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Abstract

The problem of simultaneously generating multiple keys for a cellular source model
with a helper is investigated. In the model considered, there are four terminals, X0,
X1, X2, and X3, each of which observes one component of a vector source. Terminal
X0 wishes to generate two secret keys K1 and K2 respectively with terminals X1 and
X2 under the help of terminal X3. All terminals are allowed to communicate over a
public channel. An eavesdropper is assumed to have access to the public discussion.
Both symmetric and asymmetric key generations are considered. In symmetric key
generation models, model 1a (with a trusted helper) requires that the two keys are
concealed from the eavesdropper, and model 1b (with an untrusted helper) further
requires that the two keys are concealed from the helper in addition to the eavesdropper.
The asymmetric key generation models 2a and 2b are the same as symmetric key
generation models 1a and 1b, respectively, except that the key K2 is further required
to be concealed from terminal X1. For all models studied, the key capacity region
is established by designing a unified achievable strategy to achieve the cut-set outer
bounds.

1 Introduction

In Shannon’s secrecy system, it is essential that distinct terminals share a common secret key,
which can be exploited to achieve secure communications. In [1–3], it has been shown that
such a secret key can be established between two remote terminals if each terminal has access
to a component of a vector source sequence and the two terminals can communicate with
each other via a public channel. The generated key can be kept secure from the eavesdropper,
which has full access to the public channel. The key capacity for the two-terminal source
model has been established in these studies. Since then, various models of key generation
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with public discussion have been studied. In [4], the model with two terminals and a helper
was studied and the key capacity was characterized when there is no rate constraint on
the public discussion. Later, in [5], the problem of secret key generation among multiple
(more than two) terminals was studied and the key capacity was established when there
is no constraint on the public discussion. In [6], the same problem was revisited, and the
scenario with only a subset of terminals being allowed to talk publicly was studied and the
capacity was characterized. In [7], an alternative form of the secret key capacity for the
multi-terminal source model was characterized in terms of mutual dependence, which can be
interpreted as generalization of mutual information to more than two variables.

All the studies described above considered the problem of generating a single secret key.
More recently, there is increasing interest in the problem of simultaneously generating mul-
tiple secret/private keys over source models. The model of generating a secret key and a
private key among three terminals was first studied in [8], in which three terminals observe
correlated source outputs, and all three terminals wish to agree on a common secret key
to be kept secure from an eavesdropper while two designated terminals wish to agree on a
private key to be kept secure from both the third terminal and the eavesdropper. In [8], an
outer bound on the key capacity region was provided and was shown to be achievable under a
certain condition. More recently, in [9,10], it was further shown that the outer bound estab-
lished in [8] is also achievable for the remaining cases of this model by employing a random
binning and joint decoding scheme. Hence, the key capacity region for this model is estab-
lished in general. Another so-called cellular source model was recently studied in [11, 12],
in which one (base station) terminal wishes to generate independent keys respectively with
a number of (mobile) terminals. In [11], the key sum capacity was established, and inner
and outer bounds on the key capacity region were derived for the special case of two-key
generation with an helper. In [12], the key capacity region was established for a two-key
generation model with an additional requirement that one key should also be kept secure
from the other mobile terminal.

To the best of our knowledge, so far the multi-key capacity region is characterized only
for three-terminal systems. It is thus of interest to investigate whether it is possible to
characterize the multi-key capacity region for systems with more than three terminals. Such
exploration needs to address two challenging issues. (1) Although the key capacity region
for the three-terminal model [8, 10, 12] was shown to be equal to the cut-set bound, it is
not clear at the outset whether the cut-set bound can still be achieved for models with
different secrecy requirements and for four-terminal models with an additional helper. In
general, cut-set bound is less likely achievable as the system gets more complicated. (2) For
the three-terminal model, there are three cuts for generating two keys, and schemes can be
designed to achieve corner points of the cut-set bound for each case of the source distribution.
However, for four-terminal models with a helper, there are six cuts for generating two keys,
and these six cuts yield eight possible cases of the cut-set bound due to different source
distributions. It is not clear whether there exists a unified design of schemes to achieve the
cut-set bound for all cases.

Our contribution in this paper lies in establishing key capacity regions for four source
models (see Figures 1, 2, 3, and 4) of generating a pair of keys, and our results provide
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affirmative answers to both of the above issues. In all models, there are four terminals, and
each terminal observes one component of a correlated vector source. Terminals X0 and X1

wish to agree on a key K1, and terminals X0 and X2 wish to agree on another independent
key K2. The four terminals are allowed to communicate over a pubic channel, and an
eavesdropper is assumed to have access to the public discussion without ambiguity. The four
models differentiate from each other due to secrecy constraints. Models 1a and 1b address
symmetric key generation, in which secrecy requirements for two keys are the same. Model
1a (with a trusted helper) requires that the two keys are concealed from the eavesdropper,
and model 1b (with an untrusted helper) further requires that the two keys are concealed
from terminal X3 in addition to the eavesdropper. In the untrusted helper case, we assume
that the helper is curious but honest, i.e., the helper attempts to infer the information about
the generated keys but still follows the protocol. Models 2a and 2b (with a trusted and an
untrusted helper) have the same secrecy requirements for the two keys as models 1a and 1b,
respectively, except that the key K2 is further required to be concealed from terminal X1 for
both models. Thus, models 2a and 2b address asymmetric key generation.

For all of the above four models, we establish the cut-set bound to be the key capacity
region by showing that the cut-set bound is indeed achievable. Furthermore, we construct a
unified achievable strategy to achieve the corner points of the cut-set bound corresponding
to all cases of source distributions. The schemes to achieve different cases vary only in the
rate at which each terminal reveals information to public. Thus, the achievability proof is
significantly simplified. More specifically, the achievable strategy is based on random binning
and joint decoding. Given such a unified strategy, we derive the Slepian-Wolf conditions that
guarantee correct key agreement and derive sufficient conditions that guarantee the secrecy
requirements. Then for each individual case, it is sufficient to verify the public transmission
rates of terminals satisfy the derived Slepian-Wolf conditions and secrecy conditions, which
can be performed easily.

The remainder of the paper is organized as follows. Section 2 introduces the system models.
Section 3 provides our main results on the key capacity region for four models and describes
intuition to design key generation schemes. Section 4 concludes this paper with comments.
Appendix sections provide the detailed technical proofs for our main results.

2 System Models

Consider system models (see Figures 1, 2, 3, and 4) with four distinct terminals Xi, i =
0, · · · , 3, each of which observes one of the four components of a discrete memoryless vector
source generated based on a joint distribution PX0X1X2X3 . Here, for simplicity, we also use Xi
to denote the finite alphabet set from which the random variable Xi takes values. Terminal
Xi observes n independently and identically distributed (i.i.d.) repetitions of Xi, denoted
by Xn

i . The four terminals can communicate interactively via a public channel with no
rate constraints. The public channel is noiseless in the sense that all four terminals and
an eavesdropper can access the public discussion without ambiguity. We assume that the
eavesdropper does not observe any further information such as source sequences. Without
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Figure 1: Model 1a. Symmetric key gen-
eration with a trusted helper
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Figure 2: Model 1b. Symmetric key gen-
eration with an untrusted helper
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Figure 3: Model 2a. Asymmetric key gen-
eration with a trusted helper
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Figure 4: Model 2b. Asymmetric key gen-
eration with an untrusted helper

loss of generality, we assume that the four terminals take turns to transmit for r rounds over
4r consecutive slots. We use 4r random variables F1, . . . , F4r to denote these transmissions,
where Ft denotes the transmission in time slot t for 1 ≤ t ≤ 4r. The transmission Ft is a
deterministic function of its own observationXn

t mod 4 and all previous transmissions F[1,t−1] =
(F1, . . . , Ft−1). We use F to denote all transmissions in 4r rounds, i.e., F = (F1, . . . , F4r).

In this paper, we study four models, and in all models the base station terminal X0 wishes
to agree on keys K1 and K2 with mobile terminals X1 and X2, respectively, under the help of
terminal X3. The models differentiate from each other due to secrecy requirements. Models
1a and 1b address symmetric key generation, in which secrecy requirements for two keys
are the same. Model 1a (with a trusted helper) requires that the two keys are concealed
from the eavesdropper, and model 1b (with an untrusted helper) further requires that the
two keys are concealed from terminal X3 in addition to the eavesdropper. Models 2a and
2b (with a trusted and an untrusted helper) have the same secrecy requirements for the two
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keys as models 1a and 1b, respectively, except that the key K2 is further required to be
concealed from terminal X1 for both models. Thus, models 2a and 2b address asymmetric
key generation.

We next introduce mathematical conditions that a key pair (K1, K2) should satisfy. A
random variable U is said to be ε-recoverable from another random variable V , if there exists
a function f such that

Pr{U 6= f(V )} < ε. (1)

For all models studied in this paper, the key K1 is required to be ε-recoverable at terminals X0

and X1 with the public transmission F, i.e., it can be ε-recoverable from (Xn
0 ,F) and (Xn

1 ,F),
respectively, and the key K2 is required to be ε-recoverable at terminals X0 and X2 with
public transmission F, i.e., it can be ε-recoverable from (Xn

0 ,F) and (Xn
2 ,F), respectively.

Furthermore, K1 and K2 should satisfy the uniformity conditions:

1

n
H(K1) ≥

1

n
log |K1| − ε, (2)

1

n
H(K2) ≥

1

n
log |K2| − ε, (3)

where K1 and K2 denote the alphabets of the random variables K1 and K2, respectively.

For symmetric key generation with a trusted helper (model 1a) and with an untrusted
helper (model 1b), K1 and K2 are required to respectively satisfy the secrecy conditions

1

n
I(K1K2; F) < ε, (4)

and
1

n
I(K1K2;X

n
3 F) < ε. (5)

For asymmetric key generation with a trusted helper (model 2a) and with an untrusted
helper (model 2b), K1 and K2 are required to respectively satisfy the secrecy conditions

1

n
I(K1; F) < ε,

1

n
I(K2; F, X

n
1 ) < ε. (6)

and

1

n
I(K1; F, X

n
3 ) < ε,

1

n
I(K2; F, X

n
1 , X

n
3 ) < ε. (7)

We note that the parameter ε in (2)-(7) can be arbitrarily small as the sequence length n
gets sufficiently large.

In this paper our focus is on weak secrecy requirements as given in (4)-(7). Our results
can be strengthened to satisfy strong secrecy (with 1/n factor removed in (4)-(7)) without
loss of performance by applying the idea in [13].
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Definition 1. For each of the above models, a rate pair (R1, R2) is said to be achievable if
for every ε > 0, δ > 0, and for sufficiently large n, a key pair (K1, K2) can be generated to
satisfy

1

n
H(K1) > R1 − δ,

1

n
H(K2) > R2 − δ (8)

and (4), (2), and (3) for symmetric key generation with a trusted helper, to satisfy (8) (5),
(2), and (3) for symmetric key generation with an untrusted helper, to satisfy (8), (6), (2),
(3) for asymmetric key generation with a trusted helper, and to satisfy (8), (7), (2), (3) for
asymmetric key generation with an untrusted helper.

Our goal is to characterize the key capacity region that contains all achievable rate pairs
(R1, R2) for all models.

3 Main Results

In this section, we provide characterizations of the key capacity region for the four models
described in Section 2. We also provide intuitive understanding of these regions and key
generation schemes for achieving these regions with the detailed technical proofs relegated
to appendices.

3.1 Symmetric Key Generation with a Trusted Helper

In this subsection, we study the problem of symmetric key generation with a trusted helper,
in which the generated two keys are required to be secure only from the eavesdropper. To
assist the presentation, we introduce the following notations:

RA := min{I(X1X3;X0X2), I(X1;X0X2X3)}; (9a)

RB := min{I(X0X1;X2X3), I(X2;X0X1X3)}; (9b)

RC := min{I(X0;X1X2X3), I(X0X3;X1X2)}. (9c)

The following theorem characterizes the key capacity region of this model.

Theorem 1. The key capacity region for symmetric key generation with a trusted helper
contains rate pairs (R1, R2) satisfying the following inequalities:

R1 ≤ RA; (10)

R2 ≤ RB; (11)

R1 +R2 ≤ RC . (12)

Proof. See Appendix A.
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Since the secrecy constraints on K1 and K2 are symmetric, the bounds on R1 and R2 are
also symmetric. These bounds can be intuitively understood as cut-set bounds. In particular,
the upper bound on R1 in (10) is due to two cuts separating X0 and X1 for generating K1 (two
more bounds on R1 due to the other two cuts separating X0 and X1 become redundant due
to the sum rate bound (12)). The upper bound on R2 in (11) is due to two cuts separating
X0 and X2 for generating K2 (two more bounds on R2 due to the other two cuts separating
X0 and X1 become redundant due to the sum rate bound (12)). The sum rate bound (12)
is due to the two cuts separating X0 and (X1,X2) for generating the two keys K1 and K2

simultaneously.

R1

P

Q

R2

O

A

B

RA

RC

RC

RB

Figure 5: The key capacity region for symmetric key generation with a trusted helper.

The structure of the key capacity region is illustrated in Fig. 5 as the pentagon O-A-P-
Q-B-O. We next describe the idea of constructing an achievable scheme to achieve the key
capacity region. It suffices to show the achievability of the points P and Q. Since the secrecy
constraints on K1 and K2 are symmetric, it is sufficient to show that the corner point P is
achievable, and then the achievability of the point Q follows by symmetry. We assume that
RA < RC , because otherwise the point P would collapse to the point A, which is shown to
be achievable by the previous work [5]. The key rate pair of the point P is given by R1 = RA

and R2 = RC −RA. Corresponding to different source distributions, each of RA and RC can
take one of the two mutual information terms given in (9a) and (9c), respectively. Hence, the
coordinates of the point P can take four forms, i.e., case 1 with RA = I(X1;X0X2X3) and
RC = I(X0;X1X2X3), case 2 with RA = I(X1;X0X2X3) and RC = I(X0X3;X1X2), case 3
with RA = I(X1X3;X0X2) and RC = I(X0;X1X2X3), and case 4 with RA = I(X1X3;X0X2)
and RC = I(X0X3;X1X2).

We construct a unified scheme to achieve the rate point P for all cases. In our unified
scheme, terminals X1, X2, and X3 reveal enough information to public so that terminal X0

can recover Xn
1 , Xn

2 and Xn
3 . Then, K1 is generated by terminals X0 and X1 based on Xn

1 ,
and K2 is generated by terminals X0 and X2 based on Xn

2 . The schemes for the four cases are
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different only in the rate at which each terminal reveals information to public. Let R̃1, R̃2

and R̃3 denote the rates at which terminals X1,X2 and X3 reveal information to public,
respectively. In the following, we explain the main idea of the achievable scheme for each
case.

Case 1. The key rate pair of the point P is given by (I(X1;X0X2X3), H(X2X3|X1) −
H(X2X3|X0)). Since the rate of K1 needs to be maximized, terminal X1 should reveal
as little information as possible. Hence, terminals X2 and X3 first reveal information at
the rate R̃2 + R̃3 = H(X2X3|X0) so that terminal X1 needs to release only at the rate
R̃1 = H(X1|X0X2X3) in order for X0 to recover Xn

1 . Thus, the rate of K1 can be as large as
I(X1;X0X2X3). Since the generation of K1 already uses up information contained in Xn

1 ,
K2 can be generated only based on information contained in Xn

2 and Xn
3 given Xn

1 . Thus,
R2 can be as large as H(X2X3|X1) − H(X2X3|X0), where the subtraction is due to public
discussion at the rate R̃2 + R̃3 = H(X2X3|X0).

Case 2. The key rate pair of the point P is given by (I(X1;X0X2X3), H(X2|X1) −
H(X2|X0X3)). The argument for R1 is the same as that for case 1. In case 2, RC =
I(X0X3;X1X2), which implies that I(X0X3;X1X2) ≤ I(X0;X1X2X3). This further implies
I(X1X2;X3) ≤ I(X0;X3). Thus, in order for terminal X0 to recover Xn

2 and Xn
3 , it is more

efficient to let X3 reveal information first at the rate R̃3 = H(X3|X0), and then let X2 reveal
information at the rate R̃2 = H(X2|X0X3). Since in this case X2 does not recover Xn

3 , the
key rate R2 = H(X2|X1)−H(X2|X0X3).

Case 3. The key rate pair of the point P is given by (I(X0X2;X1X3), H(X2|X1X3) −
H(X2|X0)). The case conditions RA = I(X0X2;X1X3) and RC = I(X0;X1X2X3) implies
that X0 and X2 have high correlation, and X1 and X3 have high correlation. Thus, a
natural idea for public discussion is to let terminal X0 recover Xn

2 and let X1 recover Xn
3

first, and then generate K1 between terminals X0 and X1 to achieve R1 = I(X0X2;X1X3).
Since Xn

1 and Xn
3 have been fully used for generating K1, then K2 can achieve the rate

R2 = H(X2|X1X3)−H(X2|X0), where the subtraction is due to the public transmission of
terminal X2 to let X0 recover Xn

2 .

Case 4. This case does not exist because of the contradiction induced by setting RA =
I(X0X2;X1X3) and RC = I(X0X3;X1X2) (see (70), (71) in the proof for details).

3.2 Symmetric Key Generation with an Untrusted Helper

In this subsection, we study the problem of symmetric key generation with an untrusted
helper, in which the two generated keys are required to be secure from both the eavesdropper
and the helper terminal X3. The following theorem characterizes the key capacity region of
this model.

Theorem 2. The key capacity region for symmetric key generation with an untrusted helper
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contains rate pairs (R1, R2) satisfying the following inequalities:

R1 < I(X1;X0X2|X3), (13)

R2 < I(X2;X0X1|X3), (14)

R1 +R2 < I(X0;X1X2|X3). (15)

Proof. See Appendix B.

These bounds can also be intuitively understood as cut-set bounds. In particular, the
upper bound on R1 in (13) is due to the cut separating X0 and X1 for generating K1 (one
more bound due to the other cut separating X0 and X1 is redundant due to the sum rate
bound (15)). The upper bound on R2 in (14) is due to the cut separating X0 and X2 for
generating K2 (one more bound due to the other cut separating X0 and X1 is redundant due
to the sum rate bound (15)). The sum rate bound (15) is due to the cut separating X0 and
(X1,X2) for generating two keys K1 and K2 simultaneously. All the bounds (13)-(15) are
conditioned on X3 because both K1 and K2 are required to be secure from terminal X3.

R1

P

Q

R2

O

A

B

I(X1;X0X2|X3) I(X0;X1X2|X3)

I(
X
2
;X

0
X
1
|X

3
)

Figure 6: The key capacity region for symmetric key generation with an untrusted helper

Comparing Theorem 2 with Theorem 1, it is clear that the key capacity region for symmet-
ric key generation with an untrusted helper is contained in the key capacity region for sym-
metric key generation with a trusted helper, because it always holds that I(X1;X0X2|X3) ≤
RA, I(X2;X0X1|X3) ≤ RB and I(X0;X1X2|X3) ≤ RC . This is reasonable due to the addi-
tional requirement for the keys to be concealed from the helper when the helper is untrusted.

The structure of the key capacity region is illustrated in Fig. 6 as the pentagon O-A-
P-Q-B-O. In order to justify the achievability of the region, by symmetry, it is sufficient
to show the achievability of the point P in Fig. 6. The rate pair at point P is given by
(I(X1;X0X2|X3), H(X2|X1X3)−H(X2|X0X3)). The idea to achieve the point P follows the
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unified strategy described in Section 3.1, i.e., public discussion first guarantees that terminal
X0 recovers Xn

1 , Xn
2 and Xn

3 correctly, and then K1 is generated by terminals X0 and X1 based
on Xn

1 and K2 is generated by terminals X0 and X2 based on Xn
2 . Since the generated keys

should be concealed from the helper terminal X3, X
n
3 cannot be used as random resource for

generating the keys, although the helper can still participate the public discussion to assist
the recovery of source sequences.

More specifically, since the rate of K1 needs to be maximized, terminal X1 should reveal
as little information as possible. Hence, terminals X2 and X3 first reveal information at
the rate R̃2 + R̃3 = H(X2X3|X0) so that terminal X1 needs to release only at the rate
R̃1 = H(X1|X0X2X3) in order for X0 to recover Xn

1 . Thus, the rate of K1 can be as large
as I(X1;X0X2|X3). Since X3 is an untrusted helper, it can reveal information at any rate.
Hence, R̃2 can be set to be H(X2|X0X3). Consequently, R2 = H(X2|X1X3)−H(X2|X0X3).
Since the generation of K1 already uses up information contained in Xn

1 , K2 can be generated
only based on information contained in Xn

2 given Xn
1 and Xn

3 .

3.3 Asymmetric Key Generation with a Trusted Helper

In this subsection, we study the problem of asymmetric key generation with a trusted helper,
in which the two generated keys are required to be kept secure from the eavesdropper, and
furthermore, the key K2 is also required to be kept secure from terminal X1. For concise
presentation, we introduce the following notations:

RA := min{I(X1X3;X0X2), I(X1;X0X2X3)}; (16a)

R′B := min{I(X0;X2X3|X1), I(X2;X0X3|X1)}; (16b)

RC := min{I(X0;X1X2X3), I(X0X3;X1X2)}. (16c)

We note that the expressions of RA and RC remain unchanged comparing with those in
Section 3.1, but R′B is different from RB by having X1 in the conditioning.

The following theorem characterizes the key capacity region of the model of interest.

Theorem 3. The key capacity region for asymmetric key generation with a trusted helper
contains rate pairs (R1, R2) satisfying the following inequalities:

R1 ≤ RA; (17)

R2 ≤ R′B; (18)

R1 +R2 ≤ RC . (19)

Proof. See Appendix C.

We note that if Xn
3 is independent of (Xn

0 , X
n
1 , X

n
2 ), then the helper terminal is not able to

help in the key generation. In such a case, the key capacity region characterized in Theorem 3
reduces to that established in [12] for the same model without a helper.
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The bounds in Theorem 3 can be intuitively understood as cut-set bounds. In particular,
the upper bound on R1 in (17) is due to the two cuts separating X0 and X1 for generating
K1 (two more bounds on R1 due to the other two cuts separating X0 and X1 are redundant
due to the sum rate bound (19)). The sum rate bound (19) is due to the cut separating X0

and (X1,X2) for generating two keys K1 and K2 simultaneously. The upper bound on R2 in
(18) is due to the cut separating X0 and X2 for generating K2, and the conditioning on X1

is due to the requirement that K2 be concealed from X1.

R1

P

Q

R2

O

A

B

RA

RC

RC

RB

Figure 7: The key capacity region for asymmetric key generation with a trusted helper

The key capacity region is illustrated in Fig. 7 as the pentagon O-A-P-Q-B-O. We next
describe our idea of constructing an achievable scheme to achieve the key capacity region.
Since the secrecy requirements for the two keys are different, we need to design achievable
schemes to achieve the points P and Q separately. Corresponding to different source distri-
butions, the rate pairs of the points P and Q can take different forms. Interestingly, the same
unified strategy described for the previous models can achieve the points P and Q for all
cases. Namely, terminals X1,X2 and X3 reveal information to public such that terminal X0

can recover (Xn
1 , X

n
2 , X

n
3 ) correctly. Then K1 is generated based on Xn

1 and K2 is generated
based on Xn

2 . The schemes for different cases vary only in the rate at which each terminal
reveals information to public. Here, we still use R̃1, R̃2 and R̃3 to denote the rates at which
terminals X1,X2 and X3 reveal information to public, respectively.

For the point P, it can be observed that its rate coordinates are exactly the same as
those in Section 3.1, and can be shown to be achievable by the same schemes designed in
Section 3.1 for symmetric key generation with a trusted helper. This is because both models
should reach the same maximum rate R1 of K1 due to the same secrecy requirement for K1.
Furthermore, since both models should exhaust all random resource in Xn

1 for generating K1,
K2 should be generated from random resource independent from Xn

1 even if it is not required
to be concealed from terminal X1 in symmetric key generation. Thus, the two models also
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have the same rate R2 at the point P.

For the point Q, the rate coordinates are given by (RC − R′B, R
′
B). Corresponding to

different source distributions, each of RC and R′B can take one of the two mutual information
terms given in (19) and (18), respectively. Hence, the coordinates of the point Q can take
four forms, i.e., case 1 with RC = I(X0;X1X2X3) and R′B = I(X0;X2X3|X1); case 2 with
RC = I(X0;X1X2X3) and R′B = I(X2;X0X3|X1); case 3 with RC = I(X0X3;X1X2) and
R′B = I(X0;X2X3|X1); and case 4 with RC = I(X0X3;X1X2) and R′B = I(X2;X0X3|X1).
In the following, we explain the idea of the achievable scheme for each case and relegate the
detailed proof to Appendix C. We note that achievable designs for the following cases are
different due to the source distributions that determine these cases.

Case 1. The key rate pair of the point Q is given by (I(X0;X1), I(X0;X2X3|X1)). In
order to generate K1 at the rate I(X0;X1), terminal X1 can reveal information at the rate
R̃1 = H(X1|X0). Then terminal X0 can recover Xn

1 correctly. In order for terminal X0

to further recover (Xn
2 , X

n
3 ), terminals X2 and X3 jointly release information at the sum

rate R̃2 + R̃3 = H(X2X3|X0X1). Since the resource to generate K2 should be contained in
(Xn

2 , X
n
3 ) given Xn

1 , the key rate R2 should satisfy R2 = H(X2X3|X1)− R̃2− R̃3 which yields
R2 = I(X0;X2X3|X1).

Case 2. The key rate pair of the point Q is given by (I(X0;X1X3)−I(X2;X3|X1), I(X2;X0X3|X1)).
Terminals X1 and X3 first jointly reveal information at the sum rate R̃1+R̃3 = H(X1X3|X0).
Then terminal X0 recovers Xn

1 and Xn
3 correctly. Terminal X2 needs to release informa-

tion only at the rate R̃2 = H(X2|X0X1X3) and then Xn
2 can be successfully recovered

at X0. Thus, K2 can be generated at the rate H(X2|X1) − H(X2|X0X1X3), which yields
R2 = I(X2;X0X3|X1). In order to generate K1 at the rate R1 = I(X0;X1X3)−I(X2;X3|X1),
R̃1 should be chosen to be R̃1 = H(X1X3|X0)−H(X3|X1X2), and then R̃3 = H(X3|X1X2).

Case 3. This case does not exist because of the contradiction induced by setting RC =
I(X0X3;X1X2) and R′B = I(X0;X2X3|X1) (see (117) and (118) in the proof for details).

Case 4. The key rate pair of the point Q is given by (I(X1;X0X3), I(X2;X0X3|X1)). Still,
terminals X1 and X3 first reveal information at the sum rate R̃1+R̃3 = H(X1X3|X0). Due to
the case conditions, X3 has high correlation with X0 and hence let X3 reveal its information at
the rate R̃3 = H(X3|X0). Then X1 reveals its information at the rate R̃1 = H(X1|X0X3), and
finally X2 reveals its information at the rate R̃2 = H(X2|X0X1X3) in order for X0 to recover
(Xn

1 , X
n
2 , X

n
3 ). Thus, the key rate R2 = I(X0X3;X2|X1), and the rate R1 = I(X0X3;X1).

We note that for asymmetric key generation with a trusted helper, the point Q achieves the
same sum rate as that for symmetric key generation with a trusted helper. This is because
although the rate of K2 decreases in the asymmetric model due to the additional secrecy
requirement for K2 to be concealed from X1, the random resource contained in Xn

1 can still
be used for generating K1 so that there is no loss in the sum rate.
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3.4 Asymmetric Key Generation with an Untrusted Helper

In this subsection, we study the problem of asymmetric key generation with an untrusted
helper, in which the two generated keys are required to be kept secure from both the eaves-
dropper and the helper terminal X3, and furthermore, the key K2 is required to be kept
secure from terminal X1. The following theorem characterizes the key capacity region for
this model.

Theorem 4. The key capacity region for asymmetric key generation with an untrusted helper
contains rate pairs (R1, R2) satisfying the following inequalities:

R1 < I(X1;X0X2|X3), (20)

R2 < I(X2;X0|X1X3), (21)

R1 +R2 < I(X0;X1X2|X3). (22)

Proof. See Appendix D.

These bounds can also be intuitively understood as cut-set bounds. In particular, the upper
bound on R1 in (20) is due to the cut separating X0 and X1 for generating K1 (one more
bound due tothe other cut separating X0 and X1 is redundant due to the sum rate bound
(22)). The upper bound on R2 in (21) is due to the cut separating X0 and X2 for generating
K2, and the conditioning on X1 is due to the requirement that K2 be concealed from X1.
The sum rate bound (22) is due to the cut separating X0 and (X1,X2) for generating two
keys K1 and K2 simultaneously. All these bounds (20)-(22) are conditioned on X3 because
both K1 and K2 are required to be kept secure from terminal X3.

R1

P

Q

R2

O

A

B

I(X1;X0X2|X3) I(X0;X1X2|X3)

I(
X
2
;X

0
|X

1
X
3
)

I(X1;X0|X3)

Figure 8: The key capacity region for asymmetric key generation with an untrusted helper.
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Similarly to the symmetric case, comparing Theorem 4 with Theorem 3, it is clear that
the key capacity region for asymmetric key generation with an untrusted helper is contained
in that for the asymmetric key generation with a trusted helper, because it always holds
that I(X1;X0X2|X3) ≤ RA, I(X2;X0|X1X3) ≤ R′B and I(X0;X1X2|X3) ≤ RC . This is
anticipated due to the additional requirement for the keys to be concealed from the helper.

The key capacity region is illustrated in Fig. 8 as the pentagon O-A-P-Q-B-O. It can
be shown that the point P can be achieved by the same scheme as that for achieving
the point P in symmetric key generation with an untrusted helper in Section 3.2. We
next describe the idea to achieve the point Q. The rate pair of the point Q is given by
(I(X0;X1|X3), I(X2;X0|X1X3)). Terminals X1 and X3 first reveal information at the rate
R̃1+R̃3 = H(X1X3|X0) so that terminal X0 can recover Xn

1 and Xn
3 correctly. Then terminal

X2 needs to release only at the rate R̃2 = H(X2|X0X1X3) in order for X0 to recover Xn
2 .

Thus, the rate of K2 can be as large as I(X2;X0|X1X3). Since X3 is an untrusted helper, it
can reveal information at any rate. Hence, R̃1 can be set to be H(X1|X0X3). Consequently,
R1 = H(X1|X3)−H(X1|X0X3) = I(X0;X1|X3).

4 Conclusion

In this paper, we have studied the problem of generating a pair of keys for a cellular source
model with a helper. We have established the full key capacity region for four models with
different secrecy requirements. The models studied here consist of four terminals, which are
more complicated to analyze than three-terminal models studied previously, because the cut-
set outer bound takes more cases due to different source distributions. Instead of designing
a specific achievable scheme for each case one by one, we have developed a unified strategy,
which achieves corner points for all cases, and hence significantly reduces the complexity of
the achievability proof. It will be of future interest to generalize the studies here to cellular
models with more than two mobile terminals, in which each terminal wishes to generate a
key with the base station terminal. In such a case, a unified strategy is desirable to facilitate
feasible analysis. As another direction, it will be interesting to study this type of multiple
key generation problems with rate constraints on the public discussion. For such a case,
previous studies of the source model with the helper subject to finite rate constraints in [4]
and of vector Gaussian source model with public discussion subject to finite rate constraints
in [14] provide useful techniques.

Appendix
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A Proof of Theorem 1

Proof of Converse. First, if we need only to generate K1 , the model reduces to the secret
key generation problem studied in [5]. The key capacity is shown to be min{RA, RC}, which
provides an upper bound (10) on R1. Similarly, if we dedicate to generate K2, the key
capacity is shown to be min{RB, RC} in [5], which provides an upper bound (11) on R2. For
the sum rate bound, we consider an enhanced model by replacing terminals X1 and X2 with
a super terminal Xs that observes both Xn

1 and Xn
2 . The secret key rate between X0 and Xs

is upper bounded by RC as shown in [5].

Proof of Achievability. We design an achievable scheme to achieve the key capacity region
plotted in Fig. 5 as the pentagon O-A-P-Q-B-O, where the coordinates of the points A and
B are (min{RA, RC}, 0) and (0,min{RB, RC}), respectively. The corner point A is achieved
by letting X2 be a dedicated helper to generate K1 following the omniscience scheme in [5].
Similarly, the corner point B is achieved by letting X1 be a dedicated helper to generate K2

as shown in [5]. We note that the point P would collapse to the point A if RC ≤ RA and
the point Q would collapse to the point B if RC ≤ RB. It is thus sufficient to show that
the points P and Q are achievable whenever they are different from the points A and B,
respectively. Then the entire pentagon can be achieved by time sharing.

We note that since the secrecy constraints on K1 and K2 are symmetric, it is sufficient
to show that the corner point P in Fig. 5 is achievable and the achievability of the point
Q follows by symmetry. We assume that RA < RC , because otherwise the point P would
collapse to the point A and has been justified to be achievable. The key rate pair of the
point P can take different forms due to different source distributions. In the following, we
first describe a unified scheme that is applicable to all cases, and then study each case one
by one. In general, our scheme is based on random binning and joint decoding.

Codebook Generation: At terminal X1, randomly and independently assign a bin index
f to each sequence xn1 ∈ X n

1 , where f ∈ [1 : 2nR̃1 ]. We use f(xn1 ) to denote the bin index
of the sequence xn1 , and use B1(f) to denote the bin indexed by f . Then randomly and
independently assign a sub-bin index φ to each sequence in each nonempty bin B1(f), where
φ ∈ [1 : 2nR1 ]. We further use B1(f, φ) to denote the sub-bin indexed by φ within the bin
B1(f).

At terminal X2, randomly and independently assign a bin index g to each sequence xn2 ∈
X n

2 , where g ∈ [1 : 2nR̃2 ]. We use g(xn2 ) to denote the bin index of the sequence xn2 , and use
B2(g) to denote the bin indexed by g. Then randomly and independently assign a sub-bin
index ψ to each sequence in each nonempty bin B2(g), where ψ ∈ [1 : 2nR2 ]. We further use
B2(g, ψ) to denote the sub-bin indexed by ψ within the bin B2(g).

At terminal X3, randomly and independently assign a bin index l to each sequence xn3 ∈ X n
3 ,

where l ∈ [1 : 2nR̃3 ]. We use l(xn3 ) to denote the bin index of the sequence xn3 , and use B3(l)
to denote the bin indexed by l.

The codebook is revealed to all parties, i.e., terminals X0,X1,X2,X3 and the eavesdropper.
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Encoding and Transmission: Given a sequence xn1 , terminal X1 finds the index pair (f, φ)
such that xn1 ∈ B1(f, φ). Then it reveals the index f = f(xn1 ) over the public channel to all
parties.

Given a sequence xn2 , terminal X2 finds the index pair (g, ψ) such that xn2 ∈ B2(g, ψ). Then
it reveals the index g = g(xn2 ) over the public channel to all parties.

Given a sequence xn3 , terminal X3 finds the index l such that xn3 ∈ B3(l). Then it reveals
the index l = l(xn3 ) over the public channel to all parties.

Decoding: The decoding scheme is based on joint typicality.

Terminal X0, given xn0 and the bin indexes f , g and l, claims x̂n1 , x̂n2 and x̂n3 are observations
of terminals X1,X2 and X3, respectively, if there exists a unique tuple of sequences (x̂n1 , x̂

n
2 , x̂

n
3 )

such that x̂n1 ∈ B1(f), x̂n2 ∈ B2(g), x̂n3 ∈ B3(l), and (xn0 , x̂
n
1 , x̂

n
2 , x̂

n
3 ) ∈ T (n)

ε (PX0X1X2X3).

Based on Slepian-Wolf coding theorem [5, 15], the decoding error can be arbitrarily small
if the rates R̃1, R̃2 and R̃3 satisfy the following Slepian-Wolf conditions:

R̃1 > H(X1|X0X2X3), (23)

R̃2 > H(X2|X0X1X3), (24)

R̃3 > H(X3|X0X1X2), (25)

R̃1 + R̃2 > H(X1X2|X0X3), (26)

R̃1 + R̃3 > H(X1X3|X0X2), (27)

R̃2 + R̃3 > H(X2X3|X0X1), (28)

R̃1 + R̃2 + R̃3 > H(X1X2X3|X0). (29)

Key Generation: Terminal X1 sets K1 = φ(Xn
1 ). Terminal X2 sets K2 = ψ(Xn

2 ). Terminal

X0 sets K̂1 = φ(X̂n
1 ) and K̂2 = ψ(X̂n

2 ). If the decoding error vanishes asymptotically (i.e.,
(23)-(29) are satisfied), we have

Pr{K1 = K̂1} > 1− ε, (30)

Pr{K2 = K̂2} > 1− ε. (31)

Secrecy: We derive the sufficient conditions for achieving the secrecy requirement (4).
Then these sufficient conditions need to be verified for each of the four cases later on.

We evaluate the key leakage rates averaged over the random codebook ensemble. Let
f := f(Xn

1 ), g := g(Xn
2 ) and l := l(Xn

3 ). Then it is clear that F = {f, g, l}. We further let
φ := φ(Xn

1 ) and ψ := ψ(Xn
2 ). Hence, K1 = φ and K2 = ψ. We first derive

I(K1K2; F|C) = I(φ, ψ; f, g, l|C)
= I(ψ; f, g, l|C) + I(φ; f, g, l|ψ, C)
≤ I(ψ; g|C) + I(ψ; f, l|g, C) + I(φ; f, g, ψ, l|C)
≤ I(ψ; g|C) + I(g, ψ; f, l|C) + I(φ; f |C) + I(φ; g, ψ, l|f, C)
≤ I(ψ; g|C) + I(g, ψ; f, l|C) + I(φ; f |C) + I(f, φ; g, ψ, l|C). (32)
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We next consider each of the four terms in (32). It can be shown as in [10, Appendix A]
that if

R̃1 +R1 < H(X1)− 2δ(ε), (33)

then
1

n
I(φ; f |C) < δ(ε); (34)

and if
R̃2 +R2 < H(X2)− 2δ(ε), (35)

then
1

n
I(ψ; g|C) < δ(ε). (36)

In order to bound the second term in (32), we have the following derivation:

I(g, ψ; f, l|C)
≤ I(Xn

2 , g, ψ; f, l|C)
= I(Xn

2 ; f, l|C)
= I(Xn

2 ;Xn
1 , X

n
3 |C)− I(Xn

2 ;Xn
1 , X

n
3 |f, l, C)

= H(Xn
1 , X

n
3 |C)−H(Xn

1 , X
n
3 |Xn

2 , C)−H(Xn
1 , X

n
3 |f, l, C) +H(Xn

1 , X
n
3 |Xn

2 , f, l, C)
≤ H(Xn

1 , X
n
3 |C)−H(Xn

1 , X
n
3 |Xn

2 , C)− [H(Xn
1 , X

n
3 |C)− nR̃1 − nR̃3]

+H(Xn
1 , X

n
3 |Xn

2 , f, l, C)
≤ n[R̃1 + R̃3 −H(X1X3|X2)] +H(Xn

1 , X
n
3 |Xn

2 , f, l, C).

It can be shown as in [10, Appendix A] that if

R̃1 + R̃3 ≤ H(X1X3|X2)− 2δ(ε), (37)

then

lim sup
n→∞

1

n
H(Xn

1 , X
n
3 |Xn

2 , f, l, C) < H(X1X3|X2)− R̃1 − R̃3 + δ(ε). (38)

Consequently,
1

n
I(g, ψ; f, l|C) < δ(ε). (39)

Next we consider the last term in (32) as follows:

I(f, φ; g, ψ, l|C) ≤ I(Xn
1 ; g, ψ, l|C)

= I(Xn
1 ;Xn

2 , X
n
3 , g, ψ, l|C)− I(Xn

1 ;Xn
2 , X

n
3 |g, ψ, l, C)

= I(Xn
1 ;Xn

2 , X
n
3 |C)− I(Xn

1 ;Xn
2 , X

n
3 |g, ψ, l, C)

= H(Xn
2 , X

n
3 |C)−H(Xn

2 , X
n
3 |Xn

1 , C)−H(Xn
2 , X

n
3 |g, ψ, l, C) +H(Xn

2 , X
n
3 |Xn

1 , g, ψ, l, C)
≤ n[R̃2 +R2 + R̃3 −H(X2X3|X1)] +H(Xn

2 , X
n
3 |Xn

1 , g, ψ, l, C). (40)

It can be shown that if

R̃2 +R2 + R̃3 < H(X2X3|X1)− 2δ(ε), (41)
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then

lim sup
n→∞

1

n
H(Xn

2 , X
n
3 |Xn

1 , g, ψ, l, C) < H(X2X3|X1)− R̃2 −R2 − R̃3 + δ(ε).

Consequently,
1

n
I(f, φ; g, ψ, l|C) < δ(ε). (42)

Therefore, (33), (35), (37) and (41) are sufficient conditions that guarantee the secrecy
requirement (4).

Uniformity: Uniformity of keys is due to properties of random binning and typicality.

We next show the achievability of the point P with rate coordinates R1 = RA and R2 =
RC − RA. Corresponding to different source distributions, each of RA and RC can take
one of the two mutual information terms given in (9a) and (9c), respectively. Hence, the
coordinates of the point P can take four forms, i.e., case 1 with RA = I(X1;X0X2X3) and
RC = I(X0;X1X2X3), case 2 with RA = I(X1;X0X2X3) and RC = I(X0X3;X1X2), case 3
with RA = I(X0X2;X1X3) and RC = I(X0;X1X2X3), and case 4 with RA = I(X0X2;X1X3)
and RC = I(X0X3;X1X2).

For each case, it is sufficient to set the rates R̃1, R1, R̃2, R2 and R̃3 to satisfy the Slepian-
Wolf conditions (23)-(29) for guaranteeing correct key agreement and to satisfy the sufficient
conditions (33), (35), (37) and (41) for guaranteeing secrecy.

Case 1: RA = I(X1;X0X2X3) and RC = I(X0;X1X2X3), which imply

H(X3|X0X2) < H(X3|X1), (43)

H(X3|X1X2) < H(X3|X0). (44)

Moreover, RA < RC implies

H(X2X3|X0) < H(X2X3|X1). (45)

The rate pair at the point P is given by (I(X1;X0X2X3), H(X2X3|X1)−H(X2X3|X0)).
To achieve this rate pair, we set the binning rates in the achievable strategy as follows:

R̃1 = H(X1|X0X2X3) + ε, (46)

R1 = I(X1;X0X2X3)− 2δ(ε)− 2ε, (47)

R̃2 = H(X2X3|X0)− R̃3 + ε, (48)

R2 = H(X2X3|X1)−H(X2X3|X0)− 4δ(ε)− 3ε, (49)

R̃3 = min{H(X3|X2), H(X3|X0)} − 2δ(ε)− 2ε. (50)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) if
R̃3 > H(X3|X0X1X2). Otherwise, either the Markov chain X3 −X0 −X1X2 or the Markov
chain X3 − X2 − X0X1 holds and thus the rate pair can be easily achieved without the
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helper’s assistance. It can also be verified that the above rates (46)-(50) satisfy the sufficient
conditions (33), (35), (37) and (41) for secrecy.

Case 2: RA = I(X1;X0X2X3) and RC = I(X0X3;X1X2), which imply the following two
inequalities:

H(X3|X0X2) < H(X3|X1), (51)

H(X3|X0) < H(X3|X1X2). (52)

Here, RA < RC is equivalent to

H(X2|X0X3) < H(X2|X1). (53)

The key rate pair at the point P in this case is given by (I(X1;X0X2X3), H(X2|X1)−H(X2|X0X3)).
To achieve this rate pair, we set the binning rates in the achievable strategy as follows:

R̃1 = H(X1|X0X2X3) + ε, (54)

R1 = I(X1;X0X2X3)− 2δ(ε)− 2ε, (55)

R̃2 = H(X2|X0X3) + ε, (56)

R2 = H(X2|X1)−H(X2|X0X3)− 2δ(ε)− 2ε, (57)

R̃3 = H(X3|X0) + ε. (58)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) and
the sufficient conditions (33), (35), (37) and (41) for secrecy. In particular, (37) holds due
to (52) as follows:

R̃1 + R̃3 = H(X1|X0X2X3) +H(X3|X0) + 2ε

< H(X1|X2X3) +H(X3|X1X2)− 2δ(ε)

< H(X1X3|X2)− 2δ(ε),

and (41) holds due to (52) as follows:

R̃2 +R2 + R̃3 = H(X3|X0) +H(X2|X1)− 2δ(ε)− ε
< H(X3|X1X2) +H(X2|X1)− 2δ(ε)

< H(X2X3|X1)− 2δ(ε).

Case 3: RA = I(X0X2;X1X3) and RC = I(X0;X1X2X3), which imply the following two
inequalities:

H(X3|X0X2) > H(X3|X1), (59)

H(X3|X0) > H(X3|X1X2), (60)

Here, RA < RC is equivalent to

H(X2|X0) < H(X2|X1X3). (61)
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The rate pair of the point P is given by (I(X0X2;X1X3), H(X2|X1X3)−H(X2|X0)). To
achieve this rate pair, we set the binning rates as follows:

R̃1 = H(X1X3|X0X2)−H(X3|X1) + ε, (62)

R1 = I(X0X2;X1X3)− 2δ(ε)− 2ε, (63)

R̃2 = H(X2|X0) + ε, (64)

R2 = H(X2|X1X3)−H(X2|X0)− 2δ(ε)− 2ε, (65)

R̃3 = H(X3|X1) + ε. (66)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29). It is
also easy to verify that the rate settings (62)-(66) satisfy the sufficient conditions (33), (35)
and (41) for secrecy. Furthermore, the condition (37) is satisfied if

H(X1X3|X0X2) < H(X1X3|X2). (67)

Otherwise, the Markov chain X1X3 −X2 −X0 holds. To show the secrecy, we derive a new
condition to replace (37) to guarantee that I(g, ψ; f, l|C) is asymptotically small as follows.

I(g, ψ; f, l|C) ≤ I(g, ψ;Xn
1 , X

n
3 |C)

= I(Xn
2 ;Xn

1 , X
n
3 |C)− I(Xn

2 ;Xn
1 , X

n
3 |g, ψ, C)

= H(Xn
2 |C)−H(Xn

2 |Xn
1 , X

n
3 , C)−H(Xn

2 |g, ψ, C) +H(Xn
2 |Xn

1 , X
n
3 , g, ψ, C)

≤ n[R̃2 +R2 −H(X2|X1X3)] +H(Xn
2 |Xn

1 , X
n
3 , g, ψ, C).

It can be shown that if
R̃2 +R2 ≤ H(X2|X1X3)− 2δ(ε), (68)

then

lim sup
n→∞

1

n
H(Xn

2 |Xn
1 , X

n
3 , f, l, C) < H(X2|X1X3)− R̃2 −R2 + δ(ε). (69)

Thus, I(g, ψ; f, l|C) < δ(ε). It is clear that the rates given in (62)-(66) satisfy (68) and hence
secrecy is guaranteed.

Case 4: RA = I(X0X2;X1X3) and RC = I(X0X3;X1X2), which imply the following two
inequalities:

H(X3|X0X2) > H(X3|X1), (70)

H(X3|X1X2) > H(X3|X0), (71)

Then, we have H(X3|X1) < H(X3|X0X2) ≤ H(X3|X0) < H(X3|X1X2), which yields a
contradiction. Thus, this case does not exist.

B Proof of Theorem 2

Proof of Converse. First, if we need only to generate K1, the model reduces to the private
key generation problem studied in [5]. The key capacity is shown to be

R1 = min{I(X1;X0X2|X3), I(X0;X1X2|X3)},
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which provides an outer bound (13) on R1. Similarly, if we dedicated to generate K2, the
key capacity is shown to be R2 = min{I(X2;X0X1|X3), I(X0;X1X2|X3)}, which provides
an outer bound (14) on R2. For the sum rate bound, we consider an enhanced model by
replacing terminals X1 and X2 with a super terminal Xs which observes both Xn

1 and Xn
2 .

The rate of the private key between X0 and Xs concealed from terminal X3 is upper bounded
by I(X0;X1, X2|X3) as shown in [5], which yields the sum rate bound (15).

Proof of Achievability: The key capacity region is the pentagon O-A-P-Q-B-O as illustrated
in Fig. 6, where the coordinates of the points A and B are given by min{I(X1;X0X2|X3), I(X0;X1X2|X3)}
and min{I(X2;X0X1|X3), I(X0;X1X2|X3)}, respectively. The corner point A can be achieved
by letting X2 be a dedicated helper to generate K1 following the omniscience scheme in [5].
The corner point B can be achieved by letting X1 be a dedicated helper to generate K2 as
shown in [5]. We note that the point P would collapse to the point A if I(X0;X1X2|X3) ≤
I(X1;X0X2|X3) and the point Q would collapse to the point B if I(X0;X1X2|X3) ≤ I(X2;X0X1|X3).
Thus, it is sufficient to show that the corner points P and Q are achievable whenever they
are different from the points A and B, respectively.

We note that since the secrecy requirements on K1 and K2 are symmetric, it is sufficient
to show that the corner point P is achievable, and then the achievability of the point Q
follows by symmetry. Furthermore, we assume that I(X1;X0X2|X3) < I(X0;X1X2|X3),
which implies

H(X2|X0X3) < H(X2|X1X3), (72)

because otherwise the point P would collapse to the point A and has been justified to be
achievable.

The rate pair at the point P is given by (I(X1;X0X2|X3), H(X2|X1X3) −H(X2|X0X3)).
The idea to achieve the point P follows the same achievable strategy as in Appendix A. The
steps of codebook generation, encoding and transmission, decoding and key generation are
the same as the corresponding steps in Appendix A, and are omitted here. In particular,
Slepian-Wolf conditions (23)-(29) also guarantee the correct key establishment here.

The secrecy requirement (5) here is different from that for symmetric key generation with
a trusted helper. Hence, we next develop the sufficient conditions that guarantee (5) and
then choose the binning rates to satisfy these sufficient conditions.

Secrecy: We evaluate the key leakage rates averaged over the random codebook ensemble.
Let f := f(Xn

1 ), g := g(Xn
2 ) and l := l(Xn

3 ). Then it is clear that F = {f, g, l}. We further
let φ := φ(Xn

1 ) and ψ := ψ(Xn
2 ). Hence, K1 = φ and K2 = ψ. We first derive

I(K1, K2;X
n
3 ,F|C)

= I(φ, ψ; f, g, l,Xn
3 |C)

= I(φ; f, g,Xn
3 |C) + I(ψ; f, g,Xn

3 |φ, C)
≤ I(φ; f |C) + I(φ, f ; g,Xn

3 |C) + I(ψ;φ, f, g,Xn
3 |C)

≤ I(φ; f |C) + I(φ, f ; g,Xn
3 |C) + I(ψ; g|C) + I(ψ, g;φ, f,Xn

3 |C)
≤ I(φ; f |C) + I(φ, f ;Xn

3 |C) + I(φ, f ; g|Xn
3 , C)

+ I(ψ; g|C) + I(ψ, g;Xn
3 |C) + I(ψ, g;φ, f |Xn

3 , C). (73)
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We consider each of the six terms in (73). Similarly to the techniques used in [10, Appendix
A], it can be shown that if

R̃1 +R1 < H(X1)− 2δ(ε), (74)

then
1

n
I(φ; f |C) < δ(ε); (75)

and if
R̃2 +R2 < H(X2)− 2δ(ε), (76)

then
1

n
I(ψ; g|C) < δ(ε). (77)

In order to bound the second term in (73), we have the following derivation:

I(φ, f ;Xn
3 |C)

= I(Xn
1 ;Xn

3 |C)− I(Xn
1 ;Xn

3 |φ, f, C)
= H(Xn

1 |C)−H(Xn
1 |Xn

3 , C)−H(Xn
1 |φ, f, C) +H(Xn

1 |φ, f,Xn
3 , C)

≤ n[R̃1 +R1 −H(X1|X3)] +H(Xn
1 |φ, f,Xn

3 , C).

It can be shown as in [10, Appendix A] that if

R̃1 +R1 ≤ H(X1|X3)− 2δ(ε), (78)

then

lim sup
n→∞

1

n
H(Xn

1 |φ, f,Xn
3 , C) < H(X1|X3)− R̃1 −R1 + δ(ε). (79)

Consequently,
1

n
I(φ, f ;Xn

3 |C) < δ(ε). (80)

Similarly, it can be shown that if

R̃2 +R2 ≤ H(X2|X3)− 2δ(ε), (81)

then
1

n
I(ψ, g;Xn

3 |C) < δ(ε). (82)

By noting that I(φ, f ; g|Xn
3 , C) ≤ I(ψ, g;φ, f |Xn

3 , C), it is sufficient to bound the latter
term:

I(ψ, g;φ, f |Xn
3 , C)

≤ I(ψ, g;Xn
1 |Xn

3 , C)
= I(Xn

2 ;Xn
1 |Xn

3 , C)− I(Xn
2 ;Xn

1 |g, ψ,Xn
3 , C)

= H(Xn
2 |Xn

3 , C)−H(Xn
2 |Xn

1 , X
n
3 , C)−H(Xn

2 |g, ψ,Xn
3 , C) +H(Xn

2 |g, ψ,Xn
1 , X

n
3 , C)

≤ n[R̃2 +R2 −H(X2|X1X3)] +H(Xn
2 |g, ψ,Xn

1 , X
n
3 , C). (83)
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It can be shown as in [10, Appendix A] that if

R̃2 +R2 < H(X2|X1X3)− 2δ(ε), (84)

then

lim sup
n→∞

1

n
H(Xn

2 |g, ψ,Xn
1 , X

n
3 , C) < H(X2|X1X3)− R̃2 −R2 + δ(ε).

Consequently,
1

n
I(f, φ; g, ψ|Xn

3 , C) < δ(ε). (85)

Thus, (78) and (84) are sufficient conditions that guarantee the secrecy requirement (5).

The rate pair at point P is given by (I(X1;X0X2|X3), H(X2|X1X3) − H(X2|X0X3)). To
achieve this rate pair, we set the binning rates as follows:

R̃1 = H(X1|X0X2X3) + ε, (86)

R1 = I(X1;X0X2|X3)− 2δ(ε)− 2ε, (87)

R̃2 = H(X2|X0X3) + ε, (88)

R2 = H(X2|X1X3)−H(X2|X0X3)− 2δ(ε)− 2ε, (89)

R̃3 = H(X3|X0) + ε. (90)

It is easy to verify that the above rates satisfy the Slepian-Wolf conditions (23)-(29), and
the sufficient conditions (78) and (84) for secrecy.

C Proof of Theorem 3

Proof of Converse. First, if we need only to generate K1, the model reduces to the secret
key generation problem studied in [5]. The key capacity is shown to be min{RA, RC} which
provides an upper bound on R1 as given in (17). Next, if we dedicate to generate K2, the
model reduces to the private key generation problem over multiple terminals also studied
in [5] as the private key model. The key capacity is shown to be R′B which serves as an upper
bound (18) on R2. For the sum rate bound, we consider an enhanced model, which replaces
terminals X1 and X2 with a super terminal Xs that observes both Xn

1 and Xn
2 . Then, the

secret key rate between X0 and Xs is upper bounded by RC as given in [5] for the secret key
model, which yields the sum rate bound (19).

Proof of Achievability. The key capacity region is plotted in Fig. 7 as the pentagon O-A-
P-Q-B-O, where the coordinates of the points A and B are (min{RA, RC}, 0) and (0, R′B),
respectively. The corner point A is achieved by letting X2 be a dedicated helper to generate
K1 following [5]. The corner point B is achieved by letting X1 be a dedicated helper to
generate K2 following [5]. We note that the point P may collapse to the point A if RC ≤ RA,
and the point Q may collapse to the point B if RC ≤ RB. It is thus sufficient to show the
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achievability of the points P and Q whenever they are different from the points A and B,
respectively. Then the entire pentagon can be achieved by time sharing.

For the point P, it can be observed that its rate coordinates are exactly the same as those in
Section 3.1, and can be shown to be achievable by the same scheme designed in Appendix A
for symmetric key generation with a trusted helper. The idea to achieve the point Q follows
the same achievable strategy as in Appendix A. Hence, the steps of codebook generation,
encoding and transmission, decoding and key generation are the same as the corresponding
steps in Appendix A, and are omitted here. In particular, Slepian-Wolf conditions (23)-(29)
guarantee the correct key establishment.

The secrecy requirement (6) here is different. Hence, we next derive sufficient conditions
for achieving secrecy requirement (6). Then these sufficient conditions need to be verified
for the point Q in all cases.

Secrecy: We evaluate the key leakage rates averaged over the random codebook ensemble.
Let f := f(Xn

1 ), g := g(Xn
2 ) and l := l(Xn

3 ). Then it is clear that F = {f, g, l}. We further
let φ := φ(Xn

1 ) and ψ := ψ(Xn
2 ). Hence, K1 = φ and K2 = ψ. We first derive

I(K1; F|C) = I(φ; f, g, l|C)
= I(φ; f |C) + I(φ; g, l|f, C)
≤ I(φ; f |C) + I(φ, f ; g, l|C), (91)

and

I(K2; F, X
n
1 |C) = I(ψ; f, g, l, Xn

1 |C)
= I(ψ; g, l,Xn

1 |C)
= I(ψ; g|C) + I(ψ; l, Xn

1 |g, C)
≤ I(ψ; g|C) + I(ψ, g; l|C) + I(ψ, g, l;Xn

1 |C). (92)

It can be shown as in [10, Appendix A] that if

R̃1 +R1 < H(X1)− 2δ(ε), (93)

then
1

n
I(φ; f |C) < δ(ε); (94)

and if
R̃2 +R2 < H(X2)− 2δ(ε), (95)

then
1

n
I(ψ; g|C) < δ(ε). (96)
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Furthermore,

I(g, ψ; l|C)
≤ I(g, ψ,Xn

2 ; l|C)
= I(Xn

2 ; l, Xn
3 |C)− I(Xn

2 ;Xn
3 |l, C)

= I(Xn
2 ;Xn

3 |C)− I(Xn
2 ;Xn

3 |l, C)
= H(Xn

3 |C)−H(Xn
3 |Xn

2 , C)−H(Xn
3 |l, C) +H(Xn

3 |Xn
2 , l, C)

≤ H(Xn
3 |C)−H(Xn

3 |Xn
2 , C)− [H(Xn

3 |C)− nR̃3] +H(Xn
3 |Xn

2 , l, C)
= n(R̃3 −H(X3|X2)) +H(Xn

3 |Xn
2 , l, C)

where we used the fact that H(Xn
3 |Xn

2 , C) = nH(X3|X2) due to the assumption of discrete
memoryless source.

It can be shown as in [10, Appendix A] that if

R̃3 ≤ H(X3|X2)− 2δ(ε), (97)

then

lim sup
n→∞

1

n
H(Xn

3 |Xn
2 , l, C) < H(X3|X2)− R̃3 + δ(ε). (98)

Consequently,
1

n
I(g, ψ; l|C) < δ(ε). (99)

We next consider the last term in (92):

I(ψ, g, l;Xn
1 |C)

= I(g, ψ, l,Xn
2 , X

n
3 ;Xn

1 |C)− I(Xn
2 , X

n
3 ;Xn

1 |g, ψ, l, C)
= I(Xn

2 , X
n
3 ;Xn

1 |C)− I(Xn
2 , X

n
3 ;Xn

1 |g, ψ, l, C)
≤ n(R̃2 +R2 + R̃3 −H(X2X3|X1)) +H(Xn

2X
n
3 |Xn

1 , g, ψ, l, C).

Similarly, it can be shown as in [10, Appendix A] that if

R̃2 +R2 + R̃3 < H(X2X3|X1)− 2δ(ε), (100)

then

lim sup
n→∞

1

n
H(Xn

2X
n
3 |Xn

1 , g, ψ, l, C) < H(X2X3|X1)− R̃2 −R2 − R̃3 + δ(ε).

Consequently,
1

n
I(g, ψ, l;Xn

1 |C) < δ(ε). (101)

Thus, (93), (95), (97) and (100) are sufficient conditions that guarantee the secrecy re-
quirements in (6).
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Uniformity: Uniformity of keys is due to properties of random binning and typicality.

We next show the achievability of the point Q, whose rate coordinates are given by (RC −
R′B, R

′
B). Corresponding to different source distributions, each of RC and R′B can take

one of the two mutual information terms given in (19) and (18), respectively. Hence, the
coordinates of the point Q can take four forms, i.e., case 1 with RC = I(X0;X1X2X3) and
R′B = I(X0;X2X3|X1); case 2 with RC = I(X0;X1X2X3) and R′B = I(X2;X0X3|X1); case 3
withRC = I(X0X3;X1X2) andR′B = I(X0;X2X3|X1); and case 4 withRC = I(X0X3;X1X2)
and R′B = I(X2;X0X3|X1). For each case, it is sufficient to set the rates R̃1, R1, R̃2, R2 and
R̃3 to satisfy the Slepian-Wolf conditions (23)-(29) for guaranteeing correct key agreement
and to satisfy the sufficient conditions (93), (95), (97) and (100) for guaranteeing secrecy.

Case 1: RC = I(X0;X1X2X3) and R′B = I(X0;X2X3|X1), which imply

H(X3|X1X2) < H(X3|X0), (102)

H(X3|X1X2) < H(X3|X0X1). (103)

The rate pair at the point Q is given by (I(X0;X1), I(X0;X2X3|X1)). To achieve this rate
pair, we set the binning rates in the achievable strategy as follows:

R̃1 = H(X1|X0) + ε, (104)

R1 = I(X0;X1)− 2δ(ε)− 2ε, (105)

R̃2 = H(X2X3|X0X1)−H(X3|X1X2) + 2δ(ε) + 2ε, (106)

R2 = I(X0;X2X3|X1)− 4δ(ε)− 3ε, (107)

R̃3 = H(X3|X1X2)− 2δ(ε)− ε. (108)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) if
R̃3 > H(X3|X0X1X2). Otherwise, the rate pair can be easily achieved without the helper’s
assistance. It can also be verified that the above rates (104)-(108) satisfy the secrecy condi-
tions (93), (95), (97) and (100).

Case 2: RC = I(X0;X1X2X3) and R′B = I(X2;X0X3|X1), which imply

H(X3|X1X2) < H(X3|X0), (109)

H(X3|X0X1) < H(X3|X1X2). (110)

The rate pair at the point Q is given by (I(X0;X1X3)− I(X2;X3|X1), I(X2;X0X3|X1)).
To achieve this rate pair, we set the binning rates in the achievable strategy as follows:

R̃1 = H(X1X3|X0)−H(X3|X1X2) + ε, (111)

R1 = I(X0;X1X3)− I(X2;X3|X1)− 2δ(ε)− 2ε, (112)

R̃2 = H(X2|X0X1X3) + ε, (113)

R2 = I(X2;X0X3|X1)− 4δ(ε)− 3ε, (114)

R̃3 = H(X3|X1X2) + ε. (115)
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It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29). In
particular, R̃1 > H(X1|X0X2X3) and R̃1 + R̃2 > H(X1X2|X0X3) hold due to (109), and
R̃2 + R̃3 > H(X2X3|X0X1) holds due to (110).

It can also be verified that the above rates (111)-(115) satisfy the secrecy conditions (93),
(95), (97) and (100). In particular, (97) holds under the following assumption

H(X2|X0X1X3) < H(X2|X1)− 2δ(ε)− 2ε. (116)

If the above assumption does not hold, then the Markov chain X2−X1−X0X3 holds, which
implies R2 = I(X2;X0X3|X1) = 0. The point Q coincides with the point B, which has been
justified to be achievable.

Case 3: RC = I(X0X3;X1X2) and R′B = I(X0;X2X3|X1), which imply

H(X3|X0) ≤ H(X3|X1X2), (117)

H(X3|X1X2) ≤ H(X3|X0X1). (118)

Then, we have H(X3|X0) ≤ H(X3|X1X2) ≤ H(X3|X0X1), which yields contradiction. Thus,
this case does not exist.

Case 4: RC = I(X0X3;X1X2) and R′B = I(X2;X0X3|X1), which imply

H(X3|X0) ≤ H(X3|X1X2), (119)

H(X3|X0X1) < H(X3|X1X2). (120)

The rate pair at the point Q is given by (I(X1;X0X3), I(X2;X0X3|X1)). To achieve this
rate pair, we set the binning rates in the achievable strategy as follows:

R̃1 = H(X1|X0X3) + ε, (121)

R1 = I(X1;X0X3)− 2δ(ε)− 2ε, (122)

R̃2 = H(X2|X0X1X3) + ε, (123)

R2 = I(X2;X0X3|X1)− 2δ(ε)− 2ε, (124)

R̃3 = H(X3|X0) + ε. (125)

It is easy to verify that the above rates satisfy the Slepian-Wolf conditions (23)-(29) and
the secrecy conditions (93), (95), (97) and (100).

D Proof of Theorem 4

Proof of Converse. First, if we need only to generate K1, the model reduces to the private
key generation problem over multiple terminals studied in [5]. The key capacity is shown
to be min{I(X1;X0X2|X3), I(X0;X1X2|X3)}, which serves as an upper bound (20) on R1.
Next, if we dedicate to generate K2, it also reduces to the private key model studied in [5].
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The key capacity is shown to be I(X2;X0|X1X3), which serves an upper bound (21) on R2.
For the sum rate bound, we consider an enhanced model which replaces terminals X1 and X2

with a super terminal Xs that observes both Xn
1 and Xn

2 . Then, the private key rate between
X0 and Xs is upper bounded by I(X0;X1, X2|X3) due to the private key model in [5], which
yields the sum rate bound (22).

Proof of Achievability. The key capacity region is illustrated in Fig. 8 as the pentagon O-A-
P-Q-B-O, where the coordinates of the points A and B are (min{I(X0;X1X2|X3), I(X1;X0X2|X3)}, 0)
and (0, I(X0;X2|X1X3)), respectively. The corner point A is achieved by letting X2 be a
dedicated helper to generate K1 following [5]. The corner point B is achieved by letting X1

be a dedicated helper to generate K2 following [5]. We note that the point P would collapse
to the point A if I(X0;X1X2|X3) ≤ I(X1;X0X2|X3), and the point Q would collapse to the
point B if I(X0;X1X2|X3) ≤ I(X2;X0|X1X3). It is thus sufficient to show the achievability
of the points P and Q whenever they are different from the points A and B, respectively.
Then the entire pentagon can be achieved by time sharing.

The idea to achieve the points P and Q follows the same achievable strategy described
in Appendix A. The steps of codebook generation, encoding and transmission, decoding
and key generation are the same as those in Appendix A, and are omitted here. In partic-
ular, Slepian-Wolf conditions (23)-(29) guarantee the correct key establishment. Since the
secrecy requirements given in (7) are different, we next develop the sufficient conditions that
guarantee (7), and then choose the binning rates to satisfy these sufficient conditions.

Secrecy: We evaluate the key leakage rates averaged over the random codebook ensemble.
Let f := f(Xn

1 ), g := g(Xn
2 ) and l := l(Xn

3 ). Then it is clear that F = {f, g, l}. We further
let φ := φ(Xn

1 ) and ψ := ψ(Xn
2 ). Hence, K1 = φ and K2 = ψ. We first derive

I(K1;X
n
3 ,F|C) = I(φ; f, g, l,Xn

3 |C)
= I(φ; f |C) + I(φ; g,Xn

3 |f, C)
≤ I(φ; f |C) + I(φ, f ; g,Xn

3 |C)
≤ I(φ; f |C) + I(φ, f ;Xn

3 |C) + I(φ, f ; g|Xn
3 , C), (126)

and

I(K2;X
n
1 , X

n
3 ,F|C) = I(ψ; f, g, l, Xn

1 , X
n
3 |C)

= I(ψ; g,Xn
1 , X

n
3 |C)

≤ I(ψ; g|C) + I(ψ, g;Xn
1 , X

n
3 |C). (127)

We next bound each of the five terms in (126) and (127). It can be shown as in [10, Appendix
A] that if

R̃1 +R1 < H(X1)− 2δ(ε), (128)

then
1

n
I(φ; f |C) < δ(ε); (129)

and if
R̃2 +R2 < H(X2)− 2δ(ε), (130)
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then
1

n
I(ψ; g|C) < δ(ε). (131)

To bound the second term in (126), we have

I(φ, f ;Xn
3 |C)

= I(Xn
1 ;Xn

3 |C)− I(Xn
1 ;Xn

3 |φ, f, C)
= H(Xn

1 |C)−H(Xn
1 |Xn

3 , C)−H(Xn
1 |φ, f, C) +H(Xn

1 |φ, f,Xn
3 , C)

≤ n[R̃1 +R1 −H(X1|X3)] +H(Xn
1 |φ, f,Xn

3 , C).

It can be shown as in [10, Appendix A] that if

R̃1 +R1 ≤ H(X1|X3)− 2δ(ε), (132)

then

lim sup
n→∞

1

n
H(Xn

1 |φ,Xn
3 , C) < H(X1|X3)−R1 + δ(ε), (133)

and consequently,
1

n
I(φ, f ;Xn

3 |C) < δ(ε). (134)

We observe that I(φ, f ; g|Xn
3 , C) ≤ I(Xn

1X
n
3 ;ψ, g|C) by simple calculation. Thus, it is

sufficient to only bound the last term in (127):

I(ψ, g;Xn
1 , X

n
3 |C)

= I(Xn
2 ;Xn

1 , X
n
3 |C)− I(Xn

2 ;Xn
1 , X

n
3 |ψ, g, C)

= H(Xn
2 |C)−H(Xn

2 |Xn
1 , X

n
3 , C)−H(Xn

2 |ψ, g, C)
+H(Xn

2 |g,Xn
1 , X

n
3 , C) +H(Xn

2 |ψ, g,Xn
1 , X

n
3 , C)

≤ n[R̃2 +R2 −H(X2|X1X3)] +H(Xn
2 |ψ, g,Xn

1 , X
n
3 , C). (135)

Similarly, it can be shown as in [10, Appendix A] that if

R̃2 +R2 ≤ H(X2|X1X3)− 2δ(ε), (136)

then

lim sup
n→∞

1

n
H(Xn

2 |g,Xn
1 , X

n
3 , C) < H(X2|X1X3)− R̃2 + δ(ε), (137)

and consequently,
1

n
I(ψ, g;Xn

1 , X
n
3 |C) ≤ δ(ε). (138)

Hence, (132) and (136) are the sufficient conditions that guarantee the secrecy requirements
given in (7).

We next show the achievability of the points P and Q. It can be shown that the binning
rates chosen to achieve the point P in Appendix B for symmetric key generation with an
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untrusted helper is applicable here to achieve the point P. To achieve the point Q, whose
coordinates are given by (I(X0;X1|X3), I(X0;X2|X1X3)), we set the binning rates in the
achievable strategy as follows:

R̃1 = H(X1|X0X3) + ε, (139)

R1 = I(X0;X1|X3)− 2δ(ε)− 2ε, (140)

R̃2 = H(X2|X0X1X3) + ε, (141)

R2 = I(X0;X2|X1X3)− 2δ(ε)− 2ε, (142)

R̃3 = H(X3|X0) + ε. (143)

It can be verified that the above rates satisfy the Slepian-Wolf conditions (23)-(29) and the
secrecy conditions (132) and (136).
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