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Abstract—We consider the problem of keyless message au-
thentication over noisy channels in the presence of an active
adversary. Different from the existing models, in our model, the
legitimate users do not have any pre-shared key for authentica-
tion. Instead, we use the noisy channel connecting the legitimate
users for authentication. The main idea is to utilize the noisy
channel connecting the legitimate users to distinguish a legitimate
message from a fake message, by generating an output at the
receiver that is difficult for the adversary to replicate through
its noisy channel. By interpreting the message authentication as
a hypothesis testing problem, we investigate the authentication
exponent and the authenticated channel capacity of the noisy
channel. In the authentication exponent problem, for a given mes-
sage rate, we investigate the speed at which the optimal successful
attack probability can be driven to zero. We fully characterize
the authentication exponent for the zero-rate message case and
provide both an upper bound and a lower bound on the exponent
for the non-zero message rate case. In the authenticated capacity
problem, we study the largest data transmission rate under which
the attacker’s optimal successful attack probability can still be
made arbitrarily small. We establish an all or nothing result. In
particular, we show that the authenticated channel capacity is the
same as the classic channel capacity if a simulatability condition
is not satisfied, while the authenticated capacity will be zero if
this condition is satisfied. We also provide efficient algorithms to
check this condition. We further show that our results are robust
to modeling uncertainties about the eavesdropper’s channels.

Index Terms—Authentication, authenticated capacity, authen-
tication exponent, hypothesis testing, K-L. divergence, simulata-
bility condition.

I. INTRODUCTION

Message authentication is a fundamental concept in cryptog-
raphy in the presence of an adversary who intends to deceive
the legitimate receiver via sending fraudulent messages. It has
been investigated intensively from different perspectives [2]-
[14]. Most of existing works on authentication rely on a pre-
shared secret (in the form of a shared key or shared random-
ness) between the transmitter and the legitimate receiver. The
receiver uses this pre-shared secret to determine whether the
received message is authentic or not. Under this shared key
assumption, the authentication problem has been studied for
both noiseless and noisy channel models.

The authentication model over a noiseless channel was
developed by Simmons [5]. In this model, the communication
channel is assumed to be noiseless, and the transmitter Alice
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and the receiver Bob share a secret key K. In order to send a
message M to Bob, instead of transmitting M directly, Alice
transmits a codeword E = f(M, K) into the channel with f
being the encoding function used by Alice. Upon receiving
a codeword E (E = F if there is no attack; Otherwise, E
is determined by the adversary), Bob first needs to check
whether E is sent by Alice or not, based on the pre-shared
key K. In [5], two types of attacks were considered. The
first one is impersonation attack, in which the adversary Eve
sends the fake codeword before Alice transmits anything. The
impersonation attack is successful if the fake codeword is
accepted by Bob. The successful attack probability of this
attack is denoted by P;. The second one is substitution
attack, in which Eve initiates an attack after she observes
the codeword sent by Alice. In particular, Eve intercepts the
codeword sent by Alice (hence Bob does not receive this
codeword), and replaces the intercepted codeword with her
own attack codeword. The substitution attack is successful
if the codeword from Eve is accepted by Bob and decoded
into a message different from the message intended by Alice.
The successful attack probability of the substitution attack is
denoted as Pg. [5] also established lower bounds for P; and
Pg: Pp > 271UGE)  pg > 9—H(KIE) where I(-;-) is the
mutual information between its arguments and H (-|-) denotes
the conditional entropy of its arguments. It is clear that there
exists a tradeoff between making P; and Pg smaller. To make
P; smaller, E should contain more information about the
shared key K, that is I(K; E') should be larger. However, this
makes the substitution attack easier (i.e., H(K|E) becomes
smaller), as E will be overheard by Eve perfectly over the
noiseless channel.

To overcome the tradeoff faced by the noiseless model
in [5], as a natural extension, [3] extended Simmons’s model
to a noisy channel model, in which Alice and Eve (also Alice
and Bob) are connected by noisy channels. The main idea
is that the noisy channel between Alice and Eve may prevent
Eve from learning information about K contained in E. In this
way, we can embed more information about K in F to make
the impersonation attack more difficult, while not making the
substitution attack easier as the noisy channel between Alice
and Eve may prevent Eve from learning information about
K. Using this idea, [3] showed that one can make P; and
Ps to be simultaneously small under certain conditions. The
model in [3] was further expanded in [15] to include noisy
channel between Eve and Bob. The main observation is that the
noisy channel between Alice and Bob and the noisy channel
between Eve and Bob are different. And this difference can be
exploited to facilitate the authentication of users, along with
any pre-shared key.



In this paper, we consider a similar model as [15]: Alice,
Bob and Eve are all connected with one another by noisy
channels. Here we assume that Alice and Bob do not share
any secret key. We will mainly rely on the channel W (Y| X)
connecting Alice and Bob for authentication. In particular,
for any input probability mass function (PMF) Px generated
by Alice, we produce an output distribution at Bob Py =
W (Y| X)Px. The main idea is to properly choose Px so that
the produced Py is difficult (precise meaning will be made
clear in the sequel) for Eve to replicate through her noisy
channel to Bob. In this way, after receiving a sequence Y,
Bob can perform a hypothesis testing to check whether this
sequence is generated from Py or not, which in return provides
Bob evidences of whether the message is authentic or not.
However, this hypothesis testing problem is more challenging
than the classic hypothesis testing problems [16], in which
each element of Y is typically assumed to be independently
and identically generated from a certain PMF under each
hypothesis. In our case, each element is not necessarily in-
dependent nor identically distributed. More importantly, the
distribution under the alternative hypothesis, in which there is
an attack, is totally controlled by the attacker (via the selection
of the attack sequence) and can be arbitrary. Despite this
challenge, we study and solve two closely related questions
using this problem formulation.

In the first question, we focus on characterizing the optimal
authentication exponent. In particular, for a given message
rate, we investigate how to design the system so that the suc-
cessful attack probability under Eve’s optimal attack strategy is
as smaller as possible. The speed at which the successful attack
probability goes to zero is called the authentication exponent.
We derive an upper bound as well as a lower bound on the
authentication exponent. We show that the upper bound and
the lower bound match in the zero-rate case. In the nonzero-
rate scenario, we also identify some cases in which the upper
and lower bound match. Hence the optimal authentication
exponent is fully characterized in these cases.

In the second question, we focus on characterizing the
authenticated capacity. In particular, we study what the largest
data transmission rate is such that we can still design schemes
to make Eve’s successful attack probability arbitrarily small.
We call such largest rate as the authenticated capacity. Com-
pared with the classic definition of channel capacity, the
authenticated capacity has an additional requirement that the
decoded messages are guaranteed to come from the legitimate
transmitter. We show an “all or nothing” result on the authen-
ticated capacity. In particular, we show that if a “simulatability
condition” is satisfied, the authenticated capacity is zero.
On the other hand, if this condition is not satisfied, the
authenticated capacity is the same as the classic notion of
capacity. We also design efficient algorithms to check the
simulatability condition for any given channels. We further
extend our study to the authenticated secrecy capacity and
show a similar “all or nothing” result.

We would like to mention that the case without any shared
key is also briefly discussed in [15]. In addition, Our work
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is related to recent papers on authentication exploiting the
channel intrinsic randomness as well as the properties of
channel reciprocity [17]-[21]. These papers also studied the
authentication problem without using any pre-shared key, and
proposed various novel authentication schemes to exploit the
different channel statistics associated with different channels
for authentication. Compared with these interesting papers,
in this paper, we characterize the fundamental limits of such
systems by providing a more detailed and refined analysis.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model. In Section III,
we analyze the relationship between two types of attacks.
In Section IV, we focus on characterizing the authentication
exponent. In Section V, we characterize the authenticated
capacity. Finally, in Section VI, we offer our concluding
remarks.

Notation: We use X", Y™ and Z" to denote the sequences
generated or observed at Alice, Bob and Eve, respectively.
Matrix W (Y'|X) is reserved as the channel statistics from
Alice to Bob. U(F|X) and V(Y|Z) are defined in a similar
manner. Furthermore, for any given sequence X" € X", the
relative frequencies (%, e ,mTX‘) where n;,Vi € X is the
total number of indices j € [1 : n| at which X; =1, is called
the type of X™ and is denoted by tp(X™). We use P or Q to
denote the PMF of a certain random variable, 7y to denote the
set of types of all sequences Y, and 7*(Py) to denote the
set of sequences Y™ with tp(Y"™) = Py. We use P to denote
the set of all possible distributions. For example, Px denotes
the set of all possible distributions of random variable X. In
addition, we denote Q"™(A) := Pr{Y™ : Y™ € A|lY 3 Q},
in which ¥ % (Q means that each component of Y™ is
independently and identically distributed (i.i.d.) according to
Q. Here, if A = T{}(Py), we write it as Q™ (Py) in short.

II. PRELIMINARIES AND PROBLEM SETUP

The model considered in this paper is illustrated in Fig.1.
Two terminals, Alice and Bob, would like to communicate
with each other in the presence of an active adversary Eve.
Alice and Bob do not share any secret key. Let X =:
{17"' 7|X‘}’ Y = {17"' »|y|}’ zZ = {17"' 7|Z|}’ and
F =:{1,---,|F|} be four finite discrete sets, which represent
the input alphabet set of Alice, the output alphabet set of Bob,



the input alphabet set and the output alphabet set of Eve,
respectively. These three users are connected with one an-
other by three noisy discrete memoryless channels W (Y |X),
U(F|X) and V(Y|Z), which connect Alice and Bob, Alice
and Eve, as well as Eve and Bob respectively. Here, W (Y| X)
is an | Y| x| X| matrix, with each column 4, denoted by W (Y'|7),
representing the output distribution at Bob when the input is
X =i. Other channel matrices are defined in a similar manner.

In this paper, we assume that W (Y| X) is perfectly known.
As it will be clear in the sequel, most of our schemes
are universal with respect to Eve’s channels U(F|X) and
V(Y|Z). More specifically, with the exception of a particular
scheme in Section V, most of our schemes do not depend
on any knowledge about U (F'|X) and V(Y'|Z). Furthermore,
we will show that the particular scheme in Section V is
robust against the uncertainty of the knowledge of V(Y|Z).
Hence, even for that particular scheme, we do not need perfect
knowledge of V(Y|2).

Alice would like to send a message M € [1: |M|] to Bob.
She will use an encoder ¢ to convert M to a certain codeword
X™ and transmit it via the channel W (Y| X). However, Eve
is an active attacker, and is assumed to be able to intercept
the transmission of X™ such that Bob does not receive Y
from the channel W (Y| X) if Eve initiates the attack. This is a
typical assumption in the authentication literature [2]-[14] and
represents the worst case scenario from the legitimate users’
perspective. Furthermore, Eve can falsify messages and send
them to Bob via the channel V(Y'|Z), based on her optimal
strategy, to cheat Bob (details of the attacks considered will be
made precise in the sequel). Thus, after observing a sequence
Y™, Bob first needs to check the identity of Y": whether it is
transmitted from Alice or faked by Eve. In particular, Bob will
use a tester 1 to determine which of the following hypothesis
1S true:

Hy : YY" comes from Alice, no attack occurs, (1)
Hy : Y™ comes from Eve, an attack occurs. 2)
If Bob determines that Hy is true, he will then use a decoder
¢ to decode Y™ and obtain a decoded message M = o(Y™).
In summary, the system consists of the following compo-
nents:
Encoder ¢ : M — X™, 3)
Tester ¢ : Y™ — Hy or Hy, @)
Decoder ¢ (if Bob determines Hyp) : Y™ — M. (5)
For a given v, the acceptance region is defined by
A ={y" € Y"1 9(y") = Ho}.
Following the existing work on authentication [2]-[10], two

types of attacks are considered:

o Impersonation attack gy: This attack occurs before Alice
sends anything. In particular, Eve uses an attack strategy
gr to select a sequence Z" and sends it into the channel
V(Y|Z) to cheat Bob. We use PV(Z™) to denote the
output at Bob when Eve sends Z". The impersonation

attack is said to be successful if Bob decides Hy. We use
Pr to denote the success probability of the impersonation
attack, i.e., P = Pr(PV(Z"™) € 7,).

o Substitution attack gs: This attack occurs after Alice
sends a codeword X™ = ¢(M). In this attack, Eve
intercepts the communication between Alice and Bob
such that Bob receives no sequence from the channel
W(Y|X). Then Eve sends a sequence Z" = gg(F™) to
Bob via the channel V(Y|Z) based on the observations
F™ obtained from the channel U (F|X) connecting Alice
and Eve. The attack is successful if Bob decides Hy and
the decoded message is different from the message sent
by Alice. We use Pg to denote the success probability
of the substitution attack, i.e., Ps = Pr(PV(Z") €
o, and M # M).

The goal of the attacker is to design the attack strategies gy

and gg to maximize its successful attack probability

PSA = maX{P[,Ps}. (6)

If there is no attack (i.e., when Hj is true), two classes
of errors could occur at Bob. The first class is the false
rejection error, in which Bob falsely determines that an attack
has occurred. This error probability is denoted by Pr(H;|Hy).
The second class is that Bob correctly determines that there
is no attack but incorrectly decodes the message. This error
probability can be written as Pr{M # M, Hy|Ho}.

Definition 1. A protocol (¢,1, ) is called (e, o)-robust, if

IN

e (1)
o. (8)

mj\z}x {PV{M 7& _]\4-7 H()|H(]} +PY‘(H1|H0)}

max Psy <
91,98
Furthermore, R, is said to be achievable using an (e,0)-
robust protocol, if

1
—log|M| > Ry, — . 9)
n

Here, (7) implies that, if there is no attack, the maximum
error probability over all messages is required to be smaller
than e. At the same time, (8) implies that, if there is an attack,
the success probability of Eve’s optimal attack strategy is less
than o. In other words, if there is an attack, Bob should detect
the presence of the attack with a probability larger than 1 —o.
With these definitions, two related problems are considered in
this paper:

o Authentication Exponent: For given R, and €, how fast

can we make Pg4 go to zero?

o Authenticated Capacity: What is the largest message rate
R,, that a robust protocol can achieve?

A. Authentication Exponent

Define

Bn(Rm,€) = min max Pg 4,
¢, 91,95



where ¢, and ¢ range over all possible functions satisfying
(7) and (9). Furthermore, we define

O(Rm, )—hmlnf——logﬁn( s €)-

n—oQ

(10)

Here, 0(R,,, €) is the exponent (rate) at which the successful
attack probability goes to zero as the block-length n increases.
Similarly, we can define

Br(Rm,€) = min max Py, (11)
b g1
01(Rm,€) —hmmffflogﬁj( s €)s (12)
n—oo
for the impersonation attack, and
Bs(Rm,€) = min max Pg, (13)
&b 9gs
Os(Rm,€) —hmlnf——logﬁs( ,€),  (14)
n—oo

for the substitution attack.
In this problem, our goal is to characterize 8(R,,, €).

B. Authenticated (Secrecy) Capacity

In the authenticated capacity problem, we would like
to characterize the authenticated capacity of the channel
W(Y|X):

C* = sup Ry,
RN

in which the sup is taken over all ¢,1,¢ that satisfy (7)
and (8) for arbitrarily small ¢, 0. Compared with the classic
definition of channel capacity C, the authenticated capacity
has an additional requirement that the decoded messages are
guaranteed to come from the legitimate transmitter. Clearly,
we have that C* < C.

In addition, we would also like to characterize the authen-
ticated secrecy capacity C'§, which is defined as the largest
achievable rate such that (7) and (8) are satisfied and

1
—I(M;F™) <e
n

Again, compared with the classic definition of secrecy capacity
Cs [22], our definition of authenticated secrecy capacity has
the additional requirement that the accepted messages are
guaranteed to come from the legitimate transmitter. Hence,
we also have C§ < Cs.

III. IMPERSONATION ATTACK VS SUBSTITUTION ATTACK

In this section, we first analyze the relationship between
the success probabilities of the impersonation attack and the
substitution attack. This analysis illustrates that we can focus
only on the impersonation attack, which can greatly simplify
the presentation of the paper.

Theorem 1. If |[M| > 1, we have

Q(Rmye) = QI(Rm,€) = QS(Rmae)- (15)

Proof: We first prove the second equality. For the substi-
tution attack, suppose a sequence X" is transmitted by Alice,
and Eve observes a corresponding sequence F'", then we have

Bs(Rm,€) = min max Pg
(B, ) 1. g5 (F™)

= min max Pr(PV
., gs(F™)

< min max Pr(PV(

(Z") € dp, M # M)
z") € o)
< mln max Pr(PV(Z") € o,,)

< mn max max Pr(PV(Z") € «7,)
dhp XM gs(X™)

—

a)
< min max P
b0 g1

:Bl( m € )

Here, step (a) can be justified as follows. First, we note
that the difference between the impersonation attack and the
substitution attack lies in whether or not Eve observes the
sequence F" from the channel U(F|X) before selecting the
optimal attack sequence Z™. Based on this observation, then
for any given ¢, v, ¢ and substitution attack strategy, we can
construct a corresponding impersonation attack strategy as
follows. Eve assumes that a codeword X" was transmitted
by Alice and then generates F™ using U(F|X). With this
F, Eve then makes the corresponding substitution attack. As
Alice does not share a key with Bob in our model, Eve can
generate X" in the same manner as Alice generates X" (in the
model with key considered in the existing work, Eve cannot
do this as she does not know the key value shared by Alice
and Bob), F* will have the same statistics as F™. Since this
is a particular impersonation attack strategy, we have

(16)

max max Pr(PV(Z") € o)
Xn gS(X!L)

< maxPr(PV(Z") € o),
ar
which indicates

min max max Pr(PV(Z") € 47,)
bhip XM gs(X™)

< min maxPr(PV(Z") € #,,)
RN )]

= min max Pj.
b g1

Thus, we have

GS(R ) > GI(RHM ) (17)

Now, we show the other direction. The following is a valid
substitution attack strategy: Given ¢,¢ and ¢, no matter
what F™ Eve observes from U(F|X), she simply ignores
F™, and uses the corresponding optimal impersonation attack
strategy to pick the attack sequence Z". We use Pg to denote
the success probability of this particular substitution attack
strategy, and we have

. 1
P = < |M>maxP1,



with given ¢, and ¢. Thus,
Bs(Rm,€) = min max Pg
IR IR

> min P§
(ORI

1
=|1— —— | min max P,
( M|)¢,w7w o

1
= (]. — M) B[(Rmae)v (18)

which implies
Os(Rmy€) < O1(Rp, €).
Combining (17) with (19), we have
Os(Rm,€) = 01 (R, €).

19)

To show the first equality of (15), we have
Bn (R, €) = min max Pg 4
&, 91,95

= min max max{Pr, Ps}
®bp 91,95

in max{max Py, max Pgs}
91.9s  91.9s

W,
%)
in max{max Pr, max Pg}
) 91 9s

)

[T
5 %8

—

a

T e
E =

in max Py
b g1

= Br(Rm.,e),
where step (a) is true due to (16). Thus,
O(Rpm,€) = 01 (R, €).
|

Remark 1. This result shows that we can focus on analyzing
the successful attack probability as well as its exponent based
on the impersonation attack, as 0(R,,,€) = 0;(Rpy,¢) =
Os(Rm,€) and

0 < B1(Rmy ) — Bs(Rums ) < ﬁmmme), 20)

which is true due to (18). The difference in (20) is a relatively
small number, which has no influence on the authentication
exponent analyzed in Section IV even when |M)| is finite. In
addition, this difference will not affect the capacity result
analyzed in Section V, since in that case [r(Rpy,€) is an
arbitrarily small number.

Remark 2. Here, we would like to compare this result with
the result in the classic authentication setup [5], in which
there exists a tradeoff between Py and Ps as mentioned in the
introduction: Pr > 91K E) Pg > - H(KIE)  As discussed
above, in the classic authentication setup, the authentication
is based on the pre-shared key information. In the case with
a shared key, the codeword E sent by Alice will contain
information of K, which will be useful for Eve to carry out the
substitution attack. In fact, the information about K contained
in E is the main reason for the existence of a tradeoff between
Pr and Pg in the classic setup. If E contains more information

about K, the impersonation attack will be more difficult (Pr |)
but the substitution attack will be easier (Ps T). Similarly, if
FE contains less information about K, Py 1 while Ps |. In
our setup, there is no shared key, hence the codeword X™
sent by Alice does not carry any identification information
and Eve can simply generate it by herself. In particular,
when Alice sends nothing (thus the corresponding attack is
an impersonation attack), Eve can construct an impersonation
attack strategy by assuming a sequence X" was sent by Alice
and using the corresponding substitution attack toward this
Xn,

We note that, when M = 1, there is no substitution attack
as there is no any other message for the attacker to substitute
with. In this case, Ss(Rm,e) = 0 and the corresponding
0s(Rm, €) is not defined while 37(R,,, ¢) can still be positive
with well defined 6;(R,,,¢€). This case will be analyzed in
Theorem 2 below. Furthermore, we can easily conclude that
O(Ryn,€) = 01 (R, €) still holds.

IV. AUTHENTICATION EXPONENT

In this section, for a given R,, and €, we focus on char-
acterizing the authentication exponent 6(R,,, €). We will first
focus on the zero-rate case, in which R,,, = 0, and then focus
on the positive rate case.

A. Authentication of Zero-Rate Messages

To illustrate the main proof ideas, we first study the case of
authentication for zero-rate messages: |M]| is finite, or infinite
but

1
R,, = —log|M| — 0,
n

as n — oo. As discussed in Remark 1, it is sufficient to
characterize 6;(0, €).

Before deriving 6;(0,¢), we first analyze a special case:
the case of single message, i.e., |[M| = 1. In the single
message case, the decoding step ¢ is not needed, hence the
term Pr{M # M, Hyo|Hy} vanishes and (11) becomes

Br(01,¢) = min max Prp,
with 0; denoting the fact that | M| = 1. We also use 0;(01,¢€)
to denote the corresponding exponent.

We have the following three elements:

o From Alice’s perspective, it needs to design ¢. In this
case, it is equivalent to deciding which X to use as the
codeword.

o From Bob’s perspective, it needs to design i for the
following hypothesis testing problem:

Hy:Y" ~ PW(X"™),

Hy:Y" ~PV(Z"),
in which PW(X™) denote the output at Bob when Alice
sends X™. However, it is more challenging than the

classic hypothesis testing problem [16], in which Y;,7 =
1,--- ,n are typically assumed to be independently and



identically generated from a certain PMF under each
hypothesis. In our case, Y; is not necessarily independent
nor identically distributed for different ;. More impor-
tantly, the distribution under H; is totally controlled by
the attacker (via the selection of the attack sequence Z™)
and can be arbitrary.

« From Eve’s perspective, its goal is to design gy and the
corresponding attack sequence Z" to maximize the error
probability.

Taking the above three elements into consideration, we have

the following result.

Theorem 2.
01(01,€) = max P, D(Py,||Qv,i), @21)
in which
Py; = W(Yli), (22)
Qvi =Y V(Y[j)Pzi(j), (23)
JEZ

Py ; is some distribution of Z for each i € X, and D(||-) is
the Kullback-Leibler (KL) distance between its arguments.

To simplify the presentation of the proof of Theorem 2, we
first introduce a concept and its property from [23].

Definition 2 ( [23]). Let X be a random variable with PMF
P. For a given r > 0, a sequence X" is called a r-divergent
sequence for P if

D(ip(X™)||P) < .

We also denote the set of all r-divergent sequences for P as

Sn(P).
Lemma 1 ( [23]). Fix r > 0, then
P*(S™(P)) > 1— (n+1)* exp(—nr).

Now, we proceed to our proof of Theorem 2.

Proof of Theorem 2: The proof has two major steps: 1)
Step 1: For any given ¢, we characterize the optimal v, g; and
the corresponding error exponent; 2) Step 2: Characterize the
optimal ¢.

Step 1: Characterizing optimal ) and g; for any given
¢: In this step, we suppose ¢ is fixed (i.e., the codeword
X™ for the message is given), and assume tp(X"™) = Px.
Analyzing this case involves two phases. In the first phase, we
show that we can construct ) such that 87(01, €) goes to zero
exponentially with a rate > Px(i)-D(Py,;||Qy;).- In

Pz iticx 5
the second phase, we show there is no scheme that can achieve

an exponent larger than . mi}n > Px(i)- D(Py;||Qv,)-
Z,ifi€X g

Step 1.1: For a given ¢, construct a particular ) and
characterize the corresponding optimal attack strategy
gr: Fix a selected codeword X™ with type tp(X™) = Px.
We need to characterize which attack sequences Z" are
optimal to minimize the error exponent. All our analysis is
based on separating X" into |X| sub-sequences such that
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Fig. 2. An illustration of the 1th segment for a general sequence X ™.

each element within the same sub-sequence has the same
realization. Thus, without any loss of generality, we assume
X" = 1m2"2 ... |X|™I in which n; = nPx(i),i € X. In
the following, we denote the positions of ™ in X™ as the ¢th
segment. For a general X", the sequence in the ith segment
is denoted by X™¢. And Y and Z"™ are defined in the same
manner, see Fig. 2.

In the ith segment, since X™ = ¢™ and that the chan-
nel W(Y'|X) is memoryless, Y™ obtained by passing X™
through the channel W (Y| X)) can be seen as generated i.i.d.
according to Py; := W(Y'|i). Now, we set the acceptance
region, which in return determines 1, as

(XM ={Y"™ . YIX Y™ € o i € XY (24)
in which
JZZ‘ = S?l(Pyﬂ)
is defined in the :th segment with
— max —— log —— (n 4+ 1)1
r=max —— log —(n; + 1) . (25)

X

i€EX  n;
With this r, we have, according to Lemma 1, that

€

Pm’i S;“ Py;))>1

,Vie X.

Then, we have

Pr{a,(X")X"} > ] <1 - ;|> >1—e

ieX
Thus,
PI'(H1|H0) S €.

Hence using this particular 1), the constraint (7) is satisfied.
In the following, we analyze the successful attack probabil-
ity and characterize the optimal g; (equivalently the optimal
choice of the attack sequence Z"™) for this particular 1. For
any sequence Z selected by Eve, we denote the successful



attack probability as Pr{.«,(X™)|Z{'}. We realize that, due to
the symmetric construction of «7,(X™), we have

Pr{/,(X")|Z3} = [ [ Pe{#| Z5' }.
icex
To further analyze this probability, we need the following

lemma whose proof is provided in Appendix B.

Lemma 2. Set the acceptance region of a k length sequence
Y* as SF(Py), then the successful attack probability of any
sequence Zk via channel V (Y|Z) is upper bounded by

PrSE(PY)|ZE} < (k-+ 1) 1212 KPP 120) =50,

where Qy = Y. V(Yj) - Pz(j) with Py = tp(Z}).
JjEZ

Using Lemma 2 and let tp(Z;*) = Pz ,;, we have

Pr{c|Z5} < nIYVIHZlg—ni(D(Py,il|Qy,i)—d(r)) (26)

Thus, we have
Pr{a, (z")|Zy'}
< pXIAYI+IZD H 9—ni(D(Pyi||Qv,:)—6(r))

ieEX
_ n\X|(|y\+|Z|)2¥ —ni (D(Py,i||Qy,:)—d(r))

= plXIIYIHIZD) g—n(X Px () D(Py.il|Qv,:)=8(r)) (27)

which implies

1
——log Pr{e,(a")| Z5} > D Px (i) D(Pyil|Qy.s)
BTRICCIRE P

Inequality (28) implies that for our particular choice of ¥ as
specified in (24), the smallest exponent that Eve can hope for
is

min
{PZ,i}zeX

> Px(i)D(Py,|

Qv,i)- (29)

Now, we show that Eve can indeed achieve (29). Let Pz~ ;
be the minimizer for (29) and Q5. ; be the corresponding value
computed from (23). Similarly as (69), we also have, from
Lemma 6 in Appendix A, that V tp(Y™¢) : T3 (tp(Y™)) C
Sl (Py,i),

D(tp(Y™)[|Qy;) < D(Pyll@y,;) +0(r),

in which 6(r) goes to zero as r decreases. Thus,

vi () 2 Qv (tp(Y™))

W 1 DR
(1)
1 .
_ = 9=ni(D(Py,il|Q% ) +d(r))
> T 70D (30)

in which (a) is due to Theorem 11.1.4 in [24]. Now, consider
a particular attack strategy g7, in which Eve generates Z™

i.i.d. according to Pz« ; in the ¢th segment, Vi € X. With this
particular attack strategy, from (30), the success probability is

1 —n( > Px(9)D(Py,:|IQy ;)+4(r))
i€EX

Py ZWQ 5 (€29)
which implies that
1
| * ; 1O* .
-log P < 3~ Px()D(Prl|Qy)
ieX
X

+4(r) — wlﬁ logn (32)

As both 6(r) and —@ logn go to zero as n increases, we
conclude that g7 achieves (29), the best Eve can hope for.
Hence, for our particular choice of v, g7 is the optimal attack
strategy.

Step 1.2: Show 1 constructed in Step 1.1 is optimal:
Consider any acceptance region 7, with Pr{e7,| X"} >
1 — €, we will show that the particular attack strategy g
discussed above will achieve an exponent specified in (29).
Here Pr{<,| X™} > 1—¢ is due to the fact that Pr{.e7,| X"} =
1—Pr(Hy|Hp) as well as the requirement defined by (7). We
denote the set of the ith segment sequences of Y € 7, by
;i € X. Then we have

1— ¢ < Pr{e,| X"}
= > Pr{y"x"}
Yred,

Z H Pr{Y™

i}
Yneg, ieX

> Ao

Yred, ieX

>

Yk €dll Y \"k Cof \ oty

> PR (Y™

Y "k €,

< Y PE(Y™)
Y "k €,

= Pr{a|(X = k)™ ).

pp vy I Pray™)

ieX\k
> 1T A

Yr\"k o/ \ oy, 1EX\K

Now, consider the attack strategy g7 discussed above. Using
Lemma 7 in Appendix A, we have

Quk () > (1 — 2€)2 " (P (PrllQy ) +e)
Then, it follows

Pr > H(l — 2¢)2 i (D(PyallQs,)+e)
i€X
= (]_ — 26)\2\?\2162)( 7ni(D(PY,i||Qy’i)+e)

> Px (1) D(Py,il|Qy, ;) +e

- (1—26)9‘2_n<i6x )

Since P; is obtained by the particular attack strategy g7, it
must be less or equal to that from the optimal attack strategy



(denote the optimal attack sequence by Z*™)with respect to
oy, 1.e. Pr{e,|Z*"} > Pj. Thus, we have

1
—= 1og Pr{<,|Z2*"}

<3 P
ieX
Combining (28) and (33) with the fact that Eve can always
select a Z™ with the optimal types { Pz ; };cx in corresponding
segments, we conclude that the exponent of the successful
attack probability when X™ is given, denoted by 6;(X™), is
QI(Xn = mm ZPX PYlHQY'L)

ZL 1EX

)—&—e—ulog(l—Qe)

(33)

Step 2: Characterize the optimal ¢: Now, we optimize over
¢. We obtain

07(01,€) = H}(%X@[(Xn) maxHI(X”)

= max min

ZPX
Px {Pz,i}ticx

= max Ig}zln D(PY,z”QY,i);

i)

in which the last step is true as > Px (i) - D(Py||Qy,) is a

linear function of Px(i),i = 1, . ,|X|. This completes the
proof. ]
Remark 3. According to Theorem 2.7.2 of [24],
D(Py,;||Qy,) is convex in the pair (Py,,Qy;). Thus,
for a fixed Py,;, we know that D(Py;||Qy,) is convex
in Qy,;. In addition, Qy, is linear in Py; according to
(23), we can conclude that D(Py ;||Qy,;) is convex in Py
(See Chapter 2 in [25]). Hence, I]glinD(Py,iHnyi) with
Z.i

constraints (22) and (23) is a convex optimization problem,
which can be solved efficiently.

Having obtained 6;(01,¢€) of the single message case, we
can easily generalize it to the case of multiple messages with
zero-rate.

Theorem 3. For the zero-rate case, we have
01(0,€) = 07(01,¢€).
Proof: First, we show

01(0,¢) < 07(01,¢) = E%%(%;BD(PYJHQYJ)

For the multiple messages case, we again require
Pr(H1|Hp) < e. Meanwhile,
|M]
Pr(H,|Hy) ZP = i)Pr(Hy|Ho, M = i).
As a result, there must exist at least one m € [1 : |M]], such

that Pr(Hy|Ho, M = m) < e. If we focus on the message
M = m, it has the same requirements as the single message
case. Thus, we can conclude that

01(0,¢) < %%}IEZIHD(PWHQY?)

In the following, we show that we can construct a
scheme to achieve mzﬁ(r}glinD(Pyl»HQyZ-). Let
€

19 =

n—oo

argmax{mmD(PyZHQyZ)} Since 1 log [M| =3 0, there

exist arbltrarlly small nonnegative numbers {¢;};cx\{io}-
when 7 is sufficiently large, such that 2"/(X"Y) > | M|, where
the distribution of X* is given by

T
P)*( = [ela oty €g—1, 1- €0, €ig+1, """ a6|X|] )
with €g := Z €;- (34)
i%io

Now, we use P% defined above to do channel coding as that in
[24, Chapter 7]: Generate | M| sequences as codewords, and set
the acceptance region be 7, := T.*(Y"), in which the typical
set is defined with respect to Py = Y Pk (i)W (Y'|i). Thus,

we can easily verify that (7) is satisﬁleed;.( For any sequence Z
selected by Eve, we denote the successful attack probability
as Pr{,|Z]}. We realize that, for any given value ¢ > 0,
there exists an r, with r vanishing as € goes to zero, such that

p C S (Py),
which implies that
Prian|Z5} < Pr{S;(Py)|Z5}-
Using Lemma 2, we have
Pr{S™(Py)|Z3} < (n+ 1)PHIElg=nD(Prli@y)=d(m)

Thus, it follows that

01(0,€) > D(Py||Qy) — 0(r) — wlog(ru— 1)
= rrlgizn D(Py||Qy) — ¢
= D(Py||Qy) — ¢
2 D(PylIQ3) - o)
= min D(Py;,[|Qy) = 8(¢)
= }Jﬁn D(Py;,||Qy,is) — 6(€")

Z,ig
— 3 . ) !
= max lglzl?D(PY,ZIIQY,z) 3(€),

where Qy = Z Pz(1)V(Y4), argmlnD(PyHQy)

and (a) is true due to Lemma 6 in Appendlx A, since
D(Py||Py,) < d(€o) because of (34).
Hence, we conclude that
0 = in D(Py; i)
10, €) = magemin D(Pyi[|Qy.:)
This completes the proof. [ ]

B. Authentication of Nonzero-Rate Messages

In this subsection, we deal with the case with R,, > 0,
which is a much more complicated scenario compared to
the single message case. We first provide an upper bound
and a lower bound on the exponent of the successful attack



probability. We then provide conditions under which the upper
and the lower bounds match with each other.

Theorem 4. Let Py = > Px(i))W(Y|i) and Qy =
> Pyz(j)V(Yj), we have e
JEZ
01(Rm,€) <min max D(Py[|Qy), (35)
Or(Bom, €) 2 max H;IZHD(PyHQy) (36)
in which

Pr = {PX € Px: I(X,Y) > Rm}~

Proof:
This proof has two main parts: First, we will show
that, min max D(Py||Qy) is an upper bound on the
Pz Px€Pgr

authentication exponent of any scheme; Second, we will
construct a scheme to achieve an authentication exponent

D(P
Joax min D(Py||Qy).

Upper-bounding the authentication exponent for any
scheme by (35): Consider an arbitrary triplet (¢, 1, ) that
satisfy the conditions in (7) and (9). Suppose 2"/' sequences
X" are selected as the codewords by the encoder ¢. Define
the acceptance region determined by 1 as <7,. As there are at
most (n + 1)I*! different types of sequences X™, there must
exist at least (n 4 1)~1¥I27fm codewords that have the same
type. We denote this particular type as Px and the set of these
codewords as Cp, .

For any arbitrary testing function 1 and decoding function
©, we define A(X™) C Y™ as the set of sequences Y™ that
are accepted and decoded to X with a probability larger than
1. For each X", we must have Pr{A(X")|X"} > 1 — 2
otherwise, the decoding error for X" is larger than e, which
violates the condition (7). It is easy to see that

AXMNAX™Y) =0, VX", X" e Cp, : X" # X", (37)
In Appendix C, we show that we must have
R <I(X;Y), (38)

in which the mutual information 7(X;Y") is computed from

this particular Px and Py = Y. Px (i)W (Y]i). Meanwhile,
=

we also have

4,2 | Axm),

X"GCPX

(39)

which follows from the fact that for any Y ¢ 7,, Y™ will
be rejected by Bob, let alone be decoded to a codeword in
Cpy,and thus Y ¢ | A(X™).
XmeCpy
Now suppose Eve initiates an impersonation attack by
generating a sequence Z" with each component generated

ii.d. according to some PMF Py, and define

Qv =Y Pz(j)

JjEZ

V(Yl5). (40)

With this particular attack, the success probability is

(@)
Pri{cr,|Z"} > Prd ) AX™)|2r (41)
X"ECPX
YOS paxmzn, @
X"ECPX

in which (a) follows from (39) and (b) is true due to (37).
On the other hand, according to the proof in Theorem 2 (in
particular, the proof of (31)), we have, for each X" € Cp,,
that
—n( > Px(i)D(Py,||Qv,i)+e)

Pr{A(X™)|Z"} >2 icx
—n( >, Px()D(Py:||Qy)+e)
=92 i€EX ,

since Pr{A(X™)|X™} > 1 — 2e. And the last step is true due
to the fact that V¢ € X, Qy,; = Qy is fixed under this attack
(Py,; and Qy,; are defined in (22) and (23)). Thus, we have

—n( >, Px()D(Py,:||Qy)+e)
PI‘{Q{”|Z”} Z Z S X Y. Y)TE

w”ECpX

—n( S Px(i)D(Py;
> (n—|—l)_|X|2an2 (iEZX x (1) D(Py,i||Qy )+e)

—(n+ 1)7|X|2*n(1§( Px(i)D(PY,iIIQy)meJre).

Since Pr{,|Z"} is obtained by one specific attack strat-
egy, it must be less than or equal to the successful attack
probability of the optimal attack strategy, Pr{.#,|Z*"}. Thus,
we have

. log Pr{<,|Z*"}

X
<ZPX D(Py1Qy) ~ ot 2+ " log(n +1)
1EX
= Px(i)D(Py,l|Qy) — R + €, (43)
1EX

where ¢/ := ¢ + ‘nﬂ log(n + 1). From (38) and (43), we see
that for any given (¢, ¢, %) (thus Py is given), Eve can select
an arbitrary distribution Pz € Py to initiate an impersonation
attack as described above, and the corresponding exponent of
the successful attack probability is upper bounded by the right-
hand side of (43). Thus, the largest exponent of the successful
attack probability (corresponding to the smallest successful
attack probability) Alice and Bob can expect in the worst
case when Eve selects the optimal distribution P based on
the given Py, is given by nPl)in > Px(1)D(Py,;||Qy) — Rum.
.
Hence, we conclude that e

01(Rpm,€) < max minZPX

D(P
Px€Pr Py “ Y1||QY)
1€

since ¢’ is an arbitrarily small number as n — oco. And we
have

01 (R, < P D(Py;
(Rms©) < gz yin ) Px(D(PrillQy) -
@ min max ZPX D(Py;||Qy) — R (44)

Pz Px GPR



Here, (a) is proved in Appendix D
Given any P, € Py (thus, Qy is given), we first focus on
the maximization sub-problem:

D(Py;||Qy) — R (45)

In Appendix E, we show that, for the optimization prob-
lem (45), an optimizer P% with I(X*;Y) = R,, can always
be found. On the other hand, we have

ZPX D(Py||Qy) —

= ZPX ZPYzlog - Ry,
ZP ZW Y ( | ) _
=3 Py i) R,
Yli) P
= PO i) log o )l - R,
5% Gv Py
Py
= P i)lo
Z x ( gQY
Yli
+> Px (i)W (Y]i)log W) g,
Y Y
P
— ZPY log —
= Q
. , PX ) Y1)
Y Px-Pr
= D(PyHQy) + I(X;Y) — Ry,.
Thus, (44) is equivalent to
Or(fn ) < pin fugy, O PxODPylQ) -
(@)
= min max D(Py||Qy)
o .
2 D(P 46
e s, DI, o

in which 0Pg := {Px : I(X;Y) = R,,}. Here step (a) is
true because as discussed above, the optimizer P% satisfies
I(X*;Y) = R,,. Step (b) is true, because for any given Py,
D(Py||Qy) is convex in Py while Py is an affine function
of Px, then D(Py||Qy) is convex in Px, thus the optimal
solution of p?S%RD(PYHQ” is obtained on the boundary

JPr [26].
Construct a scheme to achieve (36): In this part, for any
given Px (thus Py is fixed), we will construct a scheme such

that the successful attack probability of any attack strategy is
—n(mmD(PyHQy) g)
less than 2

Codebook construction: Fix PX, generate 2" sequences
X™ as the codewords, i.i.d. according to the PMF Px, with
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R, < I(X;Y). And each codeword is assigned to one
message. We use X" (M) to denote the M-th codeword.

Encoder ¢: If Alice needs to send a message M to Bob,
she transmits X" (M) into the channel.

Testing function 1: Upon receiving a sequence Y ", Bob
first determines whether Y™ is from Alice or not. He de-
clares it to be from Alice if Y™ is Py-typical, in which
Py = Z Px (i)W (Y]i) for the given Px; Otherwise, Bob

declares that the message is from Eve, and abandons it. Hence,
the acceptance region is o = T*(Y). It is easy to show that
for any given e, there exists an r such that

of C SI'(Py). 47

Furthermore, r goes to zero as € decreases.

Decoder p: If Y™ is tested to be from Alice, Bob tries to
find a unique sequence X "(M ) from the codebook such that
(X™(M),y™) are jointly typical according to W (Y|X)Px.
If there are more than one such sequences X", he randomly
picks one and declares it as the transmitted message; If there
is no such sequence, he declares an error.

Error analysis: Since the acceptance region is &7 = T*(Y),
and all Y™ sequences that are jointly typical with X" are
included in 7, thus, we can easily show that

Pr{N # M, Ho|Hy} < g
Pr{H, |Hy) < %

Using similar argument as that of the proof of Theorem 7.7.1
[24], we can obtain that there exists at least one codebook
such that (7) is satisfied.

Authentication exponent analysis: First, for any attack se-
quence Z™ with type Pz chosen by Eve, we have

Pr{e/|Z"} < Pr{S](Py)|Z"},

which is true due to (47). Furthermore, according to Lemma
2 we have

Pr{S™(Py)|Z"} < (n+1

<(n+1

)Iy\-i-lzlg—n(D(PyIIQy)—é(T))

)Iy\+|2|2_”(fgizn D(PYHQY)—(s(T‘))'

Thus, we have
—n(min D(Py ||Qy)—46(r))
Pr(e/|Z"} < (n 1)1ZIg R

which indicates that

~LlogPr{e/| 2"} > min D(Py[|Qv) ~ 3(r)
n A

Z
I e 1),
n
Finally, we conclude that
01 (R, €) > in D(P; , 48
1{Bm,€) 2 max min D(Py[|Qy) (48)
and this completes the proof. [ ]

In general, (35) and (36) do not match with each other. How-
ever, there do exist scenarios where these two bounds match



and hence the authentication exponent is fully characterized
for these scenarios.

Corollary 1. Let f(Px) : I%inD(PyHQy), if f(Px)+

I(X;Y) is convex with respect to Px € Pg, then (35)
and (36) match.

Proof. First, from (44) and (46), we know that the upper
bound (35) can be equivalently written as

O01(Rm,€) < max [f(Px)+I(X;Y) — Ry (49)

PxeP
In the following, we will show that if f(Px) + I(X;Y) is
convex with respect to Px € Ppr, then the lower bound in (36)
can be equivalently written as

0r(Rm,e) > max [f(Px)+ I(X;Y) — Ry, (50)
Px€Pr
which implies that the upper bound (35) matches with the
lower bound (36).
Hence, to show this corollary, we only need to show (50).
Towards that end, let
Px = Px)+1(X;Y) — Ry,
x = arg max [f(Px) +I(X;Y) = Rm),
Px = Px). 51
x = arg max f(Px) Gh
Since D(Py||Qy) is convex in (Py,Qy), and (Py,Qy)
are affine functions of (Py, Pz), then D(Py||Qy) is convex
in (Px, Pz). Thus, according to [25], f(Px) is convex in
Px. Since I(X;Y) is concave in Py, then depending on
W(Y|X) and V(Y'|Z), the summation f(Px)+I(X;Y) can
be convex, concave or neither. For the case when f(Px) +
I(X;Y) is convex in Px € Pg, then the optimal value of
Jnax [f(Px)+I(X;Y)— R,,] is obtained on the boundary
X R

[26], that is I(X;Y) = R,,. Thus, we have

f(Px) f(Px) +I(X;Y) — Ry,

Anax [f(Px) + I(X;Y) — B
A, P

f(Px).

On the other hand, according to the definition of PX as in
(51), we have

>

f(Px) < P;Hg%Rf(Px) = f(Px).

Hence, it follows that

Finally, if f(Px) + I(X;Y) is convex in Px € Pg, the
optimal value of the optimization problem (50) is same as

P
Fnax f(Px),

which is (36). This finishes the proof.
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bound and lower bound match.
2/3 3/4 } V¥iz) = [ 3/5 1/3 } ’

In the following, we provide an example for which the upper
Example 1: Let

1/3 1/4 2/5 2/3
and set Px = [)\1, 1-— )\1]T, P; = [)\2,1 — )\Q]T, A1, Ao €
[0 : 1]. Then, we have

W(Y|X) = [

T
1 1. 3 1
2 4. 1 4 17
—V(Y|Z)Py = |2 — =)y =+ — .
Qv =V{Y|2)Pz [3 15 2’3+15A2}

Define \g = % + %)\1, then

11—
+ (1= Xo)log T——

A
D(Pr|Qv) = Xolog 55— X
37 1572 37T 1572

5

Following some simple calculations, we have

OD(Py||Qy)
Oy
4 4 2
_ et ro—2).
15(2 — £X2) (3 + 15X2) In2 (15 2+ Ao 3)
Since Ao € [+ : 1], we have
OD(Py||Qy) 1.1
—_— A — =1, A 2 1].
D <0,voe4 3,26[0 ]

Thus, for any given Py, D(Py||Qy) is a decreasing function
of \o. Hence,

T
] , VPx € Px. (52)

1

A5 = argnr)l\inD(PyHQy) =1, Vo € [4 :
2

which is equivalent to

23

@y = arnin D(Py [0y = | 2.2

Hence,

f(Px)+1I(X;Y)
= D(Py||Qy) + 1(X;Y)

=Y Pylog gf +H(Y) - H(Y|X)
y Y

=Y Pylog g’; —> PylogPy — Y Px(i)H(Y|i)
Y Y ieX

= Y Py log g = 3 Pe@H(Y).
y Y  iex

As H(Y|X = i) are constants for either ¢ = 1 or ¢ = 2 and
Py is an affine function of Px, from the equation above, we
have that f(Px) + I(X;Y) is linear (and hence convex) in
Px. Hence, for this example, we can conclude that

max min D(Py||Qy)

= mi ax D(P
Px€Pr Pz HIyZnPI)?E%R ( YHQY)’

and hence the authentication exponent is fully characterized.



X ——W(Y|X)—Y
I T
XWX =2~V iz -y

Fig. 3. Construct a virtual channel X — Y that has the same statistics as
X-Y

V. AUTHENTICATED (SECRECY) CAPACITY

In this section, we focus on characterizing the authenticated
capacity C* and the authenticated secrecy capacity Cg, de-
fined in Section II-B.

A. Simulatability Condition and Authenticated (Secrecy) Ca-
pacity

We first introduce a concept named simulatability condition
that plays an important role in our study. The simulatability
condition was first defined under the source model in [9] for
the study of key generation under unauthenticated public chan-
nel problems. Here, we extend the definition to the channel
model. We note that [15] also introduced a similar concept
for the channel model. We will show that our definition will
lead to the definition given in [15].

Definition 3. For given channels W (Y |X) (the channel con-
necting Alice and Bob) and V(Y |Z) (the channel connecting
Eve and Bob), if for each Px € Py, there exists some
Py € Py such that

S V(YIG) - Pr(j) =D W(Yli) - Px (i),

JEZ 1EX

(53)

then, we say that the (channel) simulatability condition holds.

Remark 4. The simulatability condition here means that no
matter what Px Alice uses, Eve can always find a Py, such
that the received sequences Y™ at Bob from both channels
have the same distribution.

We have the following lemmas regarding the simulatability
condition.

Lemma 3. Given channels W(Y|X) and V(Y|Z), if the
simulatabjlity cgndition holds, then Eve can construct a virtual
channel V(Z|X), such that

V(Y|Z2)V(Z|X)=W(Y|X). (54)

Proof. The proof is given in Appendix F. O

As shown in Fig. 3, Lemma 3 means that if the simulata-
bility condition holds, by concatenating V (Z|X) to V(Y|Z),
Eve can construct a channel from X to Y that has the same
statistics as the legitimate channel from X to Y. The definition
of simulatability condition in [15] has the same interpretation
as shown in Fig. 3.

Using Lemma 3, we can greatly simplify the simulatability
condition as shown in the following lemma.
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Lemma 4. Given W(Y|X) and V(Y |Z), the simulatability
condition holds if and only if Vi € X, 3Py ; € Pz, s.t.

V(Y|Z)Py; = W(Y]i). (55)

Proof. The proof is given in Appendix F. O

This lemma plays a key role in the proof of our main
result on the authenticated capacity. It also facilitates us in
the design of efficient algorithms for checking whether the
simulatability condition holds or not for any given W (Y| X)
and V(Y|Z). The design of efficient algorithms will be
discussed in Section V-B.

Now, we state our result on C* as follows.

Theorem 5. Under the channel model when Eve is active, if
the simulatability condition holds, C* = 0; Otherwise, C*
C.

Suppose P = arg max I(X;Y) (the corresponding Py :=
X

Py), then C = I(X™*;Y). If the simulatability condition does
not hold and HI})iIlD(P;}HQy) > 0, the result C* = C =
4

I(X™*;Y) is obvious, as we can fix Py = P} and use the same
scheme as that in the achievability in Section I'V-B. Using this
scheme, the successful attack probability is upper bounded as
—n(min D(Py ||Qy )—¢)

/Bn(Zg“) S 2 Py Y Y €

However, if the simulatability condition does not hold but
rr}gin D(P;||Qy) = 0, the above scheme does not work. In
z

€.

the following, we present a scheme such that, as long as the
simulatability condition doesn’t hold, we can guarantee that
Alice can reliably transmit a message to Bob at a rate larger
than C' — ¢, meanwhile Bob can detect the attack by Eve with
a probability larger than 1 — o.

Proof of Theorem 5: The case when the simulatability
condition holds is trivial: As shown in Lemma 3, if the
simulatability condition holds, Eve can concatenate a virtual
channel V(Z|X) to the channel V(Y|Z) such that the con-
catenated channel from X to Y has the same statistics as
the legitimate channel from X to Y. Now, for any legitimate
users’ strategy ¢, 1, ¢ that satisfy (7), Eve can always generate
the same codebook as Alice’s codebook. When Eve conducts
an impersonation attack, she only needs to randomly pick
a codeword from the codebook and send it through the
concatenated channel from X to Y. Since this concatenated
channel has the same statistics as that of the channel from X
to Y, the successful attack probability equals the probability
of that a message sent by Alice is accepted by Bob. As the
latter probability is larger than 1 — e due to (7), the successful
attack probability will be larger than 1 — €. Thus, we have

C* =0.

For the case when the simulatability condition does not hold,
we show that there exists a scheme such that Alice can reliably
transmit the message to Bob at a rate larger than C' — ¢ when
Eve does not attack, meanwhile Bob can detect the attack by
Eve with a probability larger than 1 — o.



h n

Codeword: X"

Fig. 4. Codeword Xn+vn

According to Lemma 4, if the simulatability condition does

not hold, then there exists i* € X s.t.

V(Y|Z)Pz,i» # W(Y[i"), VPz; € Pz. (56)
To show that C* = (), it suffices to show that for any Px €
Px, R=1I(X;Y) — € is achievable.

Codebook generation: Fix Px, i.i.d generate onBEm  ge.
quences X" according to the PMF Py with R, = I(X;Y)—
€o. We then construct a sequence ¢*V", that is to repeat i* for
\/n times and append i*V"™ to each generated X”. We denote
the new n + +/n length sequence as X +Vi As will be clear
in the sequel, i*V™ will be used as an authenticator. We then
set the sequences X1V g the codewords, and each Xnt+vn
is assigned to one message. We use Xntvn (M) to denote the
M-th codeword. Fig. 4 illustrates the codeword XtV

Encoding: If Alice needs to send a message M to Bob, she

transmits X" V(M) into the channel.

Authentication: Upon receiving a sequence Y"tvV" Bob
first splits it into two parts: Y™ and Y:jl‘/ﬁ. Then he declares
the signal to be from Alice if K?:l‘/ﬁ is Py ;«-typical; Other-
wise, he declares it to be from Eve and rejects it.

Decoding: If Y™ +V7 s authenticated to be from Alice,

Bob tries to find a unique sequence X"(M) such that
(X™(M),Y™) are jointly typical, and decodes the signal to
M. If there are more than one such sequence, he randomly

picks one. If there is no such sequence, he declares an error.

Error analysis: Since the acceptance region is o =
yrox TQ/E(Y, i*), and all X™-jointly typical sequence Y™ is
included in <7, thus we can easily obtain

Pr{M # M, Hy|H,} <

€
— 2)
Pr{H,|Ho} < %

Using the same argument as that in the proof of Theorem 7.7.1
in [24], we obtain that there exists at least one codebook such
that (7) is satisfied.

Probability of successful attack: As discussed in Section III
and (20) in particular, we only need to consider the imperson-

ation attack. For this, we only need to focus on Y™ V™ Since

n+1
Ygfl‘/ﬁ is i.i.d generated according to Py ;» = W (Y|i*) when

there is no attack, we have, based on Lemma 2, that

Pr < Z_ﬁ(D(PY,i*||Qy,1,*)—5(60)) <o

= U,

when n is sufficiently large.
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Rate Per Channel Use:
nR

m n
Cnt+yn nt+n
=I(X;Y) -

(I(X, Y) — 60)

J
+

n

n+\/ﬁeo

I(X:Y) —

n
> [(X;Y) — e,

when n is large enough. [ ]

Using the same idea of appending an /n length sequence as
the authentication sequence, we can easily obtain the following
result regarding the authenticated secrecy capacity.

Corollary 2. Under the channel model when Eve is active, if
the simulatability condition holds, C'§ = 0; Otherwise, C§ =
Cs.

Proof. The proof follows similar steps as that of Theorem 5
and is omitted for brevity. O

Remark 5. For the case when the simulatability condition
holds, if Alice and Bob pre-share a secret key (even with a
negligible rate), the authenticated (secrecy) capacity may not
necessarily be zero, as Alice and Bob can utilize the pre-shared
key to perform authentication such that the successful attack
probability is upper bounded by o. In this case, the channel
U(F|X) has effect on determining how much information Eve
can learn about this secret key, and Eve can use this infor-
mation to carry out the substitution attack. As our analysis
relies on the assumption that the legitimate users do not have
pre-share keys, the exact characterization of the authenticated
(secrecy) capacity for the scenario with pre-share keys requires
new analysis, which is left for further investigation.

Note that the role of the simulatability condition in our
setup is similar as that of the symmetrizability condition for
an arbitrarily varying channel (AVC) as defined in [27]. For
an AVC, the state of the channel can be viewed as being
controlled by an adversary. If the AVC is symmetrizable,
there exists a state sequence which the adversary can use,
such that the decoder cannot distinguish the true codeword
from a false codeword no matter what scheme is applied.
On the other hand, if the AVC is not symmetrizable, there
exists a scheme such that no matter what state the channel
is, the decoder can correctly decode the codeword of positive
rate with high probability. In this respect, the simulatability
condition is weaker than the symmetrizability condition since
the simulatability condition only involves in two separate
channels and the channel from the encoder to the decoder
remains the same while for the AVC, the channel statistics
from the encoder to the decoder is determined by the state
sequence and it can be arbitrarily changed.

B. Algorithm

As shown above, the simulatability condition plays an
important role in our analysis. Hence, it is crucial to design
efficient algorithms to check whether the simulatability condi-
tion holds or not for any given W (Y'|X) and V(Y|Z). From
Lemma 4, we know that to check the simulatability condition,



we only need to check, for each ¢ € X, whether there exists
some Pz ; € Pz such that (55) holds.

It is easy to see that if there exists a Pz; € Pz such
that (55) holds, then the optimal value of the following
optimization problem will be 0:

win  [VYIZ)Pz - WV 57
s.t. Py, =0,
> Prili) =1,
JEZ
in which || - ||1 is the ¢; norm. At the same time, if the

optimal value obtained from the optimization problem (57)
is 0, the corresponding optimizer will satisfy (55). Hence,
we conclude that (55) holds if and only if the optimal value
obtained from (57) is 0. It is easy to check that (57) is a convex
optimization problem, and hence can be solved efficiently. In
fact, following similar steps as those in our recent work [28],
the optimization problem (57) can be further simplified to
be a linear programming problem. Details of those steps are
omitted, as they are very similar to those in [28].

Finally, using Lemma 4, we know that we only need to
solve |X'| convex optimization problems as (57) to check the
simulatability condition (53).

C. Channel Uncertainty

It is important to note that, although our model involves
Eve’s channels U(F|X) and V(Y |Z), most of our schemes
(with one exception to be discussed below) in both Section IV
and Section V are universal with respect to Eve’s channels, in
the sense that our schemes do not rely on the information on
Eve’s channels. However, in order to check the simulatability
condition, we need to know the exact channel state information
of V(Y'|Z), which is impractical. Nonetheless, we show that
the simulatability condition here is not sensitive to modeling
uncertainties, that is V(Y'|Z) does not need to be known
perfectly.

Assume W (Y| X) is perfectly known but V' (Y|Z) is known
only to a certain precision. In particular, let the true channel
between Eve and Bob to be V(Y|Z), but the legitimate
users know only an estimate V(Y'|Z). Denote AV (Y|Z) =
V(Y|Z) — V(Y|Z), we assume |AV(Y|Z)]| is bounded. In
particular, we assume

AV (IR <6, Vj e [L: V], ke[l:|Z]].
We clearly have

(Y|
> AV (jlk) =0, Vk € [1:|Z]].

j=1
Suppose that based on V(Y|Z), Alice and Bob determine

that W (Y| X)) is not simulatable, i.e., there exists a ¢* such
that W (Y'|i*) satisfies

V(Y |Z)Pz:- # W(Yi*), VPz € Pz. (58)

As discussed in the proof of Theorem 5, Alice and Bob will
use ¢* to design the authenticator. This is the only part of our
scheme that depends on Eve’s channel. Let

p= }glin |V(Y|Z2) Pz — W(Y|i")|x
Z,i*

s.t. Pz =0, ZPZ,i* () =1
JjEZ

(59)

From (58), we know p > 0.
We have the following result.

Lemma 5. Suppose Eve can’t simulate W (Y'|i*) with regards
to V(Y|Z), then Yo < ﬁ Eve cannot simulate W (Y|i*)

using V(Y| Z) neither.

Proof. The proof is shown in Appendix F. O

This result means that, although Alice and Bob only have
an estimate of Eve’s channel V (Y'|Z), the authenticator i*V™
designed based on the estimated channel still works for the
true channel V(Y|Z ) as long as the difference between these
two channels measured by 0 is less than p/|)|. Hence, our
scheme is robust to the uncertainty in Eve’s channel.

Here, we provide an example to illustrate this result.
Example 2: Let

1/2 1/2

V(Y|Z) = { s s } WY |i) = [ f;g } .

Then, we have

p = min|[V(Y[Z)Pz: — Wil
1_ 2
_ 27 3 13
= min = .
PZJ*H 1_ 1
273 1
Now if
p 1 1
< —=zp=—, 60
V2" 76 ©0
~ | 1/2461 1/24 0
set V(Y|Z) = [ 12— 6 1/2— 6, }, |01] < 6,]02] <6
and Py ;~ = M , then we have
’ 1—)\1
VP, . — 1/2 4 6101 + 52(1 — A1)
Zyir = 1/2 — 51/\1 — 52(1 — /\1) ’

Since the first entry 1/24 01\ +02(1 — A1) < 1/2+1/6)\; +
1/6(1 — A1) = 2/3, we can conclude

V Py # W(Y|i*), YPg s € Py.

Hence, Eve can’t simulate W (Y|i*) for any perturbed channel
V(Y| Z) with constraint (60).



VI. CONCLUSION

In this paper, we have considered the problem of message
authentication without any pre-shared key, in the presence of
an active adversary over noisy channels. We have characterized
the authentication exponent for the zero-rate case and provided
both an upper bound and a lower bound on the exponent for the
nonzero-rate case. We have shown an “all or nothing” result for
the authenticated channel capacity, depending on a so called
simulatability condition. We have further provided efficient
algorithms to check the simulatability condition. We have also
shown that our schemes are robust to modeling uncertainties
about Eve’s channels.

APPENDIX A

Lemma 6. Let P*, P and () be three distributions on random
variable X, and r > 0, then if D(P*||P) < r and 0 <
D(P||Q) < oo, then

D(P™|Q)
D(P™|Q)

D(P||Q) = 6(r),
D(P|Q) +6(r).

2
<

in which 6(r) } 0 as r | 0.

In order to prove Lemma 6, techniques from [24] are
utilized.

Lemma 7. I. (Pinsker’s Inequality, [24, Lemma 11.6.1]) Let
P and Q be any two distributions on X, then

D(P||Q) > 57 IIP = Qll,

_212

in which ||P — Ql[1 = 3 |P(z) — Q)|
reX

2. ( [24, Lemma 11.8.1]) Let B,, be any set of sequences
X™, such that P"(B,,) > 1—e. Let Q) be any other distribution
such that D(P||Q) < oo, then

Q"(B,) > (1 — n(D(P[|Q)+¢)

2€)2”
Proof of Lemma 6. If Q(i) = 0 for some i € X, then P(i) =
0 and P*(i) = 0, since D(P||Q) < co and D(P*||P) < r.
Thus, the existence of {i € X : Q(¢) = 0} has no influence
on the final result. Hence, to facilitate the presentation, we
assume that Q(i) > 0,Vi € X.

Since r > D(P*||P) > 5i5||P* —

1P

i€EX

P||2, then we have

(A <v2In2-r,

which indicates

|P*(i) — P(i)| < V2In2-7,Vi € X.
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Define a set A :={i € X : P(i) > Qi) + v2In2-r}, and

A= X\A. Then we have

*(')

D(PIIQ) = 3 P (i) o8 5
ieX
R 0 \loe £ 0)
= P*(i)log — (1) log —
ZA Qi) "2 Q)
(a) Z m) log P(i) E;éfr In2 1)
i€EA
£ 3(P(i) + Varng) log L)~ V2rin?
icA Q(Z)
—ZP 1og 2rin 2 —V2rn2-
i€EX Q( )
Z 10g 27" V2rn2 Z log \/ 2rln2 ©2)
i€EA i€cA )
—V2rln2 ,
; P(i T —d'(r) (63)
= Z P(i) 1og PG) Jr Z P(i 2rin2 & (r)
i€X (@) i€X P(l)
Y pepio) - EP 2V 27’11;12 —§(r)
= D(P[|Q) = é1(r),

in which step (a) follows from the facts that log(:) is an
increasing function of its argument, and that

1ogP<’)_— M >0, Vi€ A,
Q(i)

log P(Z)_Q()%m <0, Vie A
1

In addition, step (b) is true due to the fact that In(1—~) > —2~
when «y (7 > 0) is small enough. Then, we only need to show
d1(r) vanishes as  — 0, which is equivalent to show ¢’(r) | 0

as r | 0. From (62) to (63), §'(r) := ¢ - (z;qlog Pg()g‘s
ic

Z log P(l ) by setting € = v/2r In 2. Since the sizes of sets
A and A are finite, we only need to show log Pg () ;E is finite
PG)—e ﬁnlte

when ¢ is small enough. And that Vi € X' log oG
is obvious, because of the assumption that P(z) > 0, Q(i) >

Following similar steps as above, we can also show that
D(P*|Q) < D(P||Q) + 02(r).

(T)a 02

(r)}, we complete
O

Finally, by setting §(r) = max{d;
the proof.



APPENDIX B
PROOF OF LEMMA 2

According to the construction of S¥(Py), all sequences Z*
with tp(Z*) = Py have the same success probability as that
of Zk:

Pr{S¥(Py)|Z*} = Pr{SF(Py)|Zk}, VZF : tp(ZF) = Py. (64)
Thus, we have

Pr{Sy (Py)|Z5} = Pr{Y*|Zg}.

YkeSk(Py)
H{2"|P2)

ZkeTk(Pz)

@Y izt P2}

ZkeTE(Pz)

= > Priy*zg)
YkeSk(Py)
> Pe{Y*|Z¥}(65)

YkeSk(Py)

where Pr{Z*| Pz} can be any arbitrary conditional probability
distribution of Z* given tp(Z*) = Py, and (a) holds due
to (64).

To further analyze Pr{S*(Py)|Zk}, we first investigate the
relationship between Pr{S¥(Py)|Zk} and Q% (SF(Py)).

QV(SE(Py)) = ) PH(Z")-Pr{S}(Py)|Z"}

ZkeZk

Y. PiZY)
YkeSk(Py)

ZkeZk
Py(Z¥|P7)Py(T; (P2))

POEEDY

ISZ €Tz ZkETZk(Pz)

Pr{Y*|Z*}

> pr{y*zh}
YkeSk(Py)
= > PUTE(Pn) Y. PL(ZF|Py)
PreTy ZkETZk(ISZ)
Z Pr{Y"*|Z*}
YkeSk(Py)
> PY(TS(Pz) Y. PH(Z¥|Py)
ZkeTE(Pz)
Z Pr{Y"*|Z*}.
YkeSk(Py)
W PE(TE(Py)) - Pr{SE(Py)| 25}, (66)

where (a) is true because of (65). On the other hand, according
to [24, Theorem 11.1.4], we have

1
(k+1)l=l
1
(k+ )12l

PY(TS(Pz)) > . 9—kD(Pz]|Pz)

Thus, we conclude that

Pr{SF(Py)|ZE} < (k+1)Z1Q% (SF(Py)). (67)
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In the following, we bound Q¥ (S¥(Py)) from above. First,

it follows

Q5 (¥ (Py)) =
(Y E) T (tp(Y ) Sk (Py )

and by Lemma 6 in Appendix A, V tp(Y*) : T (tp(YF)) C
Sk(Py), we have

D(tp(Y")||Qy) = D(Py||Qy) — 4(r),

with §(r) goes to zero as r decreases. Thus,

QY (tp(Y™))

QY (tp(Y'®)), (68)

(69)

< 9= kD((YM)IQy)
< 2 KD (FrlIQy)=d(r) (70)
Combine (70) and (68), and we have
QY (SF(Py)) < Z 9—k(D(Py||Qy)—5(r))
tp(Y*): T (tp(Y*))€SE(Py)
< (k+ 1)|y‘2_k(D(PYHQY)_‘S(T')). (71)
Combining (71) and (67), we obtain
Pr{Sf(Py)|Zg} < (k+ 1)W|+IZ\2—1€(D(PYHQy)—5(T)). (72)

APPENDIX C
PROOF OF (38)

Proof. Given X™, denote the conditionally e-typical set of
sequences Y" by T.(Y™|X™) (the concept of e-typicality and
its property can be found in [29, Chapter 2]), and we have

Pr{T.(Y"|X")| X"} >1—e.
Thus,
Pr{A(X")NT (Y™ X™)|X"} >1— 3e.
In addition, for each Y™ € T.(Y™|X™), we have
2 n(HY|X)+e) < Pr{Y"| X"} < 9—n(H(Y[|X)—e)
Thus, we have
JAX™) NT. (Y™ X™)] > (1 — 3e)2nHY1X)=26),

Since for each X" € Cp,, we have T, (Y| X") C T.(Y™),
then,

T.v"M 2 |J AXM)NTY"X™).

Xn€Cpy

In addition, from (37), V X™, Xn e Cpy, X™ # X" we have
AX™) NT(YX™) (VAX™) NT(Y"|X") = 0.

Thus, we have

Ty = Y JAXT NT(Y" X))
XneCpy
3 (1—3e2nHIIX) -2
XneCpy
> (n+ 1)~ 1¥Ignfim (1 — 3e)onHVIX)=20),

>



Since that |7, (Y")| < 2n(H()+€) we have

2n(H(Y)+6) 2 (n + 1)7|X|(1 _ 36)271(H(Y‘X)+Rm726),

thus,

X
Ry <I(X;Y) +4e+ Ulogn(l — 2¢).

The proof is complete.

APPENDIX D
PROOF OF (44)

Define
S:={Px:I(X;Y) > Rm},
T:={Qy :Qy = Z Py (j

jeZ

V(Y|j),VPz € Pz}.

Since Qy is an affine function of P, we can rewrite the
max min problem in (44) as

max min F(Px,Qy),

PxeSQveT
where F(Px,Qy) := Y. Px(i)D(Py,;||Qy) — Rm. Thus,
iex

we need to show

max min F(Px,Qy) = min max F(Px,Qy)

(73)
PxeSQyeT Qv €T PxeS

is true.
Before going further, we need to introduce Sion’s minimax
theorem as follows.

Lemma 8 (Sion’s minimax theorem [30]). Let B be a convex
subset of a topological vector space and D a compact convex
subset of a topological vector space. And f is a real-valued
function defined on B x D with

1. f(b,-) is lower semicontinuous and quasi-convex on D,
Vb € B, and

2. f(-,d) is upper semicontinuous and quasiconcave on B,
Vd € D.

Then

rgleaggém f(b,d) = (Iirélg max f(b,d).
According to Sion’s minimax theorem, in order to obtain
(73), we need to prove
a) S and T are convex;
b) Given Px, F(Px,-) is convex on T
¢) Given Qy, F(-,Qy) is quasiconcave on S.
Now, we provide the proofs one by one.
Proof of a). That T is convex is obvious, since )y is an affine
function of Pz, and P is convex.
Then, we show S is convex. Suppose Px1 € S and Pxs €
S (denote the corresponding mutual information by I(X1;Y)
and 1(X2;Y") respectively), thus we have

I(X1;Y) > Ry,
I(X2;Y) > Ry,
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Set Px3 = APx1 + (1 — X\)Px4 for arbitrary A € [0, 1]. Since
the conditional PMF Py |x is fixed by the channel W (Y| X)
and that /(X;Y’) is concave in Px for a fixed Py|x, we have

I(X3;Y)> MN(X1;Y)+ (1 -
> ARy + (1= NR;,
=R

NI(X2:Y)

Thus, Px3 € S. Then, we have that S is a convex set.
Proof of b). According to Theorem 2.7.2 of [24], D( )
is convex in (Py,;,Qy). With a fixed Py, we obtain that

D(Py;||Qy) is convex in Qy. Thus, suppose Qy1,Qy2 € T
and Qys = AQy1 + (1 — A\)Qy2, and Vi € X, we have

Px (i) D(Py,i||Qys)
< Px (i) (AD(Py,i||Qy1) +

Thus

2 Px(d)

< ZPX
= AZ Px(i

(1=XA)D(Py.il|Qy2)).

D(Py;||Qys)

(AD(Py,i||Qv1) +

+(1-MND

(Py.il|Qvy2))

D(Py;||Qv1)

WAL

)-

Then, we have

F(Px,Qys) < AF(Px,Qy1) +

Thus, F(Px,-) is convex on T
Proof of ¢). Given Qy, we know F(-,Qy) is linear in Py,
thus, it’s quasiconcave.

(1 =N F(Px,Qyz).

APPENDIX E
PROOF OF (45)

Proof. To assist the presentation, denote
= Px(i)h
iex

in which h; := D(Py,;||Qy). Since for each i € X, h; is a
constant, we have that ¢(Px) is linear in Py.
Recall that Pr = {Px : I(X;Y) > R,,}. Suppose

Py = arg max 0(Px), (74)

and Pj% is an interior point of Pp, thus,
I(X*;Y) > R,
Denote

Sr={i € X: Px(i) # 0},

7 = arg min h;.
1EST



Then, we have

UPy) =Y Px(i)hi—R
1EST
= Y Px(i)hi + Px(i)h; — R
i€Sr\1

> Pi(ihi+ | 1= > Px(i) | h; — Rm

i€ST\1 i€ST\1
= Y Pxli) h:) + h: — Ry,
i€ST\i
Now, construct I5X as
Px (i) = Py(i)+¢, Vi€ S\
Px (i) =0, Vie X\Sp
Px(i)=1- > Px(i)
i€Sr\i

Due to the continuity of I(X;Y") in Px, there exists some
€ > 0 such that

I(X;Y) > R,,.

However, for this Px, we have

U(Px) =L(Px)+e > (hi—hy)
i€Sr\i

> ((PL), (75)

in which the equality holds only when h; = h;, Vi € S;. If the
inequality in (75) is strict, then it contradicts the assumption in
(74) that P% is the maximizer for ¢(Px ). Hence, the equality
in (75) holds. In this case, all (Px)s with Px € {Px : Vi €
X\S1, Px (i) = 0} have the same value as ¢(P%). Now, due
to the continuity of I(X;Y") in P, it’s easy to conclude that
there exists a Py € {Px : Vi € X\Sr, Px (i) = 0} such that
I(X;Y) = Ry, as 1) Py € {Px : Vi € X\Sy, Px(i) = 0}
and I(X*;Y) > R,, from the assumption; and 2) there exists
a P%x € {Px : Vi € X\S[,Px(i) = 0} (e.g. P% is of the
form [0,---,1,0,---]) such that [(X*;Y) = 0.

Hence, the optimal value can always be obtained on the
boundary defined as

{Px :I(X;Y)=R,}.
This completes the proof. O
APPENDIX F

Proof of Lemma 3. Denote channels W (Y |X) and V(Y|Z)
by matrices W and V in short. Define PX
[0,---,0,1,0,---,0]7,i € X, where 1 is on the ith row.
Since the simulatability condition holds, there exists PZAJ €
P such that

VPg,=WPx,, VicX.

In addition, given an arbitrary Py € Px, we have

Py = [Px(1),--, Px(|X[)]"
= Px(i)Px;
i€X
Set a virtual channel VZI ¢ by
VZ\X’ = [PZA,17PZA,27 T vPZA,|X|]7

then, we have
WPx =W Px(i)Px,
iEX
=> WPx(i)Py,
i€X
= Z Px (l)WP)l(z
ieX
= Z Px(i)V Pz,
ieX
=V Y Px(i)Pg,
ieXx

= V'V, xPx.

(76)

(77
Since here Px € Px is arbitrarily given, we have

W =VVy,x. (78)

This completes the proof. O

Proof of Lemma 4. The conclusion that if the simulatability
condition holds, then the equations defined by (55) hold is
obvious, since W(Y'|i) = W(Y|X)Px,, and Py, € Px
(PX ; 18 defined in the proof of Lemma 3).

On the other hand, as we have shown from (76) to (77), if

(55) holds, then VPx € Px, Pz = Y. Px(i)Pg, is always
ot ,
a valid choice. ' O

Proof of Lemma 5. Tt suffices to show

min IV (Y|Z) Pz — W(Y]i%)|[1 >0
Z,i*
with constraints defined by (59).
min IV (Y|Z2) Pz — W(Y]i%)|x
Z,i*

= WY X))y

Z,i*

}rjnin ||V(Y|Z)PZ,2'* -W(Y|X)+ AV(Y|Z)PZ.¢*H1
Z,i*

v

;nin |V(Y|Z) Pz — W(Y|X)||1

—max ||AV(Y]Z)
Py i+

p—max ||AV(Y|Z) Pz |1
Py

—[Ylo
>0,

if 6 < f. (a) is true since the summation of each column of
Py ;+ equals to 1. ]

18



[2]

[3]

[5]
[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]

[27]

(28]

REFERENCES

W. Tu and L. Lai, “Keyless authentication over noisy channel,” in Proc.
Asilomar Conf. on Signals, Systems and Computers, (Pacific Grove, CA),
pp. 1665-1669, Nov. 2016.

H. Koga and H. Yamamoto, “Coding theorems for secret-key authentica-
tion systems,” IEICE Trans. Fundamentals, vol. E§3-A, pp. 1691-1703,
Aug. 2000.

L. Lai, H. El Gamal, and H. V. Poor, “Authentication over noisy
channels,” IEEE Trans. Inf. Theory, vol. 55, pp. 906-916, Feb. 2009.
U. Maurer, “Authentication theory and hypothesis testing,” IEEE Trans.
Inf. Theory, vol. 46, pp. 1350-1356, Jul. 2000.

G. J. Simmons, “Authentication theory/coding theory,” in Proc. Ad-
vances in Cryptology, (Linz, Austria), pp. 411-431, Apr. 1985.

G. J. Simmons, “A survey of information authentication,” Proc. IEEE,
vol. 76, pp. 603-620, May 1988.

Y. Hao, Y. Cheng, C. Zhou, and W. Song, “A distributed key manage-
ment framework with cooperative message authentication in VANETS,”
IEEE J. Sel. Areas Commun., vol. 29, pp. 616-629, Mar. 2011.

U. M. Maurer and S. Wolf, “Secret key agreement over a non-
authenticated channel - Part I: Definitions and bounds,” IEEE Trans.
Inf. Theory, vol. 49, pp. 822-831, Apr. 2003.

U. M. Maurer and S. Wolf, “Secret key agreement over a non-
authenticated channel - Part II: The simulatability condition,” IEEE
Trans. Inf. Theory, vol. 49, pp. 832-838, Apr. 2003.

U. M. Maurer and S. Wolf, “Secret key agreement over a non-
authenticated channel - Part III: Privacy amplification,” IEEE Trans. Inf.
Theory, vol. 49, pp. 839-851, Apr. 2003.

T. Johansson, “Lower bounds on the probability of deception in authenti-
cation with arbitration,” IEEE Trans. Inf. Theory, vol. 40, pp. 1573-1585,
Sep. 1994.

M. Walker, “Information-theoretic bounds for authentication schemes,”
Journal of Cryptology, vol. 2, pp. 131-143, Jan. 1990.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” ACM Transactions on
Computer Systems, vol. 10, pp. 265-310, Nov. 1992.

T. Y. Woo and S. S. Lam, “Authentication for distributed systems,” IEEE
Computer Society, pp. 39-52, Jan. 1992.

O. Gungor and C. E. Koksal, “RF-fingerprint based authentication: Ex-
ponents and achievable rates,” in Proc. IEEE Conf. on Communications
and Network Security, (San Francisco, CA), pp. 97-102, Oct. 2014.

H. V. Poor, An Introduction to Signal Detection and Estimation. New
York: Springer-Verlag, 1994.

L. Xiao, L. J. Greenstein, N. B. Mandayam, and W. Trappe, “Using
the physical layer for wireless authentication in time-variant channels,”
IEEE Trans. Wireless Commun., vol. 7, pp. 2571-2579, Jul. 2008.

J. K. Tugnait, “Wireless user authentication via comparison of power
spectral densities,” IEEE J. Sel. Areas Commun., vol. 31, pp. 1791-
1802, Aug. 2013.

W. Hou, X. Wang, J.-Y. Chouinard, and A. Refaey, “Physical layer
authentication for mobile systems with time-varying carrier frequency
offsets,” IEEE Trans. Commun., vol. 62, pp. 1658-1667, May 2014.
H. Wen, P-H. Ho, C. Qi, and G. Gong, “Physical layer assisted
authentication for distributed ad hoc wireless sensor networks,” IET inf.
secur., vol. 4, pp. 390-396, Dec. 2010.

X. Wu and Z. Yang, “Physical-layer authentication for multi-carrier
transmission,” IEEE Commun. Lett., vol. 19, pp. 74-77, Jan. 2015.

A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal,
vol. 54, pp. 1355-1387, Oct. 1975.

T. S. Han and K. Kobayashi, “Exponential-type error probabilities for
multiterminal hypothesis testing,” IEEE Trans. Inf. Theory, vol. 35,
pp. 2-14, Jan. 1989.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, 2006.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge University Press, 2004.

H. Tuy, Convex analysis and global optimization. Boston, MA: Springer
Science & Business Media, 2013.

I. Csiszar and P. Narayan, “The capacity of the arbitrarily varying
channel revisited: Positivity, constraints,” IEEE Trans. Inf. Theory,
vol. 34, pp. 181-193, Mar. 1988.

W. Tu and L. Lai, “On the simulatability condition in key generation
over a non-authenticated public channel,” in Proc. IEEE Int. Symp. Inf.
Theory, (Hongkong, China), pp. 720-724, 2015.

19

[29] A. El Gamal and Y. Kim, Network Information Theory. New York:
Cambridge University Press, 2011.

[30] M. Sion, “On general minimax theorems,” Pacific J. Math, vol. 8,
pp. 171-176, Mar. 1958.

Wenwen Tu (S’16) received the B. E. degree from University of Science
and Technology of China, Hefei, China in 2013. He was a PhD candidate at
Worcester Polytechnic Institute from 2013 to 2016, a visiting graduate student
research collaborator at Princeton University in 2016.

Mr. Tu is currently a Ph.D. candidate in the Department of Electrical and
Computer Engineering, University of California, Davis. His research interests
include information theory, stochastic learning and machine learning.

Lifeng Lai (M’07) received the B.E. and M. E. degrees from Zhejiang
University, Hangzhou, China in 2001 and 2004 respectively, and the PhD
degree from The Ohio State University at Columbus, OH, in 2007. He was
a postdoctoral research associate at Princeton University from 2007 to 2009,
an assistant professor at University of Arkansas, Little Rock from 2009 to
2012, and an assistant professor at Worcester Polytechnic Institute from 2012
to 2016. Since 2016, he has been an associate professor at University of
California, Davis. Dr. Lai’s research interests include information theory,
stochastic signal processing and their applications in wireless communications,
security and other related areas.

Dr. Lai was a Distinguished University Fellow of the Ohio State University
from 2004 to 2007. He is a co-recipient of the Best Paper Award from IEEE
Global Communications Conference (Globecom) in 2008, the Best Paper
Award from IEEE Conference on Communications (ICC) in 2011 and the
Best Paper Award from IEEE Smart Grid Communications (SmartGridComm)
in 2012. He received the National Science Foundation CAREER Award
in 2011, and Northrop Young Researcher Award in 2012. He served as
a Guest Editor for IEEE Journal on Selected Areas in Communications,
Special Issue on Signal Processing Techniques for Wireless Physical Layer
Security. He is currently serving as an Editor for IEEE Transactions on
Wireless Communications, and an Associate Editor for IEEE Transactions
on Information Forensics and Security.



