can take
four forms, i.e., case 1 with R = I(Xo; X1X2X3) and Ry = I(Xo; X2X3|X1); case 2 with
RC = I(Xo,XlXQX?,) and RIB = ](XQ,XOX3|X1), case 3 with RC = ](X()Xg,XlXQ) and
RIB = I(Xo,X2X3|X1), and case 4 with RC’ = [(X0X37X1X2> and RIB = I(XQ,XOX3|X1)
In the following, we explain the idea of the achievable scheme for each case and relegate the
detailed proof to Appendix C. We note that achievable designs for the following cases are
different due to the source distributions that determine these cases.

Case 1. The key rate pair of the point Q is given by (I(Xo; X1), I(Xo; XoX35/X7)). In
order to generate K at the rate I(Xo; X;), terminal X} can reveal information at the rate
R, = H (X1]/Xo). Then terminal X can recover X7 correctly. In order for terminal Xj
to further recover (X3, X7¥), terminals Xy and X3 jointly release information at the sum
rate Ry + Ry = H(X3X3|X0X7). Since the resource to generate K5 should be contained in
(X7, X7) given X7, the key rate R, should satisfy Ry = H(X2X3|X;) — Ry — R3 which yields
RQ = ](Xo, X2X3|X1).

Case 2. The key rate pair of the point Q is given by (I(Xo; X1 X3)—1(Xo; X3|X1), I(Xo; X0 X35 X1)).
Terminals X} and X first jointly reveal information at the sum rate By + Ry = H (X1X3|X0).
Then terminal X recovers X{' and X3 correctly. Terminal X, needs to release informa-
tion only at the rate Ry = H(X5|XoX1X3) and then X can be successfully recovered
at Xp. Thus, Ks can be generated at the rate H(X2|X1) — H(X3|X0X1X3), which yields
Ry = I(X9; XoX3|X1). In order to generate K at the rate Ry = I(Xo; X1 X3)—1(Xo; X5 X1),
Ry should be chosen to be Ry = H(X;X3|X,) — H(X3|X1X5), and then Ry = H(X5|X,X5).

Case 3. This case does not exist because of the contradiction induced by setting Ro =
I(XoX3; X1X5) and Ry = I(Xo; XoX3]|X1) (see (117) and (118) in the proof for details).

Case 4. The key rate pair of the point Q is given by (I(X1; XoX3), [(Xa; XoX3|X7)). Still,
terminals X; and X first reveal information at the sum rate Ry + Rz = H (X1X3|Xo). Due to
the case conditions, X3 has high correlation with X, and hence let X3 reveal its information at
the rate Ry = H(X;5|Xo). Then X reveals its information at the rate R, = H(X1]|X0X3), and
finally X, reveals its information at the rate Ry = H (X2]| X0X1X3) in order for Xj to recover
(X7, X5, X}). Thus, the key rate Ry = I(XoX3; X2|X1), and the rate Ry = I(XoX3; X1).

We note that for asymmetric key generation with a trusted helper, the point Q achieves the
same sum rate as that for symmetric key generation with a trusted helper. This is because
although the rate of Ky decreases in the asymmetric model due to the additional secrecy
requirement for K5 to be concealed from Xj, the random resource contained in X7 can still
be used for generating K so that there is no loss in the sum rate.
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3.4 Asymmetric Key Generation with an Untrusted Helper

In this subsection, we study the problem of asymmetric key generation with an untrusted
helper, in which the two generated keys are required to be kept secure from both the eaves-
dropper and the helper terminal X3, and furthermore, the key K, is required to be kept
secure from terminal X;. The following theorem characterizes the key capacity region for
this model.

Theorem 4. The key capacity region for asymmetric key generation with an untrusted helper
contains rate pairs (Ry, Ry) satisfying the following inequalities:

R1 < I(Xl;XOX2|X3), (20)
RQ < I<X2;X0’X1X3), (21)
Rl +R2 < I(Xo,Xngng) (22)

Proof. See Appendix D. O

These bounds can also be intuitively understood as cut-set bounds. In particular, the upper
bound on R; in (20) is due to the cut separating Ay and A} for generating K; (one more
bound due tothe other cut separating Ay and A} is redundant due to the sum rate bound
(22)). The upper bound on Ry in (21) is due to the cut separating Xy and A5 for generating
K5, and the conditioning on X; is due to the requirement that Ky be concealed from A;.
The sum rate bound (22) is due to the cut separating Xy and (X, Xy) for generating two
keys K; and K, simultaneously. All these bounds (20)-(22) are conditioned on X3 because
both K7 and K, are required to be kept secure from terminal Aj.

&

[(X2;X0 | X1X3)

A .
O | (X1;Xo]X3) I(X1;XoX2 [ X3)  1(Xo;X1X2|X3) R,

Figure 8: The key capacity region for asymmetric key generation with an untrusted helper.
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Similarly to the symmetric case, comparing Theorem 4 with Theorem 3, it is clear that
the key capacity region for asymmetric key generation with an untrusted helper is contained
in that for the asymmetric key generation with a trusted helper, because it always holds
that 1(X1; XoX2|X3) < Ra, 1(Xs; Xo|X1X3) < Ry and I(Xo; X1 X5|X3) < Re. This is
anticipated due to the additional requirement for the keys to be concealed from the helper.

The key capacity region is illustrated in Fig. 8 as the pentagon O-A-P-Q-B-O. It can
be shown that the point P can be achieved by the same scheme as that for achieving
the point P in symmetric key generation with an untrusted helper in Section 3.2. We
next describe the idea to achieve the point Q. The rate pair of the point Q is given by
(1(Xo; X1|X3), I(X2; Xo|X1X3)). Terminals X7 and Xj first reveal information at the rate
Ry +Rs = H(X,X3|Xy) so that terminal X, can recover X and X7 correctly. Then terminal
X, needs to release only at the rate Ry, = H(X5|X(X1X3) in order for X, to recover X%.
Thus, the rate of K5 can be as large as I(Xy; Xo|X1X3). Since A3 is an untrusted helper, it
can reveal information at any rate. Hence, R, can be set to be H(X;|X(X3). Consequently,
Ry = H(X1|X3) — H(X|X0X3) = I[(Xo; X1|X3).

4 Conclusion

In this paper, we have studied the problem of generating a pair of keys for a cellular source
model with a helper. We have established the full key capacity region for four models with
different secrecy requirements. The models studied here consist of four terminals, which are
more complicated to analyze than three-terminal models studied previously, because the cut-
set outer bound takes more cases due to different source distributions. Instead of designing
a specific achievable scheme for each case one by one, we have developed a unified strategy,
which achieves corner points for all cases, and hence significantly reduces the complexity of
the achievability proof. It will be of future interest to generalize the studies here to cellular
models with more than two mobile terminals, in which each terminal wishes to generate a
key with the base station terminal. In such a case, a unified strategy is desirable to facilitate
feasible analysis. As another direction, it will be interesting to study this type of multiple
key generation problems with rate constraints on the public discussion. For such a case,
previous studies of the source model with the helper subject to finite rate constraints in [4]
and of vector Gaussian source model with public discussion subject to finite rate constraints
in [14] provide useful techniques.

Appendix
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A Proof of Theorem 1

Proof of Converse. First, if we need only to generate K; , the model reduces to the secret
key generation problem studied in [5]. The key capacity is shown to be min{ R, R¢}, which
provides an upper bound (10) on R;. Similarly, if we dedicate to generate K5, the key
capacity is shown to be min{ Rp, Rc} in [5], which provides an upper bound (11) on Rs. For
the sum rate bound, we consider an enhanced model by replacing terminals X; and A5 with
a super terminal X; that observes both X{* and XJ. The secret key rate between &, and X
is upper bounded by R¢ as shown in [5].

Proof of Achievability. We design an achievable scheme to achieve the key capacity region
plotted in Fig. 5 as the pentagon O-A-P-Q-B-O, where the coordinates of the points A and
B are (min{R4, Rc},0) and (0, min{Rp, Rc}), respectively. The corner point A is achieved
by letting A5 be a dedicated helper to generate K; following the omniscience scheme in [5].
Similarly, the corner point B is achieved by letting X} be a dedicated helper to generate Ko
as shown in [5]. We note that the point P would collapse to the point A if Rc < R4 and
the point Q would collapse to the point B if Rc < Rp. It is thus sufficient to show that
the points P and ) are achievable whenever they are different from the points A and B,
respectively. Then the entire pentagon can be achieved by time sharing.

We note that since the secrecy constraints on K; and K, are symmetric, it is sufficient
to show that the corner point P in Fig. 5 is achievable and the achievability of the point
Q follows by symmetry. We assume that Ry < R, because otherwise the point P would
collapse to the point A and has been justified to be achievable. The key rate pair of the
point P can take different forms due to different source distributions. In the following, we
first describe a unified scheme that is applicable to all cases, and then study each case one
by one. In general, our scheme is based on random binning and joint decoding.

Codebook Generation: At terminal X;, randomly and independently assign a bin index
f to each sequence z7 € XJ', where f € [1 : 2], We use f(x7) to denote the bin index
of the sequence z7, and use Bi(f) to denote the bin indexed by f. Then randomly and
independently assign a sub-bin index ¢ to each sequence in each nonempty bin B;(f), where
¢ € [1:2"%4]. We further use Bi(f,¢) to denote the sub-bin indexed by ¢ within the bin

By (f)-

At terminal X5, randomly and independently assign a bin index g to each sequence z§ €
XJ', where g € [1: 2"%2]. We use g(z3) to denote the bin index of the sequence 7, and use
Bs(g) to denote the bin indexed by g. Then randomly and independently assign a sub-bin
index 1) to each sequence in each nonempty bin Bs(g), where 1 € [1 : 2"%2]. We further use
Bs(g,1) to denote the sub-bin indexed by v within the bin Bs(g).

At terminal A3, randomly and independently assign a bin index [ to each sequence z3 € X7,
where [ € [1: 2"%]. We use [(2%) to denote the bin index of the sequence %, and use Bs(1)
to denote the bin indexed by [.

The codebook is revealed to all parties, i.e., terminals Xy, X}, Xs, X3 and the eavesdropper.
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Encoding and Transmission: Given a sequence 7, terminal & finds the index pair (f, ¢)
such that 27 € Bi(f, ). Then it reveals the index f = f(z7) over the public channel to all
parties.

Given a sequence 2%, terminal X5 finds the index pair (g, 1) such that 2} € Bs(g,%). Then
it reveals the index g = g(z) over the public channel to all parties.

Given a sequence z%, terminal X finds the index [ such that z§ € Bs(l). Then it reveals
the index [ = I(z%) over the public channel to all parties.

Decoding: The decoding scheme is based on joint typicality.

Terminal &), given zy and the bin indexes f, g and [, claims 27, 2 and 2% are observations
of terminals &, X5 and X, respectively, if there exists a unique tuple of sequences (27, 25, &%)

such that 27 € Bi(f), 23 € Ba(g), &4 € Bs(l), and (a3, @7, 273, @%8) € T (Pxox, xaxs)-
Based on Slepian-Wolf coding theorem [5,15], the decoding error can be arbitrarily small
if the rates Ry, R, and Ry satisfy the following Slepian-Wolf conditions:
Ry > H(X1|X0X2X3), (23)

Ry > H(X2|XoX1X3), (24)

Ry > H(X3X0X1Xa), (25)

Ry + Ry > H(X1 X2 X0X3), (26)

Ri+ Rs > H (X1 X3 X0Xa), (27)

Ry + Ry > H(X2 X5 X0 X)), (28)

Ry + Ry + Ry > H(X; X5 X3]Xp). (29)

Key Generation: Terminal &; sets K; = ¢(X7'). Terminal &5 sets Ky = ¢(XJ). Terminal

X, sets K = ¢(X7) and Ky = ¢(X7). If the decoding error vanishes asymptotically (i.e.,
(23)-(29) are satisfied), we have

Pr{K, =K} >1—¢ (30)
Pr{K, = K,} >1—e. (31)

Secrecy: We derive the sufficient conditions for achieving the secrecy requirement (4).
Then these sufficient conditions need to be verified for each of the four cases later on.

We evaluate the key leakage rates averaged over the random codebook ensemble. Let
f(XT), g :=g(X7) and [ := I(X}). Then it is clear that F = {f, g,l}. We further let
¢(X") and ¢ := ¥(X7). Hence, K; = ¢ and Ky = 1. We first derive
I(K Ky FIC) = 19,95 f, 9,1IC)
(05 f,9,1C) + 1(¢; f, 9,14, C)
(¥;91C) + I(¥; f,119.C) + 1(; £, 9,4, 1IC)
(
(¥

f
o :

¥ 91C) + 1(g, ¢; £,1C) + 1(; FIC) + 1(¢5 9,9, 11f,C)

I
I
I
I(¥;9C) + I(g,%; f,1|C) + I(¢s fIC) + I(f, &3 9, ¢, 1|C). (32)

IA A CIA
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We next consider each of the four terms in (32). It can be shown as in [10, Appendix A]
that if

Ry + Ry < H(X1) —26(e), (33)
then .
195 f1C) < o(e); (34)
and if )
Ry + Ry < H(X5) — 20(e), (35)
then 1
sl CHIORIOF (36)

In order to bound the second term in (32), we have the following derivation:

1(g,v; f,1[C)
< (X3, 9,9; f,1]C)
= I(X3; £,1|C)
= I(X3; X7, X5[C) — [(X3; XT, X3 f,1,C)
= H(X7, X3|C) — H(X?, X3|X5,C) — H(XT, X3|f,1,C) + H(XT, X3 X5, f,1,C)
< H(XT, X3[C) — H(XT, X§|X3,C) — [H(X]', X§|C) — nRy — nRs
+ H(XT, X31X3, £,1,C)
< n[Ry + Ry — H(X1X3|Xo)] + H(XT, X§|X7, f,1,C).

It can be shown as in [10, Appendix A] that if

Ry + Ry < H(X,1X3]X5) — 26(e), (37)
then 1 i i
lim sup ~H(X], XJ1XG £,1,.0) < H(X1X3]Xa) — Ry — By +6(e). (38)
Consequently,
19,95 £,11C) < 6(e). (39)

Next we consider the last term in (32) as follows:

I(f,0;9,9,1IC) < I(XV;9,9,1[C)

= I(X7; X3, Xg, 9,4,1C) — I(XT; X3, X319, 4,1,C)

= I(XT; Xy, X3|C) — I(XT; X3, X3g, ¢, 1,C)

= H(X3, X{|C) — H(X3, X|X{,C) — H(Xy, XZg,v.1,C) + H(X3, X§|X{, 9,4,1,C)

< n[Ry+ Ry + Ry — H(XoX5|X1)] + H(XY, X} X", g,9,1,C). (40)

It can be shown that if

Ry + Ry + Rs < H(X,X5|X1) — 20(e), (41)
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then

1 N .
limsup —H (X3, X§|XT, 9,4,1,C) < H(X2X5|X1) — Ry — Ry — Ry + 6(e).

n—oo TN

Consequently,
1

Therefore, (33), (35), (37) and (41) are sufficient conditions that guarantee the secrecy
requirement (4).

Uniformity: Uniformity of keys is due to properties of random binning and typicality.

We next show the achievability of the point P with rate coordinates R; = R4 and Ry =
Re — Ry. Corresponding to different source distributions, each of R4 and Ro can take
one of the two mutual information terms given in (9a) and (9c), respectively. Hence, the
coordinates of the point P can take four forms, i.e., case 1 with R4 = I(X7; X X2X3) and
Re = 1(Xo; X1X2X3), case 2 with Ry = I(X;; XoX2X3) and Re = I(XX3; X1X3), case 3
with Ry = I(XoX9; X1X3) and Re = 1(Xo; X1X2X3), and case 4 with R4 = (X X2; X1 X3)
and RC = I(X()Xg, XlXQ).

For each case, it is sufficient to set the rates Ry, Ry, R, Ry and Rj to satisfy the Slepian-
Wolf conditions (23)-(29) for guaranteeing correct key agreement and to satisfy the sufficient
conditions (33), (35), (37) and (41) for guaranteeing secrecy.

Case 1: Ry = 1(X1; XoX2X3) and Re = I(Xo; X1X2X3), which imply

H(X3|X0X2) < H(X3|X4), (43)
Moreover, R4 < R¢ implies
H(X2X;5|X0) < H(X2 X35 X7). (45)

The rate pair at the point P is given by (I(X1; XoX2X3), H(X2X5|X1) — H(X2X3|X))).
To achieve this rate pair, we set the binning rates in the achievable strategy as follows:
Ry = H(X1|X0X2X3) + ¢, (46)

Rl = [(Xl,XoXQXg) — 25(6) — 26, ( )

Ry = H(X,X;3|Xo) — Rs + e, (48)

RQ = H(XQXB‘Xl) - H(XQXg’X()) - 45(6) - 36, ( )

Ry = min{ H(X3|X,), H(X3|Xo)} — 26(¢) — 2. (50)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) if
R3 > H(X3|XoX1X5). Otherwise, either the Markov chain X3 — Xy — X7 X5 or the Markov
chain X3 — Xy — XgX; holds and thus the rate pair can be easily achieved without the
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helper’s assistance. It can also be verified that the above rates (46)-(50) satisfy the sufficient
conditions (33), (35), (37) and (41) for secrecy.

Case 2: Ry = 1(X1; XoX2X3) and Re = 1(XoX3; X1X5), which imply the following two
inequalities:

H(X3|X0X2) < H(X3|X1), (51)
Here, R4 < R¢ is equivalent to
H(X2|XoX5) < H(Xo|X7). (53)

The key rate pair at the point P in this case is given by (1(X1; XoX2X3), H(X2|X1) — H(X2| X0 X3)).
To achieve this rate pair, we set the binning rates in the achievable strategy as follows:

Ry = H(X1|X0X2X3) + ¢, (54)
Ry = I(X1; X0 X2X3) — 20(€) — 2, (55)
Ry = H(X5|X0X3) + €, (56)
Ry = H(X,|X,) — H(X2|X0X5) — 26(e) — 2e, (57)
Ry = H(X;3|X,) +e. (58)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) and
the sufficient conditions (33), (35), (37) and (41) for secrecy. In particular, (37) holds due
to (52) as follows:

R+ Ry = H(X1| X0 X2X3) + H(X3|Xo) + 2¢
< H(Xl‘XQXg) + H(X3|X1X2) — 25(6)
< H(X1X3|X2) — 26(6),

and (41) holds due to (52) as follows:

Ry + Ry + Ry = H(X5|Xo) + H(X2|X1) — 26(¢) — €
< H(Xngng) + H(X2|X1) — 25(6)
< H(X2X3IX1> — 25(6)

Case 3 Ry = 1(XoX2; X1X3) and Re = 1(Xp; X1X2X3), which imply the following two
inequalities:

H(X3|XOX2) > H(Xngl), (59)
H<X3|X0) > H<X3|X1X2), (60)
Here, R4 < R¢ is equivalent to
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The rate pair of the point P is given by (I(XoXs; X1X3), H(X2| X1 X3) — H(X5|Xp)). To
achieve this rate pair, we set the binning rates as follows:

Ry = H(X X3 X0X5) — H(X3|X1) + ¢, (62

Rl = I(X()XQ, X1X3> — 25(6) — 26, (63

Ry = H(Xs|Xo) + e, (64

RQ = H(X2|X1X3) - H(XQ’X()) - 25(6) - 26, (65

Ry = H(X3|X,) +e. (66

~— — — ~— ~—

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29). It is
also easy to verify that the rate settings (62)-(66) satisfy the sufficient conditions (33), (35)
and (41) for secrecy. Furthermore, the condition (37) is satisfied if

H(X1 X5 X0Xs) < H(X1X3|X7). (67)
Otherwise, the Markov chain X; X3 — X5 — X holds. To show the secrecy, we derive a new
condition to replace (37) to guarantee that (g, ; f,[|C) is asymptotically small as follows.
I(g,¥; 1,1IC) < I(g,¢; X7, X5(C)
= I(X3; X7, X3[C) — I(X3; X{', X3]g,¢.C)
= H(X37|C) — H(XF|XT, X3, C) — H(X3]g,¢.C) + H(X3|XT], X3, 9,4,C)
< n[Ry + Ry — H(Xo| X1 X3)] + H(X3|X], X5, 9,9, C).
It can be shown that if )
Ry + Ry < H(X3|X1X3) — 20(e), (68)
then )
limsup — H (X2 XT, X7, f,1,C) < H(Xo|X1X3) — Ry — Ry + 8(c). (69)

n—oo T

Thus, I(g,v; f,1|C) < §(€). It is clear that the rates given in (62)-(66) satisfy (68) and hence
secrecy is guaranteed.

Case 4: Ra = I(XoX2; X1X3) and Re = I(X¢X3; X1 X5), which imply the following two
inequalities:

H(X5|X0X2) > H(X3[Xy), (70)
H<X3|X1X2) > H(Xngo), (71)

Then, we have H(X3|X1> < H(X3|XOX2) < H(X3|X0> < H(Xg‘X1X2), which y1€1dS a
contradiction. Thus, this case does not exist.

B Proof of Theorem 2

Proof of Converse. First, if we need only to generate K, the model reduces to the private
key generation problem studied in [5]. The key capacity is shown to be

R1 = mln{](Xl, X0X2|X3)7 I(Xo, X1X2|X3)},
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which provides an outer bound (13) on R;. Similarly, if we dedicated to generate Ks, the
key capacity is shown to be Ry = min{I(Xy; XoX1|X3), [(Xo; X1X2|X3)}, which provides
an outer bound (14) on Ry. For the sum rate bound, we consider an enhanced model by
replacing terminals X} and &5 with a super terminal Xs which observes both X" and X7.
The rate of the private key between &) and X, concealed from terminal A3 is upper bounded
by I(Xo; X1, X2|X3) as shown in [5], which yields the sum rate bound (15).

Proof of Achievability: The key capacity region is the pentagon O-A-P-Q-B-O as illustrated
in Fig. 6, where the coordinates of the points A and B are given by min{/(X;; XoX5|X3), I(Xo; X1 X2|X3)}
and min{/(Xs; XoX1|X3), I(Xo; X1X2|X3)}, respectively. The corner point A can be achieved
by letting A5 be a dedicated helper to generate K; following the omniscience scheme in [5].
The corner point B can be achieved by letting X} be a dedicated helper to generate Ky as
shown in [5]. We note that the point P would collapse to the point A if I(Xg; X1 X5|X3) <
I(X1; X0 X2| X3) and the point Q would collapse to the point B if 1(Xo; X7 X5|X3) < I(Xo; XoX1]X3).
Thus, it is sufficient to show that the corner points P and Q) are achievable whenever they
are different from the points A and B, respectively.

We note that since the secrecy requirements on K; and K, are symmetric, it is sufficient
to show that the corner point P is achievable, and then the achievability of the point Q
follows by symmetry. Furthermore, we assume that I(X;; XoX2|X3) < [(Xo; X1X2|X3),
which implies

H(X5| X0 X3) < H(X5|X1X3), (72)
because otherwise the point P would collapse to the point A and has been justified to be
achievable.

The rate pair at the point P is given by (1(X1; XoX2|X3), H(Xo| X1 X5) — H(X2| X0X3)).
The idea to achieve the point P follows the same achievable strategy as in Appendix A. The
steps of codebook generation, encoding and transmission, decoding and key generation are
the same as the corresponding steps in Appendix A, and are omitted here. In particular,
Slepian-Wolf conditions (23)-(29) also guarantee the correct key establishment here.

The secrecy requirement (5) here is different from that for symmetric key generation with
a trusted helper. Hence, we next develop the sufficient conditions that guarantee (5) and
then choose the binning rates to satisfy these sufficient conditions.

Secrecy: We evaluate the key leakage rates averaged over the random codebook ensemble.
Let f:= f(X7), g := ¢g(X}) and [ := [(X}). Then it is clear that F = {f, g,{}. We further
let ¢ := ¢(XT7) and ¢ := ¢(X7). Hence, K; = ¢ and Ky = 1. We first derive

I(Ky, Ky X3, F|C)
(6.4 f, 9,1, X5|C)
(03 f,9, X51C) + 1(¢s f, 9, X3],C)
(93 fIC) + 1o, f19, X51C) + 1(¢5 0, f, 9, X§|C)
(5 F1C) + 1(0, f1 9, X5|C) + I(¥;9]C) + 1(4, g5 6, f, XF|C)
(¢; fIC) + 1(9, f; X3IC) + (¢, f3 9| X5, C)
I(; gIC) + I, 9; X5|C) + (¢, g: ¢, [ X5, C). (73)
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We consider each of the six terms in (73). Similarly to the techniques used in [10, Appendix
A], it can be shown that if

Ry + Ry < H(X1) —26(e), (74)
then .
193 f1C) < o(e); (75)
and if )
Ry + Ry < H(X5) — 24(e), (76)
then .
1w 91C) < o(c). (77)
In order to bound the second term in (73), we have the following derivation:

I(o, f; X3[C)

= I(X7; X5(C) — I(X{; X§'9, f,C)

= H(X?|C) — H(XT'[X3,C) — H(X{|o, f,C) + H(XT|o, [, X5, C)
< n[Ry + Ry — H(X1|X3)] + H(XT|¢, f, X2,C).

It can be shown as in [10, Appendix A] that if

Ry + Ry < H(X1|X5) — 20(e), (78)
then 1 i
liglﬁsolip EH(X{L\(b, [, X5,C) < H(X1|X3) — R1 — Ry + d(e). (79)
Consequently,
16, /3 X31C) < B(c). (50)
Similarly, it can be shown that if
Ry + Ry < H(X,|X5) — 20(e), (81)
then .
(W, g: X5C) < 6(e). (82)

By noting that I(¢, f;g|X},C) < I(¢¥,9;9, fIX},C), it is sufficient to bound the latter
term:

1(¥,9; 9, f1X5,C)

< I(¢, g; X7'|X3,C)

= I(X3; X{|X3,C) — I(X3; X{'|g, v, X3, C)

= H(X3[X3,C) — H(X3|XT, X§,C) — H(Xy|g, ¢, X3, C) + H(XJ|g, v, XT', X5, C)

< n[Ry + Ry — H(X5| X1 X3)] + H(X}g, 1, XTI, X3, C). (83)
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It can be shown as in [10, Appendix A] that if
Ry + Ry < H(X,| X1 X3) — 20(e), (84)

then

1 -
lim sup EH(X;‘W,%X{‘,XQ,C) < H(X5|X1X3) — Ry — R+ 6(e).

n—o0
Consequently,
1
11,019, 01X4,€) < 8(0) (55)

Thus, (78) and (84) are sufficient conditions that guarantee the secrecy requirement (5).

The rate pair at point P is given by (I(X7; XoX3|X3), H(Xo| X1 X3) — H(X3|X0X3)). To
achieve this rate pair, we set the binning rates as follows:
Ry = H(X1|X0X2X3) + e, (
Rl = [(Xl,XOX2|X3) - 25(6) — 26, (
Ry = H(X3| X0 X3) + e, (88
R2 = H(X2|X1X3) - H(XQ’Xng) - 25(6) - 26, (
Rg = H(X3|X0) + €. (

~— ~— ~— ~— ~—

It is easy to verify that the above rates satisfy the Slepian-Wolf conditions (23)-(29), and
the sufficient conditions (78) and (84) for secrecy.

C Proof of Theorem 3

Proof of Converse. First, if we need only to generate K, the model reduces to the secret
key generation problem studied in [5]. The key capacity is shown to be min{ R4, Rc} which
provides an upper bound on R; as given in (17). Next, if we dedicate to generate Ks, the
model reduces to the private key generation problem over multiple terminals also studied
in [5] as the private key model. The key capacity is shown to be R’y which serves as an upper
bound (18) on R,. For the sum rate bound, we consider an enhanced model, which replaces
terminals &} and A&, with a super terminal X that observes both X7' and X7. Then, the
secret key rate between Xy and X is upper bounded by R¢ as given in [5] for the secret key
model, which yields the sum rate bound (19).

Proof of Achievability. The key capacity region is plotted in Fig. 7 as the pentagon O-A-
P-Q-B-O, where the coordinates of the points A and B are (min{R4, Rc},0) and (0, R%y),
respectively. The corner point A is achieved by letting X5 be a dedicated helper to generate
K, following [5]. The corner point B is achieved by letting X} be a dedicated helper to
generate K, following [5]. We note that the point P may collapse to the point A if Re < Ry,
and the point () may collapse to the point B if Ro < Rp. It is thus sufficient to show the

23



achievability of the points P and QQ whenever they are different from the points A and B,
respectively. Then the entire pentagon can be achieved by time sharing.

For the point P, it can be observed that its rate coordinates are exactly the same as those in
Section 3.1, and can be shown to be achievable by the same scheme designed in Appendix A
for symmetric key generation with a trusted helper. The idea to achieve the point Q follows
the same achievable strategy as in Appendix A. Hence, the steps of codebook generation,
encoding and transmission, decoding and key generation are the same as the corresponding
steps in Appendix A, and are omitted here. In particular, Slepian-Wolf conditions (23)-(29)
guarantee the correct key establishment.

The secrecy requirement (6) here is different. Hence, we next derive sufficient conditions
for achieving secrecy requirement (6). Then these sufficient conditions need to be verified
for the point Q in all cases.

Secrecy: We evaluate the key leakage rates averaged over the random codebook ensemble.
Let f:= f(X7), g := ¢g(X}) and [ := I(X}). Then it is clear that F = {f, g,1}. We further
let ¢ := ¢(XT) and ¢ := (X7). Hence, K1 = ¢ and Ky = 1. We first derive

I(Ky; F|C) = 1(¢; f,9,1|C)
I(¢; fIC) + 1(9; 9,1 £,C)
I

< I(¢; fIC) + 1(9, f;9,1/C), (91)
and
= I(¢; 9,1, X7(C)
= 1(¢; 9IC) + I(¥;1, XT'g,C)
< I(¢;9|C) + 1(¢, g;1|C) + I(¢, g,1; XT'|C). (92)

It can be shown as in [10, Appendix A] that if

Ry + Ry < H(X;) — 24(e), (93)
then .
eGP ORI OF (94)
and if 3
Ry + Ry < H(X3) — 26(e), (95)
then .
—1(4;91C) < d(e). (96)
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Furthermore,

1(g,¢;1IC)
< I(g,v, X3;1[C)
= I(X3;1, X5|C) — 1(X3; X5[1,C)
= I(X3; X3(C) — 1(X3; X311,C)
= H(X3|C) — H(XF|X3,C) — H(XZ|I,C) + H(X|X3,1,C)
< H(X3|C) — H(X3[X3,C) — [H(XF|C) — nRs] + H(X3|X3.1,C)
= n(Ry — H(X3|X,)) + H(X}[X3,1,C)

where we used the fact that H(X}|XZ,C) = nH(X3|X3) due to the assumption of discrete
memoryless source.

It can be shown as in [10, Appendix A] that if

Ry < H(X3]X,) — 20(e), (97)
then 1 i
ligl_}sogp EH(X§|X§, [,C) < H(X3|Xs) — Ry + d(e). (98)
Consequently,
~I(g,u11C) < 5(0) (%9)

We next consider the last term in (92):

I(4, 9,1 X7|C)
=1(g,9,1, X3, X3 X{|C) — I(Xy, X5 X{'|g,4,1,C)
= I(X3, X5 XP'|C) — I(X3, X5 XT]g,¢,1,C)
<n(Ry+ Ry + Ry — H(X,X5|X1)) + H(X3 XX, g,9,1,C).

Similarly, it can be shown as in [10, Appendix A] that if

Ry + Ry + Ry < H(X,X5|X) — 20(e), (100)
then
1 - -
limsup —H (X3 X3 X7, 9,¢,1,C) < H(X2X3|X1) — Ry — Ry — R3 + 0(e).
n—oo 1N
Consequently,

L Ig,0, 1 X{1C) < 6(0) (101)

Thus, (93), (95), (97) and (100) are sufficient conditions that guarantee the secrecy re-
quirements in (6).
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Uniformity: Uniformity of keys is due to properties of random binning and typicality.

We next show the achievability of the point Q, whose rate coordinates are given by (R¢o —
R, R3). Corresponding to different source distributions, each of Ro and R can take
one of the two mutual information terms given in (19) and (18), respectively. Hence, the
coordinates of the point Q can take four forms, i.e., case 1 with Rc = I(Xo; X7 X2X3) and
R/B = I(Xo, X2X3|X1), case 2 with RC = ](XQ, X1X2X3) and RIB = ](XQ, XOX3|X1), case 3
with Re = [(XoX3; X1 X2) and Ry = I1(Xo; XoX3|X1); and case 4 with Re = (X0 X3; X1 X5)
and R = I(Xy; XoX3]|X:). For each case, it is sufficient to set the rates Ri, R, R, Ry and
Rs to satisfy the Slepian-Wolf conditions (23)-(29) for guaranteeing correct key agreement
and to satisfy the sufficient conditions (93), (95), (97) and (100) for guaranteeing secrecy.

Case 1. Ro = I1(Xo; X1X2X3) and Ry = I(Xo; X2X3|X1), which imply

H(X3|X1X2) < H(Xg‘Xo), (102)
H(X3| X1 Xs) < H(X3] X0 X)). (103)

The rate pair at the point Q is given by (1(Xo; X1), 1(Xo; X2X3|X1)). To achieve this rate
pair, we set the binning rates in the achievable strategy as follows:
Ry = H(X1|Xo) + ¢, (104)

Rl :[(X(),Xl)—Q(s(E)—2€, ( )

Ry = H(Xy X3 X0 X)) — H(X3]X,Xa) + 25(e) + 2, (106)

R2 == ](X(), X2X3|X1) - 4(5(6) - 36, ( )

Rg = H(X3|X1X2) - 25(6) — €. ( )

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) if
Rs > H(X3|XoX1X5). Otherwise, the rate pair can be easily achieved without the helper’s

assistance. It can also be verified that the above rates (104)-(108) satisfy the secrecy condi-
tions (93), (95), (97) and (100).

Case 2: Ro = 1(Xo; X1X2X3) and Ry = 1(Xa; XoX3]X1), which imply

H(X3| X1 X5) < H(X3]Xo), (109)
H(X5|XoX1) < H(X3]X1X2). (110)

The rate pair at the point Q is given by (I(Xg; X1X3) — I(Xo; X5 X1), I(Xa; XoX5|X1)).
To achieve this rate pair, we set the binning rates in the achievable strategy as follows:
Ry = H(X1X3|Xo) — H(X3| X1 X5) + ¢, (111)

Ry = I(Xo; X1 X3) — I(X2; X3 X1) — 20(e) — 2e, (112)

Ry = H(X5|Xo X, X3) + e, (113)

Ry = I(Xg; XoX3|X1) — 40(€) — 3¢, (114)

Ry = H(X3|X1X,) + €. (115)
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It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29). In
particular, R; > H(X1|X0X2X3) and Ry + Ry > H(X;X5|XoX3) hold due to (109), and
Ry + R3 > H(X2X3|XOX1) holds due to (110)

It can also be verified that the above rates (111)-(115) satisfy the secrecy conditions (93),
(95), (97) and (100). In particular, (97) holds under the following assumption

H(X2|XOX1X3> < H(X2|X1> — 2(5(6) — 2e. (116)

If the above assumption does not hold, then the Markov chain X5 — X; — X X3 holds, which
implies Ry = I(X2; XoX3|X7) = 0. The point Q coincides with the point B, which has been
justified to be achievable.

Case 3: RC = I(X()Xg, X1X2) and RIB = [(Xo, XQXg’Xl), which 1mp1y

H(X3|Xo) < H(X3|X1X5), (117)
H(X3]X1X2) < H(X3|XoX)1). (118)

Then, we have H(X3|Xy) < H(X3|X1X5) < H(X3|X0X1), which yields contradiction. Thus,
this case does not exist.

Case 4: RC = I(X()Xg, X1X2> and R,B = ](XQ, X(]Xg’Xl), which anly

H(X3]Xo) < H(X5X1X3), (119)

The rate pair at the point Q is given by (1(X1; XoX3), [(Xs; XoX5|X;)). To achieve this
rate pair, we set the binning rates in the achievable strategy as follows:
Ry = H(X1|XoX3) + ¢, (121)

R1 = I(Xl, X()Xg) — 26(6) — 26, ( )

RQ - H(Xg‘XoXle) —+ €, (123)

RQ = ]<X27 X0X3|X1) - 25(6) — 26, ( )

Ry = H(X3|Xg) +e. (125)

It is easy to verify that the above rates satisfy the Slepian-Wolf conditions (23)-(29) and
the secrecy conditions (93), (95), (97) and (100).

D Proof of Theorem 4

Proof of Converse. First, if we need only to generate K, the model reduces to the private
key generation problem over multiple terminals studied in [5]. The key capacity is shown
to be min{l(Xy; XoX2|X3), I(Xo; X1X2|X3)}, which serves as an upper bound (20) on R;.
Next, if we dedicate to generate K, it also reduces to the private key model studied in [5].
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The key capacity is shown to be I(Xs; Xo|X1X3), which serves an upper bound (21) on Rs.
For the sum rate bound, we consider an enhanced model which replaces terminals A} and X,
with a super terminal X that observes both X" and XJ. Then, the private key rate between
Xo and X is upper bounded by I(Xy; X1, X5|X3) due to the private key model in [5], which
yields the sum rate bound (22).

Proof of Achievability. The key capacity region is illustrated in Fig. 8 as the pentagon O-A-
P-Q-B-0O, where the coordinates of the points A and B are (min{/(Xo; X1 X5|X3), (X1; XoX2|X3)},0)
and (0, I(Xo; X2|X1X3)), respectively. The corner point A is achieved by letting A5 be a
dedicated helper to generate K; following [5]. The corner point B is achieved by letting X}
be a dedicated helper to generate K5 following [5]. We note that the point P would collapse
to the point A if I(Xo; X7 X2|X3) < I(X7; X0X2|X3), and the point Q would collapse to the
point B if 1(Xo; X1 X5|X3) < I(Xy; Xo| X1X3). It is thus sufficient to show the achievability
of the points P and Q whenever they are different from the points A and B, respectively.

Then the entire pentagon can be achieved by time sharing.

The idea to achieve the points P and Q follows the same achievable strategy described
in Appendix A. The steps of codebook generation, encoding and transmission, decoding
and key generation are the same as those in Appendix A, and are omitted here. In partic-
ular, Slepian-Wolf conditions (23)-(29) guarantee the correct key establishment. Since the
secrecy requirements given in (7) are different, we next develop the sufficient conditions that
guarantee (7), and then choose the binning rates to satisfy these sufficient conditions.

Secrecy: We evaluate the key leakage rates averaged over the random codebook ensemble.
Let f:= f(X7), g := ¢g(X}) and [ := [(X}). Then it is clear that F = {f, g,{}. We further
let ¢ := ¢(X7) and ¢ := (XT). Hence, K1 = ¢ and Ky = 1. We first derive

1(¢; f, 9,1, X31C)

1(¢; fIC) + I(¢; 9, X5, C)
I(

I(

I(Ky; X7, F[C)

o; f1C) + 1(¢, f; 9, X3|C)

<
< I(¢; fIC) + (o, f; X5|C) + (o, f;91X3,C), (126)

and

[(KZaX?aXi?aFlc) = [(wa faga lax?an‘C)
= I1(¢; 9, X7, X3[C)
<I(¢;g|C) + 1(¢¥, g; X7, XZ[C). (127)

We next bound each of the five terms in (126) and (127). It can be shown as in [10, Appendix
A] that if

R+ Ry < H(Xy) —20(e), (128)
then )
—1(g; fIC) < d(e); (129)
and if .
Ry + Ry < H(X,) — 26(e), (130)
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then )
Liusgic) < 8(0). (131)
To bound the second term in (126), we have
I(¢, f; X5C)
= I(XT; X3(C) — I(XT; X519, f,C)
= H(XT|C) — H(XT|Xy,C) — H(XT[, f,.C) + H(XT[9, f, X5, C)

It can be shown as in [10, Appendix A] that if

Ry + Ry < H(X1|X5) — 20(e), (132)
then .
hinjolip EH(Xﬁng, X3,C) < H(X1|X3) — Ry + d(e), (133)
and consequently,
16, £ X51) < 5(6) (134)

We observe that I(¢, f;9|X5,C) < I(X]TXY;1,g¢|C) by simple calculation. Thus, it is
sufficient to only bound the last term in (127):

(¢, g; X7, X5[C)
= I(X5; X7, X3[C) — I(X5; XT', X3¢, 9,C)
= H(Xy|C) — H(XF|XT, X3, C) — H(X3|¢, 9,C)
+ H(X3]g, X1, X3,C) + H(X3[v, 9, X7, X5, C)
< n[Ry+ Ry — H(Xo| X1 X3)] + H(XJ |4, g, X7, X§,C). (135)

Similarly, it can be shown as in [10, Appendix A] that if

Ry + Ry < H(X,| X1 X3) — 26(e), (136)
then
. 1 .
lim sup EH(XQ"\g,Xf”,Xg‘,C) < H(X5|X1X3) — Ry + 0(e), (137)
n—oo
and consequently,
1

Hence, (132) and (136) are the sufficient conditions that guarantee the secrecy requirements
given in (7).

We next show the achievability of the points P and Q. It can be shown that the binning
rates chosen to achieve the point P in Appendix B for symmetric key generation with an
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untrusted helper is applicable here to achieve the point P. To achieve the point ), whose
coordinates are given by (I(Xo; X1|X3), I(Xo; X2|X1X3)), we set the binning rates in the
achievable strategy as follows:

Ry = H(X{|X0X3) + e, (139)
Ry = I(Xo; X1]X35) — 2d(€) — 2¢, (140)
Ry = H(X,| X0 X1 X3) + e, (141)
Ry = I(Xo; Xa| X1X3) — 20(¢) — 2¢, (142)
Ry = H(X;3|X,) +e. (143)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) and the
secrecy conditions (132) and (136).
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