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Abstract—We consider the problem of keyless message au-
thentication over noisy channels in the presence of an active
adversary. Different from the existing models, in our model, the
legitimate users do not have any pre-shared key for authentica-
tion. Instead, we use the noisy channel connecting the legitimate
users for authentication. The main idea is to utilize the noisy
channel connecting the legitimate users to distinguish a legitimate
message from a fake message, by generating an output at the
receiver that is difficult for the adversary to replicate through
its noisy channel. By interpreting the message authentication as
a hypothesis testing problem, we investigate the authentication
exponent and the authenticated channel capacity of the noisy
channel. In the authentication exponent problem, for a given mes-
sage rate, we investigate the speed at which the optimal successful
attack probability can be driven to zero. We fully characterize
the authentication exponent for the zero-rate message case and
provide both an upper bound and a lower bound on the exponent
for the non-zero message rate case. In the authenticated capacity
problem, we study the largest data transmission rate under which
the attacker’s optimal successful attack probability can still be
made arbitrarily small. We establish an all or nothing result. In
particular, we show that the authenticated channel capacity is the
same as the classic channel capacity if a simulatability condition
is not satisfied, while the authenticated capacity will be zero if
this condition is satisfied. We also provide efficient algorithms to
check this condition. We further show that our results are robust
to modeling uncertainties about the eavesdropper’s channels.

Index Terms—Authentication, authenticated capacity, authen-
tication exponent, hypothesis testing, K-L divergence, simulata-
bility condition.

I. INTRODUCTION

Message authentication is a fundamental concept in cryptog-
raphy in the presence of an adversary who intends to deceive
the legitimate receiver via sending fraudulent messages. It has
been investigated intensively from different perspectives [2]–
[14]. Most of existing works on authentication rely on a pre-
shared secret (in the form of a shared key or shared random-
ness) between the transmitter and the legitimate receiver. The
receiver uses this pre-shared secret to determine whether the
received message is authentic or not. Under this shared key
assumption, the authentication problem has been studied for
both noiseless and noisy channel models.

The authentication model over a noiseless channel was
developed by Simmons [5]. In this model, the communication
channel is assumed to be noiseless, and the transmitter Alice
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and the receiver Bob share a secret key K. In order to send a
message M to Bob, instead of transmitting M directly, Alice
transmits a codeword E = f(M,K) into the channel with f
being the encoding function used by Alice. Upon receiving
a codeword Ê (Ê = E if there is no attack; Otherwise, Ê
is determined by the adversary), Bob first needs to check
whether Ê is sent by Alice or not, based on the pre-shared
key K. In [5], two types of attacks were considered. The
first one is impersonation attack, in which the adversary Eve
sends the fake codeword before Alice transmits anything. The
impersonation attack is successful if the fake codeword is
accepted by Bob. The successful attack probability of this
attack is denoted by PI . The second one is substitution
attack, in which Eve initiates an attack after she observes
the codeword sent by Alice. In particular, Eve intercepts the
codeword sent by Alice (hence Bob does not receive this
codeword), and replaces the intercepted codeword with her
own attack codeword. The substitution attack is successful
if the codeword from Eve is accepted by Bob and decoded
into a message different from the message intended by Alice.
The successful attack probability of the substitution attack is
denoted as PS . [5] also established lower bounds for PI and
PS : PI ≥ 2−I(K;E), PS ≥ 2−H(K|E), where I(·; ·) is the
mutual information between its arguments and H(·|·) denotes
the conditional entropy of its arguments. It is clear that there
exists a tradeoff between making PI and PS smaller. To make
PI smaller, E should contain more information about the
shared key K, that is I(K;E) should be larger. However, this
makes the substitution attack easier (i.e., H(K|E) becomes
smaller), as E will be overheard by Eve perfectly over the
noiseless channel.

To overcome the tradeoff faced by the noiseless model
in [5], as a natural extension, [3] extended Simmons’s model
to a noisy channel model, in which Alice and Eve (also Alice
and Bob) are connected by noisy channels. The main idea
is that the noisy channel between Alice and Eve may prevent
Eve from learning information about K contained in E. In this
way, we can embed more information about K in E to make
the impersonation attack more difficult, while not making the
substitution attack easier as the noisy channel between Alice
and Eve may prevent Eve from learning information about
K. Using this idea, [3] showed that one can make PI and
PS to be simultaneously small under certain conditions. The
model in [3] was further expanded in [15] to include noisy
channel between Eve and Bob. The main observation is that the
noisy channel between Alice and Bob and the noisy channel
between Eve and Bob are different. And this difference can be
exploited to facilitate the authentication of users, along with
any pre-shared key.



In this paper, we consider a similar model as [15]: Alice,
Bob and Eve are all connected with one another by noisy
channels. Here we assume that Alice and Bob do not share
any secret key. We will mainly rely on the channel W (Y |X)
connecting Alice and Bob for authentication. In particular,
for any input probability mass function (PMF) PX generated
by Alice, we produce an output distribution at Bob PY =
W (Y |X)PX . The main idea is to properly choose PX so that
the produced PY is difficult (precise meaning will be made
clear in the sequel) for Eve to replicate through her noisy
channel to Bob. In this way, after receiving a sequence Y n,
Bob can perform a hypothesis testing to check whether this
sequence is generated from PY or not, which in return provides
Bob evidences of whether the message is authentic or not.
However, this hypothesis testing problem is more challenging
than the classic hypothesis testing problems [16], in which
each element of Y n is typically assumed to be independently
and identically generated from a certain PMF under each
hypothesis. In our case, each element is not necessarily in-
dependent nor identically distributed. More importantly, the
distribution under the alternative hypothesis, in which there is
an attack, is totally controlled by the attacker (via the selection
of the attack sequence) and can be arbitrary. Despite this
challenge, we study and solve two closely related questions
using this problem formulation.

In the first question, we focus on characterizing the optimal
authentication exponent. In particular, for a given message
rate, we investigate how to design the system so that the suc-
cessful attack probability under Eve’s optimal attack strategy is
as smaller as possible. The speed at which the successful attack
probability goes to zero is called the authentication exponent.
We derive an upper bound as well as a lower bound on the
authentication exponent. We show that the upper bound and
the lower bound match in the zero-rate case. In the nonzero-
rate scenario, we also identify some cases in which the upper
and lower bound match. Hence the optimal authentication
exponent is fully characterized in these cases.

In the second question, we focus on characterizing the
authenticated capacity. In particular, we study what the largest
data transmission rate is such that we can still design schemes
to make Eve’s successful attack probability arbitrarily small.
We call such largest rate as the authenticated capacity. Com-
pared with the classic definition of channel capacity, the
authenticated capacity has an additional requirement that the
decoded messages are guaranteed to come from the legitimate
transmitter. We show an “all or nothing” result on the authen-
ticated capacity. In particular, we show that if a “simulatability
condition” is satisfied, the authenticated capacity is zero.
On the other hand, if this condition is not satisfied, the
authenticated capacity is the same as the classic notion of
capacity. We also design efficient algorithms to check the
simulatability condition for any given channels. We further
extend our study to the authenticated secrecy capacity and
show a similar “all or nothing” result.

We would like to mention that the case without any shared
key is also briefly discussed in [15]. In addition, Our work
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is related to recent papers on authentication exploiting the
channel intrinsic randomness as well as the properties of
channel reciprocity [17]–[21]. These papers also studied the
authentication problem without using any pre-shared key, and
proposed various novel authentication schemes to exploit the
different channel statistics associated with different channels
for authentication. Compared with these interesting papers,
in this paper, we characterize the fundamental limits of such
systems by providing a more detailed and refined analysis.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model. In Section III,
we analyze the relationship between two types of attacks.
In Section IV, we focus on characterizing the authentication
exponent. In Section V, we characterize the authenticated
capacity. Finally, in Section VI, we offer our concluding
remarks.

Notation: We use Xn, Y n and Zn to denote the sequences
generated or observed at Alice, Bob and Eve, respectively.
Matrix W (Y |X) is reserved as the channel statistics from
Alice to Bob. U(F |X) and V (Y |Z) are defined in a similar
manner. Furthermore, for any given sequence Xn ∈ Xn, the
relative frequencies

(
n1

n , · · · ,
n|X|
n

)
where ni,∀i ∈ X is the

total number of indices j ∈ [1 : n] at which Xj = i, is called
the type of Xn and is denoted by tp(Xn). We use P or Q to
denote the PMF of a certain random variable, TY to denote the
set of types of all sequences Y n, and T nY (PY ) to denote the
set of sequences Y n with tp(Y n) = PY . We use P to denote
the set of all possible distributions. For example, PX denotes
the set of all possible distributions of random variable X . In
addition, we denote Qn(A) := Pr{Y n : Y n ∈ A|Y iid

v Q},
in which Y

iid
v Q means that each component of Y n is

independently and identically distributed (i.i.d.) according to
Q. Here, if A = T nY (PY ), we write it as Qn(PY ) in short.

II. PRELIMINARIES AND PROBLEM SETUP

The model considered in this paper is illustrated in Fig.1.
Two terminals, Alice and Bob, would like to communicate
with each other in the presence of an active adversary Eve.
Alice and Bob do not share any secret key. Let X =:
{1, · · · , |X |}, Y =: {1, · · · , |Y|}, Z =: {1, · · · , |Z|}, and
F =: {1, · · · , |F|} be four finite discrete sets, which represent
the input alphabet set of Alice, the output alphabet set of Bob,
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the input alphabet set and the output alphabet set of Eve,
respectively. These three users are connected with one an-
other by three noisy discrete memoryless channels W (Y |X),
U(F |X) and V (Y |Z), which connect Alice and Bob, Alice
and Eve, as well as Eve and Bob respectively. Here, W (Y |X)
is an |Y|×|X |matrix, with each column i, denoted by W (Y |i),
representing the output distribution at Bob when the input is
X = i. Other channel matrices are defined in a similar manner.

In this paper, we assume that W (Y |X) is perfectly known.
As it will be clear in the sequel, most of our schemes
are universal with respect to Eve’s channels U(F |X) and
V (Y |Z). More specifically, with the exception of a particular
scheme in Section V, most of our schemes do not depend
on any knowledge about U(F |X) and V (Y |Z). Furthermore,
we will show that the particular scheme in Section V is
robust against the uncertainty of the knowledge of V (Y |Z).
Hence, even for that particular scheme, we do not need perfect
knowledge of V (Y |Z).

Alice would like to send a message M ∈ [1 : |M |] to Bob.
She will use an encoder φ to convert M to a certain codeword
Xn and transmit it via the channel W (Y |X). However, Eve
is an active attacker, and is assumed to be able to intercept
the transmission of Xn such that Bob does not receive Y n

from the channel W (Y |X) if Eve initiates the attack. This is a
typical assumption in the authentication literature [2]–[14] and
represents the worst case scenario from the legitimate users’
perspective. Furthermore, Eve can falsify messages and send
them to Bob via the channel V (Y |Z), based on her optimal
strategy, to cheat Bob (details of the attacks considered will be
made precise in the sequel). Thus, after observing a sequence
Y n, Bob first needs to check the identity of Y n: whether it is
transmitted from Alice or faked by Eve. In particular, Bob will
use a tester ψ to determine which of the following hypothesis
is true:

H0 : Y n comes from Alice, no attack occurs, (1)
H1 : Y n comes from Eve, an attack occurs. (2)

If Bob determines that H0 is true, he will then use a decoder
ϕ to decode Y n and obtain a decoded message M̂ = ϕ(Y n).

In summary, the system consists of the following compo-
nents:

Encoder φ : M → Xn, (3)
Tester ψ : Y n → H0 or H1, (4)
Decoder ϕ (if Bob determines H0) : Y n → M̂. (5)

For a given ψ, the acceptance region is defined by

An = {yn ∈ Yn : ψ(yn) = H0}.

Following the existing work on authentication [2]–[10], two
types of attacks are considered:
• Impersonation attack gI : This attack occurs before Alice

sends anything. In particular, Eve uses an attack strategy
gI to select a sequence Zn and sends it into the channel
V (Y |Z) to cheat Bob. We use PV(Zn) to denote the
output at Bob when Eve sends Zn. The impersonation

attack is said to be successful if Bob decides H0. We use
PI to denote the success probability of the impersonation
attack, i.e., PI = Pr(PV(Zn) ∈ An).

• Substitution attack gS : This attack occurs after Alice
sends a codeword Xn = φ(M). In this attack, Eve
intercepts the communication between Alice and Bob
such that Bob receives no sequence from the channel
W (Y |X). Then Eve sends a sequence Zn = gS(Fn) to
Bob via the channel V (Y |Z) based on the observations
Fn obtained from the channel U(F |X) connecting Alice
and Eve. The attack is successful if Bob decides H0 and
the decoded message is different from the message sent
by Alice. We use PS to denote the success probability
of the substitution attack, i.e., PS = Pr(PV(Zn) ∈
An and M̂ 6= M).

The goal of the attacker is to design the attack strategies gI
and gS to maximize its successful attack probability

PSA := max{PI , PS}. (6)

If there is no attack (i.e., when H0 is true), two classes
of errors could occur at Bob. The first class is the false
rejection error, in which Bob falsely determines that an attack
has occurred. This error probability is denoted by Pr(H1|H0).
The second class is that Bob correctly determines that there
is no attack but incorrectly decodes the message. This error
probability can be written as Pr{M̂ 6= M,H0|H0}.

Definition 1. A protocol (φ, ψ, ϕ) is called (ε, σ)-robust, if

max
M

{
Pr{M̂ 6= M,H0|H0}+ Pr(H1|H0)

}
≤ ε, (7)

max
gI ,gS

PSA ≤ σ. (8)

Furthermore, Rm is said to be achievable using an (ε, σ)-
robust protocol, if

1

n
log |M | ≥ Rm − ε. (9)

Here, (7) implies that, if there is no attack, the maximum
error probability over all messages is required to be smaller
than ε. At the same time, (8) implies that, if there is an attack,
the success probability of Eve’s optimal attack strategy is less
than σ. In other words, if there is an attack, Bob should detect
the presence of the attack with a probability larger than 1−σ.
With these definitions, two related problems are considered in
this paper:
• Authentication Exponent: For given Rm and ε, how fast

can we make PSA go to zero?

• Authenticated Capacity: What is the largest message rate
Rm that a robust protocol can achieve?

A. Authentication Exponent

Define

βn(Rm, ε) = min
φ,ψ,ϕ

max
gI ,gS

PSA,
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where φ, ψ and ϕ range over all possible functions satisfying
(7) and (9). Furthermore, we define

θ(Rm, ε) = lim inf
n→∞

− 1

n
log βn(Rm, ε). (10)

Here, θ(Rm, ε) is the exponent (rate) at which the successful
attack probability goes to zero as the block-length n increases.

Similarly, we can define

βI(Rm, ε) = min
φ,ψ,ϕ

max
gI

PI , (11)

θI(Rm, ε) = lim inf
n→∞

− 1

n
log βI(Rm, ε), (12)

for the impersonation attack, and

βS(Rm, ε) = min
φ,ψ,ϕ

max
gS

PS , (13)

θS(Rm, ε) = lim inf
n→∞

− 1

n
log βS(Rm, ε), (14)

for the substitution attack.
In this problem, our goal is to characterize θ(Rm, ε).

B. Authenticated (Secrecy) Capacity

In the authenticated capacity problem, we would like
to characterize the authenticated capacity of the channel
W (Y |X):

C∗ = sup
φ,ψ,ϕ

Rm,

in which the sup is taken over all φ, ψ, ϕ that satisfy (7)
and (8) for arbitrarily small ε, σ. Compared with the classic
definition of channel capacity C, the authenticated capacity
has an additional requirement that the decoded messages are
guaranteed to come from the legitimate transmitter. Clearly,
we have that C∗ ≤ C.

In addition, we would also like to characterize the authen-
ticated secrecy capacity C∗S , which is defined as the largest
achievable rate such that (7) and (8) are satisfied and

1

n
I(M ;Fn) ≤ ε.

Again, compared with the classic definition of secrecy capacity
CS [22], our definition of authenticated secrecy capacity has
the additional requirement that the accepted messages are
guaranteed to come from the legitimate transmitter. Hence,
we also have C∗S ≤ CS .

III. IMPERSONATION ATTACK VS SUBSTITUTION ATTACK

In this section, we first analyze the relationship between
the success probabilities of the impersonation attack and the
substitution attack. This analysis illustrates that we can focus
only on the impersonation attack, which can greatly simplify
the presentation of the paper.

Theorem 1. If |M | > 1, we have

θ(Rm, ε) = θI(Rm, ε) = θS(Rm, ε). (15)

Proof: We first prove the second equality. For the substi-
tution attack, suppose a sequence Xn is transmitted by Alice,
and Eve observes a corresponding sequence Fn, then we have

βS(Rm, ε) = min
φ,ψ,ϕ

max
gS(Fn)

PS

= min
φ,ψ,ϕ

max
gS(Fn)

Pr(PV(Zn) ∈ An, M̂ 6= M)

≤ min
φ,ψ,ϕ

max
gS(Fn)

Pr(PV(Zn) ∈ An)

≤ min
φ,ψ,ϕ

max
gS(Xn)

Pr(PV(Zn) ∈ An)

≤ min
φ,ψ,ϕ

max
Xn

max
gS(Xn)

Pr(PV(Zn) ∈ An)

(a)

≤ min
φ,ψ,ϕ

max
gI

PI

= βI(Rm, ε). (16)

Here, step (a) can be justified as follows. First, we note
that the difference between the impersonation attack and the
substitution attack lies in whether or not Eve observes the
sequence Fn from the channel U(F |X) before selecting the
optimal attack sequence Zn. Based on this observation, then
for any given φ, ψ, ϕ and substitution attack strategy, we can
construct a corresponding impersonation attack strategy as
follows. Eve assumes that a codeword X̃n was transmitted
by Alice and then generates F̃n using U(F |X). With this
F̃n, Eve then makes the corresponding substitution attack. As
Alice does not share a key with Bob in our model, Eve can
generate X̃n in the same manner as Alice generates Xn (in the
model with key considered in the existing work, Eve cannot
do this as she does not know the key value shared by Alice
and Bob), F̃n will have the same statistics as Fn. Since this
is a particular impersonation attack strategy, we have

max
X̃n

max
gS(X̃n)

Pr(PV(Zn) ∈ An)

≤ max
gI

Pr(PV(Zn) ∈ An),

which indicates

min
φ,ψ,ϕ

max
Xn

max
gS(Xn)

Pr(PV(Zn) ∈ An)

≤ min
φ,ψ,ϕ

max
gI

Pr(PV(Zn) ∈ An)

= min
φ,ψ,ϕ

max
gI

PI .

Thus, we have

θS(Rm, ε) ≥ θI(Rm, ε). (17)

Now, we show the other direction. The following is a valid
substitution attack strategy: Given φ, ψ and ϕ, no matter
what Fn Eve observes from U(F |X), she simply ignores
Fn, and uses the corresponding optimal impersonation attack
strategy to pick the attack sequence Zn. We use P ∗S to denote
the success probability of this particular substitution attack
strategy, and we have

P ∗S =

(
1− 1

|M |

)
max
gI

PI ,
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with given φ, ψ and ϕ. Thus,

βS(Rm, ε) = min
φ,ψ,ϕ

max
gS

PS

≥ min
φ,ψ,ϕ

P ∗S

=

(
1− 1

|M |

)
min
φ,ψ,ϕ

max
gI

PI

=

(
1− 1

|M |

)
βI(Rm, ε), (18)

which implies

θS(Rm, ε) ≤ θI(Rm, ε). (19)

Combining (17) with (19), we have

θS(Rm, ε) = θI(Rm, ε).

To show the first equality of (15), we have

βn(Rm, ε) = min
φ,ψ,ϕ

max
gI ,gS

PSA

= min
φ,ψ,ϕ

max
gI ,gS

max{PI , PS}

= min
φ,ψ,ϕ

max{max
gI ,gS

PI ,max
gI ,gS

PS}

= min
φ,ψ,ϕ

max{max
gI

PI ,max
gS

PS}

(a)
= min

φ,ψ,ϕ
max
gI

PI

= βI(Rm, ε),

where step (a) is true due to (16). Thus,

θ(Rm, ε) = θI(Rm, ε).

Remark 1. This result shows that we can focus on analyzing
the successful attack probability as well as its exponent based
on the impersonation attack, as θ(Rm, ε) = θI(Rm, ε) =
θS(Rm, ε) and

0 ≤ βI(Rm, ε)− βS(Rm, ε) ≤
1

|M |
βI(Rm, ε), (20)

which is true due to (18). The difference in (20) is a relatively
small number, which has no influence on the authentication
exponent analyzed in Section IV even when |M | is finite. In
addition, this difference will not affect the capacity result
analyzed in Section V, since in that case βI(Rm, ε) is an
arbitrarily small number.

Remark 2. Here, we would like to compare this result with
the result in the classic authentication setup [5], in which
there exists a tradeoff between PI and PS as mentioned in the
introduction: PI ≥ 2−I(K;E), PS ≥ 2−H(K|E). As discussed
above, in the classic authentication setup, the authentication
is based on the pre-shared key information. In the case with
a shared key, the codeword E sent by Alice will contain
information of K, which will be useful for Eve to carry out the
substitution attack. In fact, the information about K contained
in E is the main reason for the existence of a tradeoff between
PI and PS in the classic setup. If E contains more information

about K, the impersonation attack will be more difficult (PI ↓)
but the substitution attack will be easier (PS ↑). Similarly, if
E contains less information about K, PI ↑ while PS ↓. In
our setup, there is no shared key, hence the codeword Xn

sent by Alice does not carry any identification information
and Eve can simply generate it by herself. In particular,
when Alice sends nothing (thus the corresponding attack is
an impersonation attack), Eve can construct an impersonation
attack strategy by assuming a sequence X̃n was sent by Alice
and using the corresponding substitution attack toward this
X̃n.

We note that, when M = 1, there is no substitution attack
as there is no any other message for the attacker to substitute
with. In this case, βS(Rm, ε) = 0 and the corresponding
θS(Rm, ε) is not defined while βI(Rm, ε) can still be positive
with well defined θI(Rm, ε). This case will be analyzed in
Theorem 2 below. Furthermore, we can easily conclude that
θ(Rm, ε) = θI(Rm, ε) still holds.

IV. AUTHENTICATION EXPONENT

In this section, for a given Rm and ε, we focus on char-
acterizing the authentication exponent θ(Rm, ε). We will first
focus on the zero-rate case, in which Rm = 0, and then focus
on the positive rate case.

A. Authentication of Zero-Rate Messages

To illustrate the main proof ideas, we first study the case of
authentication for zero-rate messages: |M | is finite, or infinite
but

Rm =
1

n
log |M | → 0,

as n → ∞. As discussed in Remark 1, it is sufficient to
characterize θI(0, ε).

Before deriving θI(0, ε), we first analyze a special case:
the case of single message, i.e., |M | = 1. In the single
message case, the decoding step ϕ is not needed, hence the
term Pr{M̂ 6= M,H0|H0} vanishes and (11) becomes

βI(01, ε) = min
φ,ψ

max
gI

PI ,

with 01 denoting the fact that |M | = 1. We also use θI(01, ε)
to denote the corresponding exponent.

We have the following three elements:
• From Alice’s perspective, it needs to design φ. In this

case, it is equivalent to deciding which Xn to use as the
codeword.

• From Bob’s perspective, it needs to design ψ for the
following hypothesis testing problem:

H0 : Y n ∼ PW (Xn),

H1 : Y n ∼ PV (Zn),

in which PW(Xn) denote the output at Bob when Alice
sends Xn. However, it is more challenging than the
classic hypothesis testing problem [16], in which Yi, i =
1, · · · , n are typically assumed to be independently and
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identically generated from a certain PMF under each
hypothesis. In our case, Yi is not necessarily independent
nor identically distributed for different i. More impor-
tantly, the distribution under H1 is totally controlled by
the attacker (via the selection of the attack sequence Zn)
and can be arbitrary.

• From Eve’s perspective, its goal is to design gI and the
corresponding attack sequence Zn to maximize the error
probability.

Taking the above three elements into consideration, we have
the following result.

Theorem 2.

θI(01, ε) = max
i∈X

min
PZ,i∈PZ

D(PY,i||QY,i), (21)

in which

PY,i = W (Y |i), (22)

QY,i =
∑
j∈Z

V (Y |j)PZ,i(j), (23)

PZ,i is some distribution of Z for each i ∈ X , and D(·||·) is
the Kullback-Leibler (KL) distance between its arguments.

To simplify the presentation of the proof of Theorem 2, we
first introduce a concept and its property from [23].

Definition 2 ( [23]). Let X be a random variable with PMF
P . For a given r ≥ 0, a sequence Xn is called a r-divergent
sequence for P if

D(tp(Xn)||P ) ≤ r.

We also denote the set of all r-divergent sequences for P as
Snr (P ).

Lemma 1 ( [23]). Fix r ≥ 0, then

Pn(Snr (P )) ≥ 1− (n+ 1)|X | exp(−nr).

Now, we proceed to our proof of Theorem 2.
Proof of Theorem 2: The proof has two major steps: 1)

Step 1: For any given φ, we characterize the optimal ψ, gI and
the corresponding error exponent; 2) Step 2: Characterize the
optimal φ.
Step 1: Characterizing optimal ψ and gI for any given
φ: In this step, we suppose φ is fixed (i.e., the codeword
Xn for the message is given), and assume tp(Xn) = PX .
Analyzing this case involves two phases. In the first phase, we
show that we can construct ψ such that βI(01, ε) goes to zero
exponentially with a rate min

{PZ,i}i∈X

∑
i

PX(i)·D(PY,i||QY,i). In

the second phase, we show there is no scheme that can achieve
an exponent larger than min

{PZ,i}i∈X

∑
i

PX(i) ·D(PY,i||QY,i).

Step 1.1: For a given φ, construct a particular ψ and
characterize the corresponding optimal attack strategy
gI : Fix a selected codeword Xn with type tp(Xn) = PX .
We need to characterize which attack sequences Zn are
optimal to minimize the error exponent. All our analysis is
based on separating Xn into |X | sub-sequences such that

Xn: 1 3 2 1 2 · · · 3 1 1 2

1 1 · · · 1 1 2 2 · · ·Xn1: Xn2:
· · · · · ·

Y n: y1 y2 y3 y4 y5 · · · yn−3yn−2yn−1 yn

y1 y4 · · · yn−2yn−1 y3 y5Y n1: Y n2:
· · ·

· · ·
Zn: z1 z2 z3 z4 z5 · · · zn−3zn−2zn−1 zn

z1 z4 · · · zn−2zn−1 z3 z5Zn1: Zn2:
· · ·

· · ·

Fig. 2. An illustration of the 1th segment for a general sequence Xn.

each element within the same sub-sequence has the same
realization. Thus, without any loss of generality, we assume
Xn = 1n12n2 · · · |X |n|X| , in which ni = nPX(i), i ∈ X . In
the following, we denote the positions of ini in Xn as the ith
segment. For a general Xn, the sequence in the ith segment
is denoted by Xni . And Y ni and Zni are defined in the same
manner, see Fig. 2.

In the ith segment, since Xni = ini and that the chan-
nel W (Y |X) is memoryless, Y ni obtained by passing Xni

through the channel W (Y |X) can be seen as generated i.i.d.
according to PY,i := W (Y |i). Now, we set the acceptance
region, which in return determines ψ, as

An(Xn) = {Y n1 · · ·Y n|X| : Y ni ∈ Ai, i ∈ X}, (24)

in which
Ai := Sni

r (PY,i)

is defined in the ith segment with

r = max
i∈X
− 1

ni
log

ε

|X |
(ni + 1)−|X|. (25)

With this r, we have, according to Lemma 1, that

Pni

Y,i(S
ni
r (PY,i)) ≥ 1− ε

|X |
,∀i ∈ X .

Then, we have

Pr{An(Xn)|Xn} ≥
∏
i∈X

(
1− ε

|X |

)
> 1− ε.

Thus,

Pr(H1|H0) ≤ ε.

Hence using this particular ψ, the constraint (7) is satisfied.
In the following, we analyze the successful attack probabil-

ity and characterize the optimal gI (equivalently the optimal
choice of the attack sequence Zn) for this particular ψ. For
any sequence Zn0 selected by Eve, we denote the successful
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attack probability as Pr{An(Xn)|Zn0 }. We realize that, due to
the symmetric construction of An(Xn), we have

Pr{An(Xn)|Zn0 } =
∏
i∈X

Pr{Ai|Zni
0 }.

To further analyze this probability, we need the following
lemma whose proof is provided in Appendix B.

Lemma 2. Set the acceptance region of a k length sequence
Y k as Skr (PY ), then the successful attack probability of any
sequence Zk0 via channel V (Y |Z) is upper bounded by

Pr{Skr (PY )|Zk0 } ≤ (k + 1)|Y|+|Z|2−k(D(PY ||QY )−δ(r)),

where QY =
∑
j∈Z

V (Y |j) · PZ(j) with PZ := tp(Zk0 ).

Using Lemma 2 and let tp(Zni
0 ) = PZ,i, we have

Pr{Ai|Zni
0 } ≤ n|Y|+|Z|2−ni(D(PY,i||QY,i)−δ(r)). (26)

Thus, we have

Pr{An(xn)|Zn0 }
≤ n|X |(|Y|+|Z|)

∏
i∈X

2−ni(D(PY,i||QY,i)−δ(r))

= n|X |(|Y|+|Z|)2

∑
i
−ni(D(PY,i||QY,i)−δ(r))

= n|X |(|Y|+|Z|)2−n(
∑
PX(i)D(PY,i||QY,i)−δ(r)),(27)

which implies

− 1

n
log Pr{An(xn)|Zn0 } ≥

∑
PX(i)D(PY,i||QY,i)

−δ(r)− |X |(|Y|+ |Z|)
n

log n. (28)

Inequality (28) implies that for our particular choice of ψ as
specified in (24), the smallest exponent that Eve can hope for
is

min
{PZ,i}i∈X

∑
PX(i)D(PY,i||QY,i). (29)

Now, we show that Eve can indeed achieve (29). Let PZ∗,i
be the minimizer for (29) and Q∗Y,i be the corresponding value
computed from (23). Similarly as (69), we also have, from
Lemma 6 in Appendix A, that ∀ tp(Y ni) : T ni

Y (tp(Y ni)) ⊆
Sni
r (PY,i),

D(tp(Y ni)||Q∗Y,i) ≤ D(PY,i||Q∗Y,i) + δ(r),

in which δ(r) goes to zero as r decreases. Thus,

Q∗,ni

Y,i (Ai) ≥ Q∗,ni

Y,i (tp(Y ni))

(a)

≥ 1

(ni + 1)|Y|
2−niD(tp(Y ni )||Q∗Y,i)

≥ 1

(n+ 1)|Y|
2−ni(D(PY,i||Q∗Y,i)+δ(r)), (30)

in which (a) is due to Theorem 11.1.4 in [24]. Now, consider
a particular attack strategy g∗I , in which Eve generates Zni

i.i.d. according to PZ∗,i in the ith segment, ∀i ∈ X . With this
particular attack strategy, from (30), the success probability is

P ∗I ≥
1

(n+1)|X ||Y|
2
−n(

∑
i∈X

PX(i)D(PY,i||Q∗Y,i)+δ(r))

, (31)

which implies that

− 1

n
logP ∗I ≤

∑
i∈X

PX(i)D(PY,i||Q∗Y,i)

+δ(r)− |X ||Y|
n

log n. (32)

As both δ(r) and − |X ||Y|n log n go to zero as n increases, we
conclude that g∗I achieves (29), the best Eve can hope for.
Hence, for our particular choice of ψ, g∗I is the optimal attack
strategy.
Step 1.2: Show ψ constructed in Step 1.1 is optimal:
Consider any acceptance region An with Pr{An|Xn} ≥
1 − ε, we will show that the particular attack strategy g∗I
discussed above will achieve an exponent specified in (29).
Here Pr{An|Xn} ≥ 1−ε is due to the fact that Pr{An|Xn} =
1− Pr(H1|H0) as well as the requirement defined by (7). We
denote the set of the ith segment sequences of Y n ∈ An by
Ai, i ∈ X . Then we have

1− ε ≤ Pr{An|Xn}
=

∑
Y n∈An

Pr{Y n|Xn}

=
∑

Y n∈An

∏
i∈X

Pr{Y ni |ini}

=
∑

Y n∈An

∏
i∈X

Pni

Y,i(Y
ni)

=
∑

Y nk∈Ak

∑
Y n\nk∈A \Ak

Pnk

Y,k(Y nk)
∏

i∈X\k

Pni

Y,i(Y
ni)

=
∑

Y nk∈Ak

Pnk

Y,k(Y nk)
∑

Y n\nk∈A \Ak

∏
i∈X\k

Pni

Y,i(Y
ni)

≤
∑

Y nk∈Ak

Pnk

Y,k(Y nk)

= Pr{Ak|(X = k)nk}.

Now, consider the attack strategy g∗I discussed above. Using
Lemma 7 in Appendix A, we have

Qnk

Y,k(Ak) ≥ (1− 2ε)2−nk(D(PY,k||Q∗Y,k)+ε).

Then, it follows

P ∗I ≥
∏
i∈X

(1− 2ε)2−ni(D(PY,i||Q∗Y,i)+ε)

= (1− 2ε)|X |2

∑
i∈X
−ni(D(PY,i||Q∗Y,i)+ε)

= (1− 2ε)|X |2
−n
( ∑

i∈X
PX(i)D(PY,i||Q∗Y,i)+ε

)
.

Since P ∗I is obtained by the particular attack strategy g∗I , it
must be less or equal to that from the optimal attack strategy
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(denote the optimal attack sequence by Z?n)with respect to
An, i.e. Pr{An|Z?n} ≥ P ∗I . Thus, we have

− 1

n
log Pr{An|Z?n}

≤
∑
i∈X

PX(i)D(PY,i||QY,i) + ε− |X |
n

log(1− 2ε). (33)

Combining (28) and (33) with the fact that Eve can always
select a Zn with the optimal types {PZ,i}i∈X in corresponding
segments, we conclude that the exponent of the successful
attack probability when Xn is given, denoted by θI(Xn), is

θI(X
n) = min

{PZ,i}i∈X

∑
i

PX(i) ·D(PY,i||QY,i).

Step 2: Characterize the optimal φ: Now, we optimize over
φ. We obtain

θI(01, ε) = max
Xn

θI(X
n) = max

PX

θI(X
n)

= max
PX

min
{PZ,i}i∈X

∑
i

PX(i) ·D(PY,i||QY,i)

= max
i∈X

min
PZ,i

D(PY,i||QY,i),

in which the last step is true as
∑
i

PX(i) ·D(PY,i||QY,i) is a

linear function of PX(i), i = 1, · · · , |X |. This completes the
proof.

Remark 3. According to Theorem 2.7.2 of [24],
D(PY,i||QY,i) is convex in the pair (PY,i, QY,i). Thus,
for a fixed PY,i, we know that D(PY,i||QY,i) is convex
in QY,i. In addition, QY,i is linear in PZ,i according to
(23), we can conclude that D(PY,i||QY,i) is convex in PZ,i
(See Chapter 2 in [25]). Hence, min

PZ,i

D(PY,i||QY,i) with

constraints (22) and (23) is a convex optimization problem,
which can be solved efficiently.

Having obtained θI(01, ε) of the single message case, we
can easily generalize it to the case of multiple messages with
zero-rate.

Theorem 3. For the zero-rate case, we have

θI(0, ε) = θI(01, ε).

Proof: First, we show

θI(0, ε) ≤ θI(01, ε) = max
i∈X

min
PZ,i

D(PY,i||QY,i).

For the multiple messages case, we again require
Pr(H1|H0) ≤ ε. Meanwhile,

Pr(H1|H0) =

|M |∑
i=1

P (M = i)Pr(H1|H0,M = i).

As a result, there must exist at least one m ∈ [1 : |M |], such
that Pr(H1|H0,M = m) ≤ ε. If we focus on the message
M = m, it has the same requirements as the single message
case. Thus, we can conclude that

θI(0, ε) ≤ max
i∈X

min
PZ,i

D(PY,i||QY,i).

In the following, we show that we can construct a
scheme to achieve max

i∈X
min
PZ,i

D(PY,i||QY,i). Let i0 =

arg max
i∈X
{min
PZ,i

D(PY,i||QY,i)}. Since 1
n log |M | n→∞−→ 0, there

exist arbitrarily small nonnegative numbers {εi}i∈X\{i0},
when n is sufficiently large, such that 2nI(X

∗;Y ) > |M |, where
the distribution of X∗ is given by

P ∗X := [ε1, · · · , εi0−1, 1− ε0, εi0+1, · · · , ε|X |]T ,
with ε0 :=

∑
i6=i0

εi. (34)

Now, we use P ∗X defined above to do channel coding as that in
[24, Chapter 7]: Generate |M | sequences as codewords, and set
the acceptance region be An := Tnε (Y ), in which the typical
set is defined with respect to PY =

∑
i∈X

P ∗X(i)W (Y |i). Thus,

we can easily verify that (7) is satisfied. For any sequence Zn0
selected by Eve, we denote the successful attack probability
as Pr{An|Zn0 }. We realize that, for any given value ε > 0,
there exists an r, with r vanishing as ε goes to zero, such that

An ⊆ Snr (PY ),

which implies that

Pr{An|Zn0 } ≤ Pr{Snr (PY )|Zn0 }.

Using Lemma 2, we have

Pr{Snr (PY )|Zn0 } ≤ (n+ 1)|Y|+|Z|2−n(D(PY ||QY )−δ(r)),

Thus, it follows that

θI(0, ε) ≥ D(PY ||QY )− δ(r)− |Y|+ |Z|
n

log(n+ 1)

:= min
PZ

D(PY ||QY )− ε′

= D(PY ||Q∗Y )− ε′
(a)

≥ D(PY,i0 ||Q∗Y )− δ(ε′)
≥ min

PZ

D(PY,i0 ||QY )− δ(ε′)

= min
PZ,i0

D(PY,i0 ||QY,i0)− δ(ε′)

= max
i∈X

min
PZ,i

D(PY,i||QY,i)− δ(ε′),

where QY =
∑
j∈Z

PZ(j)V (Y |j), Q∗Y := arg min
QY

D(PY ||QY ),

and (a) is true due to Lemma 6 in Appendix A, since
D(PY ||PY,i0) ≤ δ(ε0) because of (34).

Hence, we conclude that

θI(0, ε) = max
i∈X

min
PZ,i

D(PY,i||QY,i).

This completes the proof.

B. Authentication of Nonzero-Rate Messages

In this subsection, we deal with the case with Rm > 0,
which is a much more complicated scenario compared to
the single message case. We first provide an upper bound
and a lower bound on the exponent of the successful attack
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probability. We then provide conditions under which the upper
and the lower bounds match with each other.

Theorem 4. Let PY =
∑
i∈X

PX(i)W (Y |i) and QY =∑
j∈Z

PZ(j)V (Y |j), we have

θI(Rm, ε) ≤ min
PZ

max
PX∈PR

D(PY ||QY ), (35)

θI(Rm, ε) ≥ max
PX∈PR

min
PZ

D(PY ||QY ), (36)

in which

PR := {PX ∈ PX : I(X;Y ) ≥ Rm}.

Proof:
This proof has two main parts: First, we will show

that, min
PZ

max
PX∈PR

D(PY ||QY ) is an upper bound on the

authentication exponent of any scheme; Second, we will
construct a scheme to achieve an authentication exponent
max
PX∈PR

min
PZ

D(PY ||QY ).

Upper-bounding the authentication exponent for any
scheme by (35): Consider an arbitrary triplet (φ, ψ, ϕ) that
satisfy the conditions in (7) and (9). Suppose 2nRm sequences
Xn are selected as the codewords by the encoder φ. Define
the acceptance region determined by ψ as An. As there are at
most (n+ 1)|X | different types of sequences Xn, there must
exist at least (n+ 1)−|X|2nRm codewords that have the same
type. We denote this particular type as PX and the set of these
codewords as CPX

.
For any arbitrary testing function ψ and decoding function

ϕ, we define A(Xn) ⊂ Yn as the set of sequences Y n that
are accepted and decoded to Xn with a probability larger than
1
2 . For each Xn, we must have Pr{A(Xn)|Xn} ≥ 1 − 2ε,
otherwise, the decoding error for Xn is larger than ε, which
violates the condition (7). It is easy to see that

A(Xn) ∩A(X̃n) = ∅, ∀ Xn, X̃n ∈ CPX
: Xn 6= X̃n. (37)

In Appendix C, we show that we must have

Rm ≤ I(X;Y ), (38)

in which the mutual information I(X;Y ) is computed from
this particular PX and PY =

∑
i∈X

PX(i)W (Y |i). Meanwhile,

we also have

An ⊇
⋃

Xn∈CPX

A(Xn), (39)

which follows from the fact that for any Y n /∈ An, Y n will
be rejected by Bob, let alone be decoded to a codeword in
CPX

, and thus Y n /∈
⋃

Xn∈CPX

A(Xn).

Now suppose Eve initiates an impersonation attack by
generating a sequence Zn with each component generated
i.i.d. according to some PMF PZ , and define

QY =
∑
j∈Z

PZ(j)V (Y |j). (40)

With this particular attack, the success probability is

Pr{An|Zn}
(a)

≥ Pr

 ⋃
Xn∈CPX

A(Xn)|Zn
 (41)

(b)
=

∑
Xn∈CPX

Pr{A(Xn)|Zn}, (42)

in which (a) follows from (39) and (b) is true due to (37).
On the other hand, according to the proof in Theorem 2 (in

particular, the proof of (31)), we have, for each Xn ∈ CPX
,

that

Pr{A(Xn)|Zn} ≥ 2
−n(

∑
i∈X

PX(i)D(PY,i||QY,i)+ε)

= 2
−n(

∑
i∈X

PX(i)D(PY,i||QY )+ε)

,

since Pr{A(Xn)|Xn} ≥ 1− 2ε. And the last step is true due
to the fact that ∀ i ∈ X , QY,i = QY is fixed under this attack
(PY,i and QY,i are defined in (22) and (23)). Thus, we have

Pr{An|Zn} ≥
∑

xn∈CPX

2
−n(

∑
i∈X

PX(i)D(PY,i||QY )+ε)

≥ (n+ 1)−|X|2nRm2
−n(

∑
i∈X

PX(i)D(PY,i||QY )+ε)

= (n+ 1)−|X|2
−n(

∑
i∈X

PX(i)D(PY,i||QY )−Rm+ε)

.

Since Pr{An|Zn} is obtained by one specific attack strat-
egy, it must be less than or equal to the successful attack
probability of the optimal attack strategy, Pr{An|Z?n}. Thus,
we have

− 1

n
log Pr{An|Z?n}

≤
∑
i∈X

PX(i)D(PY,i||QY )−Rm + ε+
|X |
n

log(n+ 1)

=
∑
i∈X

PX(i)D(PY,i||QY )−Rm + ε′, (43)

where ε′ := ε + |X |
n log(n + 1). From (38) and (43), we see

that for any given (φ, ϕ, ψ) (thus PX is given), Eve can select
an arbitrary distribution PZ ∈ PZ to initiate an impersonation
attack as described above, and the corresponding exponent of
the successful attack probability is upper bounded by the right-
hand side of (43). Thus, the largest exponent of the successful
attack probability (corresponding to the smallest successful
attack probability) Alice and Bob can expect in the worst
case when Eve selects the optimal distribution PZ based on
the given PX , is given by min

PZ

∑
i∈X

PX(i)D(PY,i||QY )−Rm.

Hence, we conclude that

θI(Rm, ε) ≤ max
PX∈PR

min
PZ

∑
i∈X

PX(i)D(PY,i||QY )−Rm,

since ε′ is an arbitrarily small number as n → ∞. And we
have

θI(Rm, ε) ≤ max
PX∈PR

min
PZ

∑
i∈X

PX(i)D(PY,i||QY )−Rm

(a)
= min

PZ

max
PX∈PR

∑
i∈X

PX(i)D(PY,i||QY )−Rm. (44)
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Here, (a) is proved in Appendix D.
Given any PZ ∈ PZ (thus, QY is given), we first focus on

the maximization sub-problem:

max
PX∈PR

∑
i∈X

PX(i)D(PY,i||QY )−Rm, (45)

In Appendix E, we show that, for the optimization prob-
lem (45), an optimizer P ∗X with I(X∗;Y ) = Rm can always
be found. On the other hand, we have∑

i

PX(i)D(PY,i||QY )−Rm

=
∑
i

PX(i)
∑
Y

PY,i log
PY,i
QY
−Rm

=
∑
i

PX(i)
∑
Y

W (Y |i) log
W (Y |i)
QY

−Rm

=
∑
i,Y

PX(i)W (Y |i) log
W (Y |i)
QY

PY
PY
−Rm

=
∑
i,Y

PX(i)W (Y |i) log
PY
QY

+
∑
i,Y

PX(i)W (Y |i) log
W (Y |i)
PY

−Rm

=
∑
Y

PY log
PY
QY

+
∑
i,Y

PX(i)W (Y |i) log
PX(i)W (Y |i)

PXPY
−Rm

= D(PY ||QY ) +
∑
i,Y

PXY log
PXY

PX · PY
−Rm

= D(PY ||QY ) + I(X;Y )−Rm.

Thus, (44) is equivalent to

θI(Rm, ε) ≤ min
PZ

max
PX∈PR

∑
i∈X

PX(i)D(PY,i||QY )−Rm

(a)
= min

PZ

max
PX∈∂PR

D(PY ||QY )

(b)
= min

PZ

max
PX∈PR

D(PY ||QY ), (46)

in which ∂PR := {PX : I(X;Y ) = Rm}. Here step (a) is
true because as discussed above, the optimizer P ∗X satisfies
I(X∗;Y ) = Rm. Step (b) is true, because for any given PZ ,
D(PY ||QY ) is convex in PY while PY is an affine function
of PX , then D(PY ||QY ) is convex in PX , thus the optimal
solution of max

PX∈PR

D(PY ||QY ) is obtained on the boundary

∂PR [26].
Construct a scheme to achieve (36): In this part, for any

given PX (thus PY is fixed), we will construct a scheme such
that the successful attack probability of any attack strategy is

less than 2
−n(min

PZ

D(PY ||QY )−ε)
.

Codebook construction: Fix PX , generate 2nRm sequences
Xn as the codewords, i.i.d. according to the PMF PX , with

Rm ≤ I(X;Y ). And each codeword is assigned to one
message. We use Xn(M) to denote the M -th codeword.

Encoder φ: If Alice needs to send a message M to Bob,
she transmits Xn(M) into the channel.

Testing function ψ: Upon receiving a sequence Y n, Bob
first determines whether Y n is from Alice or not. He de-
clares it to be from Alice if Y n is PY -typical, in which
PY =

∑
i∈X

PX(i)W (Y |i) for the given PX ; Otherwise, Bob

declares that the message is from Eve, and abandons it. Hence,
the acceptance region is A = Tnε (Y ). It is easy to show that
for any given ε, there exists an r such that

A ⊆ Snr (PY ). (47)

Furthermore, r goes to zero as ε decreases.
Decoder ϕ: If Y n is tested to be from Alice, Bob tries to

find a unique sequence Xn(M̂) from the codebook such that
(Xn(M̂), yn) are jointly typical according to W (Y |X)PX .
If there are more than one such sequences Xn, he randomly
picks one and declares it as the transmitted message; If there
is no such sequence, he declares an error.

Error analysis: Since the acceptance region is A = Tnε (Y ),
and all Y n sequences that are jointly typical with Xn are
included in A , thus, we can easily show that

Pr{M̂ 6= M,H0|H0} ≤
ε

2
,

Pr{H1|H0} ≤
ε

2
.

Using similar argument as that of the proof of Theorem 7.7.1
[24], we can obtain that there exists at least one codebook
such that (7) is satisfied.

Authentication exponent analysis: First, for any attack se-
quence Zn with type PZ chosen by Eve, we have

Pr{A |Zn} ≤ Pr{Snr (PY )|Zn},

which is true due to (47). Furthermore, according to Lemma
2 we have

Pr{Snr (PY )|Zn} ≤ (n+ 1)|Y|+|Z|2−n(D(PY ||QY )−δ(r))

≤ (n+ 1)|Y|+|Z|2
−n(min

PZ

D(PY ||QY )−δ(r))
.

Thus, we have

Pr{A |Zn} ≤ (n+ 1)|Y|+|Z|2
−n(min

PZ

D(PY ||QY )−δ(r))
,

which indicates that

− 1

n
log Pr{A |Zn} ≥ min

PZ

D(PY ||QY )− δ(r)

−|Y|+ |Z|
n

log(n+ 1).

Finally, we conclude that

θI(Rm, ε) ≥ max
PX∈PR

min
PZ

D(PY ||QY ), (48)

and this completes the proof.
In general, (35) and (36) do not match with each other. How-

ever, there do exist scenarios where these two bounds match
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and hence the authentication exponent is fully characterized
for these scenarios.

Corollary 1. Let f(PX) := min
PZ

D(PY ||QY ), if f(PX) +

I(X;Y ) is convex with respect to PX ∈ PR, then (35)
and (36) match.

Proof. First, from (44) and (46), we know that the upper
bound (35) can be equivalently written as

θI(Rm, ε) ≤ max
PX∈PR

[f(PX) + I(X;Y )−Rm] (49)

In the following, we will show that if f(PX) + I(X;Y ) is
convex with respect to PX ∈ PR, then the lower bound in (36)
can be equivalently written as

θI(Rm, ε) ≥ max
PX∈PR

[f(PX) + I(X;Y )−Rm], (50)

which implies that the upper bound (35) matches with the
lower bound (36).

Hence, to show this corollary, we only need to show (50).
Towards that end, let

P̂X = arg max
PX∈PR

[f(PX) + I(X;Y )−Rm],

P̃X = arg max
PX∈PR

f(PX). (51)

Since D(PY ||QY ) is convex in (PY , QY ), and (PY , QY )
are affine functions of (PX , PZ), then D(PY ||QY ) is convex
in (PX , PZ). Thus, according to [25], f(PX) is convex in
PX . Since I(X;Y ) is concave in PX , then depending on
W (Y |X) and V (Y |Z), the summation f(PX) + I(X;Y ) can
be convex, concave or neither. For the case when f(PX) +
I(X;Y ) is convex in PX ∈ PR, then the optimal value of
max
PX∈PR

[f(PX) + I(X;Y )−Rm] is obtained on the boundary

[26], that is I(X̂;Y ) = Rm. Thus, we have

f(P̂X) = f(P̂X) + I(X̂;Y )−Rm
= max

PX∈PR

[f(PX) + I(X;Y )−Rm]

≥ max
PX∈PR

f(PX)

= f(P̃X).

On the other hand, according to the definition of P̃X as in
(51), we have

f(P̂X) ≤ max
PX∈PR

f(PX) = f(P̃X).

Hence, it follows that

f(P̂X) = f(P̃X).

Finally, if f(PX) + I(X;Y ) is convex in PX ∈ PR, the
optimal value of the optimization problem (50) is same as

max
PX∈PR

f(PX),

which is (36). This finishes the proof.

In the following, we provide an example for which the upper
bound and lower bound match.
Example 1: Let

W (Y |X) =

[
1/3 1/4
2/3 3/4

]
, V (Y |Z) =

[
2/5 2/3
3/5 1/3

]
,

and set PX = [λ1, 1 − λ1]T , PZ = [λ2, 1 − λ2]T , λ1, λ2 ∈
[0 : 1]. Then, we have

PY = W (Y |X)PX =

[
1

4
+

1

12
λ1,

3

4
− 1

12
λ1

]T
,

QY = V (Y |Z)PZ =

[
2

3
− 4

15
λ2,

1

3
+

4

15
λ2

]T
.

Define λ0 = 1
4 + 1

12λ1, then

D(PY ||QY ) = λ0 log
λ0

2
3 −

4
15λ2

+ (1− λ0) log
1− λ0

1
3 + 4

15λ2

.

Following some simple calculations, we have

∂D(PY ||QY )

∂λ2

=
4

15( 2
3 −

4
15λ2)

(
1
3 + 4

15λ2

)
ln 2

(
4

15
λ2 + λ0 −

2

3

)
.

Since λ0 ∈ [ 1
4 : 1

3 ], we have

∂D(PY ||QY )

∂λ2
< 0, ∀λ0 ∈

[
1

4
:

1

3

]
, λ2 ∈ [0 : 1].

Thus, for any given PY , D(PY ||QY ) is a decreasing function
of λ2. Hence,

λ∗2 = arg min
λ2

D(PY ||QY ) = 1, ∀λ0 ∈
[

1

4
:

1

3

]
,

which is equivalent to

Q∗Y = arg min
QY

D(PY ||QY ) =

[
2

5
,

3

5

]T
, ∀PX ∈ PX . (52)

Hence,

f(PX) + I(X;Y )

= D(PY ||Q∗Y ) + I(X;Y )

=
∑
y

PY log
PY
Q∗Y

+H(Y )−H(Y |X)

=
∑
y

PY log
PY
Q∗Y
−
∑
y

PY logPY −
∑
i∈X

PX(i)H(Y |i)

=
∑
y

PY log
1

Q∗Y
−
∑
i∈X

PX(i)H(Y |i).

As H(Y |X = i) are constants for either i = 1 or i = 2 and
PY is an affine function of PX , from the equation above, we
have that f(PX) + I(X;Y ) is linear (and hence convex) in
PX . Hence, for this example, we can conclude that

max
PX∈PR

min
PZ

D(PY ||QY ) = min
PZ

max
PX∈PR

D(PY ||QY ),

and hence the authentication exponent is fully characterized.

11



X̃ YṼ (Z|X̃) Z V (Y |Z)

W (Y |X)X Y

Fig. 3. Construct a virtual channel X̃ → Y that has the same statistics as
X → Y

V. AUTHENTICATED (SECRECY) CAPACITY

In this section, we focus on characterizing the authenticated
capacity C∗ and the authenticated secrecy capacity C∗S , de-
fined in Section II-B.

A. Simulatability Condition and Authenticated (Secrecy) Ca-
pacity

We first introduce a concept named simulatability condition
that plays an important role in our study. The simulatability
condition was first defined under the source model in [9] for
the study of key generation under unauthenticated public chan-
nel problems. Here, we extend the definition to the channel
model. We note that [15] also introduced a similar concept
for the channel model. We will show that our definition will
lead to the definition given in [15].

Definition 3. For given channels W (Y |X) (the channel con-
necting Alice and Bob) and V (Y |Z) (the channel connecting
Eve and Bob), if for each PX ∈ PX , there exists some
PZ ∈ PZ such that∑

j∈Z
V (Y |j) · PZ(j) =

∑
i∈X

W (Y |i) · PX(i), (53)

then, we say that the (channel) simulatability condition holds.

Remark 4. The simulatability condition here means that no
matter what PX Alice uses, Eve can always find a PZ , such
that the received sequences Y n at Bob from both channels
have the same distribution.

We have the following lemmas regarding the simulatability
condition.

Lemma 3. Given channels W (Y |X) and V (Y |Z), if the
simulatability condition holds, then Eve can construct a virtual
channel Ṽ (Z|X̃), such that

V (Y |Z)Ṽ (Z|X̃) = W (Y |X). (54)

Proof. The proof is given in Appendix F.

As shown in Fig. 3, Lemma 3 means that if the simulata-
bility condition holds, by concatenating Ṽ (Z|X̃) to V (Y |Z),
Eve can construct a channel from X̃ to Y that has the same
statistics as the legitimate channel from X to Y . The definition
of simulatability condition in [15] has the same interpretation
as shown in Fig. 3.

Using Lemma 3, we can greatly simplify the simulatability
condition as shown in the following lemma.

Lemma 4. Given W (Y |X) and V (Y |Z), the simulatability
condition holds if and only if ∀i ∈ X , ∃PZ,i ∈ PZ , s.t.

V (Y |Z)PZ,i = W (Y |i). (55)

Proof. The proof is given in Appendix F.

This lemma plays a key role in the proof of our main
result on the authenticated capacity. It also facilitates us in
the design of efficient algorithms for checking whether the
simulatability condition holds or not for any given W (Y |X)
and V (Y |Z). The design of efficient algorithms will be
discussed in Section V-B.

Now, we state our result on C∗ as follows.

Theorem 5. Under the channel model when Eve is active, if
the simulatability condition holds, C∗ = 0; Otherwise, C∗ =
C.

Suppose P ?X = arg max
PX

I(X;Y ) (the corresponding PY :=

P ?Y ), then C = I(X?;Y ). If the simulatability condition does
not hold and min

PZ

D(P ?Y ||QY ) > 0, the result C∗ = C =

I(X?;Y ) is obvious, as we can fix PX = P ?X and use the same
scheme as that in the achievability in Section IV-B. Using this
scheme, the successful attack probability is upper bounded as

βn(Zn0 ) ≤ 2
−n(min

PZ

D(P?
Y ||QY )−ε)

≤ ε.

However, if the simulatability condition does not hold but
min
PZ

D(P ?Y ||QY ) = 0, the above scheme does not work. In

the following, we present a scheme such that, as long as the
simulatability condition doesn’t hold, we can guarantee that
Alice can reliably transmit a message to Bob at a rate larger
than C − ε, meanwhile Bob can detect the attack by Eve with
a probability larger than 1− σ.

Proof of Theorem 5: The case when the simulatability
condition holds is trivial: As shown in Lemma 3, if the
simulatability condition holds, Eve can concatenate a virtual
channel Ṽ (Z|X̃) to the channel V (Y |Z) such that the con-
catenated channel from X̃ to Y has the same statistics as
the legitimate channel from X to Y . Now, for any legitimate
users’ strategy φ, ψ, ϕ that satisfy (7), Eve can always generate
the same codebook as Alice’s codebook. When Eve conducts
an impersonation attack, she only needs to randomly pick
a codeword from the codebook and send it through the
concatenated channel from X̃ to Y . Since this concatenated
channel has the same statistics as that of the channel from X
to Y , the successful attack probability equals the probability
of that a message sent by Alice is accepted by Bob. As the
latter probability is larger than 1− ε due to (7), the successful
attack probability will be larger than 1− ε. Thus, we have

C∗ = 0.

For the case when the simulatability condition does not hold,
we show that there exists a scheme such that Alice can reliably
transmit the message to Bob at a rate larger than C − ε when
Eve does not attack, meanwhile Bob can detect the attack by
Eve with a probability larger than 1− σ.

12



Codeword: Xn i∗, · · · , i∗

n
√
n

Fig. 4. Codeword X̂n+
√
n

According to Lemma 4, if the simulatability condition does
not hold, then there exists i∗ ∈ X s.t.

V (Y |Z)PZ,i∗ 6= W (Y |i∗), ∀PZ,i∗ ∈ PZ . (56)

To show that C∗ = C, it suffices to show that for any PX ∈
PX , R = I(X;Y )− ε is achievable.

Codebook generation: Fix PX , i.i.d generate 2nRm se-
quences Xn according to the PMF PX with Rm = I(X;Y )−
ε0. We then construct a sequence i∗

√
n, that is to repeat i∗ for√

n times and append i∗
√
n to each generated Xn. We denote

the new n+
√
n length sequence as X̂n+

√
n. As will be clear

in the sequel, i∗
√
n will be used as an authenticator. We then

set the sequences X̂n+
√
n as the codewords, and each X̂n+

√
n

is assigned to one message. We use X̂n+
√
n(M) to denote the

M -th codeword. Fig. 4 illustrates the codeword X̂n+
√
n.

Encoding: If Alice needs to send a message M to Bob, she
transmits X̂n+

√
n(M) into the channel.

Authentication: Upon receiving a sequence Y n+
√
n, Bob

first splits it into two parts: Y n and Y n+
√
n

n+1 . Then he declares
the signal to be from Alice if Y n+

√
n

n+1 is PY,i∗ -typical; Other-
wise, he declares it to be from Eve and rejects it.

Decoding: If Y n+
√
n is authenticated to be from Alice,

Bob tries to find a unique sequence Xn(M̂) such that
(Xn(M̂), Y n) are jointly typical, and decodes the signal to
M̂ . If there are more than one such sequence, he randomly
picks one. If there is no such sequence, he declares an error.

Error analysis: Since the acceptance region is A =

Yn × T
√
n

ε (Y, i∗), and all Xn-jointly typical sequence Y n is
included in A , thus we can easily obtain

Pr{M̂ 6= M,H0|H0} ≤
ε

2
,

Pr{H1|H0} ≤
ε

2
.

Using the same argument as that in the proof of Theorem 7.7.1
in [24], we obtain that there exists at least one codebook such
that (7) is satisfied.

Probability of successful attack: As discussed in Section III
and (20) in particular, we only need to consider the imperson-
ation attack. For this, we only need to focus on Y n+

√
n

n+1 . Since
Y
n+
√
n

n+1 is i.i.d generated according to PY,i∗ = W (Y |i∗) when
there is no attack, we have, based on Lemma 2, that

PI ≤ 2−
√
n(D(PY,i∗ ||QY,i∗ )−δ(ε0)) ≤ σ,

when n is sufficiently large.

Rate Per Channel Use:

R =
nRm
n+
√
n

=
n

n+
√
n

(I(X;Y )− ε0)

= I(X;Y )−
√
n

n+
√
n
I(X;Y )− n

n+
√
n
ε0

≥ I(X;Y )− ε,

when n is large enough.
Using the same idea of appending an

√
n length sequence as

the authentication sequence, we can easily obtain the following
result regarding the authenticated secrecy capacity.

Corollary 2. Under the channel model when Eve is active, if
the simulatability condition holds, C∗S = 0; Otherwise, C∗S =
CS .

Proof. The proof follows similar steps as that of Theorem 5
and is omitted for brevity.

Remark 5. For the case when the simulatability condition
holds, if Alice and Bob pre-share a secret key (even with a
negligible rate), the authenticated (secrecy) capacity may not
necessarily be zero, as Alice and Bob can utilize the pre-shared
key to perform authentication such that the successful attack
probability is upper bounded by σ. In this case, the channel
U(F |X) has effect on determining how much information Eve
can learn about this secret key, and Eve can use this infor-
mation to carry out the substitution attack. As our analysis
relies on the assumption that the legitimate users do not have
pre-share keys, the exact characterization of the authenticated
(secrecy) capacity for the scenario with pre-share keys requires
new analysis, which is left for further investigation.

Note that the role of the simulatability condition in our
setup is similar as that of the symmetrizability condition for
an arbitrarily varying channel (AVC) as defined in [27]. For
an AVC, the state of the channel can be viewed as being
controlled by an adversary. If the AVC is symmetrizable,
there exists a state sequence which the adversary can use,
such that the decoder cannot distinguish the true codeword
from a false codeword no matter what scheme is applied.
On the other hand, if the AVC is not symmetrizable, there
exists a scheme such that no matter what state the channel
is, the decoder can correctly decode the codeword of positive
rate with high probability. In this respect, the simulatability
condition is weaker than the symmetrizability condition since
the simulatability condition only involves in two separate
channels and the channel from the encoder to the decoder
remains the same while for the AVC, the channel statistics
from the encoder to the decoder is determined by the state
sequence and it can be arbitrarily changed.

B. Algorithm

As shown above, the simulatability condition plays an
important role in our analysis. Hence, it is crucial to design
efficient algorithms to check whether the simulatability condi-
tion holds or not for any given W (Y |X) and V (Y |Z). From
Lemma 4, we know that to check the simulatability condition,
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we only need to check, for each i ∈ X , whether there exists
some PZ,i ∈ PZ such that (55) holds.

It is easy to see that if there exists a PZ,i ∈ PZ such
that (55) holds, then the optimal value of the following
optimization problem will be 0:

min
PZ,i

||V (Y |Z)PZ,i −W (Y |i)||1 (57)

s.t. PZ,i � 0,∑
j∈Z

PZ,i(j) = 1,

in which || · ||1 is the `1 norm. At the same time, if the
optimal value obtained from the optimization problem (57)
is 0, the corresponding optimizer will satisfy (55). Hence,
we conclude that (55) holds if and only if the optimal value
obtained from (57) is 0. It is easy to check that (57) is a convex
optimization problem, and hence can be solved efficiently. In
fact, following similar steps as those in our recent work [28],
the optimization problem (57) can be further simplified to
be a linear programming problem. Details of those steps are
omitted, as they are very similar to those in [28].

Finally, using Lemma 4, we know that we only need to
solve |X | convex optimization problems as (57) to check the
simulatability condition (53).

C. Channel Uncertainty

It is important to note that, although our model involves
Eve’s channels U(F |X) and V (Y |Z), most of our schemes
(with one exception to be discussed below) in both Section IV
and Section V are universal with respect to Eve’s channels, in
the sense that our schemes do not rely on the information on
Eve’s channels. However, in order to check the simulatability
condition, we need to know the exact channel state information
of V (Y |Z), which is impractical. Nonetheless, we show that
the simulatability condition here is not sensitive to modeling
uncertainties, that is V (Y |Z) does not need to be known
perfectly.

Assume W (Y |X) is perfectly known but V (Y |Z) is known
only to a certain precision. In particular, let the true channel
between Eve and Bob to be V̂ (Y |Z), but the legitimate
users know only an estimate V (Y |Z). Denote ∆V (Y |Z) =
V̂ (Y |Z) − V (Y |Z), we assume |∆V (Y |Z)| is bounded. In
particular, we assume

|∆V (j|k)| ≤ δ, ∀j ∈ [1 : |Y|], k ∈ [1 : |Z|].

We clearly have

|Y|∑
j=1

∆V (j|k) = 0, ∀k ∈ [1 : |Z|].

Suppose that based on V (Y |Z), Alice and Bob determine
that W (Y |X) is not simulatable, i.e., there exists a i∗ such
that W (Y |i∗) satisfies

V (Y |Z)PZ,i∗ 6= W (Y |i∗), ∀PZ,i∗ ∈ PZ . (58)

As discussed in the proof of Theorem 5, Alice and Bob will
use i∗ to design the authenticator. This is the only part of our
scheme that depends on Eve’s channel. Let

ρ = min
PZ,i∗

||V (Y |Z)PZ,i∗ −W (Y |i∗)||1

s.t. PZ,i∗ � 0,
∑
j∈Z

PZ,i∗(j) = 1. (59)

From (58), we know ρ > 0.
We have the following result.

Lemma 5. Suppose Eve can’t simulate W (Y |i∗) with regards
to V (Y |Z), then ∀δ < ρ

|Y| , Eve cannot simulate W (Y |i∗)
using V̂ (Y |Z) neither.

Proof. The proof is shown in Appendix F.

This result means that, although Alice and Bob only have
an estimate of Eve’s channel V (Y |Z), the authenticator i∗,

√
n

designed based on the estimated channel still works for the
true channel V̂ (Y |Z) as long as the difference between these
two channels measured by δ is less than ρ/|Y|. Hence, our
scheme is robust to the uncertainty in Eve’s channel.

Here, we provide an example to illustrate this result.
Example 2: Let

V (Y |Z) =

[
1/2 1/2
1/2 1/2

]
,W (Y |i∗) =

[
2/3
1/3

]
.

Then, we have

ρ := min
PZ,i∗

||V (Y |Z)PZ,i∗ −W (Y |i∗)||1

= min
PZ,i∗

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2 −
2
3

1
2 −

1
3

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 1/3.

Now if

δ <
ρ

|Y|
=

1

2
ρ =

1

6
, (60)

set V̂ (Y |Z) =

[
1/2 + δ1 1/2 + δ2
1/2− δ1 1/2− δ2

]
, |δ1| ≤ δ, |δ2| ≤ δ

and PZ,i∗ =

[
λ1

1− λ1

]
, then we have

V̂ PZ,i∗ =

[
1/2 + δ1λ1 + δ2(1− λ1)
1/2− δ1λ1 − δ2(1− λ1)

]
.

Since the first entry 1/2+δ1λ1 +δ2(1−λ1) < 1/2+1/6λ1 +
1/6(1− λ1) = 2/3, we can conclude

V̂ PZ,i∗ 6= W (Y |i∗), ∀PZ,i∗ ∈ PZ .

Hence, Eve can’t simulate W (Y |i∗) for any perturbed channel
V̂ (Y |Z) with constraint (60).
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VI. CONCLUSION

In this paper, we have considered the problem of message
authentication without any pre-shared key, in the presence of
an active adversary over noisy channels. We have characterized
the authentication exponent for the zero-rate case and provided
both an upper bound and a lower bound on the exponent for the
nonzero-rate case. We have shown an “all or nothing” result for
the authenticated channel capacity, depending on a so called
simulatability condition. We have further provided efficient
algorithms to check the simulatability condition. We have also
shown that our schemes are robust to modeling uncertainties
about Eve’s channels.

APPENDIX A

Lemma 6. Let P ∗, P and Q be three distributions on random
variable X , and r ≥ 0, then if D(P ∗||P ) ≤ r and 0 <
D(P ||Q) <∞, then

D(P ∗||Q) ≥ D(P ||Q)− δ(r),
D(P ∗||Q) ≤ D(P ||Q) + δ(r).

in which δ(r) ↓ 0 as r ↓ 0.

In order to prove Lemma 6, techniques from [24] are
utilized.

Lemma 7. 1. (Pinsker’s Inequality, [24, Lemma 11.6.1]) Let
P and Q be any two distributions on X , then

D(P ||Q) ≥ 1

2 ln 2
||P −Q||21,

in which ||P −Q||1 =
∑
x∈X
|P (x)−Q(x)|.

2. ( [24, Lemma 11.8.1]) Let Bn be any set of sequences
Xn, such that Pn(Bn) > 1−ε. Let Q be any other distribution
such that D(P ||Q) <∞, then

Qn(Bn) > (1− 2ε)2−n(D(P ||Q)+ε).

Proof of Lemma 6. If Q(i) = 0 for some i ∈ X , then P (i) =
0 and P ∗(i) = 0, since D(P ||Q) < ∞ and D(P ∗||P ) ≤ r.
Thus, the existence of {i ∈ X : Q(i) = 0} has no influence
on the final result. Hence, to facilitate the presentation, we
assume that Q(i) > 0,∀i ∈ X .

Since r ≥ D(P ∗||P ) ≥ 1
2 ln 2 ||P

∗ − P ||21, then we have∑
i∈X
|P ∗(i)− P (i)| ≤

√
2 ln 2 · r,

which indicates

|P ∗(i)− P (i)| ≤
√

2 ln 2 · r,∀i ∈ X .

Define a set A := {i ∈ X : P (i) > Q(i) +
√

2 ln 2 · r}, and
Ā := X\A. Then we have

D(P ∗||Q) =
∑
i∈X

P ∗(i) log
P ∗(i)

Q(i)

=
∑
i∈A

P ∗(i) log
P ∗(i)

Q(i)
+
∑
i∈Ā

P ∗(i) log
P ∗(i)

Q(i)

(a)

≥
∑
i∈A

(P (i)−
√

2r ln 2) log
P (i)−

√
2r ln 2

Q(i)
(61)

+
∑
i∈Ā

(P (i) +
√

2r ln 2) log
P (i)−

√
2r ln 2

Q(i)

=
∑
i∈X

P (i) log
P (i)−

√
2r ln 2

Q(i)
−
√

2r ln 2 ·∑
i∈A

log
P (i)−

√
2r ln 2

Q(i)
−
∑
i∈Ā

log
P (i)−

√
2r ln 2

Q(i)

 (62)

=
∑
i∈X

P (i) log
P (i)−

√
2r ln 2

Q(i)
− δ′(r) (63)

=
∑
i∈X

P (i) log
P (i)

Q(i)
+
∑
i∈X

P (i) log
P (i)−

√
2r ln 2

P (i)
− δ′(r)

(b)

≥ D(P ||Q)−
∑
i∈X

P (i)
2
√

2r ln 2

P (i) ln 2
− δ′(r)

= D(P ||Q)− δ1(r),

in which step (a) follows from the facts that log(·) is an
increasing function of its argument, and that

log
P (i)−

√
2r ln 2

Q(i)
> 0, ∀i ∈ A;

log
P (i)−

√
2r ln 2

Q(i)
≤ 0, ∀i ∈ Ā.

In addition, step (b) is true due to the fact that ln(1−γ) ≥ −2γ
when γ (γ ≥ 0) is small enough. Then, we only need to show
δ1(r) vanishes as r → 0, which is equivalent to show δ′(r) ↓ 0

as r ↓ 0. From (62) to (63), δ′(r) := ε · (
∑
i∈A

log P (i)−ε
Q(i) −∑

i∈Ā
log P (i)−ε

Q(i) ) by setting ε =
√

2r ln 2. Since the sizes of sets

A and Ā are finite, we only need to show log P (i)−ε
Q(i) is finite

when ε is small enough. And that ∀i ∈ X , log P (i)−ε
Q(i) is finite

is obvious, because of the assumption that P (i) > 0, Q(i) > 0.
Following similar steps as above, we can also show that

D(P ∗||Q) ≤ D(P ||Q) + δ2(r).

Finally, by setting δ(r) = max{δ1(r), δ2(r)}, we complete
the proof.
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APPENDIX B
PROOF OF LEMMA 2

According to the construction of Skr (PY ), all sequences Zk

with tp(Zk) = PZ have the same success probability as that
of Zk0 :

Pr{Skr (PY )|Zk} = Pr{Skr (PY )|Zk0 }, ∀Zk : tp(Zk) = PZ . (64)

Thus, we have

Pr{Skr (PY )|Zk0 } =
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk0 }.

=
∑

Zk∈T k
Z (PZ)

Pr{Zk|PZ}
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk0 }

(a)
=
∑

Zk∈T k
Z (PZ)

Pr{Zk|PZ}
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk},(65)

where Pr{Zk|PZ} can be any arbitrary conditional probability
distribution of Zk given tp(Zk) = PZ , and (a) holds due
to (64).

To further analyze Pr{Skr (PY )|Zk0 }, we first investigate the
relationship between Pr{Skr (PY )|Zk0 } and QkY (Skr (PY )).

QkY (Skr (PY )) =
∑

Zk∈Zk

P kZ(Zk) · Pr{Skr (PY )|Zk}

=
∑

Zk∈Zk

P kZ(Zk)
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk}

=
∑

P̃Z∈TZ

∑
Zk∈T k

Z (P̃Z)

P kZ(Zk|P̃Z)P kZ(T kZ (P̃Z))

·
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk}

=
∑

P̃Z∈TZ

P kZ(T kZ (P̃Z))
∑

Zk∈T k
Z (P̃Z)

P kZ(Zk|P̃Z)

·
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk}

≥ P kZ(T kZ (PZ))
∑

Zk∈T k
Z (PZ)

P kZ(Zk|PZ)

·
∑

Y k∈Sk
r (PY )

Pr{Y k|Zk}.

(a)
= P kZ(T kZ (PZ)) · Pr{Skr (PY )|Zk0 }, (66)

where (a) is true because of (65). On the other hand, according
to [24, Theorem 11.1.4], we have

P kZ(T kZ (PZ)) ≥ 1

(k + 1)|Z|
· 2−kD(PZ ||PZ)

=
1

(k + 1)|Z|
.

Thus, we conclude that

Pr{Skr (PY )|Zk0 } ≤ (k + 1)|Z|QkY (Skr (PY )). (67)

In the following, we bound QkY (Skr (PY )) from above. First,
it follows

QkY (Skr (PY )) =
∑

tp(Y k):T k
Y (tp(Y k))⊆Sk

r (PY )

QkY (tp(Y k)), (68)

and by Lemma 6 in Appendix A, ∀ tp(Y k) : T kY (tp(Y k)) ⊆
Skr (PY ), we have

D(tp(Y k)||QY ) ≥ D(PY ||QY )− δ(r), (69)

with δ(r) goes to zero as r decreases. Thus,

QkY (tp(Y k)) ≤ 2−kD(tp(Y k)||QY )

≤ 2−k(D(PY ||QY )−δ(r)). (70)

Combine (70) and (68), and we have

QkY (Skr (PY )) ≤
∑

tp(Y k):T k
Y (tp(Y k))∈Sk

r (PY )

2−k(D(PY ||QY )−δ(r))

≤ (k + 1)|Y|2−k(D(PY ||QY )−δ(r)). (71)

Combining (71) and (67), we obtain

Pr{Skr (PY )|Zk0 } ≤ (k + 1)|Y|+|Z|2−k(D(PY ||QY )−δ(r)). (72)

APPENDIX C
PROOF OF (38)

Proof. Given Xn, denote the conditionally ε-typical set of
sequences Y n by Tε(Y n|Xn) (the concept of ε-typicality and
its property can be found in [29, Chapter 2]), and we have

Pr{Tε(Y n|Xn)|Xn} ≥ 1− ε.

Thus,

Pr{A(Xn) ∩ Tε(Y n|Xn)|Xn} ≥ 1− 3ε.

In addition, for each Y n ∈ Tε(Y n|Xn), we have

2−n(H(Y |X)+ε) ≤ Pr{Y n|Xn} ≤ 2−n(H(Y |X)−ε).

Thus, we have

|A(Xn) ∩ Tε(Y n|Xn)| ≥ (1− 3ε)2n(H(Y |X)−2ε).

Since for each Xn ∈ CPX
, we have Tε(Y n|Xn) ⊆ Tε(Y

n),
then,

Tε(Y
n) ⊇

⋃
Xn∈CPX

A(Xn) ∩ Tε(Y n|Xn).

In addition, from (37), ∀ Xn, X̃n ∈ CPX
, Xn 6= X̃n we have

A(Xn) ∩ Tε(Y n|Xn)
⋂
A(X̃n) ∩ Tε(Y n|X̃n) = ∅.

Thus, we have

|Tε(Y n)| ≥
∑

Xn∈CPX

|A(Xn) ∩ Tε(Y n|Xn)|

≥
∑

Xn∈CPX

(1− 3ε)2n(H(Y |X)−2ε)

≥ (n+ 1)−|X|2nRm(1− 3ε)2n(H(Y |X)−2ε).
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Since that |Tε(Y n)| ≤ 2n(H(Y )+ε), we have

2n(H(Y )+ε) ≥ (n+ 1)−|X|(1− 3ε)2n(H(Y |X)+Rm−2ε),

thus,

Rm ≤ I(X;Y ) + 4ε+
|X |
n

log n(1− 2ε).

The proof is complete.

APPENDIX D
PROOF OF (44)

Define

S := {PX : I(X;Y ) ≥ Rm},
T := {QY : QY =

∑
j∈Z

PZ(j)V (Y |j),∀PZ ∈ PZ}.

Since QY is an affine function of PZ , we can rewrite the
max min problem in (44) as

max
PX∈S

min
QY ∈T

F (PX , QY ),

where F (PX , QY ) :=
∑
i∈X

PX(i)D(PY,i||QY ) − Rm. Thus,

we need to show

max
PX∈S

min
QY ∈T

F (PX , QY ) = min
QY ∈T

max
PX∈S

F (PX , QY ) (73)

is true.
Before going further, we need to introduce Sion’s minimax

theorem as follows.

Lemma 8 (Sion’s minimax theorem [30]). Let B be a convex
subset of a topological vector space and D a compact convex
subset of a topological vector space. And f is a real-valued
function defined on B ×D with
1. f(b, ·) is lower semicontinuous and quasi-convex on D,
∀b ∈ B, and
2. f(·, d) is upper semicontinuous and quasiconcave on B,
∀d ∈ D.
Then

max
b∈B

min
d∈D

f(b, d) = min
d∈D

max
b∈B

f(b, d).

According to Sion’s minimax theorem, in order to obtain
(73), we need to prove
a) S and T are convex;
b) Given PX , F (PX , ·) is convex on T ;
c) Given QY , F (·, QY ) is quasiconcave on S.
Now, we provide the proofs one by one.
Proof of a). That T is convex is obvious, since QY is an affine
function of PZ , and PZ is convex.

Then, we show S is convex. Suppose PX1 ∈ S and PX2 ∈
S (denote the corresponding mutual information by I(X1;Y )
and I(X2;Y ) respectively), thus we have

I(X1;Y ) ≥ Rm,
I(X2;Y ) ≥ Rm.

Set PX3 = λPX1 + (1−λ)PX2 for arbitrary λ ∈ [0, 1]. Since
the conditional PMF PY |X is fixed by the channel W (Y |X)
and that I(X;Y ) is concave in PX for a fixed PY |X , we have

I(X3;Y ) ≥ λI(X1;Y ) + (1− λ)I(X2;Y )

≥ λRm + (1− λ)Rm

= Rm.

Thus, PX3 ∈ S. Then, we have that S is a convex set.
Proof of b). According to Theorem 2.7.2 of [24], D(PY,i||QY )
is convex in (PY,i, QY ). With a fixed PY,i, we obtain that
D(PY,i||QY ) is convex in QY . Thus, suppose QY 1, QY 2 ∈ T
and QY 3 = λQY 1 + (1− λ)QY 2, and ∀i ∈ X , we have

PX(i)D(PY,i||QY 3)

≤ PX(i)(λD(PY,i||QY 1) + (1− λ)D(PY,i||QY 2)).

Thus∑
i

PX(i)D(PY,i||QY 3)

≤
∑
i

PX(i)(λD(PY,i||QY 1) + (1− λ)D(PY,i||QY 2))

= λ
∑
i

PX(i)D(PY,i||QY 1)

+(1− λ)
∑
i

PX(i)D(PY,i||QY 2).

Then, we have

F (PX , QY 3) ≤ λF (PX , QY 1) + (1− λ)F (PX , QY 2).

Thus, F (PX , ·) is convex on T .
Proof of c). Given QY , we know F (·, QY ) is linear in PX ,
thus, it’s quasiconcave.

APPENDIX E
PROOF OF (45)

Proof. To assist the presentation, denote

`(PX) :=
∑
i∈X

PX(i)hi −Rm,

in which hi := D(PY,i||QY ). Since for each i ∈ X , hi is a
constant, we have that `(PX) is linear in PX .

Recall that PR = {PX : I(X;Y ) ≥ Rm}. Suppose

P ∗X = arg max
PX∈PR

`(PX), (74)

and P ∗X is an interior point of PR, thus,

I(X∗;Y ) > Rm.

Denote

SI := {i ∈ X : P ∗X(i) 6= 0},
î = arg min

i∈SI

hi.
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Then, we have

`(P ∗X) =
∑
i∈SI

P ∗X(i)hi −Rm

=
∑
i∈SI\î

P ∗X(i)hi + P ∗X (̂i)hî −Rm

=
∑
i∈SI\î

P ∗X(i)hi +

1−
∑
i∈SI\î

P ∗X(i)

hî −Rm

=
∑
i∈SI\î

P ∗X(i)(hi − hî) + hî −Rm.

Now, construct P̃X as

P̃X(i) = P ∗X(i) + ε, ∀ i ∈ SI \̂i;
P̃X(i) = 0, ∀ i ∈ X\SI ;
P̃X (̂i) = 1−

∑
i∈SI\î

P̃X(i).

Due to the continuity of I(X;Y ) in PX , there exists some
ε > 0 such that

I(X̃;Y ) ≥ Rm.

However, for this P̃X , we have

`(P̃X) = `(P ∗X) + ε
∑
i∈SI\î

(hi − hî)

≥ `(P ∗X), (75)

in which the equality holds only when hi = hî,∀i ∈ SI . If the
inequality in (75) is strict, then it contradicts the assumption in
(74) that P ∗X is the maximizer for `(PX). Hence, the equality
in (75) holds. In this case, all `(PX)s with PX ∈ {PX : ∀i ∈
X\SI , PX(i) = 0} have the same value as `(P ∗X). Now, due
to the continuity of I(X;Y ) in PX , it’s easy to conclude that
there exists a P̂X ∈ {PX : ∀i ∈ X\SI , PX(i) = 0} such that
I(X̂;Y ) = Rm, as 1) P ∗X ∈ {PX : ∀i ∈ X\SI , PX(i) = 0}
and I(X∗;Y ) > Rm from the assumption; and 2) there exists
a P ?X ∈ {PX : ∀i ∈ X\SI , PX(i) = 0} (e.g. P ?X is of the
form [0, · · · , 1, 0, · · · ]) such that I(X?;Y ) = 0.

Hence, the optimal value can always be obtained on the
boundary defined as

{PX : I(X;Y ) = Rm}.

This completes the proof.

APPENDIX F

Proof of Lemma 3. Denote channels W (Y |X) and V (Y |Z)
by matrices W and V in short. Define P 1

X,i =

[0, · · · , 0, 1, 0, · · · , 0]T , i ∈ X , where 1 is on the ith row.
Since the simulatability condition holds, there exists PM

Z,i ∈
PZ such that

V PM
Z,i = WP 1

X,i, ∀i ∈ X .

In addition, given an arbitrary PX ∈ PX , we have

PX = [PX(1), · · · , PX(|X |)]T

=
∑
i∈X

PX(i)P 1
X,i.

Set a virtual channel ṼZ|X̃ by

ṼZ|X̃ = [PM
Z,1, P

M
Z,2, · · · , PM

Z,|X |],

then, we have

WPX = W
∑
i∈X

PX(i)P 1
X,i (76)

=
∑
i∈X

WPX(i)P 1
X,i

=
∑
i∈X

PX(i)WP 1
X,i

=
∑
i∈X

PX(i)V PM
Z,i

= V
∑
i∈X

PX(i)PM
Z,i

= V ṼZ|X̃PX . (77)

Since here PX ∈ PX is arbitrarily given, we have

W = V ṼZ|X̃ . (78)

This completes the proof.

Proof of Lemma 4. The conclusion that if the simulatability
condition holds, then the equations defined by (55) hold is
obvious, since W (Y |i) = W (Y |X)P 1

X,i, and P 1
X,i ∈ PX

(P 1
X,i is defined in the proof of Lemma 3).
On the other hand, as we have shown from (76) to (77), if

(55) holds, then ∀PX ∈ PX , PZ =
∑
i∈X

PX(i)PM
Z,i is always

a valid choice.

Proof of Lemma 5. It suffices to show

min
PZ,i∗

||V̂ (Y |Z)PZ,i∗ −W (Y |i∗)||1 > 0

with constraints defined by (59).

min
PZ,i∗

||V̂ (Y |Z)PZ,i∗ −W (Y |i∗)||1

= min
PZ,i∗

||(V (Y |Z) + ∆V (Y |Z))PZ,i∗ −W (Y |X)||1

= min
PZ,i∗

||V (Y |Z)PZ,i∗ −W (Y |X) + ∆V (Y |Z)PZ,i∗ ||1

≥ min
PZ,i∗

||V (Y |Z)PZ,i∗ −W (Y |X)||1

−max
PZ,i∗

||∆V (Y |Z)PZ,i∗ ||1

= ρ− max
PZ,i∗

||∆V (Y |Z)PZ,i∗ ||1

(a)

≥ ρ− |Y|δ
> 0,

if δ < ρ
|Y| . (a) is true since the summation of each column of

PZ,i∗ equals to 1.
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